

Object-aware Business Processes: Fundamental Requirements

and their Support in Existing Approaches

Vera Künzle
1,*

, Barbara Weber
2
, and Manfred Reichert

1

1Institute of Databases and Information Systems, Ulm University, Germany

{vera.kuenzle,manfred.reichert}@uni-ulm.de
2
Institute of Computer Science, University of Innsbruck, Austria

{barbara.weber}@uibk.ac.at

Abstract. Despite the increasing maturity of process management technology not all busi-

ness processes are adequately supported by it. In particular, support for unstructured and

knowledge-intensive processes is missing, especially since they cannot be straight-jacketed

into predefined activities. A common characteristic of these processes is the role of busi-

ness objects and data as drivers for process modeling and enactment. This paper elicits fun-

damental requirements for effectively supporting such object-aware processes; i.e., their

modeling, execution and monitoring. Based on these requirements, we evaluate imperative,

declarative, and data-driven process support approaches and investigate how well they sup-

port object-aware processes. We consider a tight integration of process and data as major

step towards further maturation of process management technology.

Keywords: Process-aware Information Systems, Object-aware Process Management, Data-

driven Process Execution

1. Introduction

Business Process Management provides generic methods, concepts and techniques for de-

signing, enacting, monitoring, and diagnosing business processes (van der Aalst & ter

Hofstede & Weske, 2003). When using existing process management systems (PrMS) a

business process is typically defined as set of activities representing business functions and

having a specific ordering. What is done during activity execution is out of the control of

the PrMS. Most PrMS consider activities as black-boxes in which application data is man-

aged by invoked application components (except routing data and process variables).

Whether an activity becomes activated during runtime depends on the state of other activi-

ties. Generally, a process requires a number of activities to be accomplished in order to

terminate successfully. For end-users, PrMS provide process-oriented views (e.g., work-

lists.

Existing PrMS have been primarily designed for highly structured, repetitive processes. By

contrast, for unstructured and semi-structured processes existing PrMS do not provide suf-

ficient support (Silver, 2009). In particular, these processes are driven by user decisions and

are knowledge-intensive; i.e., they cannot be expressed as a set of activities with specified

order and work cannot be straight-jacketed into activities (van der Aalst & Weske & Grün-

bauer, 2005). Another limitation of PrMS is their insufficient process coordination support;

i.e., process instances cannot be synchronized at a higher-level of abstraction. Conse-

quently, all behavior relevant in a given context must be defined within one process model

(van der Aalst et al., 2000; Müller & Reichert & Herbst, 2007). This, in turn, leads to a

"contradiction between the way processes can be modeled and preferred work practice"

(Sadiq et al., 2005, p.3). Finally, since application data is managed within black-box activi-

ties, integrated access on business processes and data cannot be provided. Due to these

limitations many business applications (e.g., ERP systems) do not rely on PrMS, but are

hard-coding process logic instead. Resulting applications are both complex to design and

costly to maintain, and even simple process changes require costly code adaptations and

testing efforts.

To better understand which processes are handled well by existing PrMS and for which

support is unsatisfactory, we conducted several case studies. Amongst others we analyzed

business applications with hard-coded process logic; e.g., the processes as implemented in

the human resource management system Persis and the reviewing system Easychair (Kün-

zle & Reichert, 2009a; Künzle & Reichert, 2009b). Processes similar to the ones we evalu-

ated can be found in many other fields like order handling, healthcare and release manage-

ment (Müller & Reichert & Herbst, 2007). A major finding of all case studies was that data

objects act as major driver for process specification and enactment. Consequently, process

support requires object-awareness; i.e., business processes and business objects cannot be

treated independently from each other. This has implications on the whole process lifecycle

since PrMS should consider both object types and their inter-relations. Regarding its execu-

tion, on the one hand an object-aware process must be closely linked to relevant object in-

stances; i.e., object attributes must process specific values to invoke certain activities or

terminate process execution. On the other hand, an object-aware process does not only re-

quire certain data for executing a particular activity; i.e., it should be also able to dynami-

cally react on data changes and newly emerging data. Consequently, process progress needs

to be aligned with available object instances and their attribute values at runtime.

Regarding end-user functions provided by hard-coded business applications, in addition to

a process-oriented view, there often exists a data-oriented view for managing and accessing

data at any point in time. This includes overview tables (e.g., processed object instances) as

well as activities that can be optionally executed. The latter are realized based on forms

which can be invoked by authorized users to access or change object attributes regardless

whether the respective activity is expected to happen during process execution. Form-based

activities therefore constitute an important part for object management and process execu-

tion.

Our overall vision is to enable the modeling, execution and monitoring of object-aware

business processes, which provide integrated access to business processes, data and appli-

cation functions. We aim at the automated and model-driven generation of data-oriented

views, process-oriented views and form-based activities at runtime. We also support the in-

tegration of arbitrary application components.

Based on the results of our case studies, we have already reported on fundamental chal-

lenges (Künzle & Reichert, 2009a; Künzle & Reichert, 2009b) and properties of PrMS in-

tegrating processes, data and users to provide the needed flexibility. In this paper, we elicit

these properties in detail and introduce the requirements for effectively supporting object-

aware processes. We then evaluate existing process support paradigms along these re-

quirements and discuss which properties are well supported and in which cases additional

research is needed to better capture the role of data as driver for process modeling and en-

actment. Overall, we believe that more profound research on object-aware processes will

contribute to overcome some of the fundamental limitations known from existing PrMS.

The remainder of this paper is organized as follows. In Section 2 we introduce fundamental

properties of object-aware processes and elaborate on the role of data for process enactment

in more detail. In Section 3 we discuss major requirements to support object-aware process

management along a realistic example. Section 4 discusses the outcomes we obtained when

applying imperative, declarative, and current data-driven modeling approaches to tackle the

identified requirements. We close with a summary and outlook in Section 5.

2. Properties of Object-aware Business Processes

We first describe fundamental properties of

object-aware business processes along the

main building blocks of existing PrMS (cf.

Fig. 1). In this context we discuss why ob-

jects are the driver for modeling, executing

and monitoring these processes.

Fig. 1: Building blocks in existing PrMS

We first introduce an example of an object-aware process. As illustrated by Fig. 2, we use a

(simplified) scenario from our case study in the area of human resource management.

Fig. 2: Example of a recruitment process from the human resource domain

Recruitment process: In the context of recruitment applicants may apply for job vacan-

cies via an Internet online form. Before an applicant can send her application to the re-

spective company, specific information (e.g., name, e-mail address, birthday, residence)

must be provided. Once the application has been submitted, the responsible personnel

officer in the human resource department is notified. The overall process goal is to decide

which applicant shall get the job. Since many applicants may apply for a vacancy, usu-

ally, different personnel officers handle the applications.

If an application is ineligible, the applicant is immediately rejected. Otherwise, person-

nel officers may request internal reviews for each applicant. Depending on the con-

cerned functional divisions, the concrete number of reviews may differ from applica-

tion to application. Corresponding review forms have to be filled by employees from

functional divisions until a certain deadline. Employees may either refuse or accept the

requested review. In the former case, they must provide a reason. Otherwise, they make a

proposal on how to proceed; i.e., they indicate whether the applicant shall be invited for

an interview or be rejected. In the former case an additional appraisal is needed.

