
Mining Business Process Variants:
Challenges, Scenarios, Algorithms

Chen Lia,, Manfred Reichertb, Andreas Wombacherc

aInformation Systems Group, University of Twente, The Netherlands (lic@cs.utwente.nl) (B)
bInstitute of Databases and Information Systems, Ulm University, Germany (manfred.reichert@uni-ulm.de)

cDatabase Group, University of Twente, The Netherlands (a.wombacher@utwente.nl)

Abstract

During the last decade a new generation of process-aware information systems has emerged,
which enables process model configurations at buildtime as well as process instance changes
during runtime. Respective adaptations result in a large number of process model variants that
were derived from the same process model, but slightly differ in structure. Generally, such model
variants are expensive to configure and maintain. This paper introduces two different scenarios
for learning from process model adaptations and for discovering a reference model out of which
the variants can be configured with minimum efforts. The first scenario presumes a reference
process model and a collection of related process model variants. The goal is to evolve the
reference process model such that it structurally fits better to the given variant models. The
second scenario comprises a collection of process variants, while the original reference model is
unknown; i.e., the goal is to ”merge” these variants into a reference process model. We suggest
two algorithms that are applicable in both scenarios, but which have their pros and cons. We
systematically compare the two algorithms and contrast them with conventional process mining
techniques. Our comparison results indicate good performance of both algorithms. Further they
confirm that specific techniques are needed for learning from past process adaptations. Finally,
we present a case study in the automotive industry in which we applied our algorithms.

1. Introduction

In today’s dynamic business world success of an enterprise increasingly depends on its abil-
ity to react to environmental changes in a quick, flexible and cost-effective way [1, 2, 3]. To
increase the flexibility of Process-Aware Information Systems (PAISs) different approaches for
structurally adapting pre-modeled processes exist, e.g., by adding, deleting or moving process
activities [4, 5]. Respective adaptations are not only needed at buildtime for customizing a given
reference process model to a particular context [6, 7], but also become necessary for tailoring
process instances during runtime in order to deal with exceptional situations and changing needs
[8, 4]. As example consider medical guidelines for patient treatment processes [2], which need to
be customized to fit to the particular healthcare environment in which they are used. Additional
adaptations may become necessary when applying such tailored guideline to a particular patient
[2]. Generally, respective adaptations lead to large collections of process model variants (pro-
cess variants for short) derived from the same process model, but slightly differing in structure
[1, 9]. In case studies we conducted in the healthcare domain and in automotive engineering, for
example, we identified scenarios with dozens up to hundreds of variants [10].
Preprint submitted to Data & Knowledge Engineering January 15, 2011

Original reference process model S customization
& adaptation

mining &
learning

mining &
learning

Process Repository

Scenario 1: Original
reference process model

is known

Discovered reference process model S’

Discovered reference process model S’

Scenario 2: No original
reference process model

is available process variant S1 process variant S2
process variant S5
process variant S3 process variant S4

process variant Sn…

Improving

Goal: Discover a (new) reference process model which requires less configuration efforts

Figure 1: Different scenarios for discovering reference process models

1.1. Problem Statement
Though considerable efforts have been made to enable process configuration and adaptation

[5, 6, 8, 7], most existing approaches have not utilized information about such structural adap-
tations yet [11]. Fig. 1 describes the overall goal of our research. We want to learn from past
process model adaptations in order to discover a (new) reference process model covering the
given variant collection best. By adopting the discovered model in the PAIS, need for future
process adaptations and costs for change will decrease. Generally, finding such an improved ref-
erence model is by far not trivial when considering control flow patterns like sequence, parallel
branching, conditional branching, and loops. Furthermore, major changes of the current refer-
ence process model might be not always preferred due to high implementation costs or for social
reasons. Fig. 1 further differentiates between two fundamental scenarios. In the first scenario the
process variants are derived by configuring a known reference process model. However, when
discovering the new reference process model without considering the old one, we might be con-
fronted with significant structural differences between old and new reference model. Process
engineers should therefore have the flexibility to control to what degree they want to maximally
modify the original reference model to better fit to the given variant collection. Consequently,
closeness of the new reference model to the old one and closeness of this model to the given
variant collection act as ”counterforces”. The second scenario we consider is based on a collec-
tion of related process variants, but does not presume any knowledge about the original reference
process model these variants were derived from. Here we want to discover a reference process
model by ”merging” these variants without considering the aforementioned ”counterforces” .

1.2. Contribution
Based on the assumptions that process models are block-structured [8, 12] and all activities

in a process model have unique labels1, this paper deals with the following research questions:

1. Given the original reference process model and a collection of related process variants,
how can we derive a new reference process model that fits ”better” to these variants? — In
this scenario we want to control the evolution of the reference process model, i.e., we want
to enable process engineers to control to what degree the new reference model ”differs”
from the original one and how ”close” it is to the variant collection.

1The block-structure constraint is discussed in Section 2. Regarding unique activity labeling, we refer to [13] for an
approach that matches activities with different labels.

2

2. Given a collection of process variants without knowledge about the process model they
were derived from, how can we discover a reference process model such that the average
distance between this reference model and the process variants becomes minimal?

3. Which algorithms foster these two scenarios and what are their commonalities and dif-
ferences? How do these algorithms differ from traditional process mining algorithms that
focus on execution behavior?

As input for our analysis we solely require a collection of process variant models (and a
reference process model in the first scenario). In particular, we do NOT presume the existence
of process change logs which comprise information about the change patterns that were applied
when configuring the variants out of the original reference model [14]. Furthermore we measure
the closeness (or distance) between a reference process model and a related process variant in
terms of the number of high-level change operations (e.g., to insert, delete or move activities [8])
needed to transform the reference process model into the respective variant. As reported in [15]
the shorter this distance is, the less the efforts for configuring the variant (i.e., for structurally
adapting the reference process model to derive the variant) are.

In the first scenario, we discover a new reference model by applying a sequence of change
operations to the original one. Thereby, process engineers have the flexibility to control the
similarity between original reference model and newly discovered one, i.e., they may specify how
many change operations shall be maximally applied to the old reference model when discovering
the new one. As benefit of this approach, we can control the efforts for evolving the reference
process model. Further, we can avoid Spaghetti-like model structures — a common challenge in
the field of process mining [16, 17]. Finally, in order to support the first scenario we target at an
approach that considers changes, which significantly contribute to reduce the average distance
between the discovered reference model and the given variant collection, first and less relevant
ones last (cf. Section 4 for a detailed explanation). In the second scenario, we ”merge” the
variants without considering any original reference process model as ”counterforce”. Based on
this simplification we provide another algorithm which shall perform better than the one designed
for the first scenario. We systematically compare the two mining algorithms. We further compare
them with existing process mining algorithms [18]. The latter aim at discovering a process model
by analyzing the execution behavior of completed process instances as captured in execution
logs [18, 19, 17, 20]. Respective logs typically document the start/end of each activity execution
and therefore reflect the behavior of the implemented processes. In principle, process mining
techniques can be applied in our context as well. However, they discover models which cover
behavior best; i.e., their goal is different from ours.

This paper significantly extends our previous work presented in [21]. It handles more process
patterns (e.g., loops), provides more technical and formal details, adds another mining algorithm,
and discusses results from a case study. Finally, we compare our algorithms for process variants
mining with existing process mining algorithms based on different criteria.

The remainder of this paper is organized as follows. Section 2 gives background informa-
tion and introduces a running example. Section 3 deals with important measures for evaluating
process variants in different aspects. Section 4 describes a heuristic algorithm we designed for
Scenario 1, while Section 5 presents a clustering algorithm for handling Scenario 2. We com-
pare the two algorithms with each other as well as with traditional process mining algorithms in
Section 6. Results of a case study in the automotive domain are presented in Section 7. Section
8 discusses related work, while Section 9 concludes with a summary.

3

2. Backgrounds

A process management system (PrMS) provides generic process support functions and allows
for separating process logic from application code. For this purpose, the process logic has to be
explicitly defined based on the modeling patterns provided by a process meta model. At runtime
the PrMS then orchestrates the processes according to the defined logic. For each business pro-
cess to be supported, a process type represented by a process model S has to be defined. In this
paper, a process model is represented as directed graph, which comprises a set of nodes - either
representing process steps (i.e., activities) or control connectors (e.g, And-/Xor-Split) – and a set
of control edges between them. The latter specify precedence as well as loop backward relations.
Furthermore, we presume that process models are block-structured.

Fig. 2 depicts an example of such a process model. Nodes are represented as rectangles while
precedence and loop backwards relations are expressed as directed edges of different type. Each
process model contains a unique start and a unique end node.2 For control flow modeling the
following patterns are available: Sequence, AND-split, AND-join, XOR-split, XOR-join, and
Loop [22]. These patterns constitute the core of any process specification language and cover
most of the process models we can find in practice [23, 24]. Further, they can be easily mapped
to other process execution languages like WS-BPEL as well as to formal languages like Petri
Nets [25, 26]. Based on these patterns we are able to compose more complex process structures
if required (e.g., an OR-split can be mapped to AND- and XOR-splits [27]).

AndJoinXorJoinAndSplitXorSplit
Precedence Loop
StartFlow EndFlowStart End

C

E

F
A

B
D GStart End

Process model S SequenceLoopConditional branching SequenceSequenceParallel branching
Node types:

Edge types:
G (Labeled) activityEndLoop StartLoop

Figure 2: Example of a block-structured process model

Each node a of a process model S may have a label l(a). Such labeled nodes constitute the
activities of S (e.g., activities A and B in Fig. 2). Unlabeled nodes, in turn, represent silent
activities. These have no associated actions and only exist for control flow purpose (e.g., the split
and join nodes in Fig. 2) [28]. In the context our research, for each labeled activity we assume
that its label is unique.3 Regarding the example from Fig. 2, process model S contains 7 normal
activities and 8 silent ones (including the start and end nodes).

We presume that a process model S is block-structured; i.e., activities, sequences, branch-
ings, and loops constitute blocks (cf. Fig. 2) with unique start and end nodes4 [29, 30, 31, 12].
These blocks may be nested, but must not overlap; i.e., their nesting must be regular [8, 12, 29,
31]. Generally a block can be a single activity, a sequence, a parallel branching, a conditional

2For the sake of readability, we omit the start and end node of a process model if its start and end are clear. For
example, this applies to all process models from Fig. 4.

3Since activity labels are unique we assume that two activities from different process variant models are the same if
they have same label. Otherwise, we refer to [13] for an approach that matches activities from different process models
in case they have different labels.

4For example, in Fig. 2 the parallel block comprising activities A and B, and the subsequent activity D together
constitute a block.

4

branching, or S itself. In Fig. 2, the grey areas show selected blocks in process model S , and the
different grey levels indicate their nesting. In principle, we can consider a block itself as block-
structured process model. In the following, we represent each block by a set of activities since
the block-structure itself can be derived from the overall process model S ; e.g., block {A,B} cor-
responds to the parallel block with AND-split and AND-join nodes in S . Similarly, {A}, {A,B,D},
{C,F}, and {A,B,C,D,E,F,G} describe selected blocks contained in S .5 The concept of block-
structuring has been known from block-structured programming languages for a long time [32],
and can be found in process specification language like WS-BPEL and XLANG as well. Further,
process management systems with block-structured process modeling language like AristaFlow
BPM Suite [33] and CAKE2 [34] emerged, which have been applied to a variety of processes
from different domains. When compared to unstructured process models, block-structured ones
are easier understandable and have lower error probability [35, 36, 37]. If a process model is not
block-structured, in many cases we can transform it into a block-structured one [31, 36, 12, 29].
For example, in a case study we analyzed 214 process models from different domains and ex-
pressed in different languages (e.g., Event Process Chains, UML Activity Diagrams). More
than 95% of them were block-structured or could be transformed into a block-structured rep-
resentation [38]. Despite the fact that there exist unstructured process models which cannot be
transformed into block-structure, we consider our mining algorithms for block-structured process
variant models as highly relevant.

Formally, we define block-structured process model and block as follows:

Definition 1 (Block-structured Process Model and Block).

1. A tuple S = (A, E, AT, ET, l) is called block-structured process model iff:

• A is a set of nodes and AT assigns to each node a ∈ A a node type AT (a) ∈
{StartFlow, EndFlow, Normal, AndSplit, AndJoin, XorSplit, XorJoin,

StartLoop, EndLoop}
• E ⊆ A × A is a set of directed edges and ET assigns to each edge e ∈ E an edge

type ET (e) ∈ {Precedence,Loop}. Further, n ≺ m :⇔ n directly or indirectly
precedes m when only considering edges of type precedence.

• Let L be a set of activity labels. l : A→ L is a partial labeling function which
assigns a label l(a) ∈ L to a node a ∈ A.

• S has the block-structure properties as described above (for a formal and precise
description see Appendix A).

