
A Modeling Paradigm for Integrating
Processes and Data at the Micro Level

Vera Künzle1 and Manfred Reichert1

Institute of Databases and Information Systems, Ulm University, Germany
{vera.kuenzle,manfred.reichert}@uni-ulm.de

Abstract. Despite the widespread adoption of BPM, there exist many
business processes not adequately supported by existing BPM technol-
ogy. In previous work we reported on the properties of these processes. As
a major insight we learned that, in accordance to the data model com-
prising object types and object relations, the modeling and execution
of processes can be based on two levels of granularity: object behavior
and object interactions. This paper focuses on micro processes capturing
object behavior and constituting a fundamental pillar of our framework
for object-aware process management. Our approach applies the well es-
tablished concept of modeling object behavior in terms of states and
state transitions. Opposed to existing work, we establish a mapping be-
tween attribute values and objects states to ensure compliance between
them. Finally, we provide a well-defined operational semantics enabling
the automatic and dynamic generation of most end-user components at
run-time (e.g., overview tables and user forms).

Key words: Object-aware Processes, Data-driven Process Execution

1 Introduction

Process Management Systems (PrMS) enable the modeling, execution and mon-
itoring of business processes [1]. Despite their widespread adoption, there exist
many knowledge-intensive processes which cannot be ”straight-jacketed into ac-
tivities” [2, 3]. Prescribing an activity-centred process model for them would
lead to a ”contradiction between the way processes can be modeled and the
preferred work practice” [4]. Moreover, PrMS do not provide integrated access
to application data. In particular, end-users cannot access application data at
any point in time (assuming proper authorization). In this context, overview
tables (e.g., data reports) and user forms constitute important components. The
latter provide (data) input fields (e.g., textfields, checkboxes) for reading and
writing selected attribute values of object instances. Further, many activities of
a process model are implemented as forms. As known from practice, however,
implementing the logic of these forms and other user components causes high
implementation efforts.

2 Vera Künzle and Manfred Reichert

In the PHILharmonicFlows1 project, we are developing concepts, methods
and tools for realizing object- and process-aware information systems [5]. In
particular, we are targeting at a flexible integration of business data, business
processes, business functions, and users to overcome limitations known from
activity-centered PrMS. In addition, we aim at the automatic generation of
end-user components; e.g., tables giving an overview on a collection of object
instances and form-based activities (including their internal logic). This way,
not only generic process support, but also generated application functionality
shall be provided.

This paper introduces a fundamental pillar of our PHILharmonicFlows
framework by introducing an advanced paradigm for the modeling and run-time
support of object behavior, i.e., the processing of individual object instances.
The latter provides the foundation of object-aware processes involving multiple
object instances of the same and of different object type. Like existing work
considering object behavior during process execution [6, 7, 8, 9, 10, 11, 12, 13]
our approach applies the well established concept of modeling object behavior in
terms of states and state transitions. Opposed to existing approaches (e.g., case
handling), however, PHILharmonicFlows enables a mapping between attribute
values and objects states and therefore ensures compliance between them. In ad-
dition, integrated access to application data is provided. Here, not only generic
process support, but also generated application functionality is provided. Finally,
the presented execution paradigm combines data-driven process execution with
activity-oriented aspects.

Section 2 illustrates the research methodology we applied and discusses major
requirements for the modeling and run-time support of object behavior. An
overview of our framework is given in Section 3. We introduce its underlying data
model in Section 4 and the modeling of object behavior in Section 5. Section 6
deals with authorization issues targeting at the automatic generation of (form-
based) activities at run-time. The corresponding execution paradigm is discussed
in Section 7. Section 8 investigates related work and Section 9 closes with a
summary and outlook.

2 Research Methodology

To better understand the characteristics of processes that are well supported by
existing technology and those handled insufficiently, we analyzed many processes
from domains like healthcare, human resource management, and automotive en-
gineering [14, 15, 5]. As fundamental insight we gained from these studies that
many processes require object-awareness; i.e., full integration of application data
consisting of object types, object attributes, and object relations. In previous
work we identified the properties of these processes [5, 16] and discussed chal-
lenges to be tackled for integrating processes, data and users [14, 15]. A major
finding was that there are strong relationships between process support and data
1 Process, Humans and Information Linkage for harmonic Business Flows