After the employee has filled the review form, she submits it to the personnel officer. In

the meanwhile, additional applications may have arrived; i.e., different reviews may be

requested or submitted at different points in time. In this context, the personnel officer

may flag already evaluated reviews. The processing of the application proceeds while

corresponding reviews are created; e.g., the personnel officer may check the CV and

study the cover letter of the application. Based on the incoming reviews he makes his

decision on the application or initiates further steps (e.g., interviews or additional re-

views). Further, he does not have to wait for the arrival of all reviews; e.g., if a particular

employee suggests hiring the applicant.

We analyzed additional object-aware processes as implemented in the conference review-

ing system Easychair. Overall these processes are similar to the recruitment example: sci-

entists may submit papers for a conference and PC chairs request reviews for them. Based

on the results of these reviews, some papers are finally accepted, while others are not. In the

following we first discuss fundamental properties of object-aware business processes. We

illustrate them along our recruitment example. Later on we introduce a second example

when discussing characteristic requirements for object-aware processes.

2.1 Data

All scenarios we analyzed in our case studies are characterized by a tight integration of

process and data: i.e., besides a process-oriented view (e.g., worklists) there exists a data-

oriented view that enables end-users to access data at any point in time given the required

authorizations. As illustrated in Fig. 3a, data is managed based on object types which are

related to each other. Each object type comprises a set of attributes. Object types, their at-

tributes, and their inter-relations form a data structure.

At runtime the different object types comprise a varying number of inter-related object in-

stances, whereby the concrete number can be restricted by lower and upper bounds (i.e.,

cardinalities). Furthermore, object instances of the same object type may differ in both

their attribute values and relations to each other (cf. Fig. 3b); e.g., for one application two

reviews and for another one three reviews might be requested. We denote an object instance

which is directly or transitively referenced by another one as higher-level object instance

(e.g., an application is a higher-level object instance of a set of reviews). By contrast, an ob-

ject instance which directly or transitively references another object instance is denoted as

lower-level object instance (e.g., reviews are lower-level object instances of to an applica-

tion object).

Fig. 3: Data structure at build- and runtime

2.2 Activities

Activities can be divided into form-based and black-box activities. While form-based ac-

tivities provide input fields (e.g., text-fields or checkboxes) for writing and data fields for

reading selected attribute values of object instances, black-box activities enable complex

computations or integration of advanced functionalities (e.g., sending e-mails or invoking

web services).

Form-based activities can be further divided into instance-specific activities, batch activities

and context-specific activities. Instance-specific activities correspond to exactly one object

instance (cf. Fig. 4a). When executing such activity, attributes of that object instance can be

read, written or updated using a form (e.g., the form an applicant can use for entering his

application data). A context-sensitive activity additionally includes fields corresponding

to higher-level or lower-level object instances (cf. Fig. 4b). When integrating lower-level

object instances, usually, a collection of object instances is considered. For example, when

an employee fills in a review, additional information about the corresponding application

should be provided (i.e., attributes belonging to the application for which the review is

requested). Furthermore, employees may change the value for attribute comment of the ap-

plication object instance. Finally, batch activities allow users to change a collection of ob-

ject instances in one go, i.e., attribute values are assigned to all selected object instances us-

ing one form (cf. Fig. 4c); e.g., a personnel officer might want to flag a collection of re-

views as "evaluated" in one go. Or as soon as an applicant is hired for a job, for all other

applications value reject should be assignable to attribute decision by filling one form.

Fig. 4: Basic types of form-based activities

Object-aware processes provide a process-oriented view in which mandatory activities are

assigned to responsible users at the right point in time as well as a data-oriented view in

which object instances can be accessed at any point in time using optional activities.

2.3 Processes

In addition to the structure of object types (i.e., their attributes and inter-relations), their

behavior needs to be considered. Basically, object behavior determines in which order and

by whom object attributes have to be (mandatorily) written, and what valid attribute set-

tings are. Thereby, for each object type a set of states needs to be defined of which each

postulates specific attribute values to be set. More precisely, a state can be expressed in

terms of a particular data condition referring to a number of attributes of the respective ob-

ject type. As example consider object type review and its states as depicted in Fig. 5. In

state accepted a value for attribute appraisal must be assigned and the value of attribute

proposal must either be set to 'reject' or 'invite'. Further, object behavior restricts possible

state sequences using transitions. In particular, for each state possible successor states are

defined. Consider the processing of a review in Fig. 5c: First, the review must be initi-

ated by a personnel officer. Following this, the employee may either refuse or accept

the review. In the latter case, he submits the review back to the personnel officer.

Fig. 5: Object behavior defined based on states and transitions

At runtime, for each object type multiple object instances may exist (cf. Fig. 6a). These ob-

ject instances may be created or deleted at arbitrary points in time; i.e., the data structure

dynamically evolves depending on the type and number of created object instances as well

as on their relations. Consequently, the individual object instances may be in different

states; e.g., several reviews may be requested for a particular applicant. While one of

them might be in state initiated, others might have already reached state submitted. Tak-

ing the behavior of individual object instances into account, we obtain a complex process

structure in correspondence to the given data structure (cf. Fig. 6b).

Fig. 6: Data structure and corresponding process structure

Generally, complex processes result from the interactions between instances of different

object types:

Object interactions within the recruitment process (cf. Fig. 7): A personnel officer

announces a job. Following this, applicants may init applications for this job. After

submitting an application, the personnel officer requests internal reviews for it. If an

employee acting as referee proposes to invite the applicant the personnel officer con-

ducts an interview. Based on the results of reviews and interviews the personnel offi-

cer decides in the application. In case of acceptance the applicant is hired.

Fig. 7: Process definition based on object interactions

As can be seen from this scenario, behavior of individual object instances (of same and of

different type) needs to be coordinated considering their inter-relations as well as their

asynchronous execution. In this context, the dynamic number of object instances must be

taken into account (cf. Fig. 8); e.g., a personnel officer is not allowed to read the result

of a review before the employee has submitted it. Further, the personnel officer may

only reject an application immediately if all reviewers propose its rejection.

Fig. 8. Process structure at build- and runtime

Activity execution depends on the behavior of the processed object instances as well as on

their inter-relations and thus requires modeling at two abstraction levels.

2.4 User integration

Taking the data-oriented view users may optionally access object instances at any point in

time and create, read and write them (i.e., executing optional activities). The process-

oriented view, in turn, provides worklists; i.e., it allows assigning mandatory activities to

the right users at the right point in time. If mandatorily required information is missing dur-

ing process execution, a form-based activity is automatically generated by the system and

added to the worklist of the responsible user; e.g., if a review needs to be filled out by an

employee a form-based activity with input fields for attributes proposal and appraisal is

generated.

2.5 Monitoring

The overall state of the process,

which is defined in terms of interac-

tions between object instances,

should be made transparent. Gener-

ally, monitoring the overall process

state should provide an aggregated

view on the corresponding object

instances (cf. Fig. 9). Since each ob-

ject instance may be in a different

state, object behavior of each in-

volved object instance needs to be

considered in a fine-grained man-

ner.

Fig. 9: Aggregated view

3. Requirements for the IT Support of Object-aware Processes

This section elicits fundamental requirements

for the support of object-aware processes. We

categorize these requirements along the main

building blocks of a PrMS (cf. Fig. 10). We be-

lieve that the poor integration of these building

blocks in existing PrMS constitutes a major rea-

son for the insufficient support of object-aware

processes and their properties in existing PrMS.

Fig. 10: Integration of building blocks

We gathered these requirements in case studies in which we analyzed processes and objects

of applications from human resource management, paper reviewing, order handling, and

healthcare (cf. Fig. 11). Though these requirements are not complete in the sense that they

cover all aspects of the object and process lifecycle, their fulfilment is indispensable for

enabling the aforementioned properties as well as the automatic generation of runtime

components like worklists, overview lists and form-based activities.

