
Universität Ulm | 89069 Ulm | Germany Fakultät für
Ingenieurwissenschaften
und Informatik
Institut für DBIS

The WfQL: A Proposal for a Standard
WfMS Interface
Diplomarbeit an der Universität Ulm

Vorgelegt von:
Mark Oliver Schmitt
mark.schmitt@uni-ulm.de

Gutachter:
Prof. Dr. Reichert
Prof. Dr. Dadam

Betreuer:
David Knuplesch

2011

Fassung February 20, 2011

c© 2011 Mark Oliver Schmitt

Contents

1 Introduction 1

2 Requirements 7

2.1 Requirements along the process life-cycle . 7

2.1.1 Modeling stage . 8

2.1.2 Execution stage . 9

2.1.3 Change stage . 10

2.1.4 Analysis stage . 11

2.2 General requirements . 12

2.2.1 Portability . 12

2.2.2 Exchangeability . 12

2.2.3 Concurrency . 13

2.2.4 Data serialization . 13

2.2.5 Exceptions . 13

2.2.6 Unambiguousness . 14

2.3 Evaluation of current standards . 14

2.4 Summary . 15

3 Assumptions and Design Decisions 17

3.1 Staff assignment rules and device restrictions 17

3.2 Transactions . 18

3.3 Block structure . 19

3.4 Data flow . 20

3.5 Decision Logic . 21

3.6 Data types and constraints . 23

3.7 Change Model . 23

3.8 Logging and the general entity relationship meta model 24

3.9 Summary . 24

iii

Contents

4 Realization 27

4.1 General . 27

4.2 Organization Model and Restriction Model . 28

4.2.1 Organization Model Entity Definition 29

4.2.2 Device Restrictions . 33

4.2.3 Restriction Model Entity Definition . 33

4.3 Data representation . 35

4.3.1 Data types . 35

4.3.2 Data constraints . 36

4.3.3 Data containers . 36

4.4 Exceptions . 37

4.5 Process models, templates and instances . 41

4.5.1 Node and Block types . 41

4.5.2 Process Model . 48

4.5.3 Activity template . 48

4.5.4 Activity instance . 49

4.5.5 Process templates . 50

4.5.6 Process instance . 52

4.6 Summary . 52

5 Language definition 53

5.1 Modularization . 53

5.1.1 Dependency graph . 56

5.2 Base modules . 56

5.2.1 Sessions . 57

5.2.2 Transactions . 58

5.2.3 Data Type Definition . 60

Data Type Constraints . 61

5.2.4 Data serialization . 63

5.2.5 Select syntax . 63

5.2.6 Staff Assignment Query . 65

5.2.7 Process Fragment Representation . 68

Process Fragment Representation Examples 71

5.2.8 Failure and success notifications . 73

iv

Contents

5.3 Modeling Modules . 74

5.3.1 Organization Model and Device Restriction Modeling 75

5.3.2 Data Type and Constraint Modeling 87

5.3.3 Process Template and Process Instance Modeling 88

5.3.4 Process Instance Modeling . 94

5.3.5 Activity Template Modeling . 95

5.4 Execution Modules . 97

5.4.1 Activity Execution . 97

5.4.2 Process Execution . 99

5.4.3 Event registration and delivery . 102

5.5 Analysis Modules . 104

5.5.1 Accessing Process Instances . 104

5.5.2 Activity and Process Analysis . 105

5.6 Summary . 107

6 Implementation 109

6.1 Server . 109

6.1.1 Architecture . 110

6.1.2 Data Types . 111

6.1.3 Parsing the model . 112

6.1.4 Data flow . 112

6.1.5 The WfMS Engine . 113

6.1.6 Deployment of the prototype . 113

6.1.7 Summary . 114

6.2 Modeling tool . 114

6.2.1 Data storage . 114

6.2.2 Usage . 115

6.3 Web-services a lá Workflow . 116

6.3.1 Components . 116

6.3.2 Webserver component . 118

6.3.3 Activity client component . 118

6.3.4 Usage . 118

6.4 Summary . 119

7 Discussions and possible future works 121

v

Contents

7.1 Testing paths in process models . 121

7.2 Data transport protocol – discussing the serialization method 122

7.3 Partitioning workflows across multiple WfMS 122

8 Summary and outlook 123

Bibliography 127

vi

1 Introduction

Today, division of work has become common in the economic world. It is obvious, that an

engineer, who developed a car, will not build it and that a surgeon will not nurse a patient

before and after an operation.

This is the very essence of todays, in history unprecedented productivity per worker.

The focus of workers on specific activities requires them to implement a workflow, in which

the individual worker executes activities they are specialized on. These activities are of-

ten based on the work of other workers. In the past, the work did not change that much

over time and the model, that describes the individual workers position and work within a

workflow, could be memorized.

Today, virtually every company is competing on the marked, which leads to optimization

of workflows, and thus requires the individual worker to adapt quickly to new workflow

models. With the computerization being available, many companies use digital documents

instead of physically existing ones – which makes it possible for computers to communicate

most of the data that is exchanged between the individual workers of a workflow. These

aspects lead to the development of Workflow Management Systems (WfMS), which are

computerized aids that help companies execute their workflows.

These systems are capable of reminding the individual workers about pending activities

and allows them to focus on their work, as the flow of work is getting managed by WfMS.

To illustrate our point, we are formulating the following example:

Fig. 1.1 shows a simple order to delivery process that consists of three steps:

1. A telephone operator in customer service recording orders from customers

2. A book-keeper who makes sure, the invoice is executed

3. Shipping of product

The figure also shows the flow of data between the stakeholders:

1

1 Introduction

Customer service records
order of a product

Shipping of product
Invoice

Writes:
ordered producs
Shipping address
Invoice number
Total price

Reads:
Total price

Invoice number

Read:
Ordered producs
Shipping address

Figure 1.1: Example workflow with dataflow

• The telephone operator stakeholder notes the customers shipping address, the or-

dered products, calculates a total price and give the customer an invoice number for

future reference.

• The book-keeping stakeholder gets informed about the total price and the invoice

number

• The shipping stakeholder gets informed about the ordered products and the shipping

address.

If a WfMS was used for the presented process, the telephone operator could enter the

customer data, ordered products, shipping address and the customer billing number into

the WfMS. The WfMS could store this information in the workflow and inform book-keeping

and shipping with the billing number, ordered products and shipping address respectively.

Businesses execute many processes like the exampled one. All processes have in com-

mon, that they are repetitively executed tasks, that depend on input and generate output.

Most processes have implicit rules that grew over time and are often not formalized prior to

the use of a WfMS. They exist in the minds of the people working on them. In such an envi-

ronment, when no formal step by step protocol is kept, the actual state – the current activity

and the following activity – become diffuse. Information flows between the stakeholders

using any means – voice, written notes both on paper or via electronic means.

2

When the rules that govern processes get formalized, there are many possibilities to do so:

Diagrams such as Figure 1.1, full text depictions and step-by-step instructions are efforts

to build models after which a process should be executed.

WfMS require formal models. Therefore, we first take a look at how business processes

get executed when they are formalized: Each process gets executed by rules that define

the order of activities that need to get executed. This formalization of a process defines

the process model, the actual execution of processes according to a model is called a

process instance of this model. Process models are given a name, the combination of

a process model and a name forms the process template. New process instances are

created based on process templates.

Similar to the real world, the instance’s process model may vary at times from the template.

The description of activities in workflows without computerized aids can be implicit, with-

out noting every single input necessary to full-fill the activity. However, with computerized

systems, the input of activities has to be described exactly. Especially, when direct commu-

nication between the stakeholders is impossible.

Analogue to process templates, activities can be predefined as well. Activity templates

define classes of activities that have common input and common output. A common activity

therefore can be described just one time and then used in all models. Obviously, an activity

requires specific input depending on the process instance it gets executed in, and return

its output to this instance. The advantages of activity templates is enormous: An activity

can be executed ad hoc, without knowing anything about the process it is part of, and by

different stakeholders.

Stakeholders executing activity instances require an interface to get the activity’s input and

return the activity’s output to the WfMS. This aid is usually supplied in the form of activity

programs. They are either part of a WfMS or interface with one.

The rules defining the order of activities and decisions, whether certain activities get exe-

cuted is called the control flow. In addition, the input and output of activities is handed

through the process’s execution by means of the so called data flow. The latter defines,

which output becomes the input of a later activity or control flow decision.

The stakeholders we discussed in the initial example are executing activities. Other

classes of stakeholders exist as well: stakeholders that create and change process models

or analyze past and currently running processes. It is expected, that not all stakeholders

3

1 Introduction

share one computerized system, but that they are using computers that can communicate

with the WfMS via a computer network. Stakeholders use programs on their computers that

execute their tasks, such as modeling processes or executing activities. These programs

need to communicate with the WfMS via the network. Currently, no standard exists that

governs this communication in all aspects. Therefore, the providers of WfMS develop their

own communication protocols and languages, that are not compatible to competing WfMS.

The Migration Problematic

The available standardized protocols for WfMS specific information are not supporting all

aspects of workflow specific communication. We therefore assume, that in the following

scenario, a proprietary WfMS system is deployed.

We also assume, that there are users of such a system and it is used to implement many

aspects a company’s daily work: The system governs the employees’ activities and models

repetitively executed processes, like the shipping process shown in Figure 1.1. The em-

ployees’ use computers with programs, that in turn use the WfMS. At some point in time,

problems surface with the WfMS. A competing provider of WfMS offers a solution, and the

company would like to migrate.

However, the new system is incompatible, because the the two WfMS use different pro-

tocols for communication. When switching to another protocol, the employees programs

have to be adapted to the new protocol and process models have to be migrated, possibly

manually by re-entering it with a new modeling program.

The cause of this problem is, that the two WfMS use different protocols to communicate.

If they had used a common protocol, the company could have migrated to a new WfMS

without the need to migrate the clients and could have automated the migration of data

held in the WfMS.

The Binary Problematic

When developing programs that make use of a WfMS, a means of interfacing with the WfMS

is required. Providers of WfMS thus supply customers with programs or libraries that supply

this interface. They have to be deployed on the client computers, so they can be used by

the client programs to interface with the WfMS.

4

However, the deployment of binary code is problematic in many ways: For one, the inner

workings of the binary interface component is hidden from its users, which prohibits them

from fixing bugs. Second, the binary code has to be compatible to the client computer. Only

the target platforms that the provider decided to supply binary interfaces for are supported.

Third, when the protocol changes, for example due to a new WfMS server version, all target

platforms need to get updated.

Proposal for a solution

In order to solve the migration and the binary problematic, we propose the development of

a communication language for WfMS.

To do so, we discuss requirements to a WfMS interface and to a underlying WfMS in chapter

2, name design decisions and assumptions we made on the underlying WfMS in chapter 3,

present the concrete realization of a model of a WfMS implementing the design decisions in

chapter 4 and present the language specifications in chapter 5. In chapter 6 we present a

prototypical implementation of the language specified in the form of a server and a several

client implementations.Chapter 7 discusses further possible enhancements to the language

and discusses aspects, that require further research.

We name this language the Workflow Query Language (WfQL), due to its comparable

usage scenario to the Structured Query Language for Database Management Systems.

5

1 Introduction

6

2 Requirements

In this chapter, the requirements towards both interface, the WfQL, and the underlying

WfMS are discussed. We formulate them from the stakeholder’s perspective. The require-

ments towards the WfMS are in later chapters used to formulate a model, which WfMS

have to comply to when implementing a WfQL compatible interface.

Not all requirements are towards the WfMS. In part, they are direct requirements towards

the WfQL specifications. We differentiate between general requirements to both compo-

nents, and specific requirements by naming the target component in the requirement defi-

nition if only one of them is concerned.

In chapter 3, these requirements are used to search for existing standards and specifica-

tions that could possibly satisfy them.

2.1 Requirements along the process life-cycle

M
odelling

Ex
ec
ut
io
n

An
al
ys
in
g

Changes

Figure 2.1: Lifecycle

The stakeholder’s interactions with the WfMS are presented

with the help of the process life-cycle. Stakeholders develop

a new process template and design new activity templates or

use existing ones in the modeling stage. It is followed by

the execution stage, that is, the repetitive materialization of

process templates in the form of process instances, which in

turn causes activities to get executed by activity stakeholders.

During the change stage, modifications to process models

and activity templates are carried out. The analysis stage

describes how analyst stakeholders examine currently exe-

cuting and terminated processes and activities.

During the course of presenting this four staged life cycle, we note requirements to a WfMS

and to the WfQL.

7

2 Requirements

2.1.1 Modeling stage

M
odelling

Ex
ec
ut
io
n

An
al
ys
in
g

Changes

Figure 2.2: Modeling

During the modeling stage, processes are modeled with the

following entities: The process model of process templates

with data flow and control flow, activity templates and the or-

ganization structure.

Thus, we can state the first requirements:

• Req 1: Creation and persistence of process models of

process templates and activity templates

The control flow should be flexible, so activities can be omit-

ted and executed parallelly and repetitively:

• Req 2: The control flow of process models allows omit-

ting activities and repetitive and parallel execution of activities

Activities require input and generate output. As such, the corresponding activity templates

have to declare which input and output to expect:

• Req 3: Activity templates are modeled with input and output variables

Furthermore, only sound process models shall be persisted in the WfMS:

• Req 4: Ensure soundness

WfMS are used in companies that have organization structures and as such, we require

the WfMS to reflect that structure when assigning activities to workers and as basis for

permission management:

• Req 5: An organization model is used as basis for staff assignment and permission

management

8

2.1 Requirements along the process life-cycle

2.1.2 Execution stage

M
odelling

Ex
ec
ut
io
n

An
al
ys
in
g

Changes

Figure 2.3: Execution

During the execution stage, the WfMS waits for stakehold-

ers to initiate process instances based on process templates.

This procedure is called process instantiation and results in

a process instance.

• Req 6: Instantiation of new process instances based on

process templates

The WfMS should then “run” the instance and execute it until

it arrives in a termination state. During the execution, ac-

tivity templates are referenced from the process model and

supplied with input, which creates activity instances. They

require execution by activity stakeholders who require the ac-

tivity’s input to execute them. Additionally, the WfMS has to ensure, that no two stakehold-

ers execute the same activity instance. We name the procedure of accepting an activity

instance with its input as check-out and the return of the output as check-in.

• Req 7: WfMS: the correct and conflict free execution of process instances is ensured

Process instances eventually terminate. Like activities, they may have an output that a

stakeholder may be interested in. This can either be accomplished, by gathering return

parameters directly by querying the WfMS for the results of a terminated process instance,

or by instructing it to inform the stakeholder about finished processes:

• Req 8: The termination state of terminated process instances can be accessed

• Req 9: Stakeholders can register themselves to get informed about the termination

state of process instances

9

2 Requirements

2.1.3 Change stage

M
odelling

Ex
ec
ut
io
n

An
al
ys
in
g

Changes

Figure 2.4: Changes

Processes and activities can change over time – new best

practices, guidelines or laws may require immediate imple-

mentation. Therefore, it is necessary to support changes to

the process model of process instances, process templates

and to activity templates.

While changes on process templates get executed, a new

process instance may get created based on this template.

While changing a process template, it may either not get in-

stantiated at all, or the WfMS has to isolate the changes.

The same issues surface with process instances. We need to

address the following two problems:

1. Depending on the progress of the process instance’s execution, possibly not all mod-

ification can be applied: already executed parts of graphs cannot be altered

2. Related changes need to be applied as one. If not, the execution could proceed

between two modifications and prohibit applying the second change.

A very similar problem is faced with process templates. Multiple modifications that a change

stakeholder sees as group have to be applied as one. If not, a process instance could

get instantiated in-between alterations and execute a template that was never intended for

execution. In the works we reference, these changes to process templates and process

instances are often subsumed with the term process evolution.

When changing process instances, it is possible, that the execution continues while changes

get applied. Thus, optional operations should be possible that allow for individual changes

to be omitted if not applicable. Additionally, not only one instance may need alteration but

multiple ones, applied at the same time.

When process templates are altered, it may become clear, that the process template should

be split into two distinct process templates. Thus, we require a method to derive a copy

from an original template to a new one, and migrating a part of the instances based on the

original one to the new one.

In summary, we obtained the following requirements:

10

2.1 Requirements along the process life-cycle

• Req 10: Activity templates can be altered by adding and removing of start parame-

ters, return parameters and permission settings.

• Req 11: Change and optional change operations on single or multiple process in-

stances and process templates are available as well as a possibility to group opera-

tions and applying them atomically

• Req 12: All or selected process instances can be migrated, when their process tem-

plate’s process model is changed

2.1.4 Analysis stage

M
odelling

Ex
ec
ut
io
n

An
al
ys
in
g

Changes

Figure 2.5: Analyzing

Workflow Management Systems should log the events, that

lead to a process instance’s termination. The activities and

control flow decisions, input and output and the activities tem-

poral aspects are a key information when performance re-

ports are compiled by the analysis stakeholder. The WfMS

needs to aggregate this information in a fashion, that clearly

states, which activities are predecessors and successors.

We require the WfMS to link protocoled information across

the entire range of entities: From activity instances and tem-

plates, over process instances to process templates to the

staff member from the organization model, that executed the

activity.

Thus, we formulate the following requirement:

• Req 13: Generate and provide access to log information

11

2 Requirements

2.2 General requirements

In this section, general requirements that cannot be classified inside the process’s life cycle

are discussed. They span across all four stages of the process life-cycle or are stemming

from the very nature of using a language as an interface for WfMS.

2.2.1 Portability

A large number of different operating systems and architectures are in use in companies.

Prominent examples for operating systems are: Windows, Mac OS X, Linux, iOS, Android

and Windows Mobile. Furthermore, a part of these operating systems can be deployed

on a number of architectures, such as: the x86 architecture, ARM, PowerPC, Sparc and

many more. Generally, software is developed for one or more target architectures operating

systems, possibly by use of a framework.

When frameworks are used, they are - as software generally is - implemented for a number

of architectures and operating systems. The more frameworks a program uses, the more it

becomes dependent on the framework’s supported platforms.

We require however a WfMS to be accessible from any device, regardless of the operating

system, as long as it supportes a means of communication with the WfMS.

Thus, we state the following requirement:

• Req 14: Access to the WfMS may not exclude certain architectures, platforms or

operating systems per design

2.2.2 Exchangeability

One of our primary motivations is the exchangeability of WfMS or components of WfMS

(including activity programs). Therefore, a WfMS client and a WfMS server must be ex-

changeable by another server, if they both support a common interface.

We thus formulate the following requirement:

• Req 15: WfMS servers and WfMS clients are exchangeable

12

2.2 General requirements

2.2.3 Concurrency

WfMS are generally used by more than one stakeholder at a time. A WfMS must therefore

support concurrent operations. An interface may require to aid the WfMS in executing

concurrent operations:

• Req 16: WfMS servers must support concurrent operations, the interface should aid

the concurrent execution

2.2.4 Data serialization

Activity instances require input data and generate output data. The input is acquired by the

activity stakeholder during check-out, the output returned during check-in. This data thus

needs to be transported.

Serialization is the conversion of non-serial data, i.e. data that spans over multiple entities

and attribute, into one serial block of data. It is commonly used when transporting data over

a network, due to the complexities and network latency that would come with a per entity /

attribute access to the data.

The language requires a robust and human readable data representation. Although binary

data should be allowed, it is expected, that most data is stored in predefined basic data

types and user defined data types that can be read in the form of text.

Numbers, dates and time-spans ought to be represented in a human and computer read-

able fashion. Hierarchical organized data should be represented in a way, that allows the

human reader to implicitly understand the underlying data structure.