A Modeling Paradigm for Integrating Processes and Data at the Micro Level 3

management. In accordance to the data model comprising object types and ob-
ject relations, therefore, the modeling and execution of processes is based on two
levels of granularity as well: object behavior and object interactions. Regarding
object behavior the following properties are significant: For each object instance a
corresponding process instance should exist controlling its processing. Object at-
tribute values reflect the progress of this process instance. While certain attribute
values can be optionally assigned, others are mandatorily required in order to
reach a particular process goal. For this purpose, mandatory activities need to
be enabled and assigned to responsible users if required information is missing.
In addition, optional activities for reading and writing attribute values at any
point in time should be supported. Generally, one has to ensure that object state
and process state are compliant with each other. Further, it should be possible
to enter data at the moment it becomes available (i.e., using optional activities).
In particular, users should be allowed to enter data up-front; i.e., before the cor-
responding mandatory activity becomes enabled. For this purpose, it should be
possible to drive process execution based on data and to dynamically react upon
attribute value changes. Mandatory activities no longer needed (due to an up-
front data entry) should then be automatically skipped. Moreover, users should
be enabled to re-execute activities until they explicitly commit their completion.
Generally, different ways for reaching a process goal exist. In our context, this
selection might be also based on explicit user decisions. When filling in forms,
certain attribute values might become mandatory on-the-fly; i.e., whether or not
an object attribute is mandatory may depend on other object attribute values.
It should therefore be possible to manage the internal flow of control within
particular activities (e.g. user forms) as well. Finally, such integration of pro-
cess and data necessitates advanced concepts for user integration; i.e., process
authorization must be compliant with data authorization and vice versa. While
certain users must execute an activity mandatorily in the context of a particular
object instance, others may be authorized to optionally execute this activity.

We have already shown that only limited support for these properties is
provided by existing imperative, declarative, and data-driven process support
paradigms [16]. To ensure the relevance, completeness and generalizability of the
identified properties we performed a literature study concerning extensions of the
basic paradigms (i.e., imperative, declaratives and data-driven ones) [5]. Finally,
we are currently developing a proof-of-concept prototype of our framework.

3 PHILharmonicFlows Framework

This section gives a short overview of our PHILharmonicFlows framework which
enforces a well-defined modeling methodology governing the definition of pro-
cesses at different levels of granularity and being based on a well-defined formal
operational semantics. More precisely, the framework differentiates between mi-
cro and macro processes in order to capture both object behavior and object
interactions. As a prerequisite, object types and their relations need to be cap-
tured in a data model. Following this, for each object type a micro process type

4 Vera Künzle and Manfred Reichert

has to be specified. The latter defines the behavior of corresponding object in-
stances and consists of a set of states and the transitions between them. Each
state is associated with a set of object type attributes. At runtime, a micro pro-
cess instance being in a particular state may only proceed if specific values are
assigned to the attributes associated with this state; i.e., a data-driven process
execution is applied. Optional access to data, in turn, is enabled asynchronously
to process execution and is based on permissions for creating and deleting object
instances as well as for reading/writing their attributes. The latter must take
the current progress of the corresponding micro process instance into account.
For this, PHILharmonicFlows maintains a comprehensive authorization table as-
signing data permissions to user roles depending on the different states of the
micro process type. Taking the relations between the object instances of the
overall data structure into account, the corresponding micro process instances
additionally form a complex process structure; i.e., their execution needs to be
coordinated according to the given data structure. In PHILharmonicFlows this
can be realized by means of macro processes. Such a macro process consists
of macro steps as well as macro transitions between them. Opposed to micro
steps that relate to single attributes of a particular object type, a macro step
refers to an entire object type and a particular state. For each macro transition,
a corresponding synchronization component must then be specified. This way,
PHILharmonicFlows is able to hide the complexity of large process structures
from modelers as well as from end-users. The synchronization components en-
able the coordination of interactions between the object instances of the same as
well as of different object types. Opposed to existing approaches, it is possible
to additionally consider the cardinalities between object instances. In particular,
whether or not a particular object instance should be (mandatorily or optionally)
created depends on the relation cardinalities and on synchronization components
specified within the macro process.

4 Modeling Data

As opposed to existing approaches, in which activities and their execution con-
straints (e.g., precedence relations) are explicitly specified, PHILharmonicFlows
allows defining processes by taking object types as well as object interactions into
account. For this purpose, the proper integration of data constitutes a funda-
mental requirement. Regarding existing process support approaches, however,
the data and process perspectives are mostly integrated in one and the same
model leading to complex and overloaded models being difficult to maintain.
PHILharmonicFlows, in turn, supports the definition of data and processes in
separate, but well integrated models. Thus, it retains the well established prin-
ciple of separating concerns [17].