Fig. 11: Fundamental requirements for object-aware processes

We illustrate the requirements along the introduced recruitment example. We further un-

dergird them using an order handling process in which customers may order different prod-

ucts in an online shop; after such an order is submitted and the resulting bill is paid the

seller initiates the shipping of the ordered products. To distinguish between the two scenar-

ios for each requirement we annotate the given examples with ‘a’ (recruitment process) and

‘b’ (order handling process) respectively.

3.1 Data

R1 (Data integration). Data should be managed in terms of object types comprising object

attributes and relations to other object types.

Example 1a: For each job a set of applications may be created. For each application,

in turn, several reviews may exist, each having attributes like application, employee, re-

mark, proposal and appraisal.

Example 1b: A shop offers different products. A particular order is always directed to one

shop and may comprise several products offered by this shop. Important attributes of a

product include its label, price and place of manufacture.

R2 (Access to data). Access to data should be granted at any point given the required au-

thorizations; i.e., not only during the execution of a particular activity.

Example 2a: The personnel officer should be allowed to access an application even if

no activity is contained in his worklist. Furthermore, if an applicant contacts him to

change her address, he should be allowed to update corresponding attributes.

Example 2b: The customer should be allowed to access an order even if no activity is con-

tained in his worklist. For example, he should be allowed to change attribute delivery ad-

dress even if he has already submitted his order.

R3 (Cardinalities). It should be possible to restrict relations between object instances

through cardinality constraints.

Example 3a: For each application at least one and at most five reviews may be re-

quested. While for an application two reviews exists, for another one three reviews may

be requested.

Example 3b: For each order exactly one payment method must be specified.

R4 (Mandatory information). To reach a particular object instance state from the current

one, certain attribute values must be set. For this, a form-based activity with mandatory in-

put fields needs to be assigned to the worklists of authorized users. When executing it, spe-

cific input fields referring to mandatorily required attributes have to be filled. Other input

fields may be optionally set.

Example 4a: The mandatory form-based activity for requesting a review is accomplished

by a personnel officer. When working on this activity, values for object attributes appli-

cation and employee are mandatory, while other attributes (e.g., remark) are optional.

Example 4b: The mandatory form-based activity for initiating the shipping is accom-

plished by the seller. When executing this activity, values for object attributes weight and

height are mandatory, while other attributes (e.g., express transmission) are optional.

3.2 Activities

R5 (Form-based activities). A form-based activity comprises a set of atomic actions. Each

of them corresponds to either an input field for writing or a data field for reading the value

of an object attribute. Which attributes may be written or read in a particular form-based ac-

tivity may depend on the user invoking this activity and the state of the object instance.

Consequently, a high number of form variants exists. Since it is costly to implement them

all, it should be possible to automatically generate form-based activities at runtime.

Example 5a: An employee needs a form-based activity to edit a review; i.e., to assign val-

ues to attributes proposal and appraisal. In addition, she can access attributes of the ap-

plication to which the review refers. As soon as she has submitted her review she may

only read attributes proposal and appraisal. If the responsible personnel officer wants

to edit the review at the same point in time, he may only write attribute remark.

Example 5b: A customer needs a form-based activity to create an order; e.g., to assign

values to attributes shipping address and order date. In addition, the customer may add

several products to the order. However, as soon as he has submitted the order he may

only change attribute shipping address.

R6 (Black-box activities). To ensure proper execution of black-box activities, we need to

be able to define pre-conditions on attribute values of processed object instances. If their

input parameters belong to different object instances, their inter-relationships should be

controllable. Opposed to form-based activities, which should be automatically generated by

the runtime system (cf. R5), for each black-box activity an implementation is required.

Example 6a: Consider a black-box activity which compares the skills of an applicant

with the requirements of the job. This activity requires input parameters referring to (ob-

jects) application, skills, job, and job requirements. It should be ensured that the job

is exactly the one for which the applicant applies. Finally, the requirements must comply

to the ones of the job and the skills relate to the ones of the applicant.

Example 6b: Consider a black-box activity which calculates the total price of an order.

This activity requires input parameters referring to the order, products, and shipping

method.

R7 (Variable granularity). As discussed, support for instance-specific, context-sensitive,

and batch activities is required. Regarding instance-specific activities, all actions refer to at-

tributes of one particular object instance, whereas context-sensitive activities comprise ac-

tions referring to different, but related object instances (of potentially different type). Since

batch activities involve several object instances of the same type, for them each action cor-

responds to exactly one attribute. Consequently, the attribute value must be assigned to all

referred object instances. Depending on their preference, users should be allowed to freely

choose the most suitable activity type for achieving a particular goal. Finally, executing

several black-box activities in one go should be supported.

Example 7a: An employee may choose a context-sensitive activity to edit a review; i.e., to

write attributes proposal and appraisal) and to read attributes of the application. A per-

sonnel officer, in turn, may choose a batch activity to update several reviews in one go;

e.g., to set attribute evaluated for all reviews relating to an application.

Example 7b: A customer may choose a context-sensitive activity to edit an order. A

seller, in turn, may choose a batch activity to initiate the shipping of several products

with same weight and height in one go.

R8 (Mandatory and optional activities). Depending on the state of object instances cer-

tain activities are mandatory for progressing with the control-flow. At the same time, users

should be allowed to optionally execute additional activities (e.g., to write certain attributes

even if they are not required at the moment).

Example 8a (Mandatory activity): After a review has been initiated, the assigned em-

ployee either must provide or refuse the review; i.e., a form-based activity needs to be

mandatorily performed. (Optional activity) After a review request has been triggered by

the personnel officer (i.e., attributes application and employee are set), he should be

further allowed to update object attribute remark. Generally, he may update certain object

attributes, while an employee fills in a review.

Example 8b (Mandatory activity): After an order is submitted and the corresponding

bill is paid, the seller must initiate the shipping. (Optional activity) However, as long

as the shipping has not been initiated by the seller, the customer may optionally change

the shipping address.

R9 (Control-flow within user forms). Whether certain object attributes are mandatory

when processing a particular activity might depend on other object attribute values; i.e.,

when filling a form certain attributes might become mandatory on-the-fly.

Example 9a: When an employee receives a review request, she either fills the review form

as requested by the personnel officer or refuses this task. Consequently, a value needs to

be assigned to at least one of the two attributes proposal or refusal. If the employee de-

cides to set attribute proposal, additional object attributes will become mandatory; e.g., if

she wants to invite the applicant for an interview she has to set attribute appraisal as

well. This is not required if she assigns value reject to attribute proposal.

Example 9b: If a customer chooses express delivery he must additionally specify a de-

livery date.

3.3 Processes

R10 (Object behavior). It should be possible to determine in which order and by whom

object attributes have to be (mandatorily) written, and what valid attribute value settings

are. In addition, when executing black-box activities the involved object instances need to

be in certain states. Consequently, for each object type its behavior should be definable in

terms of states and transitions. In particular, it should be possible to drive process execution

based on data and to dynamically react upon attribute value changes. Therefore, it is crucial

to map states to attribute values.

Example 10a: An employee may only provide a review for a particular application if the

state of the review is initiated. This state is automatically entered as soon as values for at-

tributes employee and application are assigned.

Example 10b: A customer may only order a product if the state of the product is stocked.