Thus, we formulate the following requirement:

• Req 17: Serialized data is required to be human and computer readable

2.2.5 Exceptions

We define Exceptions as the carrier of failure information for failures in the execution of

processes and verification issues that the WfMS generates, when it cannot apply changes

due to soundness restrictions.

Thus, we formulate the following requirement:

13

2 Requirements

• Req 18: Exceptions express failures and errors. They contain information about the

origin of the failure and the input data that lead to the failure

2.2.6 Unambiguousness

The language’s semantic has to be unambiguous. An operation has exactly one meaning:

• Req 19: The WfQL’s semantic is unambiguous

2.3 Evaluation of current standards

After listing the requirements, we searched for existing standards that could satisfy them.

We considered the Web Services Business Process Execution language (WS-BPEL) [Me08],

the Business Process Query Language (BPQL) [MS04], the Workflow Management Facil-

ity Specifications (WfMFS) [WfMFS], the XML Process Definition Language (XPDL) [XPDL]

and in conjunction with the XPDL, the Business Process Modeling Notation (BPMN) [BPMN].

We split these standards into two groups: Firstly, WS-BPEL, WfMFS and BPQL that spec-

ify, how to execute actions on and how to gain information from a WfMS, and secondly,

XPDL and BPMN that standardize the representations of workflow specific information like

process models.

The WS-BPEL can be used to execute workflows via Web Services. The concept is inter-

esting, however does not include our requirements from the analysis stage and the change

stage. The BPQL is solely concerned with the analysis of past run processes and does not

cover requirements from the modeling, execution and change stage. The WfMFS by the

Object Management Group is simply put, a RPC standard for access of WfMS and does

not concern itself with the concurrency requirements or organization models. It is using

the Common Object Request Broker Architecture (Corba) [CORBA] which would introduce

further framework dependencies. Though being closest to our requirements, the WfMFS

disqualifies itself as a solution by being, simply put, too generic to be of practical use. In

addition, according to [He06], licenses for commercial Corba implementations are typically

expensive and have several technical issues.

The second group of standards, XPDL and BPMN cannot satisfy any of our requirements.

They are only interesting in so far, that they represent process models. This representa-

14

2.4 Summary

tion could be used as a serialization method of process models, if they would match the

underlying process meta model.

We failed to find any suitable, existing standard protocol / language that would satisfy our

requirements. Therefore, we have no other choice but to design our own language.

2.4 Summary

This chapter presented a number of requirements towards both a WfMS and an interface

for WfMS. We evaluated a number of standards against the requirements and came to

the conclusion, that none of them match our requirements. Therefore, we start making

assumptions and design decisions on a WfMS and its interface in the following chapter in

order to design an interface, that matches our requirements.

15

2 Requirements

16

3 Assumptions and Design Decisions

In sec. 2.3 we evaluated a number of existing standards. We came to the conculsion, that

none of them satisfies our requirements from chapter 2. We therefore decided to design an

interface language from scratch. However, a language may only communicate information

based on a common meta model. We thus state assumptions and design decisions in

this chapter and argue at each decision, why a model was chosen, and if there are viable

alternatives.

We availed ourselves of solutions from the following works: [Re00], [Fo09] and [Be05] and

put them into context.

3.1 Staff assignment rules and device restrictions

Access control, staff assignment and its enforcement is required. Req 5 outlines the

problematic. In this section, we discuss this and related challenges and formulate the

problem more precisely.

We prerequisite, that companies have a sort of organization structure like departments,

project groups and individual work positions.

With a multitude of devices possibly able to use the WfMS through an interface, an addi-

tional restriction comes to mind: Restricting abilities not only per ability of the stakeholder

involved, but also per device.

We found a number of meta models that might solve the staff assignment problematic:

Unix-style operating systems use a permission management based on users and groups.

Resources belong to a user and to a group. Possible permissions include read, write and

execute. A user may for example be allowed to write and read his file while the group may

only read it. This system is often too simplistic for complex multiuser systems and is often

complemented by Access Control Lists (ACL) [POSIX-1003.1e]. ACLs allow for a more

17

3 Assumptions and Design Decisions

fine granulated permission management, but do not hierarchically organize the structure.

The latter is paramount, when reflecting an organization’s hierarchy. Therefore, ACLs are

not suitable as basis for staff assignment rules.

When evaluating [Be05] we found an organization model that suites our requirements. It

is well documented, shows the relationships between different entities within an organi-

zation’s hierarchy and imposes sensible constraints. When compared to ACLs, it is more

complex as a meta model. However, it allows for a simpler structure when actually using it

by predefining commonly found entities in organizations such as organization units, project

teams, positions that would otherwise have been modeled with a generic meta model, that

would not impose constraints and would allow unsound constructs.

We therefore make the following assumption:

• Assumption 1: The organization model from [Be05] is used as meta model for the

organization hierarchy

The target platforms for the WfQL include embedded systems and cell phones. These

devices have obvious shortcomings in displaying information and accepting human user

input. We think it sensible, to offer a model to restrict the abilities of these devices so that

no device, that is not capable of actually executing an activity can accept it.

For example, an intelligent door may execute the activity of opening itself. However, it will

probably not have a keyboard, and if known, that it has no keyboard, the ability of inputting

text should be revoked from the device.

We thus make the following assumption:

• Assumption 2: A device restriction model is used, that revokes abilities for devices

and groups of devices

3.2 Transactions

Many changes to entities in a workflow management system should only be applied in

conjunction. A change may depend on another change for the WfMS to get into a sound

state.

Per Req 5 only sound models may get persisted. A verification is however not at all

times possible directly after the change was applied – it might require changes in other

18

3.3 Block structure

entities which in turn cannot be changed without modifications to the original entity. Such a

deadlock cannot be broken, if each change is verified and rejected separately.

Therefore, the WfQL should offer a construct, which allows modifying many entities at the

same time. Additionally, concurrency has to be considered. If more than one stakeholder

operates on a WfMS at the same time, we expect them reading and writing overlapping

data.

Thus we require the following attributes:

• Atomicy – Group operations together and apply them as one

• Consistency – Verify that changes are sound

• Isolation – Premature writes may not cause dirty reads1

• Durability – Persistence after operations are accepted

Thus we can formulate the following requirement:

• Assumption 3: Offer transactions with ACID properties

3.3 Block structure

In Req 5 we required, that process models be sound. We thus require either a process

model meta model, that allows the verification of the soundness of the process model, or

that it is sound per design. If the latter can be obtained without imposing constraints, it

would be the optimal choice.

As stated in [Re00], a block structured process model with the therein stated properties is

always sound and correct. Figure 3.1 shows an Adept style process model example.

Although a number of constraints are superimposed on the process model, we failed to

find process models, that cannot be modeled via the Adept meta model from [Re00]. We

therefore make the following design decision:

• Assumption 4: The process model uses the block structure from the Adept2Flex

meta model from [Re00]

1Solves overlapping read and write problematic when multiple stakeholders access the WfMS concurrently

19

3 Assumptions and Design Decisions

Figure 3.1: Block Structure from [Re00]

3.4 Data flow

Data flow is a required property of the WfMS and needs to be modeled with help of the

WfQL.

There are two opposing approaches to model data flow that need to be discussed:

1. Direct data flow describes, which return parameters of activities become input pa-

rameters of successive activities.

2. Using data containers in the context of a process, to store return parameters and to

use data container as input parameters for activities.

Step A Step B Step C

Direct Data Flow

Figure 3.2: Direct Data Flow

When inspecting a process instance, the

direct data would not offer means to inspect

the current state of the process instance –

the analyst stakeholder would be required

to inspect the return parameters of previ-

ously ran activities and follow the modeled

data flow to understand the process’s state.

In addition, moving activities inside a pro-

cess becomes more complicated when ac-

20

3.5 Decision Logic

tivity’s output is mapped directly to input, which requires additional validation that becomes

increasingly complex. Due to this complexity, we strongly lean towards using data contain-

ers.

Step A Step B Step C

Data Container

Figure 3.3: Data Containers

Using data container is problematic when activities in parallely executed branches of the

control flow read from and write to the same data container. Thus synchronization is re-

quired to guarantee the order of reads and writes. [Re00] introduces synchronization

edges2 that require the node, that a synchronization edge is originating from, to wait for the

target of the edge. Therefore, solving the order problematic.

We thus state the following assumptions:

• Assumption 5: Data containers are used to store the output of activities and read as

source of input for activities and control flow decisions

• Assumption 6: When the read / write order of data containers is not clear by the

structure of the process model, synchronization edges must be used to order read

and writes

3.5 Decision Logic

A process’s execution engine may need to decide which control path to choose. This is an

integral part of the control flow, and thus, is part of the modeling and covered by the WfQL.

We see two options for solving this problem:

1. Activity Based decision logic that uses activities to decide, which control path is

chosen.
2ger. Synchronisationskanten

21

3 Assumptions and Design Decisions

2. Decision Predicate based decision logic, that labels control edges with rules, that

can be evaluated and thus let the execution engine decide, which control path is

chosen.

Activity based decision logic moves the actual decision of the continuance of the control

flow out of the model and out of the WfMS’s context. This is undesirable because of several

aspects: For one, the actual implementation of the activity is out of the scope of the model

and thus can not be tested when evaluating the model alone. Second, the activity actually

needs to be executed, which implicitly requires a client to run at all times. Third, the activity

client may only have limited access to the scope of the process instance – namely, the

scope of any activity.

Figure 3.4: Decision Predicates from [Re00] (Figure 3-4)

The decision predicate based decision logic does not have the shortcomings of the activity

based decision logic. It allows for the decision logic to stay within the model, and executable

by the process execution engine. The decision predicate can be formulated with the WfQL

and thus allows for a much broader spectrum of information available to the decision than

just the data containers of the process instance. All aspects of the current process instance

– and other instances – can be considered.

We therefore formulate the following assumption:

• Assumption 7: The decision predicate from [Re00] is implemented

With the decision logic being an part of the model, possible paths can be tested and thus

evaluated, if a process model is deterministic. A short discussion on this topic can be found

in sec. 7.1.

22

3.6 Data types and constraints

3.6 Data types and constraints

With data containers storing information, the output of activities needs to be verified in order

to ensure, that when data containers are used as input to activities and decision predicates,

they contain data of a certain type.

When the data is verified at the time of the writing into data containers, failures to comply

to the modeled types get caught at the source.

Req 3 states, that only sound control flow constructs should be accepted. Therefore, a

process instance needs to terminate, regardless of the activity instances return variables.

It may abort due to errors, but it never may get in a state, where no continuing control path

can be chosen.

Data containers may contain a wide range of data which is only limited by the data type. In

conjunction with Req 2 we think it necessary, to further limit the value that data container

can contain in the form of data constraints.

• Assumption 8: Allow definition of new data types by use of existing ones

• Assumption 9: Offer an aggregation data type to store multiple elements accessible

by name

• Assumption 10: Offer an aggregation data type to store multiple elements of the

same type

• Assumption 11: Allow definition of constraints on data container definition in process

instances and data type definition

3.7 Change Model

Due to Req 3 we are bound to verify the integrity of process models. With Assumption 4

a block structure was superimposed on the process model which is an additional constraint

to the meta model.

We are going to make use of the change patterns presented in the technical report [WRS08]

that shows a number of change patterns for block structured process models that satisfy

our requirements and assumptions.

23

3 Assumptions and Design Decisions

Thus we formulate the following assumptions:

• Assumption 12: Changes to process models are executed via a subset of the oper-

ations defined in [WRS08]

3.8 Logging and the general entity relationship meta

model

Per Req 13 we stated, that we need to aggregate activity execution per executioner stake-

holder, process template, process instance and activity template. Thus, we require a meta-

model to log any progress made that references the entities that are related to the logged

information.

For example, the log information of an activity instance execution is related to the activity

template, that the activity instance is based on and the process model, which in turn is

related to a process instance which in turn is based on a process template. Additionally,

the staff member / stakeholder that executed the activity instance is related to the activity

instance execution.

Figure 3.5 shows a general entity relationship diagram that the WfMS is required to imple-

ment. A logging entity stands in relation to the entity that triggered its creation. Thus, with

this relation, it is possible to afterwards analyze all depending entities – and to vice versa,

aggregate logging entities that were created for entities.

• Assumption 13: The WfMS implements an entity relationship model similar to Figure

3.5

3.9 Summary

This chapter presented the meta models of a WfMS. They form the basis of the following

definition of the WfMS model in chapter 4 and the language definition in chapter 5.

24

3.9 Summary

Activity Instance

Activity Node Activty Template

Process ModelProcess Instance Process Template

Staff Member

1
 :

*
1

 :
1

1 : {0..1}

* : 1

* : 1 1 : 1

1 : *

1 : 1 if Activity Instance
is assigned to a Staff
Member, else 1 : 0

Figure 3.5: Entity Relationship of the WfMS

25

3 Assumptions and Design Decisions

26

4 Realization

This chapter presents a meta model for WfMS based on the requirements and assumptions

from chapter 2 and 3. All WfMS implementing an interface for the WfQL have to comply to

this model in order to be fully compatible. It is expected, that a WfMS internally represents

its entities and data in other schemes, and that the interface translates operations from the

WfQL into the specific WfMS’s implementation.

We first present the organization model and the device restriction model with its entities and

relations, followed by the data types and constraints. Exception complement data types by

offering a means to store failure information. Based on these fundamental declarations, the

process meta model is realized.

4.1 General

We split the WfMS in three component groups: storage, application and interface. Illus-

trated in Figure 4.1 is the relationship between these groups. The application component

interacts with storage, the interface component with the application component.

InterfaceApplicationStorage

Figure 4.1: Components

In this chapter, we specify the application component’s behavior and offers in part models

for the storage of WfMS specific information.

The interface component is split into two distinct parts: The communication part and the

parser. The latter makes use of the language definition from chapter 5. For an example

27

4 Realization

implementation of an interface component, the prototypical server implementation shows a

multi-threaded TCP/IP socket server, that uses an (exchangeable) parser, that implements

the WfQL.

4.2 Organization Model and Restriction Model

Assumption 1 states, that the organization model from [Be05] should be used. As-

sumption 2 , that a device restriction model should be implemented. This section puts the

organization model and a device restriction model into the context of a WfMS realization.

Organization Model

The organization model from [Be05] is a meta model for picturing organization structures.

It stores this information within entities, that stand in relation to other entities of the model.

Figure 4.2 shows the entity relationship diagram based on [Be05], that we use to store the

information.

Project Team

Project Member

Org Unit Position Staff Member

Ability

Role

Substitution Rule

(0,n)

(0,n)

Consists
of

Org Group

forms

(0,n)

(0,n)

belongs

leads

(0,n)

(0,1)

(1,1)

(0,n)

(0,1)

leads (0,n)

Se,t

leads

(0,n)

(0,1)

staffs(0,n) (0,n) has(0,n)

(0,n)

subst

(0,n) has

(0,n)

(0,n) (0,1)

(0,n)

describes

(0,n)

(0,n)

(1,1)

(0,n)

Is

subordinated
(0,n) (0,1)

Is
subordinated(0,n) (0,1)

specializes

Figure 4.2: Organization meta model based on [Be05]

28

4.2 Organization Model and Restriction Model

Staff Members are representing human beings or computer programs. With abilities,

certain operations are allowed. A group of abilities is aggregated in Roles. Staff members

have roles, and Positions. The latter aggregates roles. The Substitution Role expresses

(possibly time limited) substitution Positions, so that in case of unavailability of a Position,

another Position can temporarily gain access to the Roles of the substituted Position. Org

Units form Org Groups and subsumes Positions. One Position is leading an Org Unit,

an Org Unit has any number of Positions. Project Teams are lead by a Position, and

consist of Project Members, which are either Org Units or Positions. Project Teams can be

subordinated under other Project Teams.

4.2.1 Organization Model Entity Definition

Based on [Be05] and Figure 4.2 we present the entity definition for use in WfMS. Many-

to-many relationships are declared on the entities of both sides of the relationship and

numbered with roman numbers to identify them. This numbering reused in the language

definition to reference the relationships.

Org Group

Organization groups have one lead position and group organization units.

Organization groups are represented by the following tuple:

name lead_position

name Unique identifier for organization groups

lead_position References the position, that leads the organization group (op-

tional)

Organization groups may have many organization units, which may be subordinated to

many organization groups. Therefore, we formulate this mapping:

• many to many relationship with organization units (I)

Org Unit

Organization units subsume positions. They are lead by a position. They can be subordi-

nated to another organization unit. They may have project teams.

29

4 Realization

Organization units are represented by the following tuple:

name higher_org_unit lead_position

name Unique identifier for organization units

higher_org_unit Reference to a superordinated organization unit (optional)

lead_position References the position, that leads the organization unit (op-

tional)

Organization units may be part of multiple (or none) organization groups and may have

multiple (or none) project teams. We thus formulate the following mappings:

• many to many relationship with organization groups (I)

• many to many relationship with project teams (II)

Project Team

Project teams consist of positions and are part of organization units. They are lead by a

position and can be subordinated to one other project teams.

Project teams are represented by the following tuple:

name higher_project_team lead_position

name Unique identifier for project teams

higher_project_team Reference to a superordinated project team (optional)

lead_position References the position, that leads the project team (op-

tional)

Project teams may be part of multiple (or none) organization units and may consist of

multiple (or none) positions. We thus formulate the following mappings:

• many to many relationship with organization units (II)

• many to many relationship with positions (III)

Position

Positions describe (none or many) Roles. Staff members may have positions. Project

30

4.2 Organization Model and Restriction Model

teams consist of positions. The substitution rule expresses the (temporary) access to the

roles of another position.

Positions are represented by the following tuple:

name org_unit

name Unique identifier for positions

org_unit References the organization unit, this position belongs to

Positions may be staffed by multiple (or none) staff members. Positions are described

by multiple (or none) Roles. Positions may be part of multiple (or none) project teams. Po-

sitions may substitute other position via substitution rules . We thus formulate the following

mappings:

• many to many relationship with staff members (IV)

• many to many relationship with roles (V)

• many to many relationship with project teams (III)

• many to many relationship with substitution rules (VII)

Role

Role group abilities. Positions may have roles. Multiple roles can be (temporarily) substi-

tuted per substitution rule.

Roles are represented by the following tuple:

name higher_role

name Unique identifier for roles

higher_role Reference to a superordinate role (optional)

Positions are described via their multiple (or none) roles. Roles have multiple (or none)

abilities. A substitution rule has multiple (or none) roles. We thus formulate the following

mappings:

• many to many relationship with positions (V)

• many to many relationship with substitution rules (VI)

• many to many relationship with abilities (VIII)

31

4 Realization

Ability

Abilities describe the competences of the related entities. Staff members can directly refer-

ence their abilities. Indirectly, staff members can have abilities via their positions, that have

roles, that have abilities.

Abilities are represented by the following tuple:

name

name Unique identifier for abilities

Roles have multiple (or none) abilities. Staff members have multiple (or none) abilities.

We thus formulate the following mappings:

• many to many relationship with roles (VIII)

• many to many relationship with staff members (IX)

Staff Member

Staff members describe employees of an organization. They staff positions and have abili-

ties.

Staff members are represented by the following tuple:

name

name Unique identifier for staff members

Staff members staff multiple (or none) positions. Staff members have multiple (or none)

abilities. We thus formulate the following mappings:

• many to many relationship with positions (IV)

• many to many relationship with abilities (IX)

Substitution Rule

The substitution rule describes temporary access to roles for positions, that are thus gaining

access to roles of other positions, that are substituted this way.