Due to the widespread use of the relational data model, PHILharmonicFlows
is based on relational concepts as well. In this paper, we restrict the data per-
spective to object types and object attributes (see [5] for our basic idea on how

A Modeling Paradigm for Integrating Processes and Data at the Micro Level 5

to treat object relations). As example consider review processes for job applica-
tions as known from the human resource area. In this real world example, which
we simplified for the sake of clarity, reviews are used to evaluate applications
and are provided by employees from functional divisions. Based on the results
of the reviews the personnel officer from the human resource department de-
cides which applicant may get the offered job. For this purpose, a review object
type may comprise attribute types like issue date, proposal (e.g., to invite or
reject the applicant), appraisal, remark, comment, reason, consideration (indi-
cating whether the result of the review was used to initiate further actions), and
appointment (suggested date for interview) (cf. Fig. 1a). Attribute types are rep-
resented by atomic data elements with a specific data type (i.e., integer, decimal,
string, boolean, date). Arrays and sets, in turn, are captured as relating object
types (but are out of the scope of this paper). Finally, an object type comprises
a set of attribute types defining its properties.

Let Identifiers be the set of all valid identifiers over a given alphabet.

Definition 1. An attribute type is a tuple attrType = (name, type) where

- name ∈ Identifiers is an identifier.
- type ∈ {INTEGER,DECIMAL,STRING,BOOLEAN,DATE} is a basic data

type.

Further, AttrTypes denotes the set of all definable attribute types and AttrValues
the set of all possible attribute values given the above set of data types.

Definition 2. An object type is a tuple oType = (name, AttrTypeSet) where

- name ∈ Identifiers is an identifier.
- AttrTypeSet ⊂ AttrTypes is a finite set of attribute types.

Further, ∀ attrType1, attrType2 ∈ AttrTypeSet:
attrType1.name = attrType2.name ⇒ attrType1 ≡ attrType2.
Finally, OTypes corresponds to the set of all definable object types.

5 Modeling Object Behavior

Our PHILharmonicFlows framework enforces a well-defined modeling methodol-
ogy governing the definition of processes at different levels of granularity. More
precisely, the framework differentiates between micro and macro processes in
order to capture both object behavior and object interactions. This section intro-
duces our modeling approach for micro process types capturing object behavior.

For each object type one specific micro process type comprising a number of
micro step types has to be defined. Each micro step type, in turn, is associated
with an attribute type and describes an elementary action (e.g. writing the
object attribute). By connecting micro step types using micro transition types,
we obtain their default execution order. Further, state types can be used to realize
mandatory activities comprising a subset of the micro step types; i.e., they are

6 Vera Künzle and Manfred Reichert

used to coordinate actions between different users. Thereby, the micro step types
belonging to the same state type and their relations reflect the internal logic of
an activity, whereas state types are used to coordinate the execution of several
activities among different user roles.

Fig. 1b shows the micro process type describing the behavior of the review

object type (cf. Fig. 1a). Each review must be created by a personnel officer
and then be filled out by an employee. The latter can either refuse the review

request or fill out the corresponding review form. In the latter case, the personnel
officer has to evaluate the feedback provided by the employee. For this purpose,
our example comprises four state types. These represent mandatory activities
involving two roles (cf. Fig. 1b). Further, each micro process type includes at least
one end state; i.e., an object state in which no further actions are mandatorily
required. Our review micro process type has two end states, namely evaluated

and closed (cf. Fig. 1b).

Fig. 1. Review object type and micro process type

We first discuss how to specify the internal logic of a mandatory activity as
captured by a state and its corresponding micro steps. For each state type, we
define a set of corresponding actions. More precisely, each state type comprises
several micro step types. Each of them may represent a mandatory write access to
a particular object attribute. Note that single micro step types do not represent
activities, but solely refer to one atomic action (e.g., editing an input field within
a form). As we will show later, we do not need to explicitly model activities (and
corresponding forms), but can automatically generate them. Here, also optional
input fields as well as read-only data fields are integrated based on a sophisticated
authorization table (cf. Fig. 3).

Each micro step type may refer to a specific attribute type. For reaching a
micro step during run-time, a value for its corresponding attribute is manda-
torily required. As illustrated in Fig. 1b, when initializing a review (i.e., state
initialized is activated), a personnel officer must specify an issue date. Be-
sides, state types do not require further actions. As example consider end states
and states which only require an explicit commit by a responsible user (e.g.,
enabling mandatory reading). Respective state types only comprise micro step
types not referring to any attribute type.