R11 (Object interactions). Generally, a process deals with a varying number of object in-

stances of the same and of different object types. In addition, for each processed object in-

stance its behavior must be considered. In this context, it should be possible to process in-

stances in a loosely coupled manner, i.e., concurrently to each other and to synchronize

their execution where needed. More precisely, any process modeling paradigm should al-

low defining processes with a dynamic number of object instances. First, it should be pos-

sible to make the creation of a particular object instance dependent on the state of the re-

lated higher-level object instance (creation dependency). Second, during the execution of a

higher-level object instance, aggregated information from its lower-level object instances

should be accessible; amongst others this requires the aggregation of attribute values from

lower-level object instances (aggregative information) (van der Aalst et al., 2000). Third,

the executions of different process instances may be mutually dependent (Müller & Rei-

chert & Herbst, 2007; van der Aalst et al., 2000); whether an object instance may switch to

a certain state depends on the state of another object instance (execution dependency). Con-

sequently, processes should be defined in terms of object interactions. Additionally, the in-

tegration of black-box activities should possible.

Example 11a: A personnel officer must not initiate any review as long as the corre-

sponding application has not been finally submitted by the applicant (creation depend-

ency). Further, individual review process instances are executed concurrently to each other

as well as to the application process instances; e.g., the personnel officer may read and

change the application while the reviews are processed. Further, reviews belonging to a

particular application can be initiated and submitted at different points in time. Besides

this, a personnel officer should be able to access information about submitted reviews

(aggregative information); i.e., if an employee submits her review recommending to invite

the applicant for an interview, the personnel officer needs this information immedi-

ately. Opposed to this, when proposing rejection of the applicant, the personnel officer

should only be informed when other initiated reviews are submitted. Finally, if the person-

nel officer decides to hire one of the applicants, all others must be rejected (execution

dependency). In this context, black-box activities become relevant as well (e.g., sending an

acknowledgement to an applicant after rejecting his application or comparing the skills

of the applicant with the requirements of the job before reviews are initiated.

Example 11b: A seller must not initiate the shipping as long as the corresponding bill

has not been paid by the customer (creation dependency). A customer should be able to ac-

cess information about ordered products (aggregative information). Finally, if an ordered

product is not in stock, a reorder by the manufacturer should be initiated (execution de-

pendency).

R12 (Process-oriented view). During process execution some activities must be mandato-

rily executed while others are optional. To ensure that mandatory activities are executed at

the right point in time, they must be assigned to the worklists of authorized users.

Example 12a: When a review enters state accepted (i.e., its request was accepted by an

employee), a workitem is added to her worklist. When processing it, she has to mandatorily

set attributes proposal and appraisal. Furthermore, a personnel officer may optionally

change attribute remark of the review.

Example 12b: When an order enters state submitted, a work item is added to the worklist

of the customer who has to pay the corresponding bill.

R13 (Flexible process execution). Mandatory activities are obligatory for process execu-

tion; i.e., they enforce the setting of object attribute values as required for progressing with

the process. In principle, respective attributes can be also set up front by executing optional

activities; i.e., before the mandatory activity normally writing this attribute becomes acti-

vated. In the latter case, the mandatory activity can be automatically skipped when it is ac-

tivated.

Example 13a: After the personnel officer has set values for object attributes applica-

tion and employee, a mandatory activity for filling the review form is assigned to the speci-

fied employee. Even if the personnel officer has not completed this review request (i.e.,

he has specified the respective employee, but not the corresponding application), the se-

lected employee may optionally edit certain attributes of the review. For example, he may

refuse the review and set object attribute comment. If the personnel officer has assigned

the application, the mandatory activity for providing the review is automatically skipped.

Example 13b: The seller may initiate the shipping before the bill is paid by the cus-

tomer. If the bill is paid afterwards the mandatory activity for initiating the shipping will

be automatically skipped.

R14 (Re-execution of activities). Users should be allowed to re-execute a particular activ-

ity (i.e., to update its attributes), even if all mandatory object attributes have been already

set.

Example 14a: An employee may change his proposal arbitrarily often until he explicitly

agrees to submit the review to the personnel officer.

Example 14b: A customer may change the order arbitrarily often until he explicitly agrees

to submit the order to the seller.

R15 (Explicit user decisions). Generally, different ways for reaching a process goal may

exist. Usually, the selection between such alternative execution paths is based on history

data; i.e., on completed activities and available process-relevant data. In our context, this

selection might be also based on explicit user decisions.

Example 15a: A personnel officer may decide whether reviews are requested for a par-

ticular application. Only if a review is initiated, a mandatory activity for finalizing the

reviews is invoked; i.e., execution of the second activity depends on user a decision.

Example 15b: A customer may decide how many different products he wants to order.

3.4 User Integration

R16 (Data authorization). To provide access to data at any point in time, we need to de-

fine permissions for creating and deleting object instances as well as for reading/writing

their attributes. However, attribute changes contradicting to object behavior should be pre-

vented. For this, the progress of the process has to be taken into account when granting

permissions to change objects attributes (Botha, 2002; Wu et al., 2002). Otherwise, if

committed attribute values were changed afterwards, object instance state would have to be

adjusted to cope with dirty reads. Generally, data permissions should be made dependable

on the states as captured by object behavior. This is particularly challenging for context-

sensitive and batch activities, since attribute changes have to be valid for all selected in-

stances.

Example 16a: After submitting her review, the employee still may change her comment.

However, attribute proposal must not be changed anymore. The personnel officer might

have already performed the proposed action. Further, using a batch activity, he may flag

several reviews in one go (i.e., assign value true to object attribute evaluated). Finally, it

must be ensured that the employee can only access reviews she submitted before.

Example 16b: After submitting the order the customer may still change the shipping ad-

dress. However, since the total price of the order depends on the ordered products, the

latter must not be changed anymore.

R17 (Process authorization). For each mandatory activity at least one user or user role

should be assigned to it at runtime. Regarding a form-based activity, each user who may

execute it must have the permissions for reading/writing corresponding attribute values

(Botha, 2002).

Example 17a: An employee who has to fill a review also needs the permissions to set at-

tributes proposal, appraisal, refusal, and appraisal.

Example 17b: A customer who wants to place an order needs the permissions to set corre-

sponding attributes (e.g., shipping address).

R18 (Differentiating authorization and user assignment). When executing mandatory

activities particular object attributes have to be set. To determine which user shall execute a

pending mandatory activity, her permissions for writing object attributes need to be evalu-

ated. While certain users must execute an activity mandatorily in the context of a particular

object instance, others might be authorized to optionally execute this activity; i.e., manda-

tory and optional permissions should be distinguishable. In particular, a mandatory activity

should be only added to the worklists of users having "mandatory permissions". Users with

"optional permissions", in turn, may change the corresponding attributes when executing

optional activities.

Example 18a: An employee must write attribute proposal if she has accepted the review

request. However, her manager may optionally set this attribute as well. The mandatory ac-

tivity for filling the review form, in turn, should be only assigned to the employee.

Example 18b: The seller must write attribute price before a product can be ordered by a

customer. However, the manager of the shop may optionally set this attribute as well. The

mandatory activity for filling the product form, in turn, should be only assigned to the

seller, but not to the manager.

R19 (Vertical authorization and user assignment). Usually, human activities are associ-

ated with actor expressions (e.g., user roles). We denote this as horizontal authorization.

Users who may work on respective activities are determined at runtime based on these ex-

pressions. For object-aware processes, however, the selection of potential actors should not

only depend on the activity itself, but also on the object instance processed by it (Rosemann

& zur Mühlen, 1997; Rosemann & zur Mühlen, 2004). We denote this as vertical authori-

zation.