Substitution rules are represented by the following tuple:

name start_date end_date

32

4.2 Organization Model and Restriction Model

name Unique identifier for substitution rules

start_date Describes the start date of the rule (optional)

end_date Describes the end date of the rule (optional)

Substitution rules reference positions and roles. The referenced positions gain access

to the referenced roles based during the timespan (between start_date and end_date) that

the substitution rule defines. We thus formulate the following mappings:

• many to many relationship with positions (VII)

• many to many relationship with roles (VI)

Summary

The organization model’s entities and their relation was presented in this subsection. This

scheme is reused in the language definition. It is expected, that the WfMS implements this

scheme (or translates its scheme into a compatible one) for WfQL interfaces.

4.2.2 Device Restrictions

Device restrictions formulate, how abilities are revoked from staff members that are us-

ing specific devices according to the entity relationship diagram in Figure 4.3. The WfMS

determines which abilities a staff members has with the help of the organization model.

Afterwards, it revokes abilities based on the used device and the device restriction model.

Device classRestriction Specific Device

(n,m) restricts belongs(n,m) (n,m) (n,m)

Figure 4.3: Device restriction model

4.2.3 Restriction Model Entity Definition

The following paragraphs define the entities of the device restriction model and their rela-

tionships as illustrated in Figure 4.3.

33

4 Realization

Restriction

Restrictions reference an ability from the organization model. A restriction expresses, that

the referenced ability is not available. Device classes map restrictions, to revoke abilities.

Restrictions are represented by the following tuple:

name ability

name Unique identifier for restrictions

ability References an ability

Restrictions are used by multiple (or none) device classes. We thus formulate the following

mapping:

• many to many relationship with Device classes (I)

Device class

Device classes group specific devices. A device class can have restrictions.

Device classes are represented by the following tuple:

name

name Unique identifier for device classes

Device classes refer multiple (or none) restrictions and multiple (or none) specific devices.

We thus formulate the following mappings:

• many to many relationship with Restrictions (I)

• many to many relationship with Specific Devices (II)

Specific Device

The specific device entity represents a device that is grouped with similar devices in device

classes. A device can be part of many device classes.

Special devices are represented by the following tuple:

name

name Unique identifier for specific devices

Specific devices refer multiple (or none) device classes that they are part of. We thus

formulate the following mapping:

34

4.3 Data representation

• many to many relationship with Device classes (II)

4.3 Data representation

data

exceptions nodes
process

templates
process

instances
activity

templates
activity

instances

data types

data constraints

data container

A WfMS stores a number of different types of data. Data containers are used to store

data. They are typed, so their values and attributes can be validated.

4.3.1 Data types

Using data types means, that the data is of a certain type and follows a specific format. The

following data is typed:

• Data Container

• Start / Return Parameters of:

– Process Templates / Instances

– Activity Templates / Instances

We differentiate types into two classes: Basic Data Types that are predefined and User

Defined Data Types, that are defined based on the basic data types.

The following basic data types are predefined:
integers positive and negative integers

numbers floating point numbers

text text of unlimited length

timespan time spans with microsecond precision

date date with second precision

User defined data types use either preexisting user defined data types or basic data types

in aggregating data types such as Maps, Structs, Lists and Sets.

35

4 Realization

Maps map a typed key to a typed value, Structs define keys by name and a typed value.

Lists and Sets subsume data containers of the same type. Sets are unordered, Lists

ordered.

Exceptions are a special case of structures with additional possible key - value pairs. They

contain the exception’s name, the originator entity, a stack trace and a message that con-

tains a short error description.

This part overlaps with the language definition, as data types are used in the interface

and a notation is introduced that is capable of representing all data types used. Additional

information can be found in sec. 5.2.3, Table 5.2 and Table 5.1.

4.3.2 Data constraints

Constrains per basic data type are:

• Numbers and time-spans: Range constrains

• Dates: Date constrains

• Text: maximum and minimum length in characters, must contain specific words or

phrases

• Binary data: maximum and minimum length

Two constraints levels are possible:

1. Data type level: Bound to the data type, all elements of this type have to follow this

constraint and can only be absolute.

2. Process level: Bound to the specific data element of a process. They are specified

at the declaration level of data containers.

4.3.3 Data containers

Data containers are used to store information about the current state of a process in the

process’s instance. The process model declares data containers with a type and possibly

with constraints (see sec. 4.3.2).

36

4.4 Exceptions

Start parameters of process models are mapped to data containers, return values of activ-

ities are mapped to data containers, input parameters of activities and the decision predi-

cates are mapped from data containers of process models.

A data containers initial value is the NULL pointer if possible, a numeric zero, an empty text,

a timespan of zero or, in case of dates, the first date possibly represented. This trade-off

has been made in order to accommodate the many possible development platforms and

languages that may be used in the implementation.

Data containers definitions are declared by the following tuple:

process_model name data_type process level constraints

process_model Reference to the process model, the data container is part

of

name Name of the data container

data_type Reference to the data containers data type

process level con-

straints

defines the data constraints (instance level) on this data

container

4.4 Exceptions

exceptions

nodes
process

templates
process

instances
activity

templates
activity

instances
data

exception blocks

exception hierarchie

Exceptions are encapsulated error reports that the execution engine generates when errors

occur that cannot be solved at the point of origin. They contain an exception type, a stack

trace with references to all entities that the exception passed through, and a reference to

the origin. They are typed as data type within the type definition of the WfQL and can be

used as data containers of this type in every respect: Their attributes can be accessed via

decision predicates, they can be used as input parameters of activities, they may even be

returned as return parameters of activity instances.

Exceptions are represented by the following tuple:

exceptionType stackTrace user defined fields

37

4 Realization

exceptionType Name of the exception

stackTrace list of pairs of entity type, reference and action

user defined fields per ExceptionSubType declared fields

A stackTrace for a failed Activity Instance, whose stakeholder threw an exception could for

example look like this:

• (PROCESS_INSTANCE, 11, START)

• (ACTIVITY_NODE, "Accept Orders", STARTED)

• (ACTIVITY_INSTANCE, 5, INSTANTIATED)

• (ACTIVITY_INSTANCE, 5, CHECKED-OUT)

By use of the stackTrace, it is possible to determine the path that lead to the Exception. We

however make no claims, on how detailed the stack trace should be. The only definition

we do make, is, that the entity involved must be named per the entity name (see language

definition, entitySet, sec. 5.2.5) and the identifier to be according to the the language

definition.

With the data type definition that follows in chapter 5, it is possible to define user defined

exceptions. We predefined a number of exception that cannot be changed or overwritten,

that the WfMS’s execution engine triggers in case of failure:

Exception name: Data Type or Constraint Violation

Created when trying to write data into a data container that does not match the target’s

type. Example: Writing a Text into an Integer data container. If constraints were violated,

the constraint’s definition is written in ’violated constraint’. If the type was mismatched, ’vi-

olated constraint’ remains null.

38

4.4 Exceptions

The exception can be represented by the following tuple:
cause Reference to Entity

expected type Typename

received type Typename

violated constraint Constraint or NULL

Exception name: Control flow decision failure

This exception is created when a control flow decision predicate did not evaluate a sound

control path decision. Example: Two out of three XOR Decision Predicates returned true.

Only one was expected.

Note: With data constraints and data types, the possibility of control flow decision failures

was minimized. It is however still possible, and we do not make assumptions on how inten-

sively the WfMS checks the model for possible failures. Hence, it was necessary to envision

a failure handling for malformed decision predicates.

The exception can be represented by the following tuple:
cause Reference to Entity

expected # of selected control flows Integer

actually selected # of control flows Integer

list of selected nodes list of decision predicate and reference to node pairs

list of not selected nodes list of decision predicate and reference to node pairs

Exception name: Activity timed out

Activity nodes can set a maximum execution time of its activity instance, and a maximum

waiting time for its activity instances to wait for a stakeholder to execute it.

Note: If the activity instance is executed by a stakeholder when the exception occurred, the

stakeholder is notified that the instance was terminated.

39

4 Realization

The exception can be represented by the following tuple:
cause Reference to Activity Instance

elapsed time time of type timespan

type execution time or waiting time

Exception name: Staff Assignment Failure

A stake assignment query did not select any staff members. Hence, an activity instance

has no stakeholders that are allowed to execute it. The exception before the activity in-

stance is created.

The exception can be represented by the following tuple:

cause Reference to Activity Node and Process Instance

Exception aborting control flows

Exceptions can abort running control flows in other branches of the control flow. It is a

direct result of the nature of exceptions: Only one exception can be handled per block. If

an exception is thrown by an exception handling block to an outer block, all control flows

within the block have to be aborted and the data containers wiped.

40

4.5 Process models, templates and instances

4.5 Process models, templates and instances

Processes can be visualized and understood as graphs with a start and an end with blocks

and activities in between. This section is describing different types of nodes, that are used

to model blocks, decision logic and failure handling.

4.5.1 Node and Block types

nodes

data exceptions
process

templates
process

instances
activity

templates
activity

instances
exception nodes

control flow nodes

activity nodes

data container nodes

Process models contain different node types. All types have common properties and spe-

cial ones, depending on the node’s characteristics. A node can only be part of one process

model. When not otherwise specified, a node may only have one predecessor and one

successor. A block is a special case of a node and can encompass other nodes.

In the execution materialization of a process template, the process instance, nodes can

have the following states:

1. waiting

2. ready

3. active

4. finished

A node in waiting-status waits for its execution. Ready means, that the previous nodes

were executed and that this node should be executed as soon as possible. Active, that it is

currently being processed and finished, that this node was processed and the next node is

not in the state “waiting” any more.

No extra failure status exists. A node that encountered an error changes its state to “fin-

ished”.

41

4 Realization

Activity Nodes

Activity template are referenced from nodes of type activity node. In such a reference, the

required input parameters of the activity templates and the return parameters are mapped

from and to data containers.

Staff members are selected with a staff assignment query (SAQ). This query, and the ac-

tivity template’s required abilities are used in combination to filter the staff members.

An activity node can be represented by the following tupel:
activity_template input mapping output mapping staff assignment status

waiting timeout execution_timeout SAQ

activity_template reference to an activity template

input mapping maps data containers to input parameters

output mapping maps output parameters to data containers

staff assignment predicate, that select staff members from the

organisation model

status waiting, ready, active or finished

waiting timeout NULL (none) or a timespan. maximum wait-

ing time before a timeout exception is issued

execution timeout Analogue to waiting timeout, starts its count

after the activity instance was started

SAQ staff assignment query

Status waiting, ready and finished are analogue to the common node specifications. When

switching from ready to active, an activity instance is created with the input parameters

mapped from the process instances context. The node switches into state active and

remains in it, until the activity instance terminates. If terminated successfully, the return

parameters are written to the corresponding data containers. If not, an exception is created.

In both cases, the node switches to status finished.

42

4.5 Process models, templates and instances

Blocks

Blocks have a name, a type, and possibly sub control flows, lists of embedded blocks or

nodes, exception blocks, data containers and data container mappings. A block can always

be used in place of a node.

Serial Block

The serial block encompasses one or more nodes, that are executed serially.

It can be represented by the following tuple:

name data containers input-mapping output-mapping nodes exception-blocks

SerialBlock

Exception block

Nodes

A B

Data Container

D

Exception

Exception
throw node

Figure 4.4: Serial Block

An example is shown in Figure 4.4. The serial block

is named “SerialBlock” with a data container named

“Data Container”, with its Nodes “A” and “B” and an

exception block. Per definition, the serial block states,

that its nodes are executed serially. So, node “A” is

executed and the execution continued with node “B”.

If an error occurs, the WfMS looks for an exception

catch block. In the example, one is modeled that ex-

ecutes node “D” and then throws the exception to the

next higher block. Alternatively, an exception jump

node could have been modeled, that would point to a

node within the nodes-list of the “SerialBlock”.

Data Containers can be mapped from outer data con-

tainers, defined in a hierarchically higher block to

inner data containers, like “Data Container” in this

case. Values of inner data containers can analogue

be mapped to outer data containers. The mapped

data containers are copied over when the block ter-

minates and starts respectively.

43

4 Realization

Control Flow Blocks

While a serial block aggregates multiple nodes, control flow blocks can model the execution

of parallelly executed nodes and the selection of one or multiple nodes based on decision

predicates.

A control flow block makes use of different split and join mechanisms. We use XOR and

AND Split and Joins from the Adept Meta Model and supplement it with OR Split and Joins.

The type of split and join is named in the declaration of the control flow. Depending on the

split, the encompassed nodes in sub control flows are labeled with a decision predicate.

A control flow block with a split of type OR and XOR can be represented by the following

tuple:
name split-type join-type data containers

input-mapping output-mapping list of dp : node pairs exception-blocks

The list of decision predicate : node pairs expresses the possible sub control flows.

Control flow blocks with a split of type AND can be represented by this tuple:
name split-type join-type data containers

input-mapping output-mapping list of nodes exception-blocks

Due to the nature of an AND split, no decision predicate is necessary.

The following table lists the possible splits and joins and their behavior:

44

4.5 Process models, templates and instances

XOR-Split Splits the control flow into one or more sub control

flows, from which only one is selected determined by a

decision predicate that is expressed via the WfQL.

XOR-Join Joins the control flow. The first sub control flow arriv-

ing at the XOR-Join aborts all other, possibly running

control flows.

AND-Split All sub control flows are activated. No selection possi-

ble.

AND-Join Waits for all sub control flows to arrive.

OR-Split Any number of sub control flows can be selected, de-

termined by a decision predicate that is expressed via

the WfQL.

OR-Join Waits for one sub control flow to arrive and then contin-

ues. Other sub control flows are not aborted and end

with the OR-Join.

Loop Blocks

Loop Blocks encompass a control flow, that is executed one or many times. Loop blocks

are similar to sequential blocks with an additional decision predicate, that is evaluated after

list of nodes was executed. If the decision predicate evaluates to true, the list of nodes is

executed again. Else, the control flow continues.

Thus, loop blocks can be represented by the following tuple:
name data containers input-mapping output-mapping

inner node exception-blocks decision predicate

45

4 Realization

Dynamic parallel execution

The dynamic parallel execution supports the execution of any number of parallelly executed

control flows depending on the contents of data containers. It is expresses through dynamic

parallel execution blocks, or shorthand, dynpar blocks.

A dynpar block requires a data container of type set or list as input parameter. It must

contain a data container which must be of the type of the elements of the input parameter

set / list. The dynpar block defines a special mapping from the input parameter to the data

container. For each element of the input parameter, a new control flow is created with the

element residing in the specified data container.

In addition, a data container can be specified, that is aggregated to a set and can be

mapped to outer data containers, thus allowing for return parameters.

The dynpar blocks can be represented by the following tuple:
name data containers input-mapping output-mapping

node exception-blocks special-input-mapping special-output-mapping

Exception blocks and special nodes

Exception blocks are defined in regular blocks. Their name reflects the exception’s name

that they handle. If an exception occurs within the block the exception block was speci-

fied in, the exception block is executed. According to the exception block’s mapping, the

exception is written into a data container.

For use in exception blocks, two special exception nodes are defined. The exception throw

node throws a referenced Exception, that was previously stored in a data container. The

catch block jump node behaves similar to an XOR-Split. The target node has to be the

node that originally threw the exception or is located before it. It is therefore not allowed to

skip a part of the workflow which could cause problems.

Exception block

An exception block is very similar to a serial block, with the additional constraints that is

must end with either an exception throw node or an exception jump node. The exception

XOR block allows for selection of one of many final throw nodes or jump nodes.

46

4.5 Process models, templates and instances

The following tuple represents exception blocks:

name list of exceptions node data containers special-input-mapping

name name of the exception block

list of exceptions a list of all exceptions that this block is capable of handling

list of nodes list of nodes, that end with a exception jump node or exception

throw node1

data containers declaration of data containers

special-input-

mapping

mapping of exceptions, source is the exception’s name, target

the local data container containing the exception. It is not al-

lowed to use non local data containers.

Exception XOR Block

Exception XOR Blocks are very similar to XOR Split / XOR Join blocks. They contain

decision predicate : serial block pairs. However, they require the last node executed within

the block to be of type exception throw node or exception jump node to guarantee the

integrity of the exception block. Their use is allowed only within exception blocks.

The following tuple represents exception xor blocks:

name data containers input-mapping list of dp : node pairs

name name of xor exception block

data containers declaration of container declarations

input-mapping regular block input mapping

list of dp : serial

block pairs

a list of decision predicate and serial block pairs with the re-

quirement, that the last node of the serial block node is either of

type exception jump node or exception throw node

Exception throw node

An exception throw node can be expressed through the following tuple:

name reference-to-exception-data-container

Exception jump node

Exception jump nodes jump to a node in the block, the exception block is part of, that was

previously executed. We cannot per design prohibit falsely modeled jumps. The WfMS is

expected to enforce this rule.

47

4 Realization

An exception jump node can be expressed through the following tuple:

name reference to node

4.5.2 Process Model

Process models describe the model of processes. They are referenced in Process Tem-

plates and Process Instances. They can be expressed as a tuple with the following proper-

ties:

root node modeling abilities execution abilities analysis abilities

root node references the root node of the process model

modeling abilities required abilities for modeling

execution abilities required abilities for execution

analysis abilities required abilities for analysis

The root node’s input / output parameter mapping is used as the process’s input / output

mapping. The ability restrictions allow for a simple permission management.

4.5.3 Activity template

data exceptions nodes
process

templates
process

instances
activity

templates
activity

instance

Activity templates contain all information necessary to instantiate activity instances based

on the template and the start parameters. They also declare a set of return parameters and

exceptions, that activity instances based on them can issue.

Required abilities state the abilities, that are necessary to execute an activity instance

based on this activity template.

48

4.5 Process models, templates and instances

An activity template contains can be represented by the following tuple:

name start_parameter return_parameters exceptions required_abilities

name Unique name

start_parameter Data Type Definition of type Struct

return_parameters Data Type Definition of type Struct

exceptions list of exception names

required_abilities list of names of required abilities

4.5.4 Activity instance

data exceptions nodes
process

templates
process

instances
activity

templates
activity

instances

Activity instances express instantiated activities. Stakeholders check these activities out,

process them, and check them back into the WfMS.

The activity instance can be represented by the following tuple:
start_parameters return_parameters activity_node process_instance

activity_template status selected_staff_members

creation_timestamp checkout_timestamp checkin_timestamp

start_parameters Values of Start Parameters

return_parameters Values of the Return Parameters (initially null)

activity_node Reference to the Activity Node (by name) that the instance is

based on

process_instance Reference to the Process Instance (ID) that the instance is based

on

activity_template Reference to Activity Template the instance is based on

status ready-to-run, active, finished or failed

selected_staff_member Staff members that can execute this Activity Instance

creation_timestamp Timestamp of the creation of the activity instance

checkout_timestamp Timestamp of the checkout of the activity instance by a stake-

holder

checkin_timestamp Timestamp of the checkin of the activity instance by a stakeholder

The status can be: ready-to-run, active, finished or failed.

Ready-to-run means, that the activity instance was created and is ready to be checked-out

49

4 Realization

by an activity stakeholder. Active means, that the activity was checked-out and is currently

being processed. After check-in, the state changes to finished. If a failure occurs, the

node’s state changes to failed.

The start parameters must be supplied when creating an activity instance. Return param-

eters are empty until the activity was executed. The reference to the activity node that

originally created it allows the system to execute a callback to the activity node that origi-

nally created the activity in case of failure or success.

The Activity Template is referenced in order to differentiate activity instances per Activity

Template and to gain access to the data types used for start and return parameters.

Selected Staff Members lists the Staff Members, that are allowed to execute this Activity

Instance per Staff Assignment Rules.

4.5.5 Process templates

data exceptions nodes
process

templates
process

instances
activity

templates
activity

instances

Process templates stores process models by name. The permission to model or instantiate

the process template is limited by abilities.