When executing mandatory activities, users should be guided in setting re-
quired attribute values (e.g., by highlighting respective input fields in a form).

A Modeling Paradigm for Integrating Processes and Data at the Micro Level 7

Regarding state pending in Fig. 1b, for example, after setting the value of at-
tribute proposal, either the value of attribute appraisal or attribute appointment

is required next. To capture such logic for the setting of object attributes, their
micro step types can be linked using micro transition types. Based on them,
we can define the internal logic of a mandatory activity; e.g., the default order
in which the input fields of the corresponding form shall be edited. If a micro
step type (e.g., proposal) contains more than one outgoing micro transition type
(i.e., an alternative processing), we ensure that only one of them is fired at run-
time; i.e., always one micro step (and thereby also one state) can be reached.2

Regarding our example, the values of attributes proposal and appointment are
usually set when enabling respective micro steps. However, an employee may
set these values early on. In such case, the micro steps corresponding to these
object attributes will be immediately completed when they are reached. If values
for both appointment and appraisal are available, we have to ensure that only
one micro step is activated. For this purpose, different priorities as illustrated
in Fig. 1b can be assigned to micro transition types. Regarding our example,
the micro step referring to attribute appraisal would be reached because the
corresponding incoming transition has a higher priority as the one of the micro
step referring to attribute appointment. If only a value for attribute appointment

was available, in turn, its corresponding micro step would be activated.

Definition 3. An micro process type is a tuple micProcType = (oType, Mic-
StepTypeSet, MicTransTypeSet) where

- oType = (name, AttrTypeSet) ∈ OTypes is the object type whose behavior is
described by micProcType.

- MicStepTypeSet is a finite set of micro step types with micStepType = (name,
attrType) ∈ MicStepTypeSet having the following meaning:
* name ∈ Identifiers is an identifier.
* attrType ∈ AttrTypeSet ∪ {NULL} is an attribute type or undefined.

- MicTransTypeSet ⊂ MicStepTypeSet × MicStepTypeSet × N is a finite set
of micro transition types with micTransType = (source, target, priority) ∈
MicTransTypeSet having the following meaning:
* source ∈ MicStepTypeSet is the source micro step type of micTransType.
* target ∈ MicStepTypeSet is the target micro step type of micTransType.
* priority ∈ N is the priority of micTransType.

MicProcTypes denotes the set of all definable micro process types.

PHILharmonicFlows provides support for backward jumps within micro pro-
cesses as well (resetting attribute values where required). However, due to lack

2 Though an object instance is always in exactly one processing state, this does not
prohibit parallel execution. During the execution of an activity, parallel processing of
disjoint sets of mandatory as well as optional object attributes is always possible. In
addition, different users may concurrently process forms corresponding to the same
object instance. In this context, known mechanisms for synchronizing concurrent
data access can be applied.

8 Vera Künzle and Manfred Reichert

of space we only consider acyclic micro process types here. Each micro process
type contains exactly one start micro step type which does not refer to any
attribute type and has no incoming transitions (cf. Def. 4a). Further, a micro
process type must comprise at least one end micro step type which does not
refer to an attribute type and has no outgoing micro transition type (cf. Def.
4b). All other micro step types, in turn, must have at least one incoming (cf.
Def. 4c) and at least one outgoing micro transition type (cf. Def. 4d). To ensure
this we introduce functions for structural analysis of micProcType = (oType,
MicStepTypeSet, MicTransTypeSet) ∈ MicProcTypeSet. In particular, intrans:
MicStepTypeSet 7→ N0 (outrans: MicStepTypeSet 7→ N0) determines for each
micro step type the number of its incoming (outgoing) micro transition types.
To ensure that only one micro step is activated at any point during run-time, mi-
cro transition types having the same source micro step type must be associated
with different priorities (cf. Def. 4e).

Definition 4. Let micProcType = (oType, MicStepTypeSet, MicTransTypeSet)
∈ MicProcTypes be an acyclic micro process type referring to an object type
oType = (name, AttrTypeSet) ∈ OTypes. Then:

a) @ startMicStepTypemicProcType = (name, NULL) ∈ MicStepTypeSet with
intrans(startMicStepTypemicProcType) = 0; i.e., there exists exactly one
start micro step type.

b) | EndMicStepTypesmicProcType | ≥ 1 with EndMicStepTypesmicProcType :=
{micStepType = (name, NULL) ∈ MicStepTypeSet | outtrans(micStepType)
= 0}; i.e., there exists at least one end micro step type.

c) ∀ micStepType ∈ MicStepTypeSet - {startMicStepTypemicProcType}:
intrans(micStepType) 6= 0.

d) ∀ micStepType ∈ MicStepTypeSet - EndMicStepTypesmicProcType:
outtrans(micStepType) 6= 0.

e) ∀ transTypei ∈ MicTransTypeSet, i=1,2:
transType1 6= transType2 ∧ transType1.source = transType2.source ⇒
transType1.priority 6= transType2.priority.