2. Let a1, a2 ∈ A with a1 ≺ a2 or a1 = a2. Let further join(a) be a bijective function to map
each split/startLoop node a ∈ A with AT (a) ∈ {AndSplit,XorSplit,StartLoop} to its
corresponding join/endLoop node a′ ∈ A with AT (a′) ∈ {AndJoin,XorJoin,EndLoop}.
Then: The subgraph of S induced by node set B = {a1, a2}⋃{a ∈ A|a1 ≺ a ∧ a ≺ a2}
constitutes a block iff:

• ∀a ∈ B with AT (a) ∈ {AndSplit,XorSplit,StartLoop},⇒ join(a) ∈ B
• ∀a ∈ B with AT (a) ∈ {AndJoin,XorJoin,EndLoop},⇒ join−1(a) ∈ B

We do not provide an operational semantics for block-structured process models here, but
refer to [8, 39, 29] instead. As the process patterns used in block-structured process model can

5Here, {C,F} only refers to the sequence structure containing activities C and F. We discuss in Section 3.1 how loop
blocks are represented.

5

be easily mapped to WS-BPEL [25] or Petri Nets [22, 26], we could also describe the operational
semantics of block-structured process models based on these languages. In principle, we can
consider block-structured process models as a subclass of Workflow Nets [26], for which the
net models follow respective structuring constraints. Similar to a Workflow Net, we consider a
block-structured process model S as being sound iff the following properties hold: (1) proper
completion (i.e., when the EndFlow node becomes enabled, all other nodes cannot be enabled
anymore), (2) absence of deadlocks (i.e., as long as the EndFlow node has not been enabled,
there is no execution situation in which no node is enabled), and (3) absence of dead tasks (i.e.,
there exists no node, which can be never enabled). For a formal description of these properties,
we refer to [26, 40, 29]. We consider soundness as fundamental requirement any process model
should satisfy as prerequisite for its proper execution and analysis [40, 8] (see [29, 8, 39, 40, 26]
for techniques checking soundness). In the following, P denotes the set of all block-structured
and sound process models.

Based on this, we define the notion of trace as follows:

Definition 2 (Trace). Let S = (A, E, AT, ET, l) ∈ P be a sound and block-structured process
model. Let further t ≡< a1, a2, . . . , ak > (with ai ∈ A) be a sequence of activities. We denote t as
trace of S iff:

• t is valid, i.e., the given execution sequence is producible on S .
• t is complete, i.e., a1 is executed immediately after completion of the StartFlow node, and

ak is executed immediately before executing the EndFlow node.

We define TS as the set of all traces that can be produced by process model S .

We only consider traces that log events related to labeled activities, whereas events concern-
ing silent activities are excluded (cf. Def. 1). As example consider process model S from Fig.
2. Sequences like ABDEG, BADCFG and ABDCFCFCFG constitute valid and complete traces of S .
Like most process mining algorithms, we assume that the behavior of process model S can be
expressed in terms of its trace set TS. Note that TS can be an infinite set if S contains loops.

Process change: A process change is accomplished by applying a sequence of high-level
change operations to the respective process model [8]. Such operations structurally modify a
given process model by altering its set of activities and their order relations. The most relevant
high-level change operations are insert, delete, and move activity as implemented in the ADEPT
change framework [8]. Table 1 depicts these three change operations and informally describes
their effects on process models. While insert and delete modify the activity set of a process

Change Operation ∆ on S opType subject paramList
insert(S, X,A,B, [sc]) insert X S,A,B, [sc]
Effects on S: inserts activity X between activity setsA and B. X is conditionally inserted if [sc] is specified.

delete(S, X) delete X S
Effects on S: deletes activity X from S, i.e., X turns into a silent activity.

move(S, X,A,B, [sc]) move X S,A,B, [sc]
Effects on S : moves activity X from its original position in S to another position between activity
setsA and B (X is conditionally inserted if [sc] is specified).

Table 1: High-Level Change Operations

6

(a) process model S
CEAB D GStart End ACD GStart EndFEBCE FAB D GStart End CE FAB D GStart EndX(b) after insertion Sinstmove (S, A, StartLoop, F)

insert (S, X, startFlow, endFlow, sc)
delete(S, F) (d) after move Smov(c) after deletion Sdel

Figure 3: Influence of three change operations

model, move changes activity positions and thus process model structure (i.e., activity order
relations). A formal semantics of these change operations is provided in [41]. It is based on the
differences between the trace sets that can be produced on process models before and after their
change. Issues concerning the correct use of change operations, their generalization and pre-
/post-conditions are discussed in [8, 30]. Finally, by using high-level change operations instead
of change primitives (i.e., elementary changes like adding or removing single nodes or edges), we
can preserve block structure and guarantee soundness in the context of process changes. Further,
we obtain a more meaningful measure for the distance between two models [28, 4].

As example consider Fig. 3. The original process model S is depicted in Fig. 3a. Fig. 3b -
Fig. 3d depict process models S inst, S del and S mov that result from S after performing an insertion,
deletion or move operation. Note that silent activities, which only exist for control flow purpose,
are adapted automatically when applying such high-level change operation. For example, when
moving activity A within S (as expressed by operation move(S , A,StartLoop,F)) the two silent
activities marking the AND-split and AND-join in S are removed automatically (cf. Fig. 3d).

Finally, a complex process change is accomplished by applying a sequence of high-level
change operations to the given process model. An illustrating scenario is depicted in Fig. 4,
where we list the change operations needed to transform model S into S i (i = 1, . . . , 6).

Definition 3 (Process Change and Process Variant). Let P denote the set of sound and block-
structured process models and let C be the set of possible process changes. Let S , S ′ ∈ P be
two process models, let ∆ ∈ C be a process change expressed in terms of a high level change
operation, and let σ = 〈∆1,∆2, . . .∆n〉 ∈ C∗ be a sequence of process changes performed on
initial model S . Then:

• S [∆〉S ′ iff ∆ is applicable to S and S ′ is the (sound) process model resulting from the
application of ∆ to S .

• S [σ〉S ′ iff ∃ S 1, S 2, . . . S n+1 ∈ P with S = S 1, S ′ = S n+1, and S i[∆i〉S i+1 for i ∈ {1, . . . n}.
We denote S ′ as process variant of S .

Though the depicted change operations are discussed in relation to ADEPT, they are generic
in the sense that they can be applied in connection with other process meta models as well
[41, 4]; e.g., a process change as realized in ADEPT can be mapped to the concept of life-
cycle inheritance known from Petri Nets [40]. We refer to ADEPT since it covers by far most
high-level change patterns and change support features when compared to other adaptive PAIS
[4]. Furthermore, with AristaFlow BPM Suite [33] an industrial-strength version of the ADEPT

7

technology emerged, which has been extensively used in a variety of application domains [42].6

Based on Def. 3 and the given change operations, we define distance and bias as follows:

Definition 4 (Bias and Distance). Let S , S ′ ∈ P be two sound and block-structured process
models. Then: Distance d(S ,S ′) between S and S ′ corresponds to the minimal number of high-
level change operations (cf. Table 1) needed to transform S into S ′. We define d(S ,S ′) =

min{|σ|
∣∣∣ σ ∈ C∗ ∧ S [σ〉S ′}. Furthermore, a sequence of change operations σ with S [σ〉S ′

and |σ| = d(S ,S ′) is denoted as bias B(S ,S ′) between S and S ′.

The distance between process models S and S ′ corresponds to the minimal number of high-
level change operations needed for transforming S into S ′. The corresponding sequence of
change operations is denoted as bias B(S ,S ′) between S and S ′.7 Usually, distance measures the
complexity of a process model configuration. As example take Fig. 4. Here, distance between
model S and variant S 4 corresponds to four, since we minimally need to apply four change
operations to transform S into S 4 [28]. In general, determining the bias and distance between
two process models has complexity atNP-hard level [28]. We refer to [28] for an approach that
automatically computes the distance and bias between two block-structured models without need
of a process change log.

Fig. 4 depicts an illustrating example of an original reference process model S ∈ P and 6
related process variants S i ∈ P that were configured out of S by applying a sequence of change
operations to it. All process models are block-structured (cf. Def. 1). Note that the variants do
not only differ in structure, but also in respect to their activity sets; e.g., activity X appears in 5 of
the 6 variants (except S 2), while Z only appears in S 5. Furthermore, variants may be weighted.
In our context, we define the weight wi of a process variant S i as number of process instances
that were created from S i and executed on it; e.g., 25 instances were executed on S 1, while 20
instances ran on S 2. If we only know the variants, but have no runtime information about related
instance executions, we assume variants to be equally weighted; then every variant has weight 1.

We can compute the distance (cf. Def. 4) between an original reference model S and each
process variant S i as well as related biases. For example, when comparing S with S 1 we obtain
5 as distance (cf. Fig. 4); i.e., we need to apply five high-level change operations to transform
S into S 1: delete(loop), move(S , H,I,D), move(S , I,J, endFlow), move(S , J,B, endFlow), and
insert(S , X,E,B) (cf. Def. 3). Based on the weight wi of each variant S i, we can compute average
weighted distance between a reference model S and its variants as follows:

Definition 5 (Average Weighted Distance). Let S ∈ P be a reference process model. Let fur-
therM be a set of process variants S i ∈ P, i = 1, . . . , n, derived from S , with wi representing the
number of process instances that were executed on basis of S i. The Average Weighted Distance
D(S ,M) between S andM can be computed as follows:

D(S ,M) =

∑n
i=1 d(S ,S i) · wi∑n

i=1 wi
(1)

6Visit www.aristaflow-forum.de for more information and illustrating screen casts.
7Generally, it is possible that there exists more than one minimal sequence of change operations for transforming S

into S ′, i.e., the bias of the two models does not need to be unique. Therefore, B(S ,S ′) refers to an element from a set that
contains all possible change sequences which transform S into S ′ and which comprise d(S ,S ′) change operations. In this
paper, we do not make such difference and for any σ with S [σ〉S ′ and |σ| = d(S ,S ′), we consider it as a bias (see [40, 28]
for a detailed discussion of this issue).

8

Process configuration
original reference model

S1 S2
S3 S4
S5 S6E Y B JGI HC Z D

AFX

G
E BAF IX JDCH

G
Y HC D BIE JAFX

AF IE B
Y

J
GC H

E B
Y

JGI H C D
AFX

XorSplitXorJoin

S

Weight: w1 = 25
Weight: w3 = 10
Weight: w5 = 20

Weight: w2 = 20
Weight: w4 = 15
Weight: w6 = 10 PrecdenceLoop

GE BI JAFC D H
AndSplitAndJoin

Average weighted distance = 4.85 change / instance

GH C DE B IJAFX

d(S,S5)= 5< insert(S, Y, {A,F}, B), insert(S, X, E, Y), insert(X, Z, C, D), delete (loop), move (S, J, B, endFlow) >B(S,S5)=Bias:Distance: d(S,S6)= 5< insert(S, X, E, B), insert(S, Y, startFlow, B), delete (loop), move (S, J, B, endFlow), move (S, H, I, C) >B(S,S6)=Bias:Distance:
Distance: d(S,S3)= 5< delete (loop), move(S, J, {A,F}, B), insert(S, X, E, J), Insert (S, Y, startFlow, I), move(S, I, D, H) >B(S,S3)=Bias: d(S,S4)= 4< move(S, H, startFlow, I), insert(S, X, E, B), move (S, I, B, endFlow), move (S, J, B, endFlow, con) >B(S,S4)=Bias:Distance:
Distance: d(S,S1)= 5< delete (loop), move (S, H, I, D), move(S, I, J, endFlow),move (S, J, B, endFlow), insert(S, X, E, B) >Bias: B(S,S1)= d(S,S2)= 5< insert(S, Y, E, B, con), delete (loop), move(S, C, startFlow, I), move (S, J, B, endFlow), move (S, I, D, H) >B(S,S2)=Bias:Distance:

EndLoopStartLoop

D

Figure 4: An illustrating example of a reference process model and related process variants

The complexity to compute average weighted distance is NP-hard since the complexity to
compute the distance between two variants is NP-hard (cf. Def. 4). Regarding our example
from Fig. 4, the distance between S and S 4 is 4, while the distances between S and S i (i , 4)
correspond to 5. When considering variant weights, we obtain as average weighted distance:
(5×25+5×20+5×10+4×15+5×20+5×10)/(25+20+10+15+20+10) = 4.85. This means
we need to perform on average 4.85 high-level change operations to configure a process variant
S i (and related instance respectively) out of reference process model S . Generally, average
weighted distance between reference model and its variants expresses how ”close” they are.

Our goal is to discover a reference model with shorter average weighted distance to a given
collection of (weighted) process variants than the current reference model (Scenario 1), or mini-
mal average weighted distance if the original reference model is unknown (Scenario 2).

3. Matrix-based Representation of Process Models and Process Variant Collections

As basic input for our mining algorithms we take a collection of process variants and option-
ally the original reference model they were derived from. This section shows how we represent
this information. Its use will be discussed in Sections 4 and 5.