A process template thus can be expressed with the following tuple:

name reference to process model modeling abilities execution abilities

name Unique name of Process Template

reference to pro-

cess model

Reference to the Process Model used in the Template

modeling abilities Abilities required for changing the Process Template

execution abilities Abilities required to instantiate and execute a Process

Instance

The referred Process Model can be shared with Process Instances. Because the Process

Model of Process Instances can be modified independently from the Process Template,

the actual implementation of the application of changes to the Process Model is up to the

50

4.5 Process models, templates and instances

implementation of the Workflow Management System and not discussed to its full extend

in this work.

51

4 Realization

4.5.6 Process instance

data exceptions nodes
process

templates
process

instances
activity

templates
activity

instances

Process instances are the materialization of processes. They have a process model, they

store the node’s execution status and data container values.

We specify a process instance with this tuple:

reference to process template reference to process model data container values node status

reference to process template References the process template the instance is based on.

If not based on one, the field is NULL

reference to process model References the process model used

data container values Stores the values of the data containers

node status Stores the nodes’ status information

4.6 Summary

We have presented a model for WfMS that can make use of the WfQL as interface lan-

guage. This chapter was not intended as an implementation guideline nor as a complete

solution for a WfMS’s implementation, but rather a guide for users and implementors of the

interface on how the WfMS should behave.

The prototypical implementation offers a blueprint for one possible implementation of this

chapter. When existing WfMS are enhanced to offer a WfQL interface, the internal model

is translated into the one presented in this chapter.

For an example implementation, see the prototypical server implementation in chapter 6.

52

5 Language definition

This chapter uses the previously defined WfMS realization from chapter 4, the meta models

from chapter 3 and the requirements from chapter 2 to define a language for accessing

WfMS. The primary intent is to show, that such a language can be formulated and to present

a realization of it. We oriented ourselves as much as possible at the Structured Query

Language (SQL) [SQL]. The targeted systems are quite similar, as WfMS store relational

data as do Relational Database Management Systems using the SQL.

Syntax declaration

For syntax definition we are availing ourselves of the eBNF [ISO-14977]. We add use an

arrow symbol (↪→reference) to reference other entities. A reference means, that an identi-

fier for the entity is used, opposed to the full notation of the entity. To declare one or more

repetitions of a block, we use the plus sign similar to regular expressions [IEEE 1003.1].

Repetitive uses of a block are separated by comma (,). When parameters have to be in-

serted, they are written in italic notation . References and parameters are inserted via the

serialization specified in sec. 5.2.4.

5.1 Modularization

In chapter 2 and 3, a number of stakeholders have been named, that use a limited scope of

a WfMS’s functionality. We split the WfQL’s functionality on the basis of these stakeholder’s

probable usage patterns into modules.

Each individual module covers a specific part of the system’s functionality. Some of the

functionality is used by all stakeholders and is put into a base module.

We group the language parts into four categories: Base Modules, Modeling Modules,

Execution Modules and Analysis Modules. Each of them has subcategories, that have

specific responsibilities.

53

5 Language definition

Modeling
Modules

Execution
Modules

Analysis
 Modules

Base
Modules

Activity Execution

Process ExecutionData Type and Constraint
Modeling

Activity Template Modeling

Process Template/Instance
Modeling

Organization / Device
Restriction Modeling

Session

Data Type Definition

Process Fragment
Representation

Failure and Success Syntax

Monitoring Process
Instances

Event registration

Select Syntax

Transactions

Staff Assignment Query

Data Serialization Process Instance Modeling

Activity and Process
Analysis

Figure 5.1: Modules Overview

Base Modules

The Base Module contains definitions, that form the basis of modules from the other cate-

gories.

The base modules category consists of the following modules:
Session Module defines, how sessions are used as basis for the client’s

communication with the WfMS server

Transaction Module defines, how transactions are used

Data Type Definition defines, how data types are described

Data serialization discusses, how the serialization is embedded

Select Syntax defines, how attributes are selected from entities

Staff Assignment Query defines the staff assignment syntax

Process Fragment Representation defines a textual representation of process fragments

Failure and Success Syntax defines a syntax that describes failures and success

responses

54

5.1 Modularization

Modeling Modules

The modeling modules contain syntax to model and change data types, process models,

process templates, process instances, activity templates, the organization model and de-

vice restriction models.

The category modeling modules consist of the following modules:
Organization Model and Device Re-

striction Modeling

Model and modify the organization model and the de-

vice restrictions model

Data Type and Constraint Modeling Model and modify data types and constraints on data

types

Process Instance Modeling Model and modify process instances

Process Template Modeling Model and modify process templates

Activity Template Modeling Model and modify activity templates

Execution Modules

The execution modules define syntax for the execution of activities and processes.

The category execution modules consist of the following modules:
Activity Execution Check-out and check-in of activity instances

Process Execution Trigger instantiation of processes, retrieve return pa-

rameters

Event registration and delivery Registration of monitors and delivery of events

Analysis Modules

The analysis modules define syntax for the analysis of currently running activities, process

models and process instances.

The category analysis modules consist of the following modules:
Accessing Process Instances Allows inspection of process instances

Activity and Process Analysis Provides analysis operations for activities and pro-

cesses

55

5 Language definition

5.1.1 Dependency graph

Modules in part depend on other modules. Figure 5.2 shows their dependencies. Depen-

dencies can be used to implement a partial cover for the language. If a module and its

dependencies are implemented, the support is complete. In the reverse, only the module’s

syntax and syntax of the depending modules may be used when implementing specific

functionality.

Activity Execution

Activity and Process
Analysis

Process Execution

Data Type and Constraint
Modeling Activity Template Modeling

Process Template/Instance
Modeling

Organisation Model and
Device Restriction

Modeling

Data Type Definition

Process Fragment
Representation

Select syntax

Transactions

Staff Assignment Query

Failure and Success

Session

Event registration

Monitoring Process
Instances

Data Serialization

Figure 5.2: Modules Dependencies

5.2 Base modules

The category base modules defines basic syntax, that is used in multiple modules of other

categories. Besides the Select syntax module, they offer supporting syntax that is reused

in later modules. The process fragment representation (pfr) module for example defines

syntax for representing process models that is used in modeling modules to model and

modify process models.

56

5.2 Base modules

5.2.1 Sessions

Before sending any other commands, the client hast to start a session with the WfMS.

Sessions can be disconnected and reestablished. A session is started after establishing

two way communication by sending the login credentials.

After a session is established, all communication is bound to the session, not the actual

underlying communication method. When the underlying communication method is dis-

connected, due to network error or other malfunctions, the session continues to be bound

to the client, and can be re-connected by the client.

<startSession> ::= "START" "SESSION" username password [sessionID]

Username and password are strings. The sessionID can be omitted. If present, it has to

match a previously disconnected session that should get resumed.

Following a successful authentication, the server answers with this syntax:

<sessionEstablished> ::= "AOK" "SESSION" "ESTABLISHED" "WITH" "ID" sessionID

Possible failures:
Errorcode Description

WRONG_USER_CREDENTIALS User credentials could not be verified. Invalid

user name or user name password combina-

tion

SESSIONID_NOT_FOUND User credentials were matched, but the ses-

sionID was not found or belongs to another

user

If a session is not connected to a client, the communication that should be sent to the

session’s client is cached until the session is deleted due to timeout or a full buffer, or the

session is reconnected. At no time, a session’s buffer may loose data.

Disconnecting sessions

The following command issues an orderly disconnection of the session. Until the session’s

buffer is full or timeouts, the session can be reconnected using the start session command.

57

5 Language definition

<disconnectSession> ::= "DISCONNECT" "SESSION"

The server responds with the following syntax:

<sessionDisconnected> ::= "AOK" "SESSION_DISCONNECT" "WITH" "ID" sessionID

Possible failures:
Errorcode description

NO_SESSION No session was bound, thus none can be discon-

nected

Terminating sessions

Terminating a session orderly disconnects and deletes it. A client may use this operation

to orderly terminate its sessions, the currently used one as well as other sessions:

<terminateSession> ::= "TERMINATE" "SESSION" "WITH" "ID" sessionID

The server responds with the following syntax:

<sessionTerminated> ::= "AOK" "TERMINATE_SESSION" "WITH" "ID" sessionID

Possible failures:
Errorcode description

NO_SESSION No session with this ID was found, thus none can be

terminated

5.2.2 Transactions

The WfQL supports non-nested transactions with ACID attributes. If no transaction is ex-

plicitly started, each operation is treated as if a transaction was started beforehand and

committed directly after it, similar to auto commit in Database Management Systems.

Transactions can, before commit, be verified. If the verification failed, the failure is stated

and allows the stakeholder to fix the verification issues and try again.

58

5.2 Base modules

Start Transaction

Transactions get started by the following syntax:

<startTransaction> ::= "START" "TRANSACTION"

Possible failures:
NESTED_TRANSACTION A transaction is already running, no nested

transactions supported

Verify Transaction

The verify command allows the client to test, whether the current transaction could be com-

mitted. If not, it replies with the errors that prohibit the commit of the transaction.

<verifyTransaction> ::= "VERIFY" "TRANSACTION"

Possible failures:

NO_TRANSACTION No transaction running

Additional possible failures include all non-syntactical errors of the operations executed

during the execution of the transaction.

Commit Transaction

The changes made to the WfMS during a transaction get applied with the commit command.

If verification failures occured, the transaction is stopped and no changes get applied.

<commitTransaction> ::= "COMMIT" "TRANSACTION"

Possible failures are analogue to the verifyTransaction operation.

Rollback Transaction

The rollback transaction command stops the transaction without applying changes.

<rollbackTransaction> ::= "ROLLBACK" "TRANSACTION"

No possible failures.

59

5 Language definition

Transaction aborted on server side

The WfMS aborts a transaction, when the data, that the transaction uses was changed.

The following code is sent by the WfMS server to inform stakeholders, that their transaction

was aborted:

<transactionAborted> ::= "ABORT" "TRANSACTION" "CAUSE" ↪→Entity

The referenced Entity was changed, which was read during the execution of the transaction.

5.2.3 Data Type Definition

Data type definition defines the type of a data that gets transmitted. To define data types,

we avail ourselves of the NF2 notations [Li+88] and modify it slightly.

We predefine a number of basic data types in Table 5.1. In addition, a number of user defin-

able data types can be expressed with the data type definition. This includes Structs, Sets,

Lists, Maps and ExceptionSubTypes as shown in Table 5.2. Structs define element name

type pairs, similar to C-Structs and Pascal Records. Sets and Lists aggregate elements of

the same type. Maps use keys to map keys to values. ExceptionSubTypes allow declaring

a payload for exceptions.

Name Range
INTEGER Integers
NUMBER Floating point numbers
TEXT String of characters
TIMESPAN A span of time
DATE Holds a date – second precision
BINARY Any binary data

Table 5.1: Basic data types

Name Range
SET<T> Aggregates elements of the same type
LIST<T> Similar to set, but with order
MAP<K,V> Maps keys of type K to values of type V
STRUCT Defines keys (string) to map to typed values
EXCEPTIONSUBTYPE An exception data type

Table 5.2: User definable data types

60

5.2 Base modules

<type> ::= data_type_name | <basicType> | <Struct> | <Set> | <List> | <Map> |

<ExceptionSubType>

<basicType> ::= "INTEGER " [":" <integerTypeConstraint>] | "NUMERIC" [":"

<numericTypeConstraint>] | "TEXT" [":" <textConstraint>] | "DATE" [":" <dateConstraint>]

| "TIMESPAN" [":" <timespanConstraint>] | "BINARY" [: <binaryConstraint>]

<structElement> ::= elementName ":" <type> ["," <structElement>]

<Struct> ::= "{" "STRUCT" ":" "{" <structElement> "}" "}"

<Set> ::= "{" "SET" ":" " <type> "}"

<List ::= "{" "LIST" ":" <type> "}"

<Map> ::= "{" "MAP" ":" "{" "keytype" : "{" <type> "}" "," "valuetype" : "{" <type> "}" "}" "}"

<ExceptionSubType> ::= "EXCEPTIONSUBTYPE" ":" "{" <type> "}"

Example: A type, that aggregates an identification number for an order with a customer

field that is further specified in a separate type, a note that contains text and a list of prod-

ucts.

Given, that the customer is specified in the Customer -Type and the product in the Product-

Type, we can express a struct in the data definition language:

"STRUCT" :{

"orderNr" : "NUMERIC",

"customer" : "Customer",

"note" : "TEXT",

"products" : { "LIST" : "Product" }

}

Data Type Constraints

Data type constraints constrain the values stored in data containers.

61

5 Language definition

<integerTypeConstraint> ::= "{" <integerRange>+ "}"

<integerRange> ::= minimumIntegerValue "to" maximumIntegerValue

<numericTypeConstraint> ::= "{" <numericRange>+ "}"

<numericRange> ::= minimumNumericValue "to" maximumNumericValue

<textConstraint> ::= "{" ["regEx" ":" <regularExpression>","] ["text_length" ":"

<integerTypeConstraint>"]}"

<dateConstraint> ::= "{" ["hour" : hour ","] ["minute" : minute] ["dayOfTheWeek" ":"

dayOfTheWeek ","] ["dayOfTheMonth" ":" dayOfTheMonth ","] ["monthOfTheYear" ":"

monthOfTheYear ","] ["year" ":" year ","] ["startDate" ":" startDate ","] ["endDate"

":" endDate] "}"

<timespanConstraint> ::= "{" ["minimumLength" ":" minimumLengthInSeconds ","] [

"maximumLength" ":" maximumLengthInSeconds "] }"

<binaryConstraint> ::= "{" ["maxSize" ":" maxSize ","] ["minSize" ":" minSize] "}"

minimumIntegerValue Minimum Integer Value (whole number)

maximumIntegerValue Maximum Integer Value (whole number)

minimumNumericValue Minimum Numeric Value (decimal number)

maximumNumericValue Maximum Numeric Value (decimal number)

hour Allowed hour (0-23)

minute Allowed minute (0-59)

dayOfTheWeek Day of the week (0-6)

dayOfTheMonth Day of the month (0-31)

monthOfTheYear Day of the Year (1-366)

year Year (whole number)

startDate Minimum date (date type)

endDate Maximum date (date type)

minimumLengthInSeconds Minimum length in seconds (whole number)

maximumLengthInSeconds Maximum length in seconds (whole number)

maxSize Maximum size in bytes (whole number)

minSize Minimum size in bytes (whole number)

regEx A regular expression, that is required to be

matched for the text data to be accepted.

62

5.2 Base modules

5.2.4 Data serialization

Any data sent via the WfQL has a type. Therefore, we can send serialized data with-

out the type definition, because it is either known to the recipient or the recipient can re-

quest the data type definition. A number of data representation protocols exist, for example

XML[ISO 8879], JSON[JSON] and the Lisp notation[LISP].

For data serialization we require a protocol that has the following properties:

1. Fast computerized parsing

2. Low data overhead

3. Subjectively easy to read for humans

4. Trivial to write parsers

5. Embeddable into the language

We are not specifying which data transport protocol should be used. In chapter 6 we will

make a design decision and argue our point. For the sake of the language specification, no

specific serialization method is selected and it is open to the implementor to decide, which

one is suited best.

A discussion about data serialization is held in in sec. 7.2.

5.2.5 Select syntax

In chapter 4, entities were introduced with their attributes. The language needs a way to

access these attributes.

Introducing select and where SQL allows access to attributes – or rather, columns – of

tables as selecting a subset of the columns of a table’s rows. If all are selected, each row

is treated as a tuple. The WfQL uses the same paradigm.

Example syntax to access the start parameters of all activity templates:

SELECT start_parameter FROM activity_templates

63

5 Language definition

SQL allows for filtering of the data set before selecting, which is expressed by the WHERE

clause. It formulates a boolean expression, that is evaluated per row with access to its the

attributes, similar to the SQL.

Example syntax to access the start parameters of all activity templates with the name “call

customer” and “call shipping department”:

SELECT start_parameters, name FROM activity_templates

WHERE name = ’call customer’ OR name = ’call shipping department’

In order to make the language more flexible, sub-queries are allowed. That means, that any

query can contain any other query and use its return value in the place of the sub-query.

SELECT name FROM (

SELECT activity_template FROM activity_instance WHERE state = failed))

The sub-query, or sometimes called nested query, is evaluated first. It evaluates to a set

of activity template that have activity instances that have failed. From this set, the name is

selected.

Thus, it is possible, to access any attribute of any entity and use it.

Formal definition of select syntax:

We formulate the definition of the select .. from .. where syntax analogue to the definition

in the SQL:

<entitySet> ::= "ACTIVITY_TEMPLATES" | "ACTIVITY_INSTANCES" |

"PROCESS_TEMPLATES" | "PROCESS_INSTANCES" | "DATA_TYPES" |

"ORGGROUP" | "ORGUNITS" | "PROJECTTEAM" | "POSITION" | "ROLE" | "ABILITY"

<fromDefinition> ::= ["SELECT" attributes +] "FROM" <entitySet> ["WHERE" <term>]

SELECT can be omitted. When it is not omitted, the attributes define the attributes of

the EntitySet, that should be in the result tuple of the operation. Attributes is a comma

separated list of the attribute’s names.

WHERE can be omitted. When not omitted, its term is evaluated per entity of the EntitySet.

When the term is evaluated to true, the entity is added to the result set.

64

5.2 Base modules

The server response is a ordered list of tuples. Expressed in the Data Type Definition Lan-

guage:

List { Struct { (attributeName : attributeType)+ } }

The response heavily relies on the used data serialization discussed in sec. 5.2.4. With the

entity’s definition available, the response can be parsed correctly and used in the client.

<term> ::= [<negateOperator>] <term> | <value> <compareSymbol> <value> | <term>

<logicalOperator> <term>

<compareSymbol> ::= "==" | "! =" | ">" | "<" | "<=" | ">="

<logicalOperator> ::= "&&" | "||"
<negateOperator> ::= "!"

<value> ::= text value | numeric value | date value | timespan value | attribute

When using attribute in a value, it references an attribute of elements of the EntitySet .

5.2.6 Staff Assignment Query

The Staff Assignment Query (SAQ) uses the term in order to select a part of the orga-

nization model (or the entire) which is ultimately referencing Staff Members. It is used

in Activities (in Process Models) and Process Fragments in general (which subordinated

Process Fragments inherit the SAQ) and expresses, which Staff Members may execute

a consequently created Activity Instance. The SAQ allows access to data containers of

process instances. With this functionality in mind, it is possible to assign Staff Members

based on the Organization Model and the already executed part of the Process Instance

and to, for example, restrict the execution of an activity if a certain (or any) other activity of

the process instance was executed by the Staff Member, Organization Unit, Project Team

et cetera before.