Example 19a: A personnel officer may perform activity make decision only for appli-

cations for which the name of applicants starts with a letter between 'A' and 'L', while an-

other officer may perform this activity for applicants whose name starts with a letter be-

tween 'M' und 'Z'.

Example 19b: An employee of the seller may initiate the shipping for products having a

price lower than 500 euro, while another employee of the seller may perform this activity

for products whose price is higher than 500 euro.

3.5 Monitoring

R20 (Aggregated View). Process monitoring should provide an aggregated view of all ob-

ject instances involved in a process as well as their interdependencies.

Example 20a: Consider the decision about a particular application as expressed with at-

tribute decision (based on the results of the reviews). While some reviews might have

been already submitted, others might be still processed by an employee. Further, additional

reviews might be requested at a later point in time.

Example 20b: Consider different orders referring to the same product. While some or-

ders may have already been completed (i.e., the shipping is completed), others might be

still processed. Furthermore, additional orders might be requested at a later point in time.

4. Evaluating Existing Process Support Paradigms

We evaluate existing approaches along the requirements introduced in Section 3. We focus

on imperative, declarative and data-driven process support paradigms. Other approaches,

which are related to our requirements, constitute extensions of these paradigms. We base

our evaluation on the main characteristics of the approaches. As illustrated in Fig. 12, for

this purpose we number them consecutively using letters 'A' to 'I'.

Fig. 12: Characteristics of existing approaches

As illustrated in Fig. 13, only limited support is provided in respect to the support of object-

aware processes.

Fig. 13: Evaluating existing paradigms

4.1 Imperative Approaches

There is a long tradition of modeling business processes in an imperative way. Usually,

processes are specified as directed graphs (Weber & Reichert & Rinderle-Ma, 2008). Proc-

ess steps correspond to different activities which are connected to express precedence rela-

tions (cf. Fig. 14). For control flow modeling a number of patterns exists, e.g., sequential,

alternative and parallel routing, and loop backs (van der Aalst et al., 2003).

Fig. 14: Imperative modeling approach

Imperative approaches only provide limited support regarding the requirements raised by

object-aware processes. In the following, we discuss the imperative approach along its main

characteristics which are numbered using letters 'A' to 'E': hidden information flows (A),

flow-based activation of activities (B), actor expressions (C), fixed activity granularity (D),

and arbitrary process granularity (E). We evaluate the requirements along these characteris-

tics (cf. Fig. 5).

Fig. 15: Evaluating the imperative approach

Hidden information flows (A)

Usually, imperative approaches enable the explicit definition of data flows between activi-

ties based on atomic data elements. The latter are connected with activities (and their pa-

rameters) or with routing conditions (cf. Fig. 14). Activities themselves are regarded as

black-boxes; i.e., application data is usually managed within invoked applications. In par-

ticular, there is no explicit link between activities and the object instances they manipulate.

Data. Data integration based on object types, attributes and relations is not supported (i.e.,

R1 is not met); i.e., the PrMS is unaware of the object instances being accessed during

process execution. Further, it cannot control whether required data changes are actually ac-

complished; i.e., mandatory information cannot be realized (i.e., R4 is not met).

Activities. A particular activity usually requires data that has to be provided by preceding

activities. Ideally, this is accomplished according to the modeled data flow. If accessed data

elements are not written by previous activities, process execution might be blocked. Op-

posed to this, if consumed data is not explicitly considered in the modeled data flow, the

process instance might proceed though required data is missing. Consequently, it is not

possible to automatically invoke a form-based activity for requesting missing data from us-

ers. Furthermore, the internal control-flow of a form-based activity cannot be expressed

(i.e., R5 and R9 are not met). Regarding black-box activities, in turn, different parameters

may belong to attributes of different object instances. However, we cannot control the rela-

tions between the object instances to which the parameters of an activity refer (i.e., R6 is

not fully supported).

User integration. It cannot be guaranteed that users who own the permission for executing

an activity are also authorized to read/write attributes processed by this activity. Thus,

process authorization is only enabled at activity level (i.e., R17 is not fully met). Vertical

authorization (i.e., assigning different permissions for the same activity depending on the

state of the processed object instance) is not supported (i.e., R19 is not met).

Monitoring. Due to hidden information flows one cannot provide an aggregated view on

processed object instances (i.e., R20 is not met).

Flow-based activation of activities (B)

Each process step corresponds to one activity being mandatory for process execution (ex-

cept it is contained in a conditional path). Moreover, activity activation depends on the state

of preceding activities, i.e., a particular activity becomes enabled if its preceding activities

are completed or cannot be executed anymore (except loop backs).

Data. Data access is only possible when executing activities according to the defined con-

trol-flow; i.e., data cannot be accessed independently from process execution (i.e., R2 is not

fully met).

Activities. There is no support for optional activities enabling data access at any point in

time (i.e., R8 is not met).

Processes. Since the activation of an activity solely depends on the completion of other ac-

tivities, flexible process execution (e.g., skipping certain activities if required output data is

already available) is not explicitly supported (i.e., R13 is not met).

There is no direct support for re-executing an activity as long as the user does not commit

its completion (i.e., R14 is not met). Since activity activation only depends on the comple-

tion of other activities there is no explicit support for user decisions (i.e., R15 is not met).

User integration. Since data can only be accessed when executing mandatory activities,

imperative approaches lack sophisticated support for coordinating processed data and exe-

cuted processes. Thus, neither proper data authorization (i.e., R16 is not met) nor the dis-

tinction between process and data authorization are considered (i.e., R18 is not met).

Actor expressions (C)
Human activities are associated with actor expressions (e.g., roles). Based on these expres-

sions activities can be assigned to authorized users at runtime. Further, when a human ac-

tivity becomes enabled, a corresponding work item is added to worklists of authorized us-

ers.

User Integration. A process-oriented view is provided enabling the execution of activities

by the right users at the right point in time (i.e., R12 is met).

Fixed activity granularity (D)

Activities are associated with a specific business function implemented at buildtime, thus

having a fixed granularity.

Activities. Support of different work practices by enabling instance-specific, context-

sensitive and batch activities is not provided; i.e.; a variable granularity of activities is not

possible (i.e., R7 is not met).

Arbitrary process granularity (E)

Imperative approaches do not distinguish between the behavior of individual object in-

stances and the processes coordinating them. Business functions associated with the activi-

ties of a process model can be implemented at different levels of granularity. While certain

activities are only processing one object instance, others may process several object in-

stances of same/different type. Generally, there exists no elaborated modeling methodology

giving advice on the number of object types to be handled within one process definition.

Consequently, a process is either defined at a coarse- or fine-grained level.

Data. When applying a coarse-grained process modeling style, an activity may be linked

to several object types. Since object flows are hidden, it is difficult to ensure consistency

between process and data modeling. In particular, when modeling a process the creation of

object instances cannot be restricted to a varying and dynamic number of object instances

based on cardinalities (i.e., R3 is not fully met).

Activities. When applying a fine-grained process modeling style, activity execution is as-

sociated with exactly one process instance. Consequently, only instance-specific activities

can be realized, but no context-sensitive or batch activities. Further, it is not possible to

automatically generate a form-based activity if required data is missing (i.e., R5 is not met).