Several micro step types can be aggregated to a particular state type:

Definition 5. Let micProcType = (oType, MicStepTypeSet, MicTransTypeSet)
∈ MicProcTypes be an acyclic micro process type. A state type of a micro
process type micProcType is a tuple stateType = (name, sMicStepTypeSet) where

- name ∈ Identifiers is an identifier.
- sMicStepTypeSet ⊆ MicStepTypeSet is a finite set of micro step types.

StateTypesmicProcType is a finite set of state types defined on micProcType.

In Fig. 1b, pending is an example of a state type comprising the micro step
types proposal, appraisal and appointment. Generally, different state types have
disjoint sets of micro step types (cf. Def. 6a) and each micro step type must
belong to exactly one state type (cf. Def. 6b). In addition, each end micro step

A Modeling Paradigm for Integrating Processes and Data at the Micro Level 9

type must belong to a state type comprising no other micro step types (cf. Def.
6c). Further, the micro step types belonging to the same state type must be
connected with each other (cf. Def. 6d).

Definition 6. Let micProcType = (oType, MicStepTypeSet, MicTransTypeSet)
∈ MicProcTypes be an acyclic micro process type and let
stateTypei ∈ StateTypesmicProcType, i = 1,2 be two state types. Then:

a) stateType1 ≡ stateType2 ⇒
stateType1.sMicStepTypeSet ∩ stateType2.sMicStepTypeSet = ∅

b) ∀ micStepType ∈ MicStepTypeSet: @ stateType ∈ StateTypesmicProcType:
micStepType ∈ stateType.sMicStepTypeSet

c) ∀ micStepType ∈ EndMicStepTypesmicProcType: @ stateType ∈
StateTypesmicProcType: micStepType ∈ stateType.sMicStepTypeSet ∧
| stateType.sMicStepTypeSet | = 1.

d) ∀ stateType ∈ StateTypesmicProcType: micStepTypei ∈
stateType.sMicStepTypeSet, i = 1,2 ∧ micStepType2 is a successor of
micStepType1 ⇒ all micro step types on the path from micStepType1 to
micStepType2 belong to stateType.sMicStepTypeSet as well.

We further denote micro transition types that connect micro step types be-
longing to different state types as external micro transition types.
Formally: isexternal: MicTransTypes 7→ BOOLEAN with:

isexternal(mtt):=

TRUE, ∃stateTypei ∈ StateTypesmicProcType, i = 1, 2,

with stateType1 6= stateType2

∧mtt.source ∈ stateType1.sMicStepTypeSet

∧mtt.target ∈ stateType2.sMicStepTypeSet

FALSE, else
As example consider the micro transition type connecting micro step type

consideration and the one belonging to state evaluated in Fig. 1b. At run-time,
the firing of an external micro transition triggers a new micro state; i.e., the data-
driven execution paradigm is also applied for activating subsequent states. For
example, a review reaches state evaluated as soon as the responsible personnel
officer has assigned the value of attribute consideration (cf. Fig. 1b). Opposed
to a purely data-driven activation, however, some scenarios may require that a
responsible user explicitly commits the completion of an activity he has worked
on. As example consider state pending. An employee may re-execute the activity
of filling in the review form until he explicitly commits to submit the review
back to the personnel officer. To capture this in a micro process type we flag
external micro transition types either as implicit or explicit:
explicit: MicTransType 7→ BOOLEAN defines whether a particular micro transi-
tion type micTransType (with isexternal(micTransType = TRUE)) is marked as
explicit. As illustrated in Fig. 2a, to ensure that only one state of a micro process
instance is activated during run-time, external micro transition types having the
same micro step type as source must be defined as explicit ones (cf. Def. 7a).
Certain scenarios require explicit user decisions. For example, after a personnel

10 Vera Künzle and Manfred Reichert

officer has initiated a review, the responsible employee may decide whether to fill
in the review or to refuse it. In particular, a user decision is required if a micro
step has more than one outgoing external, explicit micro transition. In this case,
the responsible user has to decide which subsequent state shall be activated.
To ensure this, we have to ensure that the target micro step types of explicit
external micro transition types having the same source belong to different state
types (cf. Fig. 2b and Def. 7b).