3.1. Representing a Block-structured Process Model as Order Matrix
This subsection first introduces process structure trees which provide a unique tree repre-

sentation of block-structured process models [31] (cf. Section 3.1.1). Then we present the con-
cept of order matrix which can be uniquely constructed out of a given process structure tree

9

(cf. Section 3.1.3). Consequently, an order matrix also constitutes a unique representation of a
block-structured process model. Representing process models in terms of a matrix is common in
areas like process mining [17], process analysis [26] and process change management [28]. In
particular, a matrix constitutes a mathematical representation which enables advanced analyses
and processing options. In our mining algorithms (cf. Sections 4 and 5), we use order matrices
as unique representations of block-structured process models.

3.1.1. Process Structure Tree
Transforming a block-structured model into a tree representation has its roots in structured

programming and compiler theory [43]. Such transformation is applied, for example, when ana-
lyzing block-structured languages like XML or BPEL. In this paper we apply the approach from
[31], which can transform a block-structured process model S into a refined process structure
tree in linear time. Such refined process structure tree constitutes a unique representation of a
process model. In the following, we denote it as process structure tree for short.

Definition 6 (Process Structure Tree). A tuple T = (N,C,CT, E, l) is called a process structure
tree if the following holds:

• N is a set of nodes.
• C is a set of connectors and CT assigns to each connector c ∈ C a connector type

CT (c) ∈ {Seq, AND, XOR, Loop}.
• E ⊆ (C ×C)

⋃
(C × N) is a set of directed edges.

• For each cp ∈ C with CT (cp) = Seq, its children in the process structure form an order
< acp1

, acp2
, . . . , acpk

> with acp1
, . . . , acpk

∈ N
⋃

C and (cp, acp1
), . . . , (cp, acpk

) ∈ E. We
denote acpi

�cp acp j
iff i < j.

• Let L be a set of activity labels, l : N → L is a partial labeling function which assigns
a label l(n) to a node n ∈ N.

Process model S

(a) (b)

Process structure tree T

C E FAB D GStart End
Process model S SequenceLoopConditional branching SequenceSequenceParallel branching XOR1Loop1

Seq1AND1 D GA B ESeq2C F τ
Figure 5: Process Model S and its corresponding process structure tree T

A process structure tree is
an ordered tree which consists
of a set of nodes, a set of con-
nectors, and a set of directed
edges linking them. The label-
ing function l assigns labels to
nodes in a similar way as in
Definition 1. Fig. 5 shows a
block-structured process model
S and its corresponding pro-
cess structure tree T . In such
a tree, nodes (represented as

rectangles) correspond to activities while connectors (represented as ellipses) represent their re-
lations based on process patterns like Sequence, AND-block, XOR-block, and Loop [22]. The
precedence relations (expressed by connector Seq) are parsed from left to right; e.g., the AND-
block containing activities A and B as well as their connector AND1 precedes activity D since this
block is on the left. Note that when representing a loop structure within a process structure tree
T , we introduce a silent activity τ as direct successor of the respective Loop connector (cf. Fig.

10

5b). This way we ensure that any connector in T always has at least two successors.8 In a process
structure tree, nodes correspond to leaves, while connectors are non-leaves. Finally, a process
structure tree has a unique root node without incoming edges.

Definition 7 (Ancestor and Subtree). Let T = (N,C,CT, E, l) be a process structure tree. Let
a, b ∈ N

⋃
C be two elements of T . Then:

1. a is an ancestor of b (a ≺ b) : ⇔ There exists a path from a to b.
2. AT (a) = {b|(b ∈ N

⋃
C) ∧ (a ≺ b)} is denoted as descendant set of element a ∈ N

⋃
C.

3. A subtree T ′ of tree T is a process structure tree T ′ = (N′,C′,CT ′, E′, l) with the following
properties:

• (N′ ⊆ N)∧ (C′ ⊆ C)
• ∃a ∈ N′

⋃
C′ : N′

⋃
C′ = AT (a)

⋃{a}; i.e., a is the root element of T ′

• E′ = {(a, b)|a, b ∈ N′
⋃

C′ ∧ (a, b) ∈ E}
A sub-tree T ′ = (N′,C′,CT ′, E′, l) of process structure tree T = (N,C,CT, E, l) is a con-

nected fragment of T which contains a unique root element a ∈ N
⋃

C and all its descendants.
As example consider Fig. 5b: Activities A and B, their connector AND1, and the edges linking
them can form a subtree of T . Since the process model S represented by T is block-structured,
any subtree of T corresponds to a block of S ; i.e., a process structure tree and its hierarchical
decomposition into subtrees correspond to a block-structured process model and its hierarchical
decomposition into blocks [31]. Given an element e ∈ N

⋃
C in a process structure tree and

taking Def. 7, we are able to construct a subtree T (e) by identifying its descendant set AT (e)
and the edges linking them. In our example, the subtree of connector Loop1 is a tree containing
nodes C,F and τ, connectors Loop1 and Seq, 2 and the edges connecting these elements.

The main reason to transform a block-structured process model into its corresponding process
tree is as follows. A process structure tree contains less unnecessary silent activities such that it
provides a clear picture of the process model’s structure and the relations between its activities.

3.1.2. Nearest Common Ancestor
Before we apply process structure trees in our context, we introduce the concept of nearest

common ancestor:

Definition 8 (Nearest Common Ancestor). Let T = (N,C,CT, E, l) be a process structure tree
and let a, b ∈ N be two different nodes of T . Then: we denote connector c ∈ C as nearest
common ancestor NCA(a, b) of these two nodes iff:

• c ≺ a and c ≺ b
• @c′ ∈ C : c′ ≺ a, c′ ≺ b and c ≺ c′

Note that the nearest common ancestor of two nodes always refers to a connector since nodes
constitute leaves of the process structure tree and consequently cannot be ancestors. Here we
have assumed that a process structure tree contains at least two nodes and one connector. Find-
ing the nearest common ancestor in a tree is a well researched topic. Based on the algorithms
presented in [44], we are able to compute the nearest common ancestor for any two nodes in a
process tree T in linear time; i.e., O(n) with n = |N ⋃

C|.

8Connectors of type Seq, AND and XOR represent a relation between its successors and require at least two successors.
In case of ”empty” branches in an XOR branching, silent nodes are introduced for representing them.

11

3.1.3. Representing a Process Model as Order Matrix
Based on the process structure tree T of a block-structured process model S and the concept

of nearest common ancestor (cf. Def. 8), we can introduce the notion of order matrix, which
uniquely represents a process structure tree and thus a block-structured process model.

Definition 9 (Order matrix). Let S be a block-structured process model and let T = (N,C,CT, E, l)
be its process structure tree. A is called order matrix of T with Aaia j representing the order rela-
tion between activities ai,a j ∈ N, i , j iff:

• Aaia j = ’1’ iff in T , ai and a j have as nearest common ancestor c ∈ C with CT (c) = Seq;
let el and er be two children of c with el �c er and let further Tel and Ter be two subtree of
T with root elements being el and er, ai is contained in the Tel and a j is contained in Ter .

• Aaia j = ’0’ iff in T , ai and a j have as nearest common ancestor c ∈ C with CT (c) = Seq;
let el and er be two children of c with el �c er and let further Tel and Ter be two subtree of
T with root elements being el and er, ai is contained in the Ter and a j is contained in Tel .

• Aaia j = ’+’ iff in T , ai and a j have as nearest common ancestor c ∈ C with CT (c) = AND.
• Aaia j = ’-’ iff in T , ai and a j have as nearest common ancestor c ∈ C with CT (c) = XOR.
• Aaia j = ’L’ iff in T , ai and a j have as nearest common ancestor c ∈ C with CT (c) = Loop.

Order matrix A

A
A
B

B C D E F G

C
D
E
F
G

11 1 1 11 1 1 1 11 11 1 1 1110 0 00 00 0 00 00 0 0 00 0 0 0
+

+

-

- -
-

τ

τ

111
-010 0 0L L-

LL‘0’ : successor ‘1’ : predecessor‘+’ : AND-block ‘-’ : XOR-block‘L’ : Loop

(a) (b)

Process structure tree T

XOR1Loop1
Seq1AND1 D GA B ESeq2C F τ

Figure 6: Process structure tree T and its corresponding order matrix A

Fig. 6 depicts the process struc-
ture T from Fig. 5b and its cor-
responding order matrix A. Note
that silent activity τ, which was in-
troduced as the direct successor of
connector Loop1 in T , is included
in the order matrix A as well (cf.
Section 3.1.1). This order matrix
contains all five order relations from
Def. 9. For example, activities E
and C have as nearest common an-
cestor connector XOR1. Thus, we as-
sign ’-’ to matrix elements AEC and

ACE. Since activities B and G have as nearest common ancestor connector Seq1, and B is on its
left subtree while G is on its right, we further obtain order relations ABG = ’1’ and AGB = ’0’
respectively. Special attention should be paid to the order relations between silent activity τ and
the other activities. Since τ is direct successor of connector Loop1, order relation ’L’, indicates
those nodes in T which are descendants of this loop connector. Consequently, the order relations
between τ on the one hand and activities C and F on the other hand are set to ’L’. This implies
that C and F are descendants of a loop connecter and consequently implies that they are included
in a loop block in the corresponding process structure tree and process model respectively. Note
that the main diagonal of an order matrix is empty since we do not compute the nearest common
ancestor of an activity with itself. Theorem 1 states that an order matrix A can uniquely represent
a corresponding process structure tree T .

Theorem 1. Let T = (N,C,CT, E, l) be a process structure tree. Let further A|N |×|N | be the order
matrix constructed based on T . Then: Such order matrix A exists and is unique.

Proof. See Appendix B.

12

Since a process structure tree T constitutes a unique representation of a block-structured
process model S [31], and T can be uniquely represented by an order matrix A (cf. Theorem
1), A is a unique representation of S as well. Consequently, it is sufficient to analyze the order
matrix of a block-structured process model. We make use of this in Sections 4 and 5. In [45] we
provided algorithms which transform a process model directly to its order matrix and vice versa.

3.2. Representing a Collection of Process Variants as Aggregated Order Matrix

‘0’ : successor
‘1’ : predecessor
‘+’ : AND-block
‘-’ : XOR-block

0 1

+ -
L

‘L’ : Loop-block

00 . 1 90 0 . 8 10 00 . 1 70 0 . 8 30 000 01 000 10000 1000 . 2 50 0 . 1 50 . 6 010 00 00 . 8 30 0 . 1 70 000 10 000 10000 10000 10 000 0 . 50 . 5 000 10 000 10000 01000 0 . 8 10 . 1 9000 10 00 . 50 0 . 50 000 10 000 00000 0 . 1 70 . 8 3000 0 . 8 30 . 1 7000 0 . 8 30 . 1 7 000 10 000 10 000 00000 10010 00000 01 000 10 000 00 000 00000 10000 10010 00
000 10 00 . 1 70 . 8 3 00 010 00 000 01000 1000 . 60 0 . 1 50 . 2 5H I J X Y Z τ

H

I

J

X

Y

Z

τ

VH I = (0.6, 0.25, 0, 0.1, 0)

‘0’ : 60%
‘1’ : 25%
‘+’ : 0%
‘-’ : 15%
‘L’ : 0%

VS1 :25% S 2 :20% S 3 :10% S4 :15% S 5 :20% S 6 :10%
H I J X Y Z τ

H 1 - -
I 0 - -
J - - 0
X - - 1
Y
Z
τ

H I J X Y Z τ

H 0 - -
I 1 - -
J - - 0
X
Y - - 1
Z
τ

H I J X Y Z τ

H 0 - - 0
I 1 - - 0
J - - 0 -
X - - 1 -
Y 1 1 - -
Z
τ

H I J X Y Z τ

H - - - 1
I - - 0 -
J - - 0 -
X - 1 1 -
Y
Z

0 - - -τ

H I J X Y Z τ

H 0 - - - 0
I 1 - - - 1
J - - 0 0 -
X - - 1 1 -
Y - - 1 0 -
Z 1 0 - - -
τ

H I J X Y Z τ

H 0 - - -
I 1 - - -
J - - 0 0
X - - 1 -
Y - - 1 -
Z
τ

Order matrices

Aggregated order matrix

Figure 7: Aggregated order matrix based on process variants

In order to facilitate the analysis of a collection of process model variants, this section intro-
duces the concept of Aggregated Order Matrix, which represents a collection of process model
variants as a high-dimensional matrix. For computing the aggregated order matrix, we first de-
termine the order matrix of each block-structured process variant. In this context, we consider
activities from different variants being the same if they have the same label.9 Regarding our ex-
ample from Fig. 4, we need to compute six order matrices (cf. Fig. 7). Due to space limitations,
Fig. 7 only provides a partial view on them (i.e., activities H,I,J,X,Y,Z and silent activity τ
representing the Loop-block). Following this, we analyze the order relations for each pair of
activities based on all derived order matrices. As the order relations between two activities might
be not the same in all order matrices, this analysis does not result in a fixed relation, but in a
distribution for the five types of order relations (cf. Def. 9). Regarding our example, in 60% of

9We refer to [13] for an approach that matches activities from different process models in case they have different
labels. Note that we can also use this technique to handle silent activities which represent the loop structures in a process
structure tree. If there are multiple silent activities in each of the process structure trees we can map these silent activities
based on their context (e.g., their relationship to other activities). In the following, we assume that such mapping between
activities (including silent ones) in different process structure trees has already been established.