The following definition ultimately selects Staff Members by use of the Organization Model:

65

5 Language definition

<saTerm> ::= ("(" <saTerm> ")") | (<saTerm> "IN" <saTerm>) | (<negateOperator>

<saTerm>) | (<organizationModelEntity> <compareSymbol> <value>) | (<saTerm>

<logicalOperator> <saTerm>) | <hierarchySaTerm>

<hierarchySaTerm> ::= (<organizationModelEntity> <compareSymbol> <WFQL>) | (

<hierarchicalOrModelEntity> [TRANSITIVE] "SUPERORDINATED"|"SUBORDINATED"

<hierarchicalOrModelEntity> [<compareSymbol> <saTerm>|<value>])

<projectTeamOrgModelEntity ::= "PROJECT_TEAM" ["." "leadBy"]

<orgUnitOrgModelEntity> ::= "ORG_UNIT" [."." "leadBy"]

<hierarchicalOrgModelEntity> ::= <projectTeamOrgModelEntity> |

"<orgUnitOrgModelEntity> | "ROLE"

<organizationModelEntity> ::= <hierarchicalOrgModelEntity> |

<orgGroupOrgModelEntity> | "POSITION" | "STAFF_MEMBER" | "ABILITY"

<orgGroupOrgModelEntity> ::= "ORG_GROUP" ["." "leadBy"]

Non-hierarchical Entity relationships are accessible through the SAQ via the following syn-

tax:
Entity Relation Description

ORG_UNIT leadBy Returns the Position that leads the organization unit

ORG_GROUP leadBy Returns the Position that leads the organization group

PROJECT_TEAM leadBy Returns the Position that leads the project team

To select any organizationModelEntity, the entity type is compared to a unique iden-

tifier. For example:

PROJECT_TEAM == "Team Alpha"

This would select the project team with the name "Team Alpha" from the organization

model. At the point of use, the project team entity is used. Staff assignment however

requires Staff Members. Therefore, all staff members that stand in relation to project team

"Team Alpha" would be selected. The search for all related staff members is however ex-

ecuted as last as possible, so the project team entity is available for further operations.

The project team has the "leads" relationship to positions and which can be used to query

for the leading position via the projectTeamOrgModelEntity definition. In addition, all

operations are applied on all entities of an entity set. The results are added to the result set

of the operation. It is therefore possible to query for the leading positions of multiple project

66

5.2 Base modules

teams (organization groups and organization units analogue) by applying the leadBy op-

erator on a set of entities, for example:

(PROJECT_TEAM == "Team Alpha" || PROJECT_TEAM == "Team Beta").leadBy

Furthermore, the WFQL operator IN allows for check, if an entity is part of a set of en-

tities. Therefore, it is possible to select positions and check, whether they lead a set of

project teams. For example:

(POSITION == "Senior Developer") IN (PROJECT_TEAM == "Team Alpha" ||

PROJECT_TEAM == "Team Beta").leadBy

The query would result an empty set or the position of "Senior Developer" if it was lead-

ing project team "Team Alpha" or "Team Beta". Ultimately, based on the position, staff

members would be selected.

In addition, the SAQ allows for use of the entity set THIS_PROCESS_INSTANCE that is

referencing the Process Instance, that the Staff Assignment Query is executed in.

All organization model entities in hierarchicalOrgModelEntity can form a recursive

hierarchy. For example: Given Project Team P1 has a subordinated Project Team P2 that

has a subordinated Project Team P3. P2 is a directly subordinated of P1. P3 is not directly

subordinated of P1. P2 and P3 are transitively subordinated of P1. The hierarchySaTerm

defines, how hierarchical structures are tested for their structure. Given, we would like to

select all staff members that have the position "SOFTWARE ARCHITECT", the Role "DE-

VELOPER" in a Project Team, that is directly subordinated to P1, we could formulate the

following query:

POSITION == "SOFTWARE ARCHITECT" && ROLE == "DEVELOPER" &&

PROJECT_TEAM SUBORDINATED PROJECT_TEAM == "P1"

Analogue for ORG_UNIT and ROLE.

With the SAQ, we created a syntax to make full use of the organization model’s power in a

SQL-a-like syntax.

67

5 Language definition

5.2.7 Process Fragment Representation

The Process Fragment Representation represents fragments of a process’s model. The

representation heavily relies on the Adept [Re00] Meta-Model modifications: Exception

blocks, Data typification with constraints,block-local data containers and dynamically paral-

lel blocks.

Process Fragment Representation (Pfr) can expresses activities and blocks:

<pfr> := <activity>|<block>

Activities are defined with a unique name. Activity start parameters are mapped from data

containers to start parameters via the read declaration, return parameters analogue with

write. The activity template is referenced with its unique name.

<getter> := ".GET" "(" elementPosition | key ")"

<setter> := ".PUT" "(" key ")"

<mapping> := from [<getter>] "TO"|"APPEND" to [<setter>][,<mapping>]

<staffAssignmentRules> := "SAR" ":" <saTerm>

<read> := "READ" "(" <mapping> ")"

<write> := "WRITE" "(" <mapping> ")"

<synchronize> ::= "SYNCHRONIZE" "WITH" ↪→ProcessFragmentName

<activity> := "ACTIVITY" activityName activityTemplate "("

[waiting_timeout = timeout in milliseconds],

[execution_timeout = timeout in milliseconds],

[<synchronize>+],

[<read>+,]

[<write>+,]

[<staffAssignmentRules>+]

[<exceptionBlock>+]

")"

The mapping in read and write operations offer access to data containers. For reading,

the TO construct is used. For writing, either the TO construct which overwrites any possibly

existing value. Alternatively, APPEND can be used for writing, which expresses appending

68

5.2 Base modules

data to aggregating data types Set and Lists. Appending is only possible, if the source

of the mapping reflects the type of the Set or List.

Getters are use for Maps and Lists. The elementPosition expresses the position of an

element in a list, the key the key of a Map. PUT is used to put elements into a Map.

The synchronize syntax expresses synchronization edges to other process fragments.

Blocks are used to design the control flow of process models. They can define exception

catch blocks that handle failures and define data containers, whose name-space is limited

to the block and its inner process fragments.

All types of blocks have a block headers with data definitions. They define data contain-

ers, that are block specific. In addition, it is possible to READ and WRITE data containers

from the outer name-space. In this respect, we differ from the Adept model and allow a

hierarchical name-space with local data containers.

ExceptionBlocks differ from normal blocks in so far, that they map the exception that

occurred to a data container, and that their inner process fragment is terminated by either

an exception jump or an exception throw.

<block> := <cfblock>,<serialblock>

<serialBlock> := "SERIALBLOCK blockName "(" <blockCommons>, <pfr>+,

<exceptionBlock>+ ")"

<blockCommons> :=

[<dataDefinition>,][<read>,][<write>,][<staffAssignmentRules>,][<synchronize>,]

<dataDefinition> := "DATA" <type> dataContainerName [,<dataDefinition>]

<exceptionBlock> := "EXCEPTION exceptionName "(" <blockCommons> "WRITE "("

"EXCEPTION" "TO" dataContainer ")", <exceptionPfr> ")"

<exceptionPfr> := [<pfr>,]<exceptionXor>|<exceptionJump>|<exceptionThrow>

<exceptionXor> := EXCEPTION_XOR exceptionXorName (<blockCommons>, (

"CASE" <decisionPredicat> ":" <exceptionPfr>)+)

<exceptionJump> := EXCEPTIONJUMP jumpName TO ↪→pfr

A process model can be described with this syntax, that is block structured and makes

use of exceptions. Exception blocks are limiting the use of exception jumps and exception

69

5 Language definition

throws to be either at the end of the exception block, or the last node of a exceptionXor. The

latter is in essence a normal xor, but is specifically only allowed as the last Process Frag-

ment of a exception block to make sure, only one exception jump and only one exception

throw respectively can be modeled.

Control Flow Blocks

Control flow blocks define process fragments, that are used to model the process model’s

control flow. We orient the naming and the behavior at the Adept meta model.

XOR Blocks are defined with the following syntax:

<xorBlock> := "XOR" xorBlockName "("

<blocksCommons>,

("CASE" <decisionPredicat> ":" "(" <pfr> ")")+,

<exceptionBlock>+

")"

")"

AND Blocks are slightly different from XOR Blocks. They do not require a decision logic,

but can be joined by different constructs, such as XOR, AND and OR.

<andBlock> := "AND" ("AND"|"OR"|"XOR") xorBlockName "("

<blocksCommons>,

("BRANCH" "(" <pfr> ")")+,

<exceptionBlock>+

")"

")"

OR Blocks combine the attributes of XOR Blocks and AND Blocks. They require a decision

logic, and can be joined in different ways:

70

5.2 Base modules

<orBlock> := "OR" ("AND"|"OR"|"XOR") orBlockName "("

<blocksCommons>,

("CASE" <decisionPredicat> ":" "(" <pfr> ")")+,

<exceptionBlock>+

")"

")"

Loop blocks are executed n-times, as long as a decision predicate evaluates to true:

<loopBlock> := "LOOP" orBlockName "("

<blocksCommons>,

"WHILE" <decisionPredicat> ":" "(" <pfr> ")",

<exceptionBlock>+

")"

")"

Dynamic parallel blocks express dynamical parallelism. They require a data container of

the type set or list as input:

<dynParBlock> := "DYNPAR" dynParName "("

<blocksCommons>,

"READ" "(" dataContainer "TO" localDataContainer ")",

<pfr>,

<exceptionBlock>+

")"

")"

dataContainer required to be a set or list data container

localDataContaier required to be defined in <blocksCommons> and of the type of

an element of the dataContainer.

In summary, control flow blocks are defined per:

<cfBlock> := <dynParBlock> | <loopBlock> | <xorBlock> | <orBlock> | <andBlock>

Process Fragment Representation Examples

To illustrate the use of the Pfr, we show its use in the form of the following examples.

71

5 Language definition

Example: Simple order-to-delivery process

This example stems from the introduction chapter. Figure 1.1 shows a simple order-to-

delivery process.

The process serially executes three activities: A stakeholder in customer service, that

records the order of products. A stakeholder in book-keeping, that executes an invoice

and a shipping stakeholder, that ships the ordered products. Customer service records the

ordered products, shipping address, invoice number and total price. Invoice reads the total

price and invoicenumber. Shipping reads the ordered products and shipping address.

To picture this process in the Pfr, we use the SerialBlock construct, that executes its inner

Pfrs serially. The data flow is realized via data containers, that are declared in the Se-

rialBlock. Let us assume, that activity templates exist, and that they match the mapping

expressed in the following example:

72

5.2 Base modules

SERIALBLOCK OrderToDeliver (

DATA orderedProducts LIST : Products,

DATA shippingAddress Address,

DATA invoiceNumber INTEGER,

DATA totalPrice NUMBER,

ACTIVITY RecordOrderOfProducts RecordOrders

(

WRITE (products TO orderedProducts),

WRITE (address TO shippingAddress),

WRITE (generatedNumber TO invoiceNumber),

WRITE (calculatedPrice TO totalPrice)

),

ACTIVITY Invoice InvoiceMoney

(

READ (totalPrice TO amount),

READ (invoiceNumber TO number),

),

ACTIVITY ShippingOfProducts ShipProducts

(

READ (orderedProducts TO products),

READ (shippingAddress TO address)

)

)

5.2.8 Failure and success notifications

The WfQL offers a set of failure classes, that are used to express problems that occurred

while trying to execute a command. Syntax Errors are caused by malformed syntax and

are thus reported with the parsing error that occurred, at the position of the failure:

<syntaxError> ::= "SYNTAX" "ERROR" "FOUND" "NEAR" position "(" ("EXPECTED"

"’" expected_character "’") | ("CHARACTER" "NOT" "ALLOWED" "’"

disallowed_character "’") | ("COMMAND" "UNKNOWN" command_name) ")"

73

5 Language definition

The Type Error is returned, when a value of a specific type was expected, but another was

received:

<typeError> ::= "TYPE" "ERROR" "FOUND" "NEAR" position "," \" nearby_syntax \"
"EXPECTED" "TYPE" <type>

Permission denied error is returned, when a stakeholder tries executing an operation, that

he or she has not the permission level to do so:

<permissionDeniedError> ::= "PERMISSION" "DENIED" "FOR" operation "NEAR"

position , \" nearby_syntax \"

Command specific errors name the reason for an error that is defined per operation that it

might occur:

<commandSpecificError> ::= "COMMAND" "ERROR" errorReason

Success notifications

When a command was executed successfully, the server responds with a simple, serialized

Text: "AOK".

5.3 Modeling Modules

All syntax that is used to create and modify models is contained in the category modeling

modules. The organization model and device restriction modeling module governs the

creation and modification of the organization model and the device restriction model. The

data type and constraint modeling module covers the creation and modification of user

defined data types with constraints. The module process template and process instance

modeling covers the creation and modification of process templates and the modification

of process models of process instances. The process instance modeling module covers

additional process instance specific modeling operations. The activity template modeling

module covers the creation and modification of activity templates.

74

5.3 Modeling Modules

5.3.1 Organization Model and Device Restriction Modeling

This module covers creating and modifying the organization model’s structure and the de-

vice restriction model. The latter is rather simple in comparison to the organization model

and orients itself at the syntax of the organization model.

Organization Model

The organization model was presented in Figure 4.2 and specified in sec. 4.2. The fol-

lowing paragraphs show, how entities of the organization model are created and modified.

Relations are numbered with roman numbers according to the specifications in sec. 4.2.

Organization Group

The following syntax creates an organization group with the given name, and an optional

lead position:

<createOrgGroup> ::= "CREATE" "ORG_GROUP" "WITH" "name" "=" name [","

"lead_position" "=" ↪→POSITION]

Parameters:
name Name of the Organization Group, unique

lead_position Reference to position that leads the organiza-

tion group

Possible failures:
UNIQUE_NAME_CONSTAINT Organization group with this name already

exists

POSITION_NOT_FOUND The supplied position could not be found

Alter syntax to set a new name and lead position respectively:

<alterOrgGroupName> ::= "ALTER" "ORG_GROUP" "SET" "name" "=" name

["WHERE" <term>]

<alterOrgGroupLeadPos> ::= "ALTER" "ORG_GROUP" "SET" "lead_position" "="

↪→POSITION ["WHERE" <term>]

Failures analogue to create.

75

5 Language definition

Organization Unit

The following syntax creates an organization unit with name, optional lead position and op-

tional superordinate organization unit:

<createOrgUnit> ::= "CREATE" "ORG_UNIT" "WITH" "name" "=" name [","

"lead_position" "=" ↪→POSITION] ["," "higher_org_unit" "=" ↪→ORG_UNIT]

Parameters:
name Name of the organization unit, unique

lead_position Reference to position that leads the organiza-

tion unit

higher_org_unit Reference to superordinate organization unit

Possible failures:
UNIQUE_NAME_CONSTAINT Organization group with this name already

exists

POSITION_NOT_FOUND The supplied position could not be found

ORG_UNIT_NOT_FOUND The supplied organization unit could not be

found

Alter syntax to set a new name, lead position and superordinate organization unit respec-

tively:

<alterOrgUnitName> ::= "ALTER" "ORG_UNIT" "SET" "name" "=" name ["WHERE"

<term>]

<alterOrgUnitLeadPos> ::= "ALTER" "ORG_UNIT" "SET" "lead_position" "="

↪→POSITION ["WHERE" <term>]

<alterOrgUnitHigherOrgUnit> ::= "ALTER" "ORG_UNIT" "SET" "higher_org_unit" "="

↪→ORG_UNIT ["WHERE" <term>]

Failures analogue to create.

Project Team

The following syntax creates a project team with name, optional lead position and optional

superordinate project team:

<createProjectTeam> ::= "CREATE" "PROJECT_TEAM" "WITH" "name" "=" name ","

"lead_position" "=" ↪→POSITION ["," "higher_project_team" "=" ↪→PROJECT_TEAM

76

5.3 Modeling Modules

name Name of project team (unique)

lead_position Reference to position that leads the project

team

higher_project_team Reference to superordinate project team

Possible failures:
UNIQUE_NAME_CONSTAINT A Project Team with this name already exists

POSITION_NOT_FOUND The supplied position could not be found

Alter syntax to set a new name, lead position and superordinate project team respectively:

<alterProjectTeamName> ::= "ALTER" "PROJECT_TEAM" "SET" "name" "=" name

["WHERE" <term>]

<alterProjectTeamLeadPos> ::= "ALTER" "PROJECT_TEAM" "SET" "lead_position" "="

↪→POSITION ["WHERE" <term>]

<alterProjectTeamtHigherProjectTeam> ::= "ALTER" "PROJECT_TEAM" "SET"

"higher_project_team" "=" ↪→PROJECT_TEAM ["WHERE" <term>]

Failures analogue to create.

Position

The following syntax creates a position with name and organization unit it belonging to:

<createPosition> ::= "CREATE" "PROJECT" "WITH" "name" "=" name "," "org_unit" "="

↪→ORG_UNIT

name Name of project (unique)

org_unit Reference to Organization Unit this Position

is participating in

Possible failures:
UNIQUE_NAME_CONSTAINT A Project with this name already exists

ORG_UNIT_NOT_FOUND The supplied Organization Unit could not be

found

Alter syntax to set a new name and organization unit respectively:

77

5 Language definition

<alterPositionName> ::= "ALTER" "POSITION" "SET" "name" "=" name ["WHERE"

<term>]

<alterPositionOrgUnit> ::= "ALTER" "POSITION" "SET" "org_unit" "=" org_unit

["WHERE" <term>]

Failures analogue to create.

Role

The following syntax creates a role with name and optional superordinate role:

<createRole> ::= "CREATE" "ROLE" "WITH" "name" "=" name ["," "higher_role" "="

↪→ROLE]

name Name of Role (unique)

higher_role Reference to hierarchically higher Role

Possible failures:
UNIQUE_NAME_CONSTAINT A Role with this name already exists

ROLE_NOT_FOUND The supplied Role could not be found

Alter syntax to set a new name and superordinate role respectively:

<alterRoleName> ::= "ALTER" "ROLE" "SET" "name" "=" name ["WHERE" <term>]

<alterRoleHigherRole> ::= "ALTER" "ROLE" "SET" "higher_role" "=" ↪→ROLE

["WHERE" <term>]

Failures analogue to create.

Ability

The following syntax creates an ability with the given name:

<createAbility> ::= "CREATE" "ABILITY" "WITH" "name" "=" name

name Name of Ability (unique)

Possible failures:

UNIQUE_NAME_CONSTAINT A Role with this name already exists

Alter syntax to change the name of an ability:

<alterRole> ::= "ALTER" "ABILITY" "SET" "name" "=" name ["WHERE" <term>]

78

5.3 Modeling Modules

Failures analogue to create.

Staff Member

The following syntax creates a new staff member with a name:

<createStaffMember> ::= "CREATE" "STAFF_MEMBER" "WITH" "name" "=" name

name Name of Staff Member (unique)

Possible failures:

UNIQUE_NAME_CONSTAINT A Staff Member with this name already exists

Alter syntax to set a new name:

<alterStaffMember> ::= "ALTER" "STAFF_MEMBER" "SET" "name" "=" name

["WHERE" <term>]

Failures analogue to create.

Substitution Rule

The following syntax creates a substitution rule with name, optional start date and optional

end date:

<createSubstitutionRule> ::= "CREATE" "SUBSTITUTION_RULE" "WITH" "name" "="

name ["," "start_date" "=" start_date] [","end_date "=" end_date]

Parameters:
name Name of the Substitution Rule (unique)

start_date Starting date of the substitution rule (optional)

end_date Ending date of the substitution rule (optional)

Possible failures:
UNIQUE_NAME_CONSTRAINT A Substitution Rule with this name already ex-

ists

DATE_CONSTRAINT End date is before Start date

79

5 Language definition

Alter syntax to change the substitution rule’s name, start date and end date respectively:

<alterSubstitutionRuleName> ::= "ALTER" "SUBSTITUTION_RULE" "SET" "name" "="

name ["WHERE" <term>]

<alterSubstitutionRuleStartDate> ::= "ALTER" "SUBSTITUTION_RULE" "SET"

"start_date" = start_date ["WHERE" <term>]

<alterSubstitutionRuleEndDate> ::= "ALTER" "SUBSTITUTION_RULE" "SET"

"end_date" "=" end_date ["WHERE" <term>]

Failures analogue to create.

Modeling organization model relationships

The relationships presented in sec. 4.2 are modeled with the following syntax definitions.

The numbering is analogue.

Relationship I

Relationship I is a many to many relationship that models the “forms” relationship of orga-

nization units with organization groups.