Fig. 2. Structural correctness of external transition types

Definition 7. Let micProcType = (oType, MicStepTypeSet, MicTransTypeSet)
∈ MicProcTypes be an acyclic micro process type. Then:
∀ micTransTypei ∈ MicTransTypeSet, i=1,2 with
micTransType1 6= micTransType2 ∧ micTransType1.source =
micTransType2.source ∧ isexternal(micTransTypei) = TRUE, i=1,2
Then:

a) explicit(micTransTypei) = TRUE, i=1,2
b) ∃ stateTypei ∈ StateTypesmicProcType, i=1,2 with stateType1 6= stateType2

∧ micTransTypei.target ∈ sMicStepTypeSeti, i=1,2

6 Data and Process Authorization

Generally, we associate state types and explicit micro transition types with user
roles in order to be able to determine actors being responsible for mandatory
activities, branching decisions, and commitments during run-time. In addition,
it must be possible that different users (i.e., roles) may have different access
rights on object attributes in a particular micro state. To achieve this, PHILhar-
monicFlows automatically generates a specific authorization table in accordance
to the defined micro process type. Based on authorization tables one can de-
fine which user role may read / write which object attributes in the different
states of a micro process (cf. Fig. 3). To ensure proper authorization, each user
role assigned to a state type automatically obtains the permissions required for
writing the object attributes to which the micro step types of this state type
refer (see the shaded boxes in Fig. 3). The generated authorization table may
be adjusted by assigning additional optional permissions allowing for the exe-
cution of optional activities. Generally, this allows users not being involved in
the execution of mandatory activities to own permissions for reading or writing
object attributes; e.g., a manager may read or write selected object attributes
within state submitted. Generally, not every user being allowed to write required

A Modeling Paradigm for Integrating Processes and Data at the Micro Level 11

attribute values in a particular state should be forced to also execute the corre-
sponding mandatory activity. To be able to differentiate between user assignment
(i.e., activities a user has to do) and authorization (i.e., activities a user may
do) we further distinguish between mandatory and optional permissions in re-
spect to writing object attributes. Only for users with mandatory permissions,
a mandatory activity is assigned to their worklist.

Fig. 3. Authorization table and generation of form-based activities

7 Execution of Micro Processes

Our approach is based on a well-defined formal semantics. In particular, this
enables us to automatically generate most end-user components of the run-time
environment; e.g., tables giving an overview on object instances and form-based
activities. Regarding the latter, the presented authorization table provides the
basis for automatically generating user-specific activity forms (cf. Fig. 3); i.e.,
each user owing respective read and write permissions in a certain (micro process)
state may execute a corresponding form-based activity. The processing state of
an individual micro process instance is defined by the current marking of its
states, micro steps, and micro transitions (cf. Fig. 4).
Instantiation. In the following, we refer to our example to demonstrate how
a micro process is executed: First of all, when creating a new reviews object
instance, a corresponding micro process instance is automatically generated and
initialized. Thereby, the start micro step is marked as CONFIRMED and the
state to which it belongs is marked as ACTIVATED. All other states, in turn,
are initially set to WAITING. Further, the outgoing micro transition of the
start step is marked as READY, whereas all other micro transitions are initially
marked as WAITING. In our example, the incoming internal micro transition

12 Vera Künzle and Manfred Reichert

of micro step issue date is marked as READY. This, in turn, leads to marking
ENABLED of the target micro step of this micro transition. Then, for this micro
step a value of its corresponding attribute has to be assigned. All other micro
steps belonging to the start state (state initialized in our example), in turn,
are marked as READY, whereas micro steps not belonging to the start state are
marked as WAITING. This differentiation enables us to highlight input fields
being relevant for process execution in the currently activated state.

Fig. 4. Operational semantics for states, micro steps and micro transitions

Execution. Starting in state pending, micro step invite is automatically reached
if a value is assigned to the corresponding attribute. Then micro step invite is
marked as UNCONFIRMED (cf. Fig. 5a). Following this, an employee must pro-
vide a value for at least one of the attributes appraisal or appointment. If for one
of these attributes (e.g., appointment) a value is set the corresponding micro step
is marked as SELECTED (cf. Fig. 5b). The respective micro transition, in turn,
is marked as ENABLED. Since no value for attribute appraisal is provided (i.e.,
only one outgoing micro transition is reachable), the priorities of the micro tran-
sitions are not relevant. Thus, the ENABLED micro transition can be marked
as SELECTED (cf. Fig. 5c). In this case, we omit the other path by perform-
ing an internal dead-path elimination (cf. Fig. 5d). For this purpose, all micro
transitions and steps belonging to the non-selected execution path are marked
as BYPASSED (i.e., a micro step is marked as BYPASSED if all incoming micro
transitions are marked as BYPASSED).