13

all cases H succeeds I (as in S 2, S 3, S 5 and S 6), in 25% of all cases H precedes I (as in S 1), and in
15% of all cases H and I are contained in different branches of an XOR-block (as in S 4) (cf. Fig.
7). Generally, for a given variant collection we define the order relation between two activities a
and b as 5-dimensional vector Vab = (v0

ab, v
1
ab, v

+
ab, v

−
ab, v

L
ab). Each vector field corresponds to the

relative frequency of the respective relation type (’0’, ’1’, ’+’, ’-’, or ’L’) as specified in Def. 9.
Take our example from Fig. 4 and consider Fig. 7: v1

HI = 0.25 corresponds to the frequency of
all order matrices with activities H and I having order relationship ’1’, i.e., all cases for which H
precedes I. We obtain VHI = (0.6, 0.25, 0, 0.15, 0).

Definition 10 (Aggregated Order Matrix). Let S i ∈ P, i = 1, 2, . . . , n be a collection of pro-
cess variants. Let further Ti = (Ni,Ci,CTi, Ei, li) and Ai be the process structure tree and the
order matrix of S i, and wi be the number of process instances that were executed on S i. The Ag-
gregated Order Matrix of all process variants is defined as 2-dimensional matrix Vm×m with m =

|⋃ Ni| and each matrix element va jak = (v0
a jak

, v1
a jak

, v+
a jak

, v−a jak
, vL

a jak
) being a 5-dimensional vector.

For3 ∈ {0, 1,+,−, L}, element v3a jak
expresses to what percentage, activities a j and ak have order

relation 3 within the given variant collection S 1, . . . , S n. Formally:
∀a j, ak ∈ ⋃

Ni, a j , ak :

v3a jak
=

∑
Aia jak

=′3′ wi
∑

a j,ak∈Ni
wi

. (2)

Fig. 7 partially shows the aggregated order matrix V for the process variants from Fig. 4.
Due to space limitations, we only consider order relations for activities H,I,J,X,Y,Z, and silent
activity τ which represents the Loop-block.

3.3. Measuring Activity Frequencies in a Variant Collection

H I J X Y Z τ

H 1 1 0.8 0.6 0.2 0.15

I 1 1 0.8 0.6 0.2 0.15

J 1 1 0.8 0.6 0.2 0.15

X 0.8 0.8 0.8 0.4 0.2 0.15

Y 0.6 0.6 0.6 0.4 0.2 0

Z 0.2 0.2 0.2 0.2 0.2 0

0.15 0.15 0.15 0.15 0 0τ

Figure 8: Coexistence Matrix

Generally, the order relations computed by an aggregated or-
der matrix may be not equally important. For example, relation
VHI between H and I (cf. Fig. 7) is more important than relation
VHZ, since H and I co-appear in all six process variants, while H
and Z only co-occur in S 5 (cf. Fig. 4). We introduce the co-
existence matrix CE to indicate the importance of the different
order relations that occur within an aggregated order matrix V .

Definition 11 (Coexistence Matrix). Let S i ∈ P, i = 1, 2, . . . , n
be a collection of process variants. Let further Ti =

(Ni,Ci,CTi, Ei, li) be the process structure tree of S i, Ai be the
corresponding order matrix of S i, and wi be the number of
process instances that were executed on S i. The Coexistence Matrix of variant collection
{S 1, . . . , S n} is then defined as 2-dimensional matrix CEm×m with m = |⋃ Ni|. Each matrix
element CEa jak corresponds to the relative frequency with which activities a j and ak co-occur
within the given variant collection. Formally: ∀a j, ak ∈ ⋃

Ni, a j , ak :

CEa jak =

∑
S i:a j,ak∈Ni

wi∑n
i=1 wi

(3)

Fig. 8 shows the coexistence matrix for our running example. Again, we only depict the
coexistence matrix for activities H,I,J,X,Y,Z, and silent activity τ; e.g., we obtain CEHI = 1
and CEHZ = 0.2. This indicates that the order relation between H and I is more important than
the one between H and Z. For a given variants collection, we can further measure how frequent
each activity ai appears using Activity Frequency:

14

Definition 12 (Activity Frequency). Let S i ∈ P, i = 1, 2, . . . , n be a collection of process vari-
ants. Let further Ti = (Ni,Ci,CTi, Ei, li) be the process structure tree of S i, Ai be the corre-
sponding order matrix, and wi be the number of process instances that were executed on S i. For
each a j ∈ ⋃n

i=1 Ni, we define g(a j) as relative frequency with which a j appears within the given
variant collection. Formally:

g(a j) =

∑
S i:a j∈Ni

wi∑n
i=1 wi

(4)

Table 2 shows the relative frequency of activities contained in the process variants of our
running example (cf. Fig. 4); e.g., activity X is present in 80% of the variants (i.e., in S 1, S 3, S 4,
S 5, and S 6), while Z only occurs in S 5 (i.e., 20% of the variants). Since S 4 contains a loop-block,
we obtain 15% as the frequency with which silent activity τ occurs (cf. Def. 9).

Activity A B C D E F G H I J X Y Z τ

g(a j) 1 1 1 1 1 1 1 1 1 1 0.8 0.6 0.2 0.15

Table 2: Relative frequency of each activity within the given variant collection

4. Scenario 1: Evolving Reference Process Models by Learning from Past Model
Adaptations: A Heuristic Approach

As discussed in Section 2, measuring the distance between two block-structured process
models (cf. Def. 4) constitutes an NP-hard problem; i.e., the time for computing distance is
exponential to the size of the process models. Consequently, the problem set out in our research
question (i.e., finding a reference process model with minimal average weighted distance to the
process variants) constitutes an NP-hard problem as well. When encountering real-life cases
(i.e., dozens up to hundreds of variants with complex structure), finding ”the optimum” would
either be too time-consuming or simply be not feasible. In this section, we present a heuristic
search algorithm for mining process variants, while being able to control the maximum distance
between old and new reference process model (cf. Scenario 1).

Heuristic algorithms have been widely used in fields like Artificial Intelligence [46], Data
Mining [47] and Machine Learning [48]. A problem employs heuristics when ”it may have an
exact solution, but the computational cost of finding it may be prohibitive” [46]. Although heuris-
tic algorithms do not aim at finding the ”real optimum” (i.e., it is neither possible to theoretically
prove that the discovered result is the optimum nor can we state how close it is to the optimum),
they are widely used in practice. Usually, heuristic algorithms provide a nice balance between
goodness of the discovered solution and computation time needed for finding it [46]. Informally,
our heuristic algorithm for process variants mining works as follows:

Step 1. Use the original reference model S as starting point.
Step 2. Search for all neighboring process models with distance 1 to the currently consid-

ered reference process model S . If we are able to find a better model S ′ among
these candidate models (i.e., one which is expected to have lower average weighted
distance to the given variant collection when compared to S), we replace S by S ′.

Step 3. Repeat Step 2 until we either cannot find a better model or the maximally allowed
distance between original and new reference process model is reached. The last S ′

then represents the discovered reference model.

Very important for any heuristic search algorithm are two aspects: the heuristic measure
and the algorithm that uses heuristics to search the state space. Section 4.1 introduces the fitness

15

function we suggest for measuring the ”quality” of a particular candidate model. Section 4.2 then
introduces a best-first search algorithm for searching the state space which contains all candidate
process models.

4.1. Fitness Function

Generally, the fitness function of a heuristic search algorithm should be quickly computable.
Since search space often becomes very large, we should be able to make a quick decision when
performing the search. In our context, average weighted distance (cf. Def. 5) would be not a
good choice since the complexity for computing it isNP-hard. Therefore we introduce a fitness
function which can be used to approximately measure ”closeness” between a candidate reference
model and the given variant collection. In particular, this fitness can be computed in polynomial
time. Like in most heuristic search algorithms, the chosen fitness function is a ”reasonable
guessing” rather than a precise measurement. Section 4.4 evaluates our choice by investigating
the correlation between our fitness function and average weighted distance (cf. Def. 5).

4.1.1. Activity Coverage
Given a candidate reference process model S c ∈ P and its process structure tree T =

(Nc,Cc,CTc, Ec, lc) we first measure to what degree activity set Nc covers the activities that oc-
cur in the variant collection. Note that we also consider silent activities τk representing loop
connectors in T (cf. Section 3.1.1). We denote this measure as activity coverage AC(S c) of S c.

Definition 13 (Activity coverage). Let S i, i = 1, . . . , n be a collection of process variants, and
let Ti = (Ni,Ci,CTi, Ei, li) be the process structure tree of S i. Let further M =

⋃n
i=1 Ni be

the set of activities that are present in at least one of the process structure trees. Let further
Tc = (Nc,Cc,CTc, Ec, lc) be the process structure tree of candidate process model S c. Given
activity frequency g(a j), for each a j ∈ M the activity coverage AC(S c) of S c is defined as follows:

AC(S c) =

∑
a j∈Nc

g(a j)∑
a j∈M g(a j)

(5)

Obviously, AC(S c) ∈ [0, 1] holds. Consider Fig. 4 and take the original reference model
S as candidate model. It contains activities A, B, C, D, E, F, G, H, I, J, and τ (which
represents the Loop-block). Its activity coverage AC(S) expresses to what degree S covers the
activities in the given variant collection; we obtain AC(S) = 10.15

11.8 = 0.860.

4.1.2. Structure Fitting of a Candidate Process Models
AC(S c) measures how representative the activity set of candidate model S c is in respect to

the given variant collection. However, it does not state how well the structure of S c (i.e., its
order relations) fits to these variants. We therefore introduce structure fitting S F(S c) as second
metrics. It measures to what degree S c structurally fits to the given variants collection. For this
purpose, we use the aggregated order matrix (cf. Def. 10) and coexistence matrix (cf. Def. 11).

Since we can represent a candidate process model S c by its corresponding order matrix Ac

(cf. Def. 9), we determine the structure fitting S F(S c) between S c and the variants by measuring
how similar the order matrix Ac and the aggregated order matrix V (representing the variants)
are. Take original reference model S in Fig. 4 as candidate process model S c (i.e., S c := S).
Obviously, AHI =’0’ holds, i.e., H succeeds I in S (cf. Fig. 4). Consider now the aggregated
order matrix V representing the variants (cf. Fig. 7). Here the order relation between H and I is
represented by the 5-dimensional vector VHI = (0.6, 0.25, 0, 0.15, 0). If we now want to compare

16

how close AHI and VHI are, we first need to build an aggregated order matrix Vc purely based
on our candidate process model S c (S in our case). Trivially, as order relation between H and
I in Vc, we obtain Vc

HI = (1, 0, 0, 0, 0). We then compare VHI (which represents the variants)
with Vc

HI (which represents the reference model). We use Euclidean metrics f (α, β) to measure
closeness between two vectors α = (x1, x2, ..., xn) and β = (y1, y2, ..., yn):

f (α, β) =
α · β
|α| · |β| =

∑n
i=1 xiyi√∑n

i=1 x2
i ·

√∑n
i=1 y2

i

∈ [0, 1] (6)

f (α, β) computes the cosine value of the angle θ between vectors α and β in Euclidean space.
If f (α, β) = 1 holds, α and β exactly match in their directions; f (α, β) = 0 means, they do not
match at all. Regarding our running example, we obtain f (VHI,V

c
HI) = 0.899. This indicates

high similarity between the order relation of H and I in the candidate process model with the
ones captured by the variants. Based on Euclidean metrics, which measures similarity between
the order relations, and Coexistence matrix CE (cf. Def. 11), which measures importance of the
order relations, we formally define structure fitting S F(S c) of a candidate model S c as follows:

Definition 14 (Structure Fitting). Let S i ∈ P, i = 1, 2, . . . , n be a collection of process variants
and let Ti = (Ni,Ci,CTi, Ei, li) be the corresponding process structure trees. Let further CE
be the coexistence matrix and V be the aggregated order matrix of this variant collection. For
candidate model S c, let Tc = (Nc,Cc,CTc, Ec, lc) be the corresponding process structure tree,
and let m = |Nc| correspond to the number of nodes in Tc. Finally, let Vc be the aggregated order
matrix of S c. Then structure fitting S F(S c) is defined as follows:

S F(S c) =

∑m
j=1

∑m
k=1,k, j(f (Va jak ,V

c
a jak

) ·CEa jak)

m · (m − 1)
∈ [0, 1] (7)

For every pair of activities a j, ak ∈ Nc, j , k, we first compute the similarity of their cor-
responding order relations (as captured by V and Vc) in terms of f (Va jak ,V

c
a jak

). Second, we
determine the importance of these order relations by calculating CEa jak . Structure fitting S F(S c)
of candidate model S c then equals the average of the similarities multiplied with the importance
of every order relation. Regarding our example from Fig. 4, we obtain S F(S) = 0.632 when
choosing S as candidate model.