Processes. When choosing a fine-grained modeling style each process definition is

aligned with exactly one object type. This way one can ensure that corresponding process

instances access one particular object instance of the respective object type at runtime. For

this purpose, either one data element for routing the object-ID or several data elements (of

which each relates to one attribute) are added to the process model. The activity-centred

paradigm of imperative approaches is not appropriate for supporting object behavior (i.e.,

R10 is not fully met). Hidden information flows and the flow-based activation of activities

inhibit the dynamic adaptation of the control-flow based on available data. Further, interde-

pendencies between process models cannot be expressed and process instances are executed

in isolation to each other. Thus, the definition of interactions between object instances is

not captured (i.e., R11 is not met). To deal with these requirements the following exten-

sions exist.

Extension 1 (Proclets). Proclets enable process communication and asynchronous process

coordination based on message exchanges (van der Aalst et al., 2000). Using Proclets,

however, process coordination cannot be explicitly based on the underlying data structure

or on specific data element values. Further, messages can only be exchanged at specific

points during process execution (e.g., based on send/receive activities).

Extension 2 (Data-driven process structures). In Corepro, the coordination of processes

instances can be based on the relations between involved object instances. Thereby, syn-

chronization constraints are defined based on object states (Müller & Reichert & Herbst,

2007). However, states are not connected to object attributes. Further, each invoked proc-

ess is defined imperatively. This leads to the discussed disadvantages like hidden informa-

tion flows, fixed activity granularity, and arbitrary process granularity.

A coarse-grained modeling style, in turn, prohibits fine-grained control in respect to ob-

ject type behavior (i.e., R10 is not met). Processes are only defined based on activities and

interactions between object instances are not considered (i.e., R11 is not met). An interest-

ing extension are object life cycles.

Extension 3 (Object life cycles). To integrate object behavior with processes, an exten-

sion of the imperative approach based on object life cycles (OLC) has been proposed

(Gerede & Su, 2007; Küster & Ryndina & Gall, 2007; Redding et al., 2007; Nigam &

Caswell, 2003; Liu & Bhattacharya & Wu, 2007). In particular, the introduction of OLCs

target at consistency between process models and process data. For this purpose, an OLC

defines the states of an object and the transitions between them in a separate model. Ac-

tivities, in turn, are associated with pre-/post-conditions in relation to objects states. How-

ever, states are not mapped to attribute values. Consequently, if certain pre-conditions

cannot be met during runtime, it is not possible to dynamically react to this. Neither rela-

tions between object types nor the varying number of object instances are considered.

Process support involving different object instances can be provided by using sub-

processes. Thereby, a sub-process is associated with an activity of the higher-level process

instance. However, it is not possible to define relations and synchronization dependencies

between different sub-process definitions of the same level. Consequently, processes which

are defined based on object interactions are not supported (i.e., R11 is not met). This limi-

tation can be addressed by multiple-instantiation patterns (van der Aalst et al., 2003), which

allow specifying the number of instances for a respective activity either at build- or run-

time.

Extension 4 (Multiple-instantiation patterns). Regarding multiple-instance activity pat-

terns, new sub-process instances can only be created as long as subsequent activities have

not been started; e.g., additional reviews can be instantiated as long as the corresponding

application is not further processed. Thus, lower-level process instances (i.e., sub-

process instances) can only be created at a specific point during the execution of the

higher-level process instance. Furthermore, except for one variant of the multiple-

instantiation pattern, sub-process instances cannot be executed asynchronously to the

higher-level process instance. Using multiple-instantiation patterns with synchronization

(cf. Fig. 16a), each sub-process instance must either be completed or skipped before sub-

sequent activities of the higher-level process instance can be triggered. Using multiple-

instantiation without synchronization, in turn, the results of these sub-process executions

are not relevant for progressing the higher-level process instance (cf. Fig. 16b). Finally, in-

terdependencies between sub-processes, which are executed asynchronously to each other

(cf. Fig. 16c), cannot be taken into account.

Fig. 16: Sub-process execution based on multiple-instantiation

4.2 Declarative Approaches

Declarative approaches suggest a fundamentally different way of describing business proc-

esses (van der Aalst & Pesic, 2006). While imperative models specify how things have to

be done, declarative approaches only focus on the logic that governs the interplay of actions

in the process by describing (1) the activities that can be performed and (2) the constraints

prohibiting undesired behavior. In the example from Fig. 17, activities A2 and A3 can only

be executed after finishing A1 (Pesic, 2008). Finally, A2 and A3 are mutually exclusive.

Fig. 17: Declarative modeling approach

Declarative approaches provide limited support for object-aware processes. Many of their

characteristics correspond to the ones of imperative approaches: hidden information flows

(A), actor expressions (C), fixed activity granularity (D), and arbitrary process granularity

(E). However, they differ in respect to activity activation. While imperative approaches

pursue a flow-based activation (B), declarative approaches rely on a constraint-based acti-

vation (F) (cf. Fig. 18). This leads to better support of optional activities in comparison to

imperative approaches. However, the extensions introduced for imperative approaches are

not applicable to declarative ones. To avoid redundancies, we only discuss the main differ-

ences between imperative and declarative approach.

Fig. 18: Evaluating the declarative approach

Constraint-based activation of activities (F)

Imperative models take an "inside-out" approach by requiring all execution alternatives to

be explicitly specified in the model. Declarative models, in turn, take an "outside-in" ap-

proach: constraints implicitly specify execution alternatives as all valid alternatives have to

satisfy the constraints (Pesic, 2008). Adding more constraints means discarding some exe-

cution alternatives. This results in a coarse up-front specification of a process, which can be

refined iteratively during runtime. Typical constraints can be roughly divided into three

classes (Sadiq et al., 2005; van der Aalst & Pesic, 2006): constraints restricting the selec-

tion of activities (e.g., minimum/maximum occurrence of activities, mutual exclusion), the

ordering of activities and the use of resources (e.g., execution time of activities).

Activities. Adequate support for optional activities is provided, i.e., activities can be con-

sidered as optional as long as no constraint enforces their execution (i.e., R8 is met).

Arbitrary process granularity (E)

Partial support for integrating process instances can be achieved based on sub-processes.

Processes. Since most declarative approaches do not support multiple instantiations, cardi-

nalities to higher-level process definitions cannot be expressed (i.e., R3 is not met). It is

further not possible to define processes based on object interactions (i.e., R11 is not met).

Extension 5 (State-oriented business process modeling). In the state-based extension

provided by (Bider, 2002) a state does not necessarily correspond to an object instance. In-

stead, it rather belongs to a process instance comprising a set of atomic attributes or re-

peated groups (e.g., lists). States are used to specify the activities which should, can or

must be executed; i.e., opposed to declarative modeling, conditions for executing activities

are defined based on states rather than on activities. The disadvantages known from de-

clarative approaches still hold: hidden information flows, fixed activity granularity, and

arbitrary process granularity. Finally, this approach focuses on modeling functionalities

without defining operational semantics; i.e., models cannot be generated.

4.3 Data-driven Approaches

There exist several approaches which support a tighter integration of processes and data

(Reijers & Liman & van der Aalst, 2003; Vanderfeesten & Reijers & van der Aalst, 2008,

Müller & Reichert & Herbst, 2007; van der Aalst & Weske & Grünbauer, 2005). Since

Case Handling (CH) (van der Aalst & Weske & Grünbauer, 2005) satisfies the require-

ments for object-aware processes best, we focus on CH when evaluating data-driven ap-

proaches. Additionally, we refer to the Flower CH tool (Pallas Athena, 2002) in the context

of our evaluation. Compared to imperative and declarative approaches the main differences

lie in the integration of application data (G), the data-driven execution paradigm (H), and

the advanced role concept (I). Like in imperative and declarative approaches, the processes

can be defined at arbitrary level of granularity (E). However, the granularity of activities is

fixed (D) (cf. Fig. 19).