<alterOrgGroupOrgUnitAdd> ::= "ALTER" "ORG_GROUP_ORG_UNIT" "ADD" "("

↪→ORG_GROUP "," ↪→ORG_UNIT ")"

<alterOrgGroupOrgUnitRem> ::= "ALTER" "ORG_GROUP_ORG_UNIT" "REMOVE" "("

↪→ORG_GROUP "," ↪→ORG_UNIT ")"

Possible failures:
ORG_GROUP_NOT_FOUND The supplied organization group could not be

found

ORG_UNIT_NOT_FOUND The supplied organization unit could not be

found

Relationship II

Relationship II is a many to many relationship that models the “consists of” relationship of

project teams with organization units.

80

5.3 Modeling Modules

<alterProjectTeamOrgUnitAdd> ::= "ALTER" "PROJECT_TEAM_ORG_UNIT" "ADD" "("

↪→PROJECT_TEAM "," ↪→ORG_UNIT ")"

<alterProjectTeamOrgUnitRem> ::= "ALTER" "PROJECT_TEAM_ORG_UNIT"

"REMOVE" "(" ↪→PROJECT_TEAM "," ↪→ORG_UNIT ")"

Possible failures:
ORG_GROUP_NOT_FOUND The supplied organization group could not be

found

PROJECT_TEAM_NOT_FOUND The supplied project team could not be found

Relationship III

Relationship III is a many to many relationship that models the “consists of” relationship of

project teams with positions.

<alterProjectTeamPositionAdd> ::= "ALTER" "PROJECT_TEAM_POSITION" "ADD" "("

↪→PROJECT_TEAM "," ↪→POSITION ")"

<alterProjectTeamPositionRem> ::= "ALTER" "PROJECT_TEAM_POSITION"

"REMOVE" "(" ↪→PROJECT_TEAM "," ↪→POSITION ")"

Possible failures:
POSITION_NOT_FOUND The supplied Position could not be found

PROJECT_TEAM_NOT_FOUND The supplied Project Team could not be found

Relationship IV

Relationship IV is a many to many relationship that models the “staffs” relationship of staff

members with positions.

<alterStaffMemberPositionAdd> ::= "ALTER" "STAFF_MEMBER_POSITION" "ADD" "("

↪→STAFF_MEMBER "," ↪→POSITION ")"

<alterStaffMemberPositionRem> ::= "ALTER" "STAFF_MEMBER_POSITION"

"REMOVE" "(" ↪→STAFF_MEMBER "," ↪→POSITION ")"

81

5 Language definition

Possible failures:
POSITION_NOT_FOUND The supplied Position could not be found

STAFF_MEMBER_NOT_FOUND The supplied Staff Member could not be

found

Relationship V

Relationship V is a many to many relationship that models the “describes” relationship of

position with roles.

<alterRolePositionAdd> ::= "ALTER" "ROLE_POSITION" "ADD" "(" ↪→ROLE ","

↪→POSITION ")"

<alterRolePositionRemove> ::= "ALTER" "ROLE_POSITION" "REMOVE" "(" ↪→ROLE

"," ↪→POSITION ")"

Possible failures:
POSITION_NOT_FOUND The supplied Position could not be found

ROLE_NOT_FOUND The supplied Role could not be found

Relationship VI

Relationship VI is a many to many relationship that models the “substitution” relationship of

roles with substitution rules.

<alterSubstitutionRuleRoleAdd> ::= "ALTER" "SUBSTITUTION_RULE_ROLE" "ADD" "("

↪→SUBSTITUTION_RULE "," ↪→ROLE ")"

<alterSubstitutionRuleRoleRem> ::= "ALTER" "SUBSTITUTION_RULE_ROLE"

"REMOVE" "(" ↪→SUBSTITUTION_RULE "," ↪→ROLE ")"

Possible failures:
SUBSTITUTION_RULE_NOT_FOUND The supplied Substitution Rule could not

be found

ROLE_NOT_FOUND The supplied Role could not be found

Relationship VII

Relationship VII is a many to many relationship that models the “substitution” relationship

of positions with substitution rules.

82

5.3 Modeling Modules

<alterSubstitutionRulePositionAdd> ::= "ALTER" "SUBSTITUTION_RULE_POSITION"

"ADD" "(" ↪→SUBSTITUTION_RULE "," ↪→POSITION ")"

<alterSubstutitioNRulePositionRem> ::= "ALTER" "SUBSTITUTION_RULE_POSITION"

"REMOVE" "(" ↪→SUBSTITUTION_RULE "," ↪→POSITION ")"

Possible failures:
SUBSTITUTION_RULE_NOT_FOUND The supplied Substitution Rule could not

be found

POSITION_NOT_FOUND The supplied Position could not be found

Relationship VIII

Relationship VIII is a many to many relationship that models the “has” relationship of roles

with abilities.

<alterRoleAbilityAdd> ::= "ALTER" "ROLE_ABILITY" "ADD" "(" ↪→ROLE "," ↪→ABILITY

")"

<alterRoleAbilityRem> ::= "ALTER" "ROLE_ABILITY" "REMOVE" "(" ↪→ROLE ","

↪→ABILITY ")"

Possible failures:
ABILITY_NOT_FOUND The supplied Ability could not be found

ROLE_NOT_FOUND The supplied Role could not be found

Relationship IX

Relationship IX is a many to many relationship that models the “has” relationship of staff

members with abilities.

<alterStaffMemberAbilityAdd> ::= "ALTER" "STAFF_MEMBER_ABILITY" "ADD" "("

↪→STAFF_MEMBER "," ↪→ABILITY ")"

<alterStaffMemberAbilityRem> ::= "ALTER" "STAFF_MEMBER_ABILITY" "REMOVE" "("

↪→STAFF_MEMBER "," ↪→ABILITY ")"

Possible failures:
STAFF_MEMBER_NOT_FOUND The supplied Staff Member could not be

found

ROLE_NOT_FOUND The supplied Role could not be found

83

5 Language definition

Deletion of entities

The following syntax is used for any delete operation on the organization model:

<deleteFromOrgModel> ::= "DELETE" "FROM" (<organizationModelEntity> |

"SUBSITUTION_RULE") "WHERE" <term>

Device Restriction Modeling

The device restriction modeling creates and modifies the device restrictions presented in

sec. 4.2.3. It is an ad hoc model, that refers the ability from the organization model. It

depends on the organization model, the organization model does not depend on the device

restriction model.

Restriction

The following syntax creates a new restriction with a name and a reference to an ability that

the restriction restricts.

<createRestriction> ::= "CREATE" "RESTRICTION" "WITH" "name" "=" name ","

"ability" "=" ↪→ABILITY

Parameters:
name Restriction name, unique

ability Reference to ability

Possible failures:
UNIQUE_NAME_CONSTRAINT A restriction with this name already exists

ABILITY_NOT_FOUND Referenced ability was not found

The following alter syntax modifies a restriction and sets a new name and a new ability

respectively:

<alterRestrictionName> ::= "ALTER" "RESTRICTION" "SET" "name" "=" name

["WHERE" <term>]

<alterRestrictionAbility> ::= "ALTER" "RESTRICTION" "SET" "ability" "=" ↪→ABILITY

["WHERE" <term>]

Failures analogue to create.

84

5.3 Modeling Modules

Device class

The following syntax creates a new device class with a name:

<createDeviceClass> ::= "CREATE" "DEVICE_CLASS" "WITH" "name" "=" name

Parameters:

name Device class name (unique)

Possible failures:

UNIQUE_NAME_CONSTRAINT A Device Class with this name already exists

The following alter syntax modifies the name of a device class:

<alterDeviceClassName> ::= "ALTER" "DEVICE_CLASS" "SET" "name" "=" name

Failures analogue to create.

Specific Device The following create syntax creates a new specific device with a name:

<createSpecificDevice> ::= "CREATE" "SPECIFIC_DEVICE" "WITH" "name" "=" name

Parameters:

name Specific device’s name (unique)

Possible failures:
UNIQUE_NAME_CONSTRAINT A Specific Device with this name already ex-

ists

The following alter syntax modifies a specific device and sets a new name:

<alterSpecificDeviceName> ::= "ALTER" "SPECIFIC_DEVICE" "SET" "name" "=" name

["WHERE" <term>]

Failures analogue to createSpecificDevice.

Device restriction relationships

The following relationships are defined in sec. 4.2.3. The numbering is analogue.

85

5 Language definition

Relationship I

Relationship I is a many to many relationship that forms the “restricts” relationship of device

classes with restrictions.

<alterDeviceClassRestrictionAdd> ::= "ALTER" "DEVICE_CLASS_RESTRICTION"

"ADD" "(" ↪→DEVICE_CLASS "," ↪→RESTRICTION ")"

<alterDeviceClassRestrictionRem> ::= "ALTER" "DEVICE_CLASS_RESTRICTION"

"REMOVE" "(" ↪→DEVICE_CLASS "," ↪→RESTRICTION ")"

Possible failures:
DEVICE_CLASS_NOT_FOUND Referenced Device class not found

RESTRICTION_NOT_FOUND Referenced Restriction not found

Relationship II

Relationship II is a many to many relationship that forms the “belongs” relationship of spe-

cific devices with device classes.

<alterDeviceClassSpecificDeviceAdd> ::= "ALTER"

"DEVICE_CLASS_SPECIFIC_DEVICE" "ADD" "(" ↪→DEVICE_CLASS ","

↪→SPECIFIC_DEVICE ")"

<alterDeviceClassSpecificDeviceRem> ::= "ALTER"

"DEVICE_CLASS_SPECIFIC_DEVICE" "REMOVE" "(" ↪→DEVICE_CLASS ","

↪→SPECIFIC_DEVICE ")"

Possible failures:
DEVICE_CLASS_NOT_FOUND Referenced Device class not found

SPECIFIC_DEVICE_NOT_FOUND Referenced Specific Device not found

Deletion of entities

The following syntax is used for any delete operation on the device restriction model:

<deleteFromDeviceRestrictionModel> ::= "DELETE" "FROM" "RESTRICTION" |

"DEVICE_CLASS" | "SPECIFIC_DEVICE" "WHERE" <term>

86

5.3 Modeling Modules

Summary

We presented syntax to modify and create organization hierarchies and device restrictions.

Based on a organization model thus created, the staff assignment query can be used to

assign staff members to activities.

5.3.2 Data Type and Constraint Modeling

Data types are declared with the following syntax. Three operations are possible: create,

modify and delete. Create means the creation of a new data type, modify the modification

and delete, its deletion.

The data type definition from sec. 5.2.3 is used when defining new data types or altering

existing ones.

Create syntax

The following syntax defines, how new data types are creates:

<createDataType> ::= "CREATE" "DATATYPE" name <type>

Possible failures:
TYPE_ALREADY_EXISTS The data type cannot be created because a

data type with name already exists.

Rename

The following syntax defines, how data types are renamed:

<alterDataType> ::= "ALTER" "DATATYPE" oldname "RENAME" newname

Possible failures:
TYPE_ALREADY_EXISTS The data type cannot be renamed because a

data type with the newname name already

exists.

87

5 Language definition

Modifying the data type and setting a new data type definition

The following syntax defines, how a data type’s type definition is modified.

<modifyDataType> ::= "ALTER" "DATATYPE" name <modifyType>

<modifyType> ::= "MODIFY" "TYPE" <type>

No operation specific error codes.

Redefining subtypes

Struct data types possibly have a hierarchical structure. To change a struct element’s data

type, the following syntax is defined:

<alterDataSubType> ::= "ALTER" "DATATYPE" name <alterSubType>

<alterSubType> ::= "MODIFY" "SUBTYPE" <subtype> "(" data type definition ")"

<subtype> ::= name ["."<subtype>]

The subtype is used to navigate to the elements embedded in structs. It is also allowed

to thereby navigate to another type.

Possible failure reasons:

SUBELEMENT_NOT_FOUND The subtype does not exist

Example: Struct S has an element a of type Struct Y, which has an element b. It is possible

to modify the type for element b to Text by accessing Struct S:

ALTER DATATYPE S MODIFY SUBTYPE a.b (TEXT)

5.3.3 Process Template and Process Instance Modeling

Sec. 5.2.7 introduced a Formal Process Fragment Representation that is heavily used

in this chapter. The Process Fragment Representation is fully capable of representing a

process model by means of storing a Process Fragment under a name.

88

5.3 Modeling Modules

CREATE Syntax

Process templates are created via a create syntax:

<createProcessTemplate> ::= "CREATE" "PROCESS_TEMPLATE" name ["(" <pfr> ")]

["WITH "START_PARAMETERS" "(" <Struct> ")"] ["WITH" "RETURN_PARAMETERS"

"(" <Struct> ")"]

The <read> declarations of the <pfr> express the input parameters and their mapping to

data containers, analogue for return parameters.

Retrieving process fragments

The <printPfr> syntax selects a process fragment from a process model:

<printPfr> ::= "PRINT_PFR" "OF" ["TEMPLATE"|"INSTANCE"] ["FRAGMENT" "="

fragmentname]

If the fragment = fragmentname syntax is not used, the root fragment is selected.

Possible failure reasons:

FRAGMENT_NOT_FOUND No fragment was found for the given name

Positive answers are expressed through the Process Fragment Representation.

Example:

PRINT_PFR OF TEMPLATE "OrderProcess" fragment = "Order"

The example returns the fragment named "Order" with all its sub structures in the Process

Fragment Representation syntax.

Pattern AP1: INSERT Process Fragment

The serial insert inserts the specified Process Fragment after or before the named ↪→fragment

.

89

5 Language definition

<ap1InsertProcessFragmentSerialInsert> ::= "INSERT" "ROOT"|"AFTER"|"BEFORE" (

"PROCESS_TEMPLATE" name) | ("PROCESS_INSTANCE" name) | (

"PROCESS_INSTANCES" (name +)) ["FRAGMENT" "=" ↪→fragment] <pfr>

If no root process fragment exists, "INSERT ROOT" shall be used without specifying the

fragment. If after or before is used, the fragment has to be specified. Before and after

require the parent fragment of the fragment that was named to have the ability, to store

fragments before it.

Possible failure reasons:
ROOT_FRAGMENT_EXISTS A root fragment already exists

FRAGMENT_NOT_FOUND The named fragment(s) could not be

found in the process template /instance

FRAGMENT_MALFORMED the given fragment is not sound

DATA_ELEMENT_NOT_FOUND referred data elements do not exist in the

process template / instance

TYPE_MISMATCH data types mismatched

SYNCHRONIZATION_EDGE_MISSING a synchronization edge is missing

Inserting alternative control flows

Other than specified in the referred Change Patterns [WRS08], no “parallel Insert” and

“conditional Insert” is declared for the WfQL, but an insert of split and loop nodes around

process fragments. This approach is just as powerful and greatly reduces the required

number of different operations.

The following definition is applicable for XOR, OR and AND blocks. The BRANCH definition is

used for AND blocks. OR and XOR blocks use CASE and have to state a decisionPredicate.

<ap1InsertProcessFragmentAlternativeFlow> ::= "INSERT" "INTO" (

"PROCESS_TEMPLATE" name) | ("PROCESS_INSTANCE" name) | (

"PROCESS_INSTANCES" "(" name + ")") "FRAGMENT" "=" ↪→fragment ("CASE"

<decisionPredicat> ":") | ("BRANCH" ":") <pfr>

90

5.3 Modeling Modules

Possible failure reasons:
FRAGMENT_NOT_FOUND The named fragment(s) could not be

found in the process template /instance

FRAGMENT_MALFORMED the given fragment is not sound

DATA_ELEMENT_NOT_FOUND specified data elements do not exist in

the process template / instance

TYPE_MISMATCH data types mismatched

SYNCHRONIZATION_EDGE_MISSING a synchronization edge is missing

Pattern AP2: DELETE Process Fragment

<ap2DeleteProcessFragment> ::= "DELETE" "FROM" ("PROCESS_TEMPLATE" name

) | ("PROCESS_INSTANCE" name) | ("PROCESS_INSTANCES" "(" name + ")")

["FRAGMENT" "=" ↪→fragment]

Deletes the named process fragment from the process template or instance. If it was

surrounded by a case in a control flow, the case is deleted, if it contains no control flow any

more. If no fragment is named, the root is chosen.

Possible failure reasons:
FRAGMENT_NOT_FOUND The named fragment(s) could not be

found in the process template /instance

BLOCK_CONSTRAINTS node1 and node2 are not nested on the

same block level

Pattern AP3 / AP4: MOVE or SWAP Process Fragment

The following definition expresses the move, swap and move into operations on process

fragments of the same process model.

When using the move into operation, the case or branch of the surrounding block has to be

named depending on the type of the surrounding block, analogue to Pattern AP1.

91

5 Language definition

<ap3MoveProcessFragmentALTER> ::= "ALTER" ("PROCESS_TEMPLATE" name) | (

"PROCESS_INSTANCE" name) | ("PROCESS_INSTANCES" "(" name + ")")

"MOVE" ↪→selectedFragment " "AFTER"|"BEFORE"|"SWAP"|"INTO" ↪→targetFragment

[("CASE" <decisionPredicat>) | "BRANCH" "]

Possible failures:
TARGET_FRAGMENT_NOT_FOUND The named target fragment could not be

found in the process template /instance

FRAGMENT_MALFORMED the given fragment is not sound

DATA_ELEMENT_NOT_FOUND specified data elements do not exist in

the process template / instance

TYPE_MISMATCH data types mismatched

SYNCHRONIZATION_EDGE_MISSING a synchronization edge is missing

WRONGFUL_INSERT Inserting with CASE or BRANCH does

not reflect the type of the block it was in-

serted into

Pattern AP4: REPLACE Process Fragment

The replace syntax replaces the selected process fragment with the declared process frag-

ment:

<ap4ReplaceProcessFragment> ::= "ALTER" ("PROCESS_TEMPLATE" name) | (

"PROCESS_INSTANCE" name) | ("PROCESS_INSTANCES" (name +))

"REPLACE" ↪→fragment "WITH" <pfr>

Replaces the fragment with the <pfr>

Possible failures:
FRAGMENT_MALFORMED the given fragment is not sound

DATA_ELEMENT_NOT_FOUND specified data elements do not exist in

the process template / instance

TYPE_MISMATCH data types mismatched

SYNCHRONIZATION_EDGE_MISSING a synchronization edge is missing

92

5.3 Modeling Modules

Altering the process definition

The process definition of Process Instances and Process Templates can be altered with

the following operations:

Altering Process Fragments

A Process Fragment may have a number of standard properties, such as:

• data container definitions

• read and write mappings

• exception blocks

• process fragment (depending on the type of process fragment: multiple ones in

branches or cases)

The WfQL offers a number of alteration operations to modify the attributes of individual

process fragments:

Alter Data Container definitions

The following syntax alters data container definitions: Renames the data container, rede-

fines data containers, adds and removes them:

<alterDataContainer> ::= "ALTER" "DATA" "OF" ("PROCESS_TEMPLATE" name) | (

"PROCESS_INSTANCE" name) | ("PROCESS_INSTANCES" "(" name + ")")

"FRAGMENT" "=" fragment ("RENAME" oldName TO newname) | ("REDEFINE"

containerName "WITH" <type>) | ("REMOVE" containerName) | ("ADD"

containername "WITH" <type>)

Alter read and write mappings

The following syntax alters read and write mappings of process fragments: Changes their

source or target, removes them and inserts new mappings:

93

5 Language definition

<alterReadWrite> ::= "ALTER" "READ"|"WRITE" "OF" ("PROCESS_TEMPLATE" name

) | ("PROCESS_INSTANCE" name) | ("PROCESS_INSTANCES" "(" name + ")")

"FRAGMENT" "=" fragment ("CHANGE" "SOURCE"|"TARGET" oldReference "TO"

newReference)|("REMOVE" sourcename "TO" targetname)|("INSERT" sourcename

"TO" targetname)

Alter exception blocks

The following syntax alters exception blocks of process fragments: Replaces, adds and

removes them.