However, as long as this state change has not been confirmed, an employee
may still change attribute settings; i.e., he may want to set the value of attribute

A Modeling Paradigm for Integrating Processes and Data at the Micro Level 13

appraisal. To accomplish this, an internal reset of the currently activated state
is performed (cf. Fig. 5e). Generally, micro steps and transitions will be reset if
an attribute value corresponding to a micro step marked as UNCONFIRMED
or BYPASSED is changed. If a value for both attribute appraisal and attribute
appointment is assigned (cf. Fig. 5f) (i.e., more than one micro transition becomes
ENABLED), we ensure that only one of the micro transitions is actually fired;
i.e., always one micro step (and one micro state) can be reached. For this purpose,
only the micro transition with the highest priority is SELECTED (cf. Fig. 5g).
The other one is marked as BYPASSED using the internal dead-path elimination.
If a state is marked as CONFIRMED afterwards, micro steps with marking
BYPASSED and transitions are finally marked as SKIPPED.

Fig. 5. Execution

Changing the state. After a micro step is marked as UNCONFIRMED, out-
going micro transitions are either marked as READY or CONFIRMABLE. More
precisely, external micro transitions, for which an explicit user commitment is
required, are marked as CONFIRMABLE. Consequently, a mandatory activity
enabling this commitment is automatically assigned to the worklist of the re-
sponsible user. In our example, after initializing a review, two external, explicit
micro transitions are marked as CONFIRMABLE requiring a respective user de-
cision. If one of them is selected, its marking changes from CONFIRMABLE to
READY. Opposed to this, implicit micro transitions (internal and external ones)
are immediately marked as READY. If an external micro transition is marked as
READY, the currently activated state is marked as CONFIRMED. In addition,
all corresponding micro steps as well as internal micro transitions (currently
marked as UNCONFIRMED) are re-marked as CONFIRMED as well. Follow-
ing this, the subsequent state (i.e., state pending in our example) is marked
as ACTIVATED and its micro steps as READY. The target micro step of the
SELECTED external micro transition (i.e., micro step proposal) is marked as
ENABLED. For this micro step a value of its attribute has to be set Moreover, we
perform an external dead-path elimination in order to mark micro steps, micro
transitions, and states as SKIPPED that can no longer be activated.

Despite any predefined form logic (e.g., sequence) of micro steps, users are
allowed to freely choose their preferred execution order; i.e., the order in which
required values are assigned to object attributes does not necessarily have to
coincide to the one of the corresponding micro steps. In particular, at run-time
a micro step can be completed as soon as a value is assigned to its object at-

14 Vera Künzle and Manfred Reichert

tribute; e.g., an employee may set the value of attribute appraisal although he
is guided to first fill in the input field relating to attribute proposal. If the value
of object attribute proposal is set afterwards, the subsequent micro step relating
to object attribute appraisal is automatically completed. In principle, an entire
mandatory activity can be skipped if all required attribute values are assigned
in a previous state.
Termination. Finally, execution of a micro process instance terminates if one
state containing an end micro step is marked as SELECTED. Opposed to other
micro steps, which are marked as UNCONFIRMED, while the state they belong
to is marked as ACTIVATED, end micro steps are immediately marked as CON-
FIRMED. Using the introduced internal and external dead-path elimination, we
can ensure that all other states, micro steps and micro transitions are then either
marked as CONFIRMED or SKIPPED.

8 Related Work

In [16] we have shown why existing imperative, declarative, and data-driven (i.e.,
Case Handling [3]) process support paradigms are unable to adequately support
object-aware processes. However, to enable consistency between process and ob-
ject states, extensions of these approaches based on object life cycles (OLC)
have been proposed. These extensions include object life cycle compliance [9],
object-centric process models [10, 11], business artifacts [8], data-driven process
coordination [6], and object-process methodology [18]. To be more precise, an
OLC defines the states of an object and the transitions between them. Activities,
in turn, are associated with pre-/post-conditions in relation to objects states;
i.e., the execution of an activity depends on the current state of an object and
triggers the activation of a subsequent state. However, none of these approaches
explicitly maps states to attribute values. Consequently, if certain pre-conditions
cannot be met during run-time, it is not possible to dynamically react to this.
In addition, generic form logic is not provided in a flexible way; i.e., there is no
automatic generation of forms taking the individual attribute permissions of a
user as well as the progress of the corresponding process into account. Finally,
opposed to these approaches, PHILharmonicFlows captures the internal logic of
an activity as well.