Fig. 19: Evaluating the data-driven approach

Data Integration (G)

Opposed to activity-centric approaches, CH enables a tighter integration of processes, ac-

tivities and data (Mutschler & Weber & Reichert, 2008). As illustrated in Fig. 20, CH dif-

ferentiates between free, restricted and mandatory data elements (van der Aalst & Weske &

Grünbauer, 2005). Based on free data elements, business data not directly relevant for

process control or activity inputs can be added to the process model. Free data elements are

assigned to the case description (i.e., process model) and can be changed at any point in

time while modeling the case (i.e., the process instance). All other data elements are associ-

ated with one or more activities, and are further subdivided into two categories. Restricted

data elements can only be written in the context of the activities they are assigned to. Man-

datory data elements require a value to complete the activity to which they belong.

Fig. 20: Case Handling

Data. CH only provides atomic data elements; data integration in terms of object types and

their inter-relations is not considered (i.e., R1 is not fully met). All users involved in a case

are allowed to read its data elements. Based on a query mechanism, users may access active

and completed cases. This enables access to data at any point in time. However, the com-

position of atomic data elements to object types is not considered (i.e., R2 is not fully met).

By specifying certain data elements as mandatory, mandatory information is supported

(i.e., R4 is met).

Activities. Form-based activities can be explicitly defined. However, provided form fields

cannot be made dependent on the current process state and user (i.e., R5 is not fully met).

Besides this, CH fosters application integration of black-box activities (Pesic & van der

Aalst, 2002). However, if activity input parameters refer to different object instances their

inter-relations cannot be controlled (i.e., R6 is not fully met). Free data elements enable op-

tional activities, but one cannot define specific optional activities for different user roles

(i.e., R8 is not fully met). Since dependencies between fields cannot be expressed, no sup-

port for controlling the control-flow within a form exists (i.e., R9 is not met)

User Integration. Regarding data authorization, it is not possible to define different access

rights for a particular user depending on the progress of the case (i.e., R16 is not met).

Monitoring. Since neither object types/instances nor the relations between them are con-

sidered, aggregated views cannot be provided (i.e., R20 is not met).

Data-driven activation of activities (H)
Imperative and declarative approaches are both activity-centric. In data-driven approaches

(like CH), activities become enabled when data changes. An activity is completed if all

mandatory data elements have assigned values.

Processes. Activities can be automatically skipped at runtime if their data elements are

provided by other activities; i.e., mandatory data elements are provided by preceding activi-

ties. This, in turn, enables flexible process execution (i.e., R13 is met). In addition, user de-

cisions are supported (Pesic & van der Aalst, 2002) (i.e., R15 is met).

Advanced Role Concept (I)

CH allows to define who shall work on an activity and who may redo or skip it; for this

purpose separate roles exist. Using the redo-role, for example, CH allows actors to execute

activities multiple times.

Processes. Based on the execute-role, actors can be assigned to human activities. Further,

users may select all cases for which they have to perform an activity. This enables a proc-

ess-oriented view (i.e., R12 is met).

User Integration. Since the data elements that are processed during an activity execution

are known, fine-grained process authorization at the level of single data elements becomes

possible (i.e., R17 is met). Despite the introduction of the redo-role, re-executing activities

arbitrarily often is not possible (i.e., R9 is not fully met).

Example 21 (Re-execution). As illustrated in Fig. 21, role R1 may execute or redo activ-

ity A1. If all mandatory data elements of a particular activity are available, subsequent ac-

tivities become enabled immediately. Regarding our example (cf. Fig 21) as long as A2 is

not completed (i.e., a value for data element D2 is not set), R1 may redo activity A1.

However, after completing subsequent activity A1, redo is only possible if the user is au-

thorized to redo A2 (cf. Fig. 21c). Otherwise, A1 cannot be redone any longer.

Fig. 21: Re-execution of activities in CH

Regarding mandatory activities, any user owning the execution-role for such activity must

execute it mandatorily; i.e., no differentiation between authorization and user assignment is

made (i.e., R18 is not met). Finally, vertical authorization based on data element values is

not provided (i.e., R19 is not met).

Fixed activity granularity (D)

In CH each activity belongs to exactly one process instance, and the granularity of activities

is fixed at build-time.

Activities. Users cannot access data element values of other relating cases; i.e., a variable

granularity of activities to support preferred work practices (e.g., context-sensitive vs.

batch activities) is not supported (i.e., R7 is not met).

Arbitrary process granularity (E)

CH allows to model processes at arbitrary level of granularity. When described at a coarse-

grained level, a case definition includes data elements corresponding to different objects.

Interdependencies between different cases can be defined based on sub-cases. Further, CH

supports multiple-instantiation patterns through dynamic sub-plans (i.e., sub-process in-

stances) (Pesic & van der Aalst, 2002). This enables instantiation of a dynamically fixed

number of sub-process instances. Alternatively, when processes are described at a fine-

grained level, a "case" can be manually treated in tight accordance with an "object".

Data. Using multiple-instantiation patterns as extension, cardinalities between higher-level

and lower-level process instances can be taken into account. However, it cannot be ensured

that the correct number of sub-processes instances is actually created at runtime (i.e., R3 is

not fully met).

Processes. Modeling processes in a fine-grained manner means we need to consider each

case as object type. This enables support of object behavior (i.e., R10 is met). Even if ob-

ject behavior is not considered in terms of states and transitions, the data-driven execution

allows to dynamically react to data changes. As limitation activities always refer to the exe-

cution of one particular case. Thus, only instance-specific activities can be realized, but no

varying granularity; i.e., users cannot choose their preferred work practice (i.e., R7 is not

met). Further, we cannot define interactions between object instances (i.e., R11 is not met).

When modeling processes at a coarse-grained level, similar restrictions for the asynchro-

nous coordination of sub-process instances hold as for imperative approaches. Compared to

imperative approaches CH additionally allows users to access data from multiple instances

through data containers with a variable number of data elements. Taking literature we can-

not conclude that these data enable the data-driven execution of activities that belong to the

higher-level process instance; i.e., interdependencies between asynchronously executed ob-

ject instances are not fully supported (i.e., R11 is not fully met).

4.4 Further approaches

The object-process methodology (OPM) (Dori, 2002), considers object types and their in-

ter-relations. Furthermore, object behavior can be defined in terms of states and processes

enable transitions between them; i.e., states are used as pre-/post-conditions for process

execution. However, states are not mapped to individual attribute values what leads to hid-

den information flows. OPM further allows for different levels of aggregation using zoom-

ing functions. There exists no methodology to define the resulting abstraction layers in cor-

respondence to the data structure; i.e., each layer can be defined at an arbitrary level of

granularity. In addition, the granularity of activities is fixed. Though OPM considers some

properties of object-aware processes, it is not suitable for their support. It is also not appro-

priate for defining operational semantics based on which data- and process-oriented views

as well as form-based activities can be automatically generated.

Finally, there exist goal-based (Soffer & Wand, 2005), decision-oriented, and conversation-

oriented process modeling approaches (Nurcan, 2008) which are outside the scope of our

evaluation.