4.1.3. Fitness Function
Based on activity coverage AC(S c) (cf. Def. 13) and structure fitting S F(S c) (cf. Def. 14),

we compute fitness Fit(S c) of a candidate model S c as follows:

Definition 15 (Fitness). Let AC(S c) be activity coverage of candidate model S c and S F(S c) be
its structure fitting. Fitness Fit(S c) of S c is defined as follows: Fit(S c) = AC(S c) · S F(S c)

As AC(S c) ∈ [0, 1] and S F(S c) ∈ [0, 1] hold, Fit(S c) ∈ [0,1] holds as well. Fit(S c) indicates
how ”close” candidate model S c is to the given variant collection. If Fit(S c) = 1, S c will
perfectly fit to the variants; i.e., no further adaptation will be needed. Generally, the higher
Fit(S c) is, the closer S c is to the variants and the less configuration efforts are required. In our
example from Fig. 4, original reference model S has Fit(S) = AC(S) · S F(S) = 0.860 · 0.632 =

0.543. As the fitness of candidate model S c is evaluated by multiplying activity coverage AC(S c)
with structure fitting S F(S c), a high value for Fit(S c) does not only mean that S c structurally fits
well to the process variants, but also that a reasonable number of activities is considered in the
candidate model.

17

Computing Fit(S c) requires only polynomial time. To be more precise, let S i ∈ P, i =

1, 2, . . . , n be a collection of process variants and let Ti = (Ni,Ci,CTi, Ei, li) be the corresponding
process structure tree. Let further m = |⋃ Ni|. The complexity for computing Fit(S c) isO(2m2n).

4.2. Constructing the Search Tree

We now show how to find candidate process models. We present a best-first algorithm for
constructing a search tree to find the best candidate model in the search space.

4.2.1. The Search Tree
Remember the overview of our heuristic search approach given at the beginning of Section 4.

Starting with the current candidate model S c, in each iteration we search for its direct ”neighbors”
(i.e., process models with distance 1 to S c). Thereby we try to find a better candidate model S ′c
with higher fitness value. Generally, for a given process model S c, we construct a neighbor model
by applying ONE insert, delete, or move operation (cf. Table 1) to S c. All activities a j ∈ ⋃

Ni,
which appear in at least one variant, are candidate activities for change. While an insert operation
adds a new activity a j < Nc to S c, the other two operations delete or move an activity a j ∈ Nc

already present in S c.

SsibSBkidSAkid …

A B C YZ

Best kid when changing A
A B Z

…

Best kid when changing Z Best kid when changing YBest kid when changing B
Best sibling of all best kids BBest kid is better than parentBest kid is NOT better than parent Terminating condition: No kid is better than its parentStart

Original reference model S

Search result
SZkid SYkid

Figure 9: Constructing the search tree

Generally, numerous process models can
result when applying one change operation
relating to a particular activity a j. Note that
the number of positions where we can insert
activity a j (a j < Nc) or move it (a j ∈ Nc)
can be large. Section 4.2.2 provides details
on how to find all process models that re-
sult when changing one particular activity a j

in S c. First of all, we assume that we have
already identified these neighbor models, in-
cluding the one with highest fitness value (de-
noted as the best kid S j

kid of S c when chang-
ing a j). Fig. 9 illustrates our search tree. Our
search algorithm starts with setting the orig-
inal reference model S as initial state, i.e.,
S c := S (cf. Fig. 9). We further define AS
as active activity set, which contains all activities that might be subject to change. At the be-
ginning AS = {a j|a j ∈ ⋃n

i=1 Ni} contains all activities that appear in at least one variant S i. For
each activity a j ∈ AS we then determine the corresponding best kid S j

kid of S c. If S j
kid has higher

fitness value than S c, we mark it; otherwise, we remove a j from AS (cf. Fig. 9). Afterwards, we
choose the model with highest fitness value S j∗

kid among all best kids S j
kid, and denote this model

as best sibling S sib. We then set S sib as the first intermediate search result and replace S c by S sib

for further search. Finally, we remove a j∗ from AS .
The described search method continues iteratively until its termination condition is met, i.e.,

we either cannot find a better model or the allowed search distance is reached. Consequently, the
process engineer is flexible in controlling to what degree the discovered reference process model
may differ from the original one. The final search result S sib corresponds to our discovered
reference model S ′ (the node marked by a bull’s eye and circle in Fig. 9). We refer to Appendix
C for an algorithm formally describing the above steps.

18

4.2.2. Changing one Particular Activity
Section 4.2.1 showed how to construct a search tree by comparing best kids S j

kid. We now
discuss how to find such best kid S j

kid, i.e., how to find all ”neighbors” of a candidate model S c

by performing one change operation relating to a particular activity a j. Consequently, S j
kid is the

model with highest fitness value among all models that may results when applying one change
operation on S c relating to activity a j. Regarding an activity a j, we consider three types of basic
change operations: insert, delete and move (cf. Table 1). The neighbor model resulting from the
deletion of a j ∈ Nc can be easily determined by removing a j from the process model and its order
matrix [28]; movement of a j can be simulated by deleting a j and sub-sequently re-inserting it at
the desired position. Thus, the basic challenge in finding neighbors of candidate model S c is to
apply one activity insertion such that the block structuring of the resulting model is preserved.
Obviously, the positions where we can (correctly) insert a j into S c are our subjects of interest.
Fig. 10 provides an example. Given model S c we want to find all process models that may result
when inserting X into S c. We apply two steps to ”simulate” this activity insertion:

Step A: Block enumeration First, we enumerate all blocks, candidate model S c contains. A
block can be an atomic activity, a sequence, a parallel branching, or S c itself. Let S ∈ P be a
block-structured process model. Let further A be the order matrix of S with activity set N. Two
activities ai and a j can form a block iff: ∀ak ∈ N \ {ai, a j} : Aaiak = Aa jak , i.e., they have same
order relations in respect to the remaining activities. As example consider Fig. 10a: C and D can
form a block since they show the same order relations concerning G, H, I, and J. As extension,
two blocks B j and Bk can be merged to a bigger one iff [(aα, aβ, aγ) ∈ B j × Bk × (N \ B j

⋃
Bk)

: Aaαaγ = Aaβaγ] holds; i.e., all activities aα ∈ B j, aβ ∈ Bk show the same order relations in
respect to the activities outside the two blocks; e.g., blocks {C,D} and {G} show the same order
relations in respect to activity H,I and J. Therefore they can form the bigger block {C,D,G}; i.e.,
we can determine a block containing x activities by merging two disjoint blocks containing j and
k activities respectively with x = j + k (cf. Fig. 10). Based on this, we are able to enumerate
all blocks of different size as contained in a process model (see Appendix D for an algorithm
formally describing this block enumeration).

Step B: Cluster inserted activity with one block After having enumerated all possible
blocks for a given candidate model S c, we can insert activity a j in S c such that we obtain a block-
structured model again. Assume that we want to insert X in S (cf. Fig. 10). To ensure block-
structuring of the resulting model, we ”cluster” X with an enumerated block, i.e., we replace one
of the previously determined blocks B by a bigger block B′ containing both B and X. In this
context, we set order relation between B and X either to 3 ∈ {0, 1,+,−} or 3 = L if X is a silent
activity τ representing a loop-block; i.e.,3 defines the order relations between X and all activities
contained in B. An example is depicted in Fig. 10. Here, the added activity X is clustered with
block {C,D} using order relation 3 = ”0”; i.e., X becomes a successor of the sequence block that
contains C and D. To realize this clustering, we have to set the order relations between inserted
activity X and block activities C and D to ”0”. Further, order relations between X and remaining
activities are the same as for C and D. Finally, the three activities form a new block {C,D,X}
replacing the old one (i.e., {C,D}). This way, we obtain a block-structured process model S ′.

Each time we cluster an activity with a block, we actually add this activity to the position
where it can form a bigger block together with the selected one; i.e., we replace a self-contained
block of the process model by a bigger one. Consequently, model soundness is further guaranteed
[31, 29]. Fig. 10b shows one resulting model S ′ we can obtain when adding X to S c. Obviously,
S ′ is not the only neighboring model since we can insert X at different positions; i.e., we can

19

a) b) Step A: Enumerating blocks

G
I J

C D
H {C, D}, {J, H}{C, D, G}{I, C, D, G}, {C, D, G, H}

Blocks containing n activitiesn = 1n = 2n = 3n = 4n = 5n = 6
{I}, {G}, {C}, {D}, {J}, {H}
{I, C, D, G, J}, {C, D, G, J, H}{I, C, D, G, J, H}

Blocks Enumerate blocksSc: a process model Cluster X with block {C, D} by ◊ = ‘0’ Sc’: one possible resulting model after inserting activity X in Sc
Ac: Order matrix of Sc AS’: Order matrix of Sc’

Step B: Clustering

G
I J

C D
H

X

Cluster X with block {I, C, D, G, J, H} by ◊ = ‘1’ Cluster X with block {G} by ◊ = ‘+’ Cluster X with block {J, H} by ◊ = ‘-‘
Some neighboring models that result when inserting X into Scc)

Cluster X with block {C, D} by ◊ = ‘L’ (only if X is a silent activity τ)

C D G H I JCDGHIJ
1 1 11111 1111 1 10 00000 00 0 00 0 0

+++ + Same order relations ◊ = “0”
C D G H I JCDGHIJ

+++ + 00000 00 0 00 0 0
1 10 11 11 11 11 1 1X 1

X

+ 01 1
+
0
0
1

0 0
1
1 Copy of block {C,D}

G
I J

C D
HX

G
I J HX

C D

G
I J

C D
H

XG
I

C D HJ
I

Figure 10: Finding the neighboring models by inserting X into process model S

cluster each block enumerated in Step A with X using any one of the four order relations 3 ∈
{0, 1,+,−}, or by ’L’ if X is a silent activity representing a loop-block. In our example from Fig.
10, S c contains 14 blocks. Consequently, the number of models that may result when adding X
in S c corresponds to 14 × 4 = 56 (or 14 × 1 = 14 if X is a silent activity); i.e., we can obtain 56
(14) potential models. Fig. 10c shows some neighboring models of S c. Note that the resulting
models are not necessarily unique, i.e., it is possible that some of them are the same. However,
this is not a critical issue since Fit(S c) can be quickly computed (cf. Section 4.1); i.e., some
redundant information does not significantly decrease algorithm performance.

4.3. Search Result for our Running Example
Fig. 11 presents the search result we obtain when applying our heuristic algorithm to the

example from Fig. 4. We do not set any limitation on the number of search steps in order to find
the best reference model. Fig. 11 shows the evolution of the original reference model S . First
operation ∆1 = move(S , J,B, EndFlow) changes S into intermediate model R1, which shows

G

E B

I H

A
F

C D

J

G
E B

H

A

F

C D

JX

I

G

E B

I H

A

F

C D

JX

S: original reference model

∆1=move (S, J, B, EndFlow)

S[∆1>R1
R1 : result after 1 change R2 : result after 2 changes

R4 : result after 4 changes
(Final result) ∆4= move(R3, I

, D, H)

R 3[∆ 4>R 4
G
E B

I J

A
F

C D
H

E B
A
F

J

G
I H

C D

∆3=insert (R2, X, E, B) R2[∆3>R3∆2= delete (R1, Loop) R1[∆2>R2
R3 : result after 3 changes

Figure 11: Search results along applied change operations
20

the highest fitness value in comparison to all other neighbor models of S . Using R1 as next
input for our algorithm, we discover R2 by applying ∆2 = delete(R1, Loop), and then R3 using
∆3 = insert(R2, X,E,B). Finally, we obtain R4 by applying ∆3 = move(R2, I,D,H) to R3. Since
we cannot find a ”better” process model by changing R4 anymore, we obtain R4 as final result.
Note that if we set constraints on allowed search steps (i.e., we only allow to change the original
reference model S by maximum d change operations), the final search result will be as follows:
Rd if d ≤ 4 or R4 if d > 4. Table 3 further compares S with all (intermediate) search results.

It is not surprising that the fitness value increases with continuing search since we use fitness
to guide it. However, we need to examine whether or not the discovered process models are
indeed getting better. We accomplish this by computing their average weighted distance (cf.
Def. 5) to the variants, which is a precise measurement in our context. From Table 3 the iterative
improvement of average weighted distance becomes clear, i.e., it drops monotonically from 4.85
to 2.4, which indicates that in the given example the algorithm performs as expected.