<alterExceptionBlocks> ::= "ALTER" "EXCEPTION" "OF" ("PROCESS_TEMPLATE"

name) | ("PROCESS_INSTANCE" name) | ("PROCESS_INSTANCES" "(" name +

")") "FRAGMENT" "=" fragment "," "type" "=" exceptionName ("REPLACE" "WITH"

<pfr>| "REMOVE"|"ADD" <pfr>)

5.3.4 Process Instance Modeling

In sec. 5.3.3 we already defined, how to change the Process Model of Process Instances.

At times, Process Instances have to be created, that are not based on a Process Template.

The following syntax definition describes, how to accomplish this:

The following syntax creates a new process instance with empty root pfr and gives it a

(unique) name:

CREATE PROCESS_INSTANCE name

Possible failures:
UNIQUE_NAME_CONSTRAINT The name was already used for a pro-

cess instance

The resulting process instance is accessible with the name supplied. This differs from the

instantiation of process templates, where process instances are not named.

Further change modeling is analogue to sec. 5.3.3.

94

5.3 Modeling Modules

5.3.5 Activity Template Modeling

Activity templates reside in the ACTIVITY_TEMPLATES entity set and are created and

altered by the following syntax.

CREATE Syntax

The following create syntax is used to create new activity templates:

<activityStartParameterSignature> ::= <Struct>

<activityStopParameterSignature> ::= <Struct>

<activityTemplateCreate> ::= "CREATE" "ACTIVITY_TEMPLATE" name "("

<activityStartParameterSignature>"," <activityStopParameterSignature>"," "("

exceptionName + ")" ")"

activityStartParameterSignature declares a Struct Data Type, which elements are

the parameter names, analogue for activityStopParameterSignature. exceptionName

references allowed Exception Types by name.

Possible failures (in addition to data type declaration failures):
EXCEPTION_UNKOWN one or more exceptions in

exceptionName is unknown

ACTIVITY_TEMPLATE_EXISTS an activity template with this name al-

ready exists

ALTER Syntax

The alter syntax allows for alterations of activity templates.

Alter Start Parameter Signature

The alter start parameter syntax changes the start parameter of a named activity template

by use of the modifySubType syntax:

<activityTemplateAlterStartParameters> ::= "ALTER" "ACTIVITY_TEMPLATE" name

"STARTPARAMETER" <modifySubType>

95

5 Language definition

Analogue to activityTemplateAlterStartParameters:

<activityTemplateAlterReturnParameters> ::= "ALTER" "ACTIVITY_TEMPLATE" name

"RETURNPARAMETER" <modifySubType>

Possible failures (in addition to modifySubType and data type failures):
ACTIVITY_TEMPLATE_NOT_FOUND no activity template found under the

given name

Add exception to Activity Template

The following syntax adds exception_name to the set of possible exceptions for the activity

template named:

<activityTemplateAlterAddException> ::= "ALTER" "ACTIVITY_TEMPLATE" name

"ADD_EXCEPTION" exception_name

Possible failures:
ACTIVITY_TEMPLATE_NOT_FOUND no activity template found under the

given name

EXCEPTION_ALREADY_EXISTS Exception already part of the set of al-

lowed exceptions

Remove exception from Activity Template

The following syntax removes exception_name from the set of possible exceptions for the

activity template named:

<activityTemplateAlterAddException> ::= "ALTER" "ACTIVITY_TEMPLATE" name

"REMOVE_EXCEPTION" exception_name

Possible failures:
ACTIVITY_TEMPLATE_NOT_FOUND no activity template found under the

given name

EXCEPTION_DOES_NOT_EXIST Exception is not part of the exception list

or does not exist

96

5.4 Execution Modules

DELETE Syntax

The delete syntax for activity templates deletes an activity template:

<activityTemplateDelete> ::= "DELETE" "ACTIVITY_TEMPLATE" name

Possible failures:
ACTIVITY_TEMPLATE_NOT_FOUND no activity template found under the

given name

ACTIVITY_TEMPLATE_IN_USE activity template is in use in a process in-

stance or process template or by an ac-

tivity instance.

5.4 Execution Modules

The Execution Modules cover the Execution Stage of a Process’s Life-cycle. They cover

the syntax for gaining access to Activity Instances, instantiating Process Instances, starting,

pausing, stopping and aborting Process Instances and the registration of Monitors and the

transport of notifications to clients.

5.4.1 Activity Execution

Activity executing stakeholders start activities by checking them out. This is comparable to

a version control system, that allows just one stakeholder to check out a specific file or part

of a file. Analogue, an Activity Instance can get checked out just by one stakeholder.

To do so, the stakeholder sends the following command:

<activityCheckout> ::= "CHECKOUT" ↪→activity_instance

97

5 Language definition

Success response:

<checkoutResponse> ::= "AOK" "CHECKOUT" "(" "startParameters" ":"

start_parameters "," "startParameterSignature" ":" start_parameter_type_definition ","

"returnParameterSignature" ":" return_parameter_type_definition "," "exception_set" ":"

exception_names ")"

Possible failures:

ACTIVITY_INSTANCE_NOT_AVAILABLE Activity instance is not available for

checkout – possibly checked out by an-

other stakeholder

ACTIVITY_INSTANCE_UNKNOWN Activity instance is unknown

Yield

When an activity instance cannot be executed due to a problem, before the real world

process was altered, it can be yielded. After a yield, it can be checked out by another

stakeholder.

<yieldActivityInstance> ::= "YIELD" "ACTIVITY_INSTANCE" ↪→activity_instance

Possible failures:

ACTIVITY_INSTANCE_UNKNOWN Activity instance is unknown

Checkin

Checkin is the act of returning an activity instance with return parameters after a successful

execution:

<activityCheckin> ::= "CHECKIN" "ACTIVITY_INSTANCE" ↪→activity_instance "("

return_parameters ")"

Possible failures:

ACTIVITY_INSTANCE_UNKNOWN Activity instance is unknown

Exception handling

When the stakeholder encounters a failure that it cannot solve, it throws one of the allowed

exceptions that it received with the checkout.

98

5.4 Execution Modules

<throwException> ::= "THROW" "EXCEPTION" "FOR" ↪→activity_instance "("

exception_type "," serialized exception ")"

The serialized exception contains the serialized exception that reflects the data type

definition of the exception_time.

Possible failures:
EXCEPTIONTYPE_UNKNOWN Exception type is unknown

ACTIVITY_INSTANCE_UNKNOWN Activity instance is unknown

Accessing the Worklist

Activity Instances get assigned to one or many stakeholders. For stakeholders to checkout

activity instances and process them, they need to gain access to the identifier (reference)

of activity instances. Thus, each stakeholder can access a so called worklist which is a per

stakeholder view on currently ready-to-run activity instances.

<accessWorklist> ::= "SHOW" "WORKLIST" ["WHERE" <term>]

The WHERE <term> limits the result-set. The <term> operates on the attributes of all

accessible activity instances.

The WfMS responds with tuples of the following structure:

activity instance ID activity template name

5.4.2 Process Execution

This section covers the execution and control of process instances: The instantiation of

process instances, the control over the execution (start, stop, pause and abort) and the

modification of running process instances.

Instantiate Processes

Creates a Process Instance based on a Process Template – if start parameters are stated,

they have to be supplied.

99

5 Language definition

<instantiateProcessTemplate> ::= "INSTANTIATE" "PROCESS_TEMPLATE"

↪→process_template ["WITH" "PARAMS" (start_parameters]

Possible failures:
PROCESS_TEMPLATE_UNKNOWN Process template unknown

DATA_TYPE_CONSTRAINT Start parameters are not of the correct

type or violate the data type constraints

If executed successfully, the WfMS returns the process instance’s identifier to the client:

<instantiateProcessTemplateResponse> ::= "AOK" "PROCESS_INSTANCE" "WITH"

"ID" ↪→process_instance

After instantiation, the process instance is not started automatically but has to be started via

the startProcessInstance operation. Therefore, it is possible to instantiate a process

template, modify the instance and start it.

Start Process Instances

Starts non-running process instances.

<startProcessInstance> ::= "START" "PROCESS_INSTANCE" "WITH" ("name" "="

name) | ("ID" "=" ↪→Process_Instance)

Possible failures:

PROCESS_INSTANCE_UNKNOWN Process instance unknown

Control Execution of Process Instances

Process instances can be paused, stopped or aborted.

Pause means, the Execution engine of the Workflow Management System will not continue

the Process Model’s execution. Stop means, that the WfMS will try to notify all activity exe-

cuting stakeholders that they should pause their execution. Abort means, that the process

instance is aborted – all stakeholders get notified if possible. If not, their return of activity

instances will have no effect.

<controlProcessInstance> ::= "PAUSE" | "STOP" | "RESTART" | "RESUME" | "ABORT"

"PROCESS_INSTANCE" ↪→process_instance

100

5.4 Execution Modules

Possible failures:

PROCESS_INSTANCE_UNKNOWN Process instance unknown

Updateing Process Instance’s Data Containers

Replace a Process Instance’s Data Container value with a new one.

<modifyDataContainers> ::= "UPDATE" "PROCESS_INSTANCE" ↪→process_instance

"DATACONTAINER" "SET" dataContainerName "=" new_value ["FRAGMENT" =

fragmentName

If the fragment is named, the local data container of the named fragment is modified.

Possible failures:
PROCESS_INSTANCE_UNKNOWN Process instance unknown

FRAGMENT_UNKNOWN Process fragment not found in process

model

DATA_ELEMENT_UNKNOWN Data Element unknown

VALUE_TYPE Value is not of the type of the data ele-

ment

Update start parameters of Activity Instances

Update the start parameters of an existing activity instance with new start parameters. Has

to be applied before the activity instance was checked out.

<modifyActivityInstanceStartParameters> ::= "UPDATE" "ACTIVITY_INSTANCE"

↪→activity_instance "SET" "STARTPARAMETER" "=" new_value

Possible failures:
ACTIVITY_INSTANCE_UNKNOWN Activity instance is unknown

DATA_TYPE_CONSTRAINT Value is not of the type of the start pa-

rameters.

WRONG_ACTIVITY_INSTANCE_STATUS Activity instance was already checked

out (currently getting processed or re-

turned)

101

5 Language definition

5.4.3 Event registration and delivery

Events inform stakeholders about changes in the Workflow Management System. It is

intended as delivery method for notifications about ready-to-run activity instances and pro-

cess termination.

Stakeholders register monitors for the events they desire to get notified about. The regis-

tration is bound to the current session, which means, that even if the client-server connec-

tion drops, but the session is still active, the events would get cached until the session is

reestablished.

An event is always triggered and delivered. Even when the event’s information is no longer

current, the stakeholder still gets informed. For example, this could mean, that a stake-

holder gets informed about a new activity instance’s ready-to-run state. But the stakeholder

does not get informed when another stakeholder checks out the activity instance.

Activity Instance Events

A stakeholder may register a monitor to a class of activities to get informed about newly

ready-to-run activity instances. A class may cover all activities possibly executed by the

stakeholder or cover a filtered subset of the activity instances, filtered per activity templates,

process template or process instance.

Thus, we define the registration command:

<registerActivityInstanceMonitor> ::= REGISTER MONITOR ON

ACTIVITY_INSTANCES [WHERE <term>]

In order to formulate a filter, the general WHERE-clause is used.

No special failure codes exist.

Events are delivered with the following syntax:

<activityEvent> ::= EVENT ACTIVITY_INSTANCE "{" "date" ":" date "," "aiD" ":" activity

instance ID "," "atID" ":" ↪→activity template ID }

102

5.4 Execution Modules

Process Instance Events

At times, stakeholders are interested in getting notified about certain process instance’s

state. The following commands allow for the registration and reception of termination

events, that are created when a Process Instance gets terminated.

<registerProcessInstanceMonitor> ::= REGISTER MONITOR ON

PROCESS_INSTANCES [WHERE <term>]

Analogue to the Activity Instance monitor, the WHERE <term> is used.

Events are delivered with the following syntax:

<processEvent> ::= EVENT PROCESS_INSTANCE "{" "date" ":" date ,

"process_instance" ":" ↪→process_instance "}"

Listing and deleting monitors

A stakeholder may require access to the list of registered monitor.

Listing monitors Monitors are listed with the following syntax:

<listMonitors> ::= SHOW MONITORS

The result-set contains entities with the following entries:

monitor-type monitor-filter

monitor-type either "processInstance" or "worklist"

monitor-filter the term, that was used in the WHERE clause. Can be

null.

Deleting monitors A monitor is deleted by stating its monitor-type and monitor-filter:

<deleteMonitors> ::= "DELETE" "MONITOR" "WITH" "TYPE" "="

"processInstance"|"worklist" "," "FILTER" "=" <term>

103

5 Language definition

Possible failures:
NO_MONITOR_MATCHED No monitor was matched with these

properties

5.5 Analysis Modules

The analysis modules category contains modules, that allow analysis of process instances

and activities. It is split into the analysis of process instances and the analysis of activities

and their process model.

5.5.1 Accessing Process Instances

The values stored in data containers of process instances can be accessed, as well as the

status of fragments inspected by use of the following syntax.

Inspecting data elements of Process Instances

The following syntax reads the data container of process instances. If the fragment is

named, the local data context of it will be searched. The WHERE clause specifies, which

process instance(s) are inspected:

<inspectDataElement> ::= "SELECT" dataContainer "FROM" "PROCESS_INSTANCE"

["FRAGMENT" = fragmentName ["WHERE" <term>]

Possible failures:
DATA_CONTAINER_NOT_EXISTING Named Data Container not found

FRAGMENT_NOT_FOUND The process fragment could not be

found.

INSTANCE_NOT_FOUND The process instance could not be found.

Inspect a Process Instance’s Progress

The progress of a process instance is expressed by the status of its process fragments.

The following syntax is used to inspect the status:

104

5.5 Analysis Modules

<inspectNodeStatus> ::= "SELECT" "STATUS" "FROM" "PROCESS_INSTANCE"

"FRAGMENT" = fragmentName ["WHERE" <term>]

Returns the status of the named fragment.

Possible failures:
FRAGMENT_NOT_FOUND The process fragment could not be

found.

INSTANCE_NOT_FOUND The process instance could not be found.

5.5.2 Activity and Process Analysis

Activity and process analysis covers the analysis of activity instances and their related

process model.

Inspecting Activity Instances

This section covers the analysis of activity instances: Their start and return parameters and

their status.

Inspecting Start Parameters and Return Parameters of Activity Instances

The following code shows, how to inspect the start and return parameters of activity in-

stances. If the return parameters were not yet set or the activity instance was terminated

with a failure, they return a null value.

<modifyActivityInstanceStartParamters> ::= "SELECT" "START_PARAMETERS" |

"RETURN_PARAMETERS" "FROM" "ACTIVITY_INSTANCES" ["WHERE" <term>]

Possible failures:
ACTIVITY_INSTANCE_UNKNOWN

Activity instance is unknown

Server returns a set of tupels with the start parameters and return parameters respectively.

Inspecting Activity Instance State An activity instance can be in one of five states:

Ready, Checked-out, Checked-in, Finished, Paused and Aborted. In order to read the state

105

5 Language definition

of activity instances, the client executes:

<selectActivityInstanceState> ::= "SELECT" "STATUS" "FROM"

"ACTIVITY_INSTANCES" ["WHERE" <term>]

The server returns a LIST of one-value tupels that contain the state.

Accessing the process model via Activity Instances

The process fragment, that triggered the creation of the activity instance can be accessed

via the following syntax:

<selectActivityInstanceModel> ::="SELECT" "activity_node" "," "process_instance"

"FROM" "ACTIVITY_INSTANCES" ["WHERE" <term>]

The server returns a LIST of tuples with the activity process fragment and the process

instance of the activity instances.

Using the Select module for analysis purposes

The syntax of this module is heavily making use of the “Select module”. The following

definitions are directly derived from the realized WfMS model from chapter 4:

• selectActivityInstanceState

• selectActivityInstanceModel

• modifyActivityInstanceStartParamters

• inspectNodeStatus

All attributes shown in the WfMS model can be accessed, therefore further analysis ca-

pabilities that are not explicitly stated in the analysis modules exist. Furthermore, due to

possibility to recursively reuse the result-sets of WfQL operations, data intensive queries

that would be used as input for further queries with smaller result-sets can executed directly.

For example, to print the Process Fragment, that triggered the instantiation of an activity

instances, the following query can be used:

106

5.6 Summary

PRINT_PFR OF INSTANCE fragment = (SELECT activity_node FROM

ACTIVITY_INSTANCES WHERE ID = 1) WHERE ID = (SELECT process_instance

FROM ACTIVITY_INSTANCES WHERE ID = 1)

5.6 Summary

In summary, we presented the language definition for the WfQL, that is capable of repre-

senting process models, the modeling of process models, the execution of processes and

the analysis of running and past ran processes.

107

5 Language definition

108

6 Implementation

In this chapter, several prototypes are presented, that implement interfaces using the WfQL:

a WfMS server with a WfQL server interface and a number of client programs. Because of

several new aspects of the WfQL, that cannot be found in current WfMS implementations,

we could not make use of existing WfMS as back end, but instead, implemented a WfMS

from scratch.

We implemented

Three classes of clients were written:

1. A Python Webserver, that instantiates Processes with start parameters based on

HTTP requests, waits for the termination and delivers the return parameters to the

Browser.

2. A Python Client, that waits for activities of a certain activity template and executes

them

3. A Java SWT Client used for modeling process templates.

All clients target different aspects of the language. While the webserver is primarily con-

cerned with starting processes and waiting for their termination, the python client automat-

ically (without user interaction) executes activities. The Java SWT Client can be used to

model process templates.

6.1 Server

The prototypical server implementation offers a subset of the WfQL’s defined syntax and

semantic.

We have restricted the syntax to a limited subset of the modeling capabilities: insert and

delete operations. A subset of the possible Process Fragment: Activities, Serial Blocks and

109

6 Implementation

AND/AND Blocks. Text and Integer basic data types are supported, as are Structs. The

data flow is fully implemented, as is the activity execution.

The actual implementation was written in Java 1.6, targeting Java Application Servers. We

used the following Libraries:

• Spring 3.0 [Spring]

• Hibernate 3.4 [Hib]

• Stringtree-JSON 2.0

The latter library is used to serialize and de-serialize data per defined in data serialization

in sec. 5.2.4. Spring and Hibernate are used, as they offer distributed, fast and scal-

able support for transactions and data storage. For the actual deploy, we used the JBoss

Application Server 5.0 GA, however, it should be deployable on any JavaEE compatible

application server as well.

6.1.1 Architecture

The server architecture can be split into four components as shown in Figure 6.1: A TCP

server, that accepts TCP connections and creates a new thread for each connection. A

parser, that is used by the TCP Server to parse incoming operations and to generate WfQL-

conform output. The parser in turn uses the WfMS Engine component to apply changes to

the WfMS based on the parsed operations. The WfMS Engine uses the Hibernate Library

to persist its objects into a relational database management system. The wiring between

the components is configured via the spring library, that is executed on deploy on the appli-

cation server and handles the actual deploy and start of our components.

Data storage

Figure 6.2 shows the entity relationship between the workflow management entities used

in the prototypical implementation.