5. Summary and Outlook

We discussed fundamental requirements in respect to the provision of an integrated view on

processes and data. Such integration is needed for many applications like enterprise re-

source planning and customer relationship management. Further, we showed that the iden-

tified requirements go beyond the features of existing modeling approaches. Especially ac-

tivity-centric approaches show an inherent weakness in respect to object-aware process

management. Data-driven approaches, in turn, are more expressive, but have not reached

the required maturity level yet. To our knowledge, there exists no approach which provides

a well-defined modeling methodology for defining object behavior and interactions. Re-

garding behavior, object states must be mapped to attribute values and inter-relations must

be considered.

To tackle the discussed challenges and requirements, in the PHILharmonic Flows project

we target at a framework that enables a tight integration of business processes, business

data, and users. In our future work we will report on this framework. On the one hand, it re-

tains the well-established principle for separation of concerns; on the other hand, it explic-

itly considers the relationships between processes, functions, data and users. Furthermore,

PHILharmonicFlows will address process modeling, execution and monitoring, and will

provide generic functions for the model-driven generation of end user components (e.g.,

form-based activities). Opposed to existing approaches on process and data integration, we

want to consider all components of the underlying data structure; i.e., objects, relations and

attributes. For this purpose, we will enable the modeling of processes at different levels of

granularity. In particular, we will combine object behavior based on states with data-driven

process execution. Further, we will provide advanced support for process coordination as

well as for the integrated access to business processes, business functions and business

data. Our overall vision is to overcome many of the limitations of contemporary PrMS.

References

van der Aalst, W.M.P., Barthelmess, P., Ellis, C.A., & Wainer, J. (2000). Workflow Model-

ing using Proclets. In Proc. CoopIS'00: LNCS 1901 (pp. 198-209). Springer.

van der Aalst, W.M.P., Hofstede, A., Kiepuszewski, B., & Barros, A. (2003). Workflow

Patterns. Distributed & Parallel Databases, 14(1), 5-51.

van der Aalst, W.M.P., ter Hofstede, A.H.M., & Weske, M. (2003). Business Process Man-

agement: A Survey. In Proc. BPM'03: LNCS 2678 (pp. 1-12). Springer.

van der Aalst, W.M.P., & Pesic, M. (2006). DecSerFlow: Towards a Truly Declarative Ser-

vice Flow Language. In Proc. Dagstuhl Seminar (pp. 1-23). Springer.

van der Aalst, W.M.P., Weske, M., & Grünbauer, D. (2005). Case Handling: A new Para-

digm for Business Process Support. Data and Knowledge Engineering, 53(2), 129-162.

Bider, I. (2002). State-oriented Business Process Modeling: Principles, Theory and Prac-

tice. PhD thesis, Royal Institute of Technology, Stockholm.

Botha, R.A. (2002). CoSAWoE - A Model for Context-sensitive Access Control in Workflow

Environments. PhD thesis, Rand Afrikaans University.

Dori, D. (2002). Object-Process Methodology. Springer.

Dadam, P., & Reichert, M. (2009). The ADEPT Project: A Decade of Research and Devel-

opment for Robust and Flexible Process Support - Challenges and Achievements. Com-

puter Science - R & D, 23(2), 81-97.

Gerede, C.E., & Su, J. (2007). Specification and Verification of Artifact Behaviors in Busi-

ness Process Models. In Proc. ICSOC'07: LNCS 4749 (pp. 181-192). Springer.

Künzle, V., & Reichert, M. (2009a). Towards Object-aware Process Management Systems:

Issues, Challenges, Benefits. In Proc. BPMDS'09: LNBIP 29 (pp. 197-210). Springer.

Künzle, V., & Reichert, M. (2009b). Integrating Users in Object-aware Process Manage-

ment Systems: Issues and Challenges. In Proc. BPM'09 Workshops: LNBIP 43 (pp. 29-41).

Springer.

Küster, J., Ryndina, K., & Gall, H. (2007). Generation of Business Process Models for Ob-

ject Life Cycle Compliance. In Proc. BPM'07: LNCS 4714 (pp. 165 -181). Springer.

Liu, R., Bhattacharya, K., & Wu, F.Y. (2007). Modeling Business Contexture and Behavior

Using Business Artifacts. In Proc. CAiSE'07: LNCS 4495 (pp. 324-339). Springer.

Müller, D., Reichert, M., & Herbst, J. (2007). Data-driven Modeling and Coordination of

Large Process Structures. In Proc. CoopIS'07: LNCS 4803 (pp. 131-149). Springer.

Mutschler, B., Weber, B., & Reichert, M. (2008). Workflow Management versus Case

Handling: Results from a Controlled Software Experiment. In Proc. SAC'08 (pp. 82-89).

ACM Press. Brazil. Springer.

Nigam, A., & Caswell, N.S. (2003). Business Artifacts - An Approach To Operational

Specification. IBM Systems Journal, 42(3), 428-445.

Nurcan, S. (2008). A Survey on the Flexibility Requirements Related to Business Processes

and Modeling Artifacts. In Proc. HICSS'08 (pp. 378). Springer.

Pallas Athena. (2002). Flower User Manual. Pallas Athena BV, Apeldoorn, The Nether-

lands.

Pesic, M. (2008). Constraint-Based Workflow Management Systems: Shifting Control to

Users. PhD thesis, Eindhoven University of Technology.

Redding, G., Dumas, M., ter Hofstede, A.H.M., & Iordachescu, A. (2008). Transforming

Object-oriented Models to Process-oriented Models. In Proc. BPM'07 Workshops: LNCS

4928 (pp. 132-143). Springer.

Reijers, H.A., Liman, S., & van der Aalst, W.M.P. (2003). Product-based Workflow De-

sign. Management Information Systems, 20(1), 229-262.

Rosemann, M., & zur Mühlen, M. (1998). Modellierung der Aufbauorganisation in

Workflow-Management-Systemen: Kritische Bestandsaufnahme und Gestaltungsvorschlä-

ge. EMISA-Forum, 3(1), 78-86.

Rosemann, M., & zur Mühlen, M. (2004). Organizational Management in Workflow Ap-

plications: Issues and Perspectives. Inf. Technol. and Management, 5(3-4), 271-291.

Rinderle-Ma, S., & Reichert, M. (2007). A Formal Framework for Adaptive Access Control

Models. Journal on Data Semantics IX, LNCS 4601, 82-112.

Silver, B. (2009). Case Management: Addressing Unique BPM Requirements. (Industry

Trend Reports) BPMS Watch.

Wu, S., Sheth, A., Miller, J., & Luo, Z. (2002). Authorization and Access Control Of Ap-

plication Data In Workflow-Systems. JIIS, 18(1), 71-94.

Sadiq, S., Sadiq, W., & Orlowska, M. (2005). A Framework for Constraint Specification

and Validation in Flexible Workflows. Inf. Sys., 30(5), 349-78.

Sadiq, S., Orlowska, M.E., Sadiq, W., & Schulz, K. (2005). When Workflows Will Not De-

liver: The Case of Contradicting Work Practice. In Proc. BIS'05. Springer.

Soffer, P., & Wand, Y. (2005). On the Notion of Soft-goals in Business Process Modeling.

Business Process Management Journal, 11(6), 663-679.

Vanderfeesten, I., Reijers, H.A., & van der Aalst, W.M.P. (2008). Product-based Workflow

Support: Dynamic Workflow Execution. In Proc. CAiSE '08: LNCS 5074 (pp. 571-574).

Springer.

Weber, B., Reichert, M., & Rinderle-Ma, S. (2008). Change Patterns and Change Support

Features - Enhancing Flexibility in Process-Aware Information Systems. Data and Knowl-

edge Engineering, 66(3), 438-466.