One design goal for our heuristic search algorithm is to be able to only consider the most
important changes; i.e., the ones reducing average weighted distance between reference model
and variants most, should be discovered first. We additionally evaluate delta-fitness and delta-
distance, which indicate the relative improvement of fitness values and the reduction of average
weighted distance after each change; e.g., operation ∆1 first changes S into R1, which improves
fitness value (delta-fitness) by 0.143 and reduces average weighted distance (delta-distance) by
0.9. Similarly, ∆2 reduces average weighted distance by 0.7, ∆3 by 0.6, and ∆4 by 0.25. Obvi-
ously, delta-distance is monotonically decreasing with increasing number of change operations.
This indicates that the most important changes are performed at the beginning of the search,
while less important ones are performed at the end.

Another feature of our heuristic search is its ability to automatically decide which activities
shall be included in the reference model; i.e., manually filtering less relevant activities is not
required. In our example, X is automatically added, while the loop-block is automatically deleted.
The only optimization we want to achieve is to reduce average weighted distance, i.e., change
operations are automatically balanced based on their contribution to reduce this measure.

4.4. Performance Evaluation based on Simulations
Using one example to measure the performance of our heuristic mining algorithm is not

sufficient. Since computing the average weighted distance is at NP-hard level, the suggested
fitness function is only an approximation of it. Therefore, we have to analyze to what degree
delta-fitness is correlated with delta-distance. Further, we are interested in whether important
changes are performed at the beginning. If biggest distance reduction can be achieved with the
first changes, setting search limitations or filtering out the change operations performed at the
end, does not constitute any practical problem. Therefore, we want to know: To what degree are
important change operations positioned at the beginning of our heuristic search.

We try to answer these questions using simulation; i.e., by generating thousands of data sam-
ples we provide a statistical answer [49]. We identify several parameters (e.g., size of the model,

S R1 R2 R3 R4
Fitness 0.543 0.687 0.805 0.844 0.859

Average weighted distance 4.85 3.95 3.25 2.65 2.4
Change Operation Move Delete Insert Move

Delta-fitness 0.143 0.118 0.039 0.009
Delta-Distance 0.9 0.7 0.6 0.25

Table 3: Search result along each applied
21

Correlation analysis Correlation comparison
of activity # of Correlation Signi- Pairwise Probability Signi-
per variant data ficant? Comparison being same ficant?

Small-sized 10 - 15 33 0.762 Yes Small v.s. Medium 0.130 Yes
Medium-sized 20 - 30 74 0.589 Yes Medium v.s. Large 0.689 Yes

Large-sized 50 - 75 177 0.623 Yes Small v.s. Large 0.170 Yes

Table 4: Correlation analysis

similarity of the variants) for which we investigate whether or not they influence performance of
our heuristic mining algorithm (see [50] for details); e.g., the size of the process variants ranged
from 10 to 75 activities, while their similarity to the reference process model ranged from 10%
to 30%. In addition, we discuss 8 different scenarios in respect to which activities and process
regions are changed. Using these parameters, we generate 72 groups of datasets (7272 models
in total). Each group contains a randomly generated reference process model and a collection
of 100 different process variants. We can generate each variant by configuring the reference
model according to a particular scenario. This way we are able to evaluate the performance and
robustness of our heuristic algorithm in a controlled setting. When applying heuristic mining to
discover new reference models, we do not set constraints on search steps, i.e., the algorithm ter-
minates if no better model can be discovered. All (intermediate) process models are documented
(see Fig. 11 for an example). We compute fitness and average weighted distance for each inter-
mediate process model. We further compute delta-fitness and delta-distance in order to examine
the influence of every change operation (cf. Table 3 for an example).

Correlation of delta-fitness and delta-distance. One important issue we wanted to inves-
tigate is how delta-fitness is correlated with delta-distance. Every change operation leads to a
structural modification of the process model, and consequently creates delta-fitness xi and delta-
distance yi. In total, we perform 284 changes in our simulation when discovering reference mod-
els. We use Pearson correlation to measure correlation between delta-fitness and delta-distance
[51]. Let X be delta-fitness and Y be delta-distance. We obtain n data samples (xi, yi), i = 1, . . . , n.
Let x̄ and ȳ be the means of X and Y , and let sx and sy be the standard deviations of X and Y . As
Pearson correlation we then obtain rxy =

∑
xiyi−nx̄ȳ

(n−1)sx sy
[51]. Results are summarized in Table 4. All

correlation coefficients are significant and high (> 0.5). The high positive correlation between
delta-fitness and delta-distance indicates that when finding a model with higher fitness value, we
have very high chance to also reduce average weighted distance. We additionally compare these
three correlations. Results indicate that they do not show significant differences to each other,
i.e., they are statistically the same (see [50]). This implies that our algorithm provides search
results of similar goodness independent from the number of activities contained in the variants.

Importance of top changes. We analyze to what degree our algorithm applies more impor-
tant changes at the beginning. For this purpose, we measure to what degree the top n% changes
reduce average weighted distance. As example consider search results from Table 3. We per-
formed in total 4 change operations and reduced average weighted distance by 2.45 from 4.85
(based on S) to 2.4 (based on R4). Among the four change operations, the first one reduces aver-
age weighted distance by 0.9. When compared to overall distance reduction of 2.45, the top 25%
(i.e., the first) changes accomplish 0.9/2.45 = 36.73% of overall distance reduction. This number
indicates the importance of the changes applied first. We therefore evaluate distance reduction
by analyzing the top 33.3% and the top 50.0% change operations. On average, the top 33.3%
change operations contribute to 63.80% distance reduction, while the top 50.0% achieve 78.93%.
Consequently, changes at the beginning are more important than the ones performed later.

22

5. Scenario 2: Discovering a Reference Process Model by Mining Process Model Variants:
A Clustering Approach

We now present a clustering algorithm for mining a collection of process variants without
need for knowing the original reference model. Since we restrict ourselves to block-structured
process models, we can build the new reference model by enlarging blocks, i.e., we first identify
two activities that can form a block; then we merge this block with other activities and blocks
respectively to form a larger block. This continues until all activities and blocks respectively
are merged into one single block. This block and its internal structure then represent the newly
discovered reference process model. Based on the aggregated order matrix (cf. Def. 10), our
clustering approach for mining process variants works as follows:

Step 1. Determine the activity set to be considered in the new reference process model.
Step 2. Determine two activities/blocks to be clustered in a new block.
Step 3. Determine the order relation the two clustered activities and blocks, respectively,

shall have within this block.
Step 4. After having built a new block in Steps 2 and 3, adjust the aggregated order matrix

accordingly.
Step 5. Repeat Steps 2-4 until all activities are clustered; i.e., until the new process model

is constructed by enlarging blocks.

5.1. Determining the Activity Set of the Reference Process Model

One fundamental challenge is to decide which activities shall be considered in the new ref-
erence model. As basis for this decision we choose activity frequency (cf. Def. 12). The user
may set a threshold such that only activities having an activity frequency higher than this thresh-
old are considered in the reference process model. This way we can exclude activities with low
frequency. As example consider Fig. 4. If we only want to consider activities with frequency
greater than 60%, for instance, activities Y and Z as well as silent activity τ will be excluded
from the reference process model. Excluding τ means that the loop structure is not considered.
Generally, process engineers have to set a threshold depending on whether they want to add more
or fewer activities to the reference model. In the following, we choose 60% as threshold value.

5.2. Determining two Activities or Blocks to be Clustered

Taking an order matrix (cf. Def. 9), two activities can form a block if they have same or-
der relations with respect to the remaining activities (cf. Section 4.2). We can apply a similar
idea to aggregated order matrices. However, for them activity relationships are expressed as
5-dimensional vector showing the distribution of the order relations over all process variants.
When determining pairs of activities that can be clustered as a block, it would be too restrictive
to require precise matching as in the case of an order matrix. To deal with this, we re-apply func-
tion f (α, β) (cf. Formula 6) which expresses closeness between two vectors α = (x1, x2, ..., xn)
and β = (y1, y2, ..., yn). Using f (α, β) we introduce the Separation metrics. It indicates to what
degree two activities of an aggregated order matrix are suited for being clustered to a block.
More precisely, S eparation(a, b) expresses how similar order relations of activities a and b are
when compared to the other activities. In our example from Fig. 4, S eparation(A,B) is deter-
mined by the closeness (measured in terms of the cosine value) of f (vAC, vBC), f (vAD, vBD), . . .,
f (vAJ, vBJ), and f (vAX, vBX). We define cluster separation as follows:

23

S eparation(a, b) =

∑
x∈N\{a,b} f 2(vax, vbx)

|N| − 2
∈ [0, 1] (8)

A B C D E F

B .776
C .016 .016
D .022 .022 .960
E .778 .665 .016 .022
F 1.0 .776 .016 .022 .778.046 .046 .788 .749 .046 .046G

Highest
separation value
for A and F

...

...

.
.
.

Figure 12: Separation table

N corresponds to the set of considered activities (cf.
Section 5.1). Like most clustering algorithms [47], we
square the cosine value to emphasize the differences be-
tween the two compared vectors. Finally, dividing this
expression by |N| − 2 normalizes its value to a range
between [0, 1]. The higher S eparation(a, b) is, the bet-
ter activities a and b are separable from others, and the
more probably a and b should form a block. Regarding
our example from Fig. 4, we obtain S eparation(A,B) =

0.776. We determine the pair of activities best suited
to form a block by computing the separation value for

each activity pair. Fig. 12 depicts the separation values for our example from Fig. 4. We denote
this table as separation table. Obviously, A and F have the highest separation value of 1.0. We
therefore choose A and F to form our first block. Since S eparation(A,F) = 1 holds, A and F can
form a block in all six variants (cf. Fig. 4).

5.3. Determining Internal Order Relations

After clustering A and F in the first block, we need to determine the order relation between
these two activities. For this purpose, we introduce Cohesion to measure how significant par-
ticular order relations between two activities of the same cluster are. In the aggregated order
matrix of our example, the relationship between A and F is depicted as 5-dimensional vector
vAF = (0, 0, 1, 0, 0). It shows the distribution values of the five kinds of order relations. When
building a reference process model, exactly one of the five order relations is taken. Therefore,
we want to choose the most significant one. Regarding our example, significance of each or-
der relation can be evaluated by the closeness vector vAF and the five axes in the 5-dimensional
space have. These axes can be represented by five benchmarking vectors: v0 = (1, 0, 0, 0, 0),
v1 = (0, 1, 0, 0, 0), v+ = (0, 0, 1, 0, 0), v− = (0, 0, 0, 1, 0), and vL = (0, 0, 0, 0, 1). We can compute
the significance of each order relation using f (α, β). In our example, the closest axis to vAF is v+

with f (vAF, v
+) = 1. Therefore, we decide that A and F shall be organized in parallel in the newly

derived block (cf. Def. 9). We use Cohesion to evaluate how good our choice is:

Cohesion(a, b) =
max3∈{0,1,+,−,L}{ f (vab, v3)} − 0.4472

1 − 0.4472
∈ [0, 1] (9)

Cohesion(a, b) equals one if there is a dominant order relation, i.e., vab is on one of the five
axes. In turn, it equals zero if vab = (0.2, 0.2, 0.2, 0.2, 0.2) holds; i.e., no order relation is more
significant than the others. In our example, Cohesion(A,F) = 1 holds; this indicates that A and
F have order relation ’+’ in all six process variants; we obtain the same results when directly
analyzing the variants (cf. Fig. 4).

5.4. Recomputing the Aggregated Order Matrix

We discovered the first block of our reference model which contains A and F with order
relation ’+’. We now have to set the relationship between newly created block and remain-

24

AND-Split AND-JoinXOR-Split XOR-Join .909
1.0

Separation
Cohesion: 4 Iteration #

G 6DC 7I 8 H9
3

X 21F

A.9991.0E 4B J 51.01.0.9991.0 .9981.0 .994.997
.9091.0 .796.735.864.793 .999.746 10

____ .999
E Y

A

F
BX J

G HC D I

E Y
A

F
BX J

G
I

Z H C D

a) b)

Threshold [0.2,0.6)

Threshold [0,0.15)

Threshold [0.6,0.8)

Figure 13: Reference process model discovered by clustering algorithm

ing activities. We accomplish this by adapting the aggregated order matrix.10 For this, we
compute the means of the order relations between {A, F} and remaining activities; e.g., since
vAI = (0, 0.15, 0, 0.85, 0) and vFI = (0, 0.15, 0, 0.85, 0) hold, the order relation between the new
block {A,F} and activity I corresponds to (vAI + vFI)/2 = (0, 0.15, 0, 0.85, 0).11 Such compu-
tation is applied to all remaining activities outside this block. Generally, after clustering two
activities a and b, the aggregated order matrix V ′ is re-calculated as follows:

∀x ∈ N \ {a, b} :

v′(a,b)x = (vax + vbx)/2
v′x(a,b) = (vxa + vxb)/2
v′xy = vxy, v′yx = vyx for ∀y ∈ N \ {a, b, x}

(10)

Since A and F are replaced by one block, the matrix resulting from this re-computation is
one dimension smaller than V . Afterwards, we treat this block like a single activity, but keep its
internal structure in order to build up the new reference process model at the end.