9 Summary and Outlook

In this paper, we introduced the modeling and execution of micro processes which
are a fundamental pillar of our PHILharmonicFlows framework for object-aware
process management. To enable high flexibility, form-based activities are auto-
matically generated taking the respective user and the current process state into
account. Our approach is based on precise rules enabling syntactical correct-
ness as well as on a well-defined operational semantics. Moreover, PHILharmon-
icFlows goes far beyond the concepts presented in this paper. In future papers

A Modeling Paradigm for Integrating Processes and Data at the Micro Level 15

we will discuss how to support backward jumps, time events, black-box activ-
ities, and specific attribute values. Regarding the latter, for instance, whether
or not a particular attribute value becomes mandatory on-the-fly may depend
on the concrete value of an attribute belonging to a previous micro step (e.g.,
an appointment needs only be defined if the employee proposes to invite the
applicant). Moreover, future papers will report on the other components of our
framework. As example consider macro processes which refer to multiple object
instances of various object types. Here, issues related to the object-centred coor-
dination and synchronization of related process instances need to be addressed.

References

1. Aalst, W., Hofstede, A., Weske, M.: Business Process Management: A Survey. In:
Proc. BPM’03. LNCS 2678 (2003) 1–12

2. Silver, B.: Case Management: Addressing unique BPM Requirements. BPMS
Watch (2009) 1–12

3. Aalst, W., Weske, M., Grünbauer, D.: Case Handling: A new Paradigm for Business
Process Support. DKE 53(2) (2005) 129–162

4. Sadiq, S., Orlowska, M., Sadiq, W., Schulz, K.: When workflows will not deliver:
The case of contradicting work practice. In: Proc. BIS’05. (2005)

5. Künzle, V., Reichert, M.: PHILharmonicFlows: Towards a Framework for Object-
aware Process Management. Journal of Software Maintenance and Evolution: Re-
search and Practice (2011)

6. Müller, D., Reichert, M., Herbst, J.: Data-Driven Modeling and Coordination of
Large Process Structures. In: Proc. CoopIS’07. LNCS 4803 (2007) 131–149

7. Gerede, C., Su, J.: Specification and Verification of Artifact Behaviors in Business
Process Models. In: Proc. ICSOC’07. (2007) 181–192

8. Bhattacharya, K., Hull, R., Su, J. In: A Data-Centric Design Methodology for
Business Processes. IGI Global (2009) 503–531

9. Küster, J., Ryndina, K., Gall, H.: Generation of Business Process Models for
Object Life Cycle Compliance. In: Proc. BPM’07. LNCS 4714 (2007) 165–181

10. Redding, G., Dumas, M., Hofstede, A., Iordachescu, A.: Transforming Object-
oriented Models to Process-oriented Models. In: Proc. BPM’07 Workshops. LNCS
4928 (2007) 132–143

11. Redding, G.M., Dumas, M., Hofstede, A., Iordachescu, A.: A flexible, object-centric
approach for business process modelling. SOCA (2009) 1–11

12. Reijers, H., Liman, S., Aalst, W.: Product-Based Workflow Design. Management
Information Systems 20(1) (2003) 229–262

13. Vanderfeesten, I., Reijers, H., Aalst, W.: Product-Based Workflow Support: Dy-
namic Workflow Execution. In: Proc. CAiSE’08. LNCS 5074 (2008) 571–574

14. Künzle, V., Reichert, M.: Towards Object-aware Process Management Systems:
Issues, Challenges, Benefits. In: Proc. BPMDS’09. (2009) 197–210

15. Künzle, V., Reichert, M.: Integrating Users in Object-aware Process Management
Systems: Issues and Challenges. In: Proc. BPD’09. (2009) 29–41

16. Künzle, V., Weber, B., Reichert, M.: Object-aware Business Processes: Fundamen-
tal Requirements and their Support in Existing Approaches. International Journal
of Information System Modeling and Design 2(2) (2010)

17. Dijkstra, E.: A Discipline of Programming. Prentice-Hall (1976)
18. Dori, D.: Object-Process Methodology. Springer (2002)