Entities like: activity template and process model define data types stored in data type

definition objects. Data type definition objects are capable of expressing basic data types

like Integer and Text and Structs, which contain key value pairs, the key being a Text, the

110

6.1 Server

WFQL Server Prototype

WFQL ParserWfMS EngineHibernate
Multithreaded

TCP Server

Database Management
System

WFQL Clients

Figure 6.1: Server architecture

value a data type definition entity and thus define structs as defined in the realization and

language definition.

Any data represented in Figure 6.2 and data type definitions are parsed based on the lan-

guage definition in the parser, and generate corresponding data storage objects, that can

be stored via hibernate into a relational database management system. The parser inter-

nally works with the data storage objects and parses the WfQL with a as late as possible

scheme to data storage objects: That means, that if a data storage object such as a Pro-

cess Fragment Representation contains attributes such as READ or WRITE mappings, the

Process Fragment Representation (Pfr) is created (but not stored), the mapping is parsed,

created and later added into the Pfr. Ultimately, the data is persisted. If a parsing error

occurs in the meantime, the data is discarded and the appropriate error is returned via the

parser.

6.1.2 Data Types

The Data Types are implemented by means of persistable objects that are generated by

means of parsing the WfQL’s Data Type Definition. The prototypical implementation imple-

ments Text and Integer basic data types and the Struct data type. The generated

objects reflect the flexibility of the Data Type Definition and can be extended, based on the

existing code, to accomodate other types like List, Set and Map.

111

6 Implementation

Activity Instance

Process Fragment Activity Template

Process ModelProcess Instance Process Template

1
 :

1

{0,1} : 1

* : 1 1 : 1

Activity

Block

1
 :

*

*
: 1

* : 1

Figure 6.2: Persistence data model

6.1.3 Parsing the model

Analogue to the Data Type Definition, parsing the Process Fragment Representation is im-

plemented with a recursive parser that returns Process Fragment Representation objects.

These PFR objects are persistable and are used in the Process Model.

6.1.4 Data flow

The data flow is expressed by data containers and the READ and WRITE mapping. Each

block has a local data container context. While parsing the model, data containers from

outer blocks are carried into the local data container of inner block(s). This is implemented

by recursively iterating through blocks, carrying a map of data containers. If a block rede-

fines an already taken name, it overwrites this data container in the local data container.

When the execution engine reads data via the READ mapping, it accesses the local data

context and thus per design accesses the correct data container. Analogue for writing, be-

cause data containers are never overwritten, but the value is written inside of them. That

means, even when activities return data in the form of return parameters, that gets serial-

112

6.1 Server

ized into data containers, these data containers are not replacing the local data context of

blocks when written, but their values are copied over instead.

6.1.5 The WfMS Engine

We implemented a minimalistic WfMS Engine to test the parser, and to offer a functional

prototype with WfMS properties. Although a great number of WfMS Engines exist, we had

unique requirements that are not satisfied by existing solutions. Therefore, we decided to

write a WfMS from scratch, that the parser uses:

The engine is event driven. At no point, it acts on a timer or repeatedly queries the database

for new information. Even though we did not explicitly state event drivenness as a require-

ment, it is much easier to satisfy the concurrency requirements. The alternative, a non-

event driven engine that periodically checks for pending tasks could not abort a transaction

if it would violate the constraints given by the meta model and would thus yield an error

that cannot directly be traced to the originator. Even worse, the originator cannot directly

be informed about the failure, when executing an operation that causes a problem.

The entire concurrency model as defined in sec. 3.2 cannot easily be satisfied when imple-

menting a non-event driven system.

As a result, when a stakeholder starts a process instance, the system instantiates the

activities given by the model, that have no dependencies on other activities. The system

returns only after the instantiation was successful. If the start parameters would not satisfy

the activities, the activity instantiation would fail, which would cause the start of the process

instance to fail as well.

6.1.6 Deployment of the prototype

The source code of the prototypical server implementation and deploy instructions can be

found on the supplied data medium in the following directory:

/implementation/server/

To execute it, a Java Runtime Environment of at least Version 1.6 is expected, as well as

a JavaEE 1.6 compatible application server. For persistance, a postgres database version

113

6 Implementation

8.3 is used. However, the deploy instructions describe, how to generate initial databases

for other SQL dialects and how to configure the server accordingly.

6.1.7 Summary

We developed a prototypical implementation of a WfMS server with a WfQL interface. The

focal points for us are the parser and the WfQL. The source code is documented and we

hope, that in case the WfQL is extended or further works based on it, that the prototype is

a good starting point for new implementation.

Java source code lines: 4266

Size in bytes of Java source code: 136843

XML Configuration code lines: 853

Size in bytes of XML Configuration: 32913

6.2 Modeling tool

The prototypical modeling tool’s intent is to show, how modeling tools interface with a WfQL

capable WfMS. It supports the following operations: The creation of new process tem-

plates, viewing process templates and inserting and deleting of process fragments of type

activities, serial blocks and and/and blocks.

Figure 6.3 shows a screenshot of the modeling tool’s primary window with a Process Tem-

plate.

6.2.1 Data storage

The modeling tool stores one template at a time. It shows the user a list of available tem-

plates. The user selects one, which triggers a download of the selected process template’s

model which is temporarily stored in memory. The persistence is realized through the WfQL

interface of the WfMS.

114

6.2 Modeling tool

Figure 6.3: Modeling tool screenshot

Internally, the object oriented Java programming language allowed us to use inheritance to

store the model as shown in Figure 6.4. The Pfr (Process Fragment Representation) class

is inherited by an activity class, that implements the activity specific properties. The Block

class implements block specific properties, which are fine granulated in the SerialBlock

and AndBlock classes.

The modeling tool implements a parser for the WfQL’s Process Fragment Representation

(sec. 5.2.6). Models are persisted when the user changes them via the gui. To do so, any

part (including the root) of any pfr based class can be exported into the Process Fragment

Representation syntax. The modeling tool uses the WfQL to apply changes to the model

and to load existing templates.

6.2.2 Usage

The supplied data medium contains binaries, source code and start instructions that can

be found in the following directory:

/implementation/client/modeling_tool/

Java source code lines: 1062

Size in bytes of Java source code: 26961

115

6 Implementation

Pfr

Activity Block

SerialBlockAndBlock

Figure 6.4: Modeling tool inheritance model

6.3 Web-services a lá Workflow

The hierarchical and strict block structure of the underlying Adept meta model allows for

the design of more than just workflows. With the implementation of a decision logic and hi-

erarchical data containers, a programming meta model was implicitly designed. The Web-

service implementation that we are presenting makes use of this programming meta model

to deliver Websites. The content is created by any number of activity programs and deliv-

ered by a Web-server The latter instantiates processes from process templates with start

parameters based on parameters received from browsers.

In addition to the capability of generating content with any number of languages and on

different platforms, we implicitly created a cluster (or cloud) of execution instances, that can

act as a fail-over cluster or cloud.

Depending on the implementation of the WfMS, this swarm of activity programs can be

expanded and used to easily make web services or any information processing, that is

process oriented, scalable.

6.3.1 Components

We identify three distinct components of a Web-service with WfMS based content genera-

tion:

116

6.3 Web-services a lá Workflow

1. The WfMS Server

2. The Web-server

3. Content generating and processing activity programs

WfMS Server

Webserver

Activity Program 1

Activity Program n

HTTP
Client 1

HTTP
Client m

Figure 6.5: Webservice a lá workflow overview

In our example implementation, the Webserver makes use of predefined Process Tem-

plates. When a request for a web-page arrives at the web-server, it creates a new process

instance with start parameters, based on the request’s parameters. The web-server waits

for the process instance to terminate and delivers the return parameters as web-page.

The process is modeled, so activities create the content for the web-page and return them

in a specified return parameter.

The content generating and processing activity clients process their parameters and create

content based on them, which they return to the process instance.

Therefore, in order to deliver a web-page, the following steps are necessary:

• Instantiation of a Process Template based on the URI

• Execution of the Process Instance with Content generation by activity clients

117

6 Implementation

• Acquisition of return parameters of the corresponding process instance by the Web-

server and delivery of the return parameters as a web page to the browser.

6.3.2 Webserver component

The webserver component is written in the Python programming language with a minimalis-

tic, single threaded http webservice. It opens a TCP connection to the WfMS and uses the

WfQL to communicate the instantiation of process templates and waits for the termination

of the instances to deliver the return parameters to its client.

Total lines of python code: 84

Total size of python code in bytes: 2575

6.3.3 Activity client component

The activity client component is written in the Python programming language as well, and is

actually more complex than the server component. It periodically checks for newly available

activity instances, makes sure it is capable of executing the activity template of the available

activity instance, checks the instance out, executes the task in question and checks the

activity back in.

Total lines of python code: 94

Total size of python code in bytes: 2653

6.3.4 Usage

Source code, start instructions can be found on the supplied data medium in the following

directory:

/implementation/client/webservice/.

118

6.4 Summary

6.4 Summary

This chapter showed a number of applications that use the WfQL each in their own con-

text. The prototypical server implementation offers access to its WfMS capabilities via the

WfQL. The modeling tool uses this WfMS via the WfQL to load and store process models.

The webservice component starts processes, waits for their termination and gathers return

parameters. The activity client component automatically executes activities whose activity

template it knows. We thus covered three of the four stages of the process life-cycle: Mod-

eling, Execution and Change. The analysis stage was tested manually by connecting to the

WfMS via telnet.

We thus come to the conclusion, that the WfQL can be used to interconnect components

of a WfMS.

119

6 Implementation

120

7 Discussions and possible future works

This chapter discusses the extension of the WfQL and WfMS with further concepts that

have not been further discussed in the main chapters of this work. We think it is necessary

to discuss them here, although the concepts are incomplete and require further research.

7.1 Testing paths in process models

The combination of Data Types and Data Constrains – available both on process model

level and data type declaration level – offer limiting factors to any data hold in the data

containers of a process instance. These constrains are known when modeling the process

model, which would allow for testing of the decision predicates of process models and

predetermine which paths could be chosen during the runtime of a process instance that is

based on the model.

This allows in turn for simpler decision predicates. Given, that a data container is of type

Integer and has the constraint Range between 1 and 3 set on data type definition level on

it, a decision predicate evaluating the data container only has to evaluate the values 1,2,

and 3. Therefore, a decision predicate evaluating the data container InputValue with three

separate tests, one for each possible value, will always evaluate to true for one of the three

possibilities.

Therefore, a extensive model check is possible via the combination of data types and data

constraints.

121

7 Discussions and possible future works

7.2 Data transport protocol – discussing the serialization

method

In sec. 5.2.4 we referenced this section for further discussion on the serialization method.

We are not going to start a pro or contra discussion about using XML. The fact of the

matter is, that any kind of data serialization method – including XML – could be used, that

can serialize data with lists hierarchical data – be it through a tree in XML or with a mapping

method as done in JSON.

We have, in full view of the consequences, not defined a specific serialization method.

Keeping the question of the serialization method open allows for more flexibility. It allows

for any suitable serialization method to be used, including multiple ones. One could even

imagine, without violating the requirement of staying platform independent, offering a binary

serialization method – if a platform independent serialization method is offered as well.

7.3 Partitioning workflows across multiple WfMS

We originally planned to include the ability to partition process models onto multiple WfMS

servers. In essence, every process fragment could be checked out, similar to activities, and

returned after the execution of it completed. Instead of start parameters, the data containers

of the context of the process fragment in question are supplied. However, since parallel

branches may require synchronization, and exception handling may abort the checked out

branch, extensive communication between the components may be necessary.

After reviewing [Ba01] we came to the conclusion, that although the idea is forth a dis-

cussion, further research is necessary. A fast and scalable implementation would require

extensions on the meta models we are basing the WfQL onto: Synchronization edges may

need to be specified in greater detail. Exception handling would need to be adapted and

staff assignment may have to be evaluated before checking out partitions – or be imple-

mented entirely different.

Clearly, more research is required on this topic that we cannot accomplish, as the main

matter of this work focuses on a language’s definition, and not fundamental workflow re-

search.

122

8 Summary and outlook

In the introduction, we outlined general problems with current WfMS implementations. We

isolated the problems to being limited to the interface of WfMS. To overcome these prob-

lems, we researched the requirements necessary onto such a WfMS interface in chapter

2. It became clear, that no existing standard covers all aspects and that a combination

of standards would create conflicts due to the different meta models they are based on.

For example, the Business Process Query Language [MS04] cannot be used in conjunc-

tion with the Web Services Business Process Execution Language [Me08], due to their

conflicting assumptions on the underlying execution of workflows.

While looking for standards that would satisfy our requirements, it became clear, that to

solve the requirements, a number of assumptions onto the meta models of the underlying

WfMS have to be made. Therefore, we focused on researching fitting meta models for

WfMS: We required a meta model for process models, an organization structure represen-

tation meta model for permission management and staff assignment and several more, that

are discussed in chapter 3.

The meta models we chose implied a WfMS meta model which we defined in Chapter 4.

The language definition in chapter 5 is a direct result of using the previous research and

combining it into a human readable, and computer parseable language specification. It is

based on the WfMS meta model from Chapter 4, the general meta models from Chapter 3

and the requirements from Chapter 2.

Following the language definition, we wrote the prototypical server implementation and the

client applications. At this point, it became clear that we could not find an existing WfMS

that could satisfy several key assumptions on the meta model, such as data typification,

an Adept compatible process meta model and monitoring capabilities on activities and pro-

cesses. Therefore, we decided to implement a WfMS from scratch. This decision, although

without viable alternative, has been impending us from presenting a greater bandwidth of

123

8 Summary and outlook

supported operations due to the amount of work necessary to write a WfMS – opposed to

our original plan, of writing a WfQL server interface for an existing WfMS.

However, we have implemented several key functions, that have not yet been seen in other

systems and are confident, that the language will be fully implemented in future works.

We also hope, that the aspects discusses in chapter 7 are going to contribute to future

enhancements of the WfQL.

124

List of Figures

1.1 Example workflow with dataflow . 2

2.1 Lifecycle . 7

2.2 Modeling . 8

2.3 Execution . 9

2.4 Changes . 10

2.5 Analyzing . 11

3.1 Block Structure from [Re00] . 20

3.2 Direct Data Flow . 20

3.3 Data Containers . 21

3.4 Decision Predicates from [Re00] (Figure 3-4) 22

3.5 Entity Relationship of the WfMS . 25

4.1 Components . 27

4.2 Organization meta model based on [Be05] . 28

4.3 Device restriction model . 33

4.4 Serial Block . 43

5.1 Modules Overview . 54

5.2 Modules Dependencies . 56

6.1 Server architecture . 111

6.2 Persistence data model . 112

6.3 Modeling tool screenshot . 115

6.4 Modeling tool inheritance model . 116

6.5 Webservice a lá workflow overview . 117

125

Bibliography

[Ba01] Baur, T., Effiziente Realisierung unternehmensweiter Workflow-Management-

Systeme, PhD thesis, Ulm University, 2001

[Be05] Berroth, M., Konzeption und Entwurf einer Komponente für Organisations-

modelle, diploma thesis, Ulm University, 2005

[BPMN] OMG, Business Process Modeling and Notation V2.0, 2010

[CORBA] OMG, Common Object Request Broker Architecture (CORBA/IIOP) Specifi-

cations 3.1, 2008

[Fo09] Forschner, A., Fortschrittliche Datenflusskonzepte für flexible Prozessmod-

elle, diploma thesis, Ulm University, 2009

[He06] ACM, M. Henning, The rise and fall of CORBA, 2006

[Hib] Hibernate, http://www.hibernate.org/

[IEEE 1003.1] IEEE Std 1003.1, 2004

[ISO 8879] ISO 8879, 1986

[ISO 14977] ISO/IEC 14977 : 1996(E)

[Ju06] Jurisch, M., Konzeption eines Rahmenwerkes zur Erstellung und Modifikation

von Prozessvorlagen und -instanzen, diploma thesis, Ulm University, 2006

[JSON] RFC 4627, 2006

[Li+88] Linnemann, V. et al, Design and implementation of an extensible database

management system supporting user defined data types and functions, Proceed-

ings of the 14th International Conference on Very Large Data Bases, 1988

[LISP] John Allen, Anatomy of Lisp, Mcgraw-Hill College, 1978

[Me08] Mehliß,S., Verwendung von BPEL zur Service-Orchestrierung innerhalb einer

J2EE-Umgebung, diploma thesis, FH Braunschweig/Wolfenbüttel, 2008

127

http://www.hibernate.org/

Bibliography

[MS04] Momotko, M. and Subieta, K., Process Query Language: A Way to Make Work-

flow Processes More Flexible, Proceeding of the 8th East European Conference on

Advances in Databases and Information Systems (ADBIS), 2004

[POSIX-1003.1e] POSIX-1003.1e, 1999

[Re00] Reichert, M., Dynamische Ablaufänderungen in Workflow- Management-

Systemen, PhD thesis, Ulm University, 2000

[Ri04] Rindele, S., Schema Evolution in Process Management Systems, PhD thesis,

Ulm University, 2004

[Spring] Spring Framework, http://www.springsource.org/about

[SQL] SQL:2008 ISO/IEC 9075, 2008

[WfMFS] OMG, Workflow Management Facility Specifications, V1.2, 2000

[WRS08] B. Weber and M. Reichert and S. Rinderle-Ma, Change patterns and change

support features-enhancing flexibility in process-aware information systems, Data

& Knowledge Engineering archive Volume 66 Issue 3, 2008

[XPDL] OMG, XML Process Definition Language 2.1, 2008

128

http://www.springsource.org/about

Name: Mark Oliver Schmitt Matrikelnummer: 519573

Erklärung

Ich erkläre, dass ich die Arbeit selbständig verfasst und keine anderen als die angegebenen

Quellen und Hilfsmittel verwendet habe.

Ulm, den .

Mark Oliver Schmitt

	Introduction
	Requirements
	Requirements along the process life-cycle
	Modeling stage
	Execution stage
	Change stage
	Analysis stage

	General requirements
	Portability
	Exchangeability
	Concurrency
	Data serialization
	Exceptions
	Unambiguousness

	Evaluation of current standards
	Summary

	Assumptions and Design Decisions
	Staff assignment rules and device restrictions
	Transactions
	Block structure
	Data flow
	Decision Logic
	Data types and constraints
	Change Model
	Logging and the general entity relationship meta model
	Summary

	Realization
	General
	Organization Model and Restriction Model
	Organization Model Entity Definition
	Device Restrictions
	Restriction Model Entity Definition

	Data representation
	Data types
	Data constraints
	Data containers

	Exceptions
	Process models, templates and instances
	Node and Block types
	Process Model
	Activity template
	Activity instance
	Process templates
	Process instance

	Summary

	Language definition
	Modularization
	Dependency graph

	Base modules
	Sessions
	Transactions
	Data Type Definition
	Data Type Constraints

	Data serialization
	Select syntax
	Staff Assignment Query
	Process Fragment Representation
	Process Fragment Representation Examples

	Failure and success notifications

	Modeling Modules
	Organization Model and Device Restriction Modeling
	Data Type and Constraint Modeling
	Process Template and Process Instance Modeling
	Process Instance Modeling
	Activity Template Modeling

	Execution Modules
	Activity Execution
	Process Execution
	Event registration and delivery

	Analysis Modules
	Accessing Process Instances
	Activity and Process Analysis

	Summary

	Implementation
	Server
	Architecture
	Data Types
	Parsing the model
	Data flow
	The WfMS Engine
	Deployment of the prototype
	Summary

	Modeling tool
	Data storage
	Usage

	Web-services a lá Workflow
	Components
	Webserver component
	Activity client component
	Usage

	Summary

	Discussions and possible future works
	Testing paths in process models
	Data transport protocol – discussing the serialization method
	Partitioning workflows across multiple WfMS

	Summary and outlook
	Bibliography