5.5. Applying the Clustering Algorithm to our Example

We re-apply the steps described in Sections 5.2 - 5.4 until all activities and blocks respectively
are clustered together. Fig. 13a shows the reference process model we can discover for our
example. It further depicts the blocks as constructed in each iteration as well as the two evaluation
measures Separation and Cohesion. Using separation and cohesion, we can evaluate how each
part of the reference process model fits to the variants. For example, it is clear that activities A
and F can always form a block in the six variants (high separation) and the order relation between
A and F is also consistent (high cohesion). By contrast, activity I does not often succeed block
{C,D} (low separation and cohesion). We can draw similar results if we have another look at the
process variants (cf. Fig. 4). Fig. 13b further shows two other reference process models we
obtain when setting different threshold values for determining the activity set (cf. Section 5.1).

10Our approach is different from traditional clustering algorithms [47], which only re-compute distances, but not the
original dataset.

11This approach is an unweighted one; i.e., we simply take the average of the two vectors without considering their
importance (e.g., how many activities are included in the block). This way, when merging two blocks of different size, we
can ensure that the order relations of the resulting block are not too much dominated by the bigger one. Such unweighted
approach is widely used in existing clustering algorithms [47].

25

5.6. Proof-of-Concept Prototype
We implemented and tested the heuristic and clustering algorithm using Java. Fig. 14 de-

picts a screenshot of our prototype. We use the ADEPT2 Process Template Editor [30] as
tool for creating process variants. For each process model, the editor can generate an XML

Figure 14: Screenshot of the prototype

representation with all relevant in-
formation being marked up. We
store variants in a repository which
can be accessed by our mining pro-
cedure. The mining algorithms
were developed as stand-alone Java
program, independent from the pro-
cess editor. This program can
read the original reference model (if
available) as well as all process vari-
ants. It then generates the result
models and stores them as accessi-
ble XML schemas. All intermediate
search results are also stored.

6. Algorithm Comparisons

Sections 6.1 and 6.2 compares our heuristic algorithm with our clustering approach. Sec-
tion 6.3 then compares the two algorithms with existing process mining techniques [18], i.e.,
algorithms that discover process models from execution logs.

6.1. Qualitative Comparison of the Algorithms for Process Variant Mining

No
constraint

Snc : Search result
without constraint

Si
:Variants

d=1d = 2d = 3 S: Original
reference

model

Reference model discovered heuristic searchOriginal reference model Process variants Intermediate search result Search steps
Sc:

Search
result with
constraint

Force 1:
close to variants

Force 2:
close to reference

Sclu : result by
clustering
algorithm Clustering

Approach

Heuristic Search Approach Reference model discovered by clustering approach
Figure 15: High-Level overview of the two algorithms

Inputs and Goals. Fig.
15 illustrates how our
heuristic and clustering
mining algorithms differ
in respect to goals and in-
puts. It represents each
process variant S i as sin-
gle (white) node in the 2-
dimensional space. Our
heuristic algorithm tries to
discover a new reference
process model by apply-
ing a sequence of change
operations to the original

one. In particular, it balances two ”forces”: one is to bring the new reference model S c closer to
the variants (i.e., to the bull’s eye S nc at the right), the other force is to not ”move” it too far away
from the original reference model S ; i.e., S c should not differ too much from S . Our heuristic
algorithm provides such flexibility by allowing process engineers to set a maximum search dis-
tance. Our simulations (cf. Section 4.4) showed that the change operations which are applied
first to the (original) reference model are more important than the ones positioned at the end

26

i.e., they reduce distance between reference model and variants to a larger extent. Consequently,
when ignoring less relevant changes we do not influence overall distance reduction too much.

While the above scenario presumes knowledge of the original reference model, we should be
able to cope with cases in which there exists only a variant collection, but the original reference
process model is unknown. In this scenario, the goal of our clustering approach is to discover the
”center” of the variants, i.e., a reference process model with shortest average weighted distance
to them. In principle, we can also apply our heuristic algorithm to this scenario. We just need to
start with an ”empty” model S without setting any search limitation. However, since we do not
need to balance the two forces and to perform the important change operations at the beginning of
the search, the clustering algorithm is expected to be faster and to provide additional information
on the search result (see Section 6.2).

Design Principles and Complexity. Our heuristic algorithm discovers a better reference
model by applying a sequence of change operations to the original one. To enable quick decisions
for a large search space (cf. Section 4.2), we use a fitness function to evaluate how well a
candidate model fits to the variants. This fitness function only provides a global evaluation, but
does not show how each part of the candidate model fits to the variants. On the contrary, the
clustering algorithm discovers a reference process model by enlarging blocks. By evaluating
separation and cohesion, we are able to determine how well each part of the discovered reference
model fits to the variants; i.e., due to its different design the clustering algorithm returns more
information than the heuristic one. Complexity of the two algorithms differs as well. Despite
polynomial complexity for computing the fitness of a candidate model, enumerating all blocks
in a candidate model has NP-hard complexity.12 On the contrary, our clustering algorithm
has polynomial complexity since computing separation and cohesion are both polynomial. To
be more precise, if m is the number of activities and n the one of variants, complexity of the
clustering algorithm corresponds to O(m2n + m3). This implies that the clustering algorithm
can quickly compute the reference process model even for a large variant collection, while the
heuristic algorithm may take considerable longer.

Pros & Cons. Table 5 summarizes the differences between the two algorithms. Additional
attention should be paid to their pros & cons. Since the clustering algorithm has polynomial
complexity, it runs significantly faster than the heuristic one. Using Separation and Cohesion
we obtain information on how each part of the discovered reference process model fits to the
variants. However, our clustering algorithm cannot control the discovery procedure or distin-
guish important changes from less relevant ones as our heuristic algorithm does. Though for our
running example the clustering algorithm discovered the same process model (cf. Fig. 13) as
our heuristic algorithm (cf. Fig. 11), in many other cases the model discovered by the cluster-
ing algorithm was not as good as the one discovered by the heuristic algorithm (cf. Section 6.2
for details). Reason is that the heuristic algorithm searches a significantly larger space which
contains a large number of candidate process models.

6.2. Quantitative Comparison of the Algorithms for Process Variant Mining
We now compare the two algorithms quantitatively by analyzing how fast they run and how

good the discovered models are. We use the same data for this comparison as for the evaluation of

12Worst-case, complexity of this algorithm is 2n where n corresponds to the number of activities. This worst-case
scenario will only occur if any combination of activities may form a block (like a process model for which all activities
are ordered in parallel to each other). During our simulation, in most cases we were able to enumerate all blocks of a
process model within milliseconds. This indicates rather good performance in practice.

27

Clustering Algorithm Heuristic Algorithm
Input Collection of process variants. Collection of process variants +

original reference process model
Goal Discover reference process model with shortest

average weighted distance to the variants
Discover better reference process model with maximum
distance to the original one

Use cases Scenario 1 (cf. Section 1.1). Scenario 2 (cf. Section 1.1).
Design
principle

Local view: Discover reference process model
by enlarging blocks

Global view: Discover reference process model by
searching for better candidate models

Complexity O(m2n + m3) (m : # activities; n : # variants) Sub-steps contain NP-hard problems
Pros & 1. Runs very fast 1. Automatically selects the activity set
Cons 2. Provides local view on how each part of the

reference process model fits to the variants
2. Can control the maximum distance between the orig-
inal reference process model and the discovered one

3. Activity set can be flexibly chosen by user 3. Applies more important changes at the beginning

Table 5: Qualitative comparison between clustering algorithm and heuristic algorithm

our heuristic algorithm (cf Section 4.4). We generate 72 groups of datasets representing different
scenarios. Each group contains 1 reference process model and 100 process variants. Based on
this, by applying each of the two algorithms we discover a new reference process model and
document the relating execution time and distance reduction (between discovered model and
original one). Results are summarized in Table 6. They indicate that the clustering algorithm
runs significantly faster than the heuristic one. However, results obtained with the clustering
algorithm are not as good as the ones provided by the heuristic algorithm.

Average execution time Average distance reduction
activities Clustering Heuristic Clustering Heuristic
per variant Algorithm Algorithm Algorithm Algorithm

Small-sized 10 - 15 0.013 0.184 6.93% 19.73%
Medium-sized 20 - 30 0.022 4.568 11.14% 22.59%

Large-sized 50 - 75 0.181 805.539 -8.97% 11.70%

Table 6: Comparing the performance of the clustering and heuristic algorithms

6.3. Comparison with Existing Process Mining Algorithms
Process mining has been extensively studied in literature [18, 19, 17, 20]. Its key idea is to

discover a process model by analyzing the execution behavior of process instances as captured
in execution logs [18]. The latter document the start/end of each activity execution. Form this we
can obtain a set of traces (cf. Def. 2), which reflect the behavior of implemented processes. In
principle, process mining can be applied in our context as well. Consider our example from Fig.
10. For each process variant S i we could first obtain its trace set TS i by enumerating all traces
producible by S i [52]. If a process model contains loop structures (i.e., it can generate infinite
number of traces), without loss of generality, we assume that a loop-block is executed either once
or twice. Despite this simplification, the number of traces producible by a process model can be
extremely large; e.g., if a parallel branching contains five branches, of which each contains five
activities, the number of producible traces corresponds to (5 × 5)!/(5!)5 = 623360743125120.
This explains why we do the comparison only in small scale.13

13Note that the main goal of process mining algorithms is to discover a process model based on the traces captured
in the execution log. In most cases, an execution log only captures a small fraction of the traces producible by the
underlying process model [18, 17, 20, 19]. This means that process mining does not really require enumerating all traces
producible by a process model for further analysis. In the context of our algorithm comparison, we decide to enumerate

28

The trace sets (cf. Def. 2) generated for the variants are merged into one trace set T taking
the weight of each variant into account. For example, as S 1 accounts for 25% of the variants, we
ensure that each trace producible by S 1 has the same number of instances and that the sum of all
instances producible by S 1 accounts for 25% of the instances in T as well. We consider T as
execution log since it fully covers the behavior of the given variant collection.

Since all activities contained in execution logs will be included in the process model discov-
ered by process mining algorithms (like in our clustering algorithm), we introduce two additional
datasets. The first one filters out all activities a j whose activity frequency g(a j) is lower than 0.2
regarding the given variant collection (cf. Def. 12); i.e., in our example activity Z in S 5 and silent
activity τ (representing the loop in S 4) are ignored. For this extended data set, we determine trace
set T0.2. In the second dataset, we filter out the activities with an activity frequency lower than
0.6. Regarding our example, besides Z and τ we filter out activity Y in S 2, S 3, S 5, and S 6. Con-
sequently, we obtain trace set T0.6 which contains all traces producible by the reduced variants.
Note that T0.6 has the same activity set as the model discovered by our heuristic algorithm (cf.
R4 in Fig. 11). The enumerated trace sets T , T0.2 and T0.6 are imported into the ProM frame-
work, one of the most powerful tool for process mining and analysis [53]. In our comparison, we
consider alpha algorithm [18], heuristic miner [19], genetic mining [17], and multi-phase miner
[20]. These are well-known algorithms for discovering process models from execution logs.14

6.3.1. Evaluation Criteria
Our algorithms focus on the structural perspective of process models, i.e., our goal is to con-

figure the variant models out of a reference model with minimal efforts (i.e., requiring a minimum
number of high-level changes). On the contrary, traditional process mining focuses on process
behavior, i.e., the discovered process model should cover the behavior of the variant models (as
reflected by their trace sets) [18, 17, 20, 19]. In the following, we compare our algorithms with
existing process mining algorithms from both a structural and a behavioral perspective.

Since most existing process mining algorithms discover Petri Nets or Event Process Chains
(EPCs), we transform the process models discovered by the different algorithms into respective
representations in order to enable their comparison (see [54, 52] for transformation techniques).
Particularly, such model transformation enables us to reuse existing metrics [16, 24] and tools
[53] for evaluating process models. We briefly describe the metrices we apply and refer to
[16, 24, 53] for details. We first introduce three parameters to evaluate the structure of process
models, namely average weighted distance, structural appropriateness, and # splits/joins in EPC.

1. Average weighted distance measures the efforts to configure the process variants out of

all traces producible by each variant for the following two reasons:
1. In the context of our research, we do not assume the existence of an execution log. However, most process mining

evaluation criteria rely on traces, e.g., fitness, successful execution, proper completion, and behavioral appropriateness
(cf. Section 6.3.1). Therefore, we adopt a general approach to first enumerate all traces and then to discover a process
model. This way, we are able to compare all related mining algorithms based on the same approach.

2. Alternatively, we can randomly enumerate a collection of traces producible by a process model, and consider these
random traces as execution log partially reflecting the behavior of the process model. However, we are not aware of
any technique which can enumerate a representative set of traces (but not all traces) to express the behavior of a process
model. If we randomly select a fraction of traces, we cannot ensure a fair comparison since the results significantly
depend on the randomly selected trace set. Therefore, we decide to enumerate all traces producible by a process model.
This way, we ensure that all possible behavior is considered, and results are not influenced by randomness.

14The enumerated trace sets T , T0.2 and T0.6 as well as the process models discovered by the different algorithms are
available at http://wwwhome.cs.utwente.nl/~lic/Resources.html.

29

the discovered reference process model; the lower it is the easier the variants can be con-
figured.

2. Structural appropriateness measures the complexity of a Petri Net by computing the
ratio between labeled transitions and nodes (transitions and places) [16]. The value range
of this parameter is [0,1]; the higher it is, the simpler the Petri Net is.

3. # Splits/Joins in EPC measures the number of splits / joins of an EPC, and thus measures
its complexity [24]. The higher it is, the more choices end users need to make when
executing the EPC.

We additionally use three parameters to evaluate the behavior of the discovered process mod-
els, namely behavior fitness, successful execution and proper completion.

1. Behavior fitness evaluates whether the discovered process model (represented as Petri
Net) complies with the behavior as captured in the trace set [16]. One way to investigate
behavior fitness is to replay the traces on the Petri net. This is done in a non-blocking
way, i.e., if there are missing tokens to fire a transition in the discovered model, they are
artificially created and replay proceeds [16]. The value range of this parameter is [0,1].
The higher behavior fitness is, the better the trace set will be covered by the model.

2. Successful execution measures the percentage of traces in the trace set that can be suc-
cessfully executed by the discovered process model [16]. Its value range is [0,1]. The
higher it is, the more traces can be re-produced based on the discovered model.

3. Proper completion measures the percentage of those traces that lead to proper completion
[16]. When compared to ”successful execution” this parameter requires that the analyzed
process model reaches an end state when replaying a trace. The value range of this param-
eter is [0,1]. The higher it is, the more traces lead to proper completion.

Structure measurement Behavior measurement

Dataset Algorithms Average weig- Structural # Joins/ Behavior Successful Proper
hted distance appropriateness splits in EPC fitness execution completion

Heuristic Var. 2.4 0.481 6 0.876 0.353 0.353
Clustering 4.75 0.468 8 0.737 0.120 0.120

Alpha 8.55 0.441 15 0.646 0 0
T Heuristic 8.85 0.258 31 0.437 0.042 0

Genetic 6.6 0.341 19 0.811 0.342 0.009
Multi-phase 2245 arcs and 515 transitions 19 In theory, all equals 1

Heuristic Var. 2.4 0.481 6 0.886 0.382 0.382
Clustering 2.6 0.482 6 0.784 0.133 0.133

Alpha 6.9 0.466 12 0.706 0 0
T0.2 Heuristic 8.2 0.274 12 0.789 0.268 0

Genetic 5.9 0.424 13 0.846 0.460 0.009
Multi-phase 1534 arcs and 384 transitions 18 In theory, all equals 1

Heuristic Var. 2.4 0.481 6 0.851 0.327 0.337Clustering
Alpha 6.85 0.5 7 0.814 0.407 0

T0.6 Heuristic 7.85 0.462 10 0.736 0.407 0
Genetic 3.2 0.325 13 0.886 0.394 0.278

Multi-phase 1266 arcs and 302 transitions 17 In theory, all equals 1

Table 7: Performance comparison with process mining algorithms

30

6.3.2. Evaluation Results
Evaluation results are summarized in Table 7. To differentiate our heuristic algorithm from

heuristic miner known from process mining [19], we denote it as ”Heuristic var.” in Table 7.
Without surprise, our heuristic and clustering algorithms discover a process model of simple
structure. Independent from the chosen dataset, the process models discovered by these algo-
rithms have better scores for parameters relating to the structure of the discovered model; i.e.,
they show lower average weighted distance, higher structural appropriateness, and lower number
of splits/joins in the corresponding EPC. Except multi-phase miner [20], none of the algorithms
discovered a process model with behavior fitness being 1. Note that multi-phase miner was de-
signed in a way that it always discovers a process model with fitness 1. Despite the fact that
the models discovered by multi-phase miner are very complex, they allow for more behavior not
covered by the variants [20, 16]; i.e., results are often overfitting.15 Consequently, we consider
the costs of multi-phase miner for reaching a behavior fitness of 1 as too high. When excluding
multi-phase miner, evaluation results show that even if we apply traditional process mining algo-
rithms for discovering a process model that covers the behavior of the variants best, the resulting
model might NOT be able to support all behavior captured by the variants. This indicates the
necessity for process configuration: i.e., it is not sufficient to maintain only one model covering
all behavior. Instead we must enable process configurations at both run- and build-time to obtain
different process variants supporting specific behaviors in different scenarios.

For the given dataset, behavior measurements of the process model discovered by our heuris-
tic algorithm are good as well. Note that our heuristic algorithm discovered the same model (cf.
R4 in Fig. 11) for T , T0.2 and T0.6. This model has highest behavior fitness for trace sets T
and T0.2, and only a few percent less than the genetic algorithm for T0.6. This was unexpected
because our heuristic algorithm is focusing on structure rather than on behavior. Though our
algorithm focuses on the discovery of a reference model out of which the process variants can be
easily configured, this implies that behavior of the discovered model has not been sacrificed that
much. Since behavior fitness is not 1, however, we should apply process configurations to obtain
suited process variants supporting the execution of different process instances best.

7. Applying the Algorithms to a Practical Case

We applied our algorithms in a cast study in order to evaluate their practical benefits.
Context. We conducted the case study in a large automotive company in which we analyzed

the variants of its product change management process. Basically, this process comprises several
major phases like specification of a change request, handling of this change request, change im-
plementation, and roll-out. In the following we only consider the top-level process and comment
on sub-processes later on. Usually, the change management process starts with the initiation
of a Change Request (CR), which must then be detailed and assessed by different teams (e.g.,
from engineering and production planning). The gathered comments then have to be aggregated
and approved by the CR board. In case of positive approval, change implementation starts, e.g.,
detailing the planning and triggering the re-engineering of parts affected by the change.

15In principle, it is possible to measure overfitting using behavioral appropriateness [16]. However, due to the com-
plexity of the discovered models, the conformance checker of ProM cannot measure some of the models (besides Multi-
phase miner) in a reasonable time (e.g., within a couple of days). Therefore we did not include it in our comparison.

31

Change request Development commentsPilot commentsProduction planning comments Integrate Comments Request for Comments Approve CompletionImplementation
Change request Development commentsPilot commentsProduction planning comments Integrate Comments Request for Comments CompletionUndo implementationQuality Department comments Implementation

Prepare decision paper Approve
Exemplary process variants Discovered reference

process model

XOR-SplitXOR-Join Control FlowLoopAND-SplitAND-Join
Change request Development commentsPilot commentsProduction planning comments Integrate Comments Request for Comments Approve Check for other changesImplementation Completion

Change request

CompletionimplementationApprove
Development comments Pilot comments Production planning comments Quality Department commentsIntegrate Comments

 Request for Comments
S1 Weight: w1 = 15 (most frequent variant)
S8 Weight: w8 = 10
S14 Weight: w14 = 2
S13 Weight: wm = 5Change request Request for fast implementation Implementation Completion Inform steering board

S’

Figure 16: Example process variants in the change management case study

Data Source. We identified 14 process variants dealing with (product) change management.
These variants were captured in separate process models being expressed in terms of UML Ac-
tivity Diagrams and using standard process patterns like Sequence, AND-/XOR-Splits, AND-
/XOR-Joins, and Loop. The size of the considered variants ranged from 5 to 12 activities and
their weights, which express the number of instances running on these variant models, ranged
from 2 to 15. However, none of the process variants was dominant or significantly more relevant
than others. All variant models either were already block-structured or could be transformed into
a behavior-equivalent block-structured process model.

Sources of Variance. Though the variant models show structural similarities they comprise
parts which are only relevant for a sub-collection of the variants. For critical changes, for exam-
ple, the Quality Assurance Department needs to be involved in the appraisal and commenting of
the change request, while this is not required for normal changes. Concerning low-cost changes,
in turn, change implementation may start before the change request is approved. In this case, the
implementation procedure will have to be aborted and compensated if the approval is withhold.
Other points of variation concern the preparation of the approval task, the communication of im-
plemented changes, and the triggering of secondary changes (raised by the requested one). The
left of Fig. 16 exemplarily shows 4 variant models from this case.

Case Study Results. Since we did not know the original reference process model, this
case corresponds to Scenario 2. We first applied our clustering algorithm to ”merge” the process
variants. This way we obtained S ′ (cf. Fig. 16) as reference process model. As average weighted
distance between S ′ and the variants we obtained 2.06. The time to find the model was negligible
(0.031 seconds). We further applied our heuristic algorithm to the given case. Since there was
no original reference process model, we used the most frequent variant (cf. S 1 in Fig. 16) as
starting point of our search. We did not set any search limitation in order to discover the best
model. Again we obtained S ′ (cf. Fig. 16) as best reference process model (after performing
one change on S 1). Though our heuristic algorithm ran longer than the clustering one to find
the reference process model, overall search time was only 1.062 seconds. We discussed the

32

discovered reference model with process engineers from the company who confirmed that it
constitutes a good choice for the top level change management process.

Based on the discovered reference process model, we can apply advanced techniques to con-
figure it into the different process variants in an effective and manageable way. In the automotive
company, in which we conducted the case study, the Provop research project was launched in
which advanced concepts for managing and configuring process variants have been developed
[10]. In Provop a particular process variant can be configured out of a given reference process
model by domain experts by applying a set of high-level, pre-specified changes.

The presented mining algorithms can significantly speed up the design of such reference
process model. More precisely, respective reference models can be automatically discovered for
any collection of block-structured process variants. When further applying our mining algorithms
to sub-processes relating to the different phases of the change management process (e.g., change
implementation) and their variants we obtained good results as well.

Discussion. The case constitutes one of many process scenarios we encountered and ana-
lyzed in the automotive domain. Interestingly, for almost all of them we were able to identify
large collections of similar process variants, each of them being valid in a particular application
context. Regarding the presented case, process owners liked the discovered reference process
model and considered it as being intuitive. Based on this result, they asked us to apply our
mining approach to the more specific phases of the change management process as well, which
resulted in well accepted reference models for its sub-processes as well. We also studied other
sources of data. Regarding release management for electric/ electronic components in a car, for
example, we identified more than 20 process variants depending on the product series, involved
suppliers, or considered development phases. Another complex scenario we considered was the
product creation process, for which dozens of variants exist. Thereby, each variant is assigned
to a particular product type (e.g., car, truck, or bus) with different organizational responsibili-
ties and strategic goals, or varying in some other aspects. Regarding the latter case, however,
we encountered additional problems concerning the inconsistent labeling of activities, the use of
different process granularities, and the heterogeneity of the used modeling formalisms. This also
shows that our algorithms need to be integrated in a larger process repository framework, which
additionally provides support for model configuration, refactoring, and management [15, 10].

Case studies in other domains. The practical benefit of our algorithms became evident in
the context of another case study we conducted in a clinical centre. We analyzed more than 90
process variants for handling medical orders (e.g., X-ray inspections, lab tests). By applying our
algorithms to these 90 variants we obtained a reference model that was significantly closer to the
variants than the old reference model. The discovered reference process model was adopted by
the clinical centre [55].

8. Related Work

Though algorithms applying heuristic search and clustering techniques have been widely
used in data mining [47], artificial intelligence [46], and machine learning [48], only few ap-
proaches apply heuristics or clustering techniques in the context of process variant management.
In particular, only few solutions exist for learning from the adaptations that were applied when
configuring a collection of process variants out of a reference process model.

Structural process changes at runtime and approaches for flexible process configuration have
been intensively discussed [11, 4]. A comprehensive analysis of theoretical and practical issues
related to (dynamic) process changes has been provided in the ADEPT2 change framework [8].

33

Further, there exist approaches for dynamically changing the structure of Petri nets [40]. Based
on such frameworks, the AristaFlow BPM suite [30] and tools for configurable process models
[56] emerged. [57, 58] additionally present repository services for storing, managing, and query-
ing large collections of process variants. Graph-based search techniques are used for retrieving
variants that are similar to a process fragment specified by the user. Obviously, this requires
profound knowledge about the structure of stored processes. Apart from this, no techniques for
analyzing the different variants and for learning from their specific customizations are provided.

ProCycle enables change reuse at the process instance level to effectively deal with recur-
rent problem situations [11]. ProCycle applies case-based reasoning techniques to allow for the
semantic annotation as well as the retrieval of process changes. Respective process adaptations
can be reused in similar problem context later when configuring other process instances. If the
reuse of a particular change exceeds a certain threshold, it becomes a candidate for adapting the
process model at type level. Though the basic goal of ProCycle is similar to our approach, its
techniques are much simpler and do not consider change variation.

A process model can be represented as graph structure which enables different kinds of graph-
based analyses [59, 47, 60, 61]. Informally, a graph consists of set of nodes, which can be con-
nected using (directed) edges. Regarding graph representations there exist only few techniques
which foster learning from process variants by mining recorded change primitives (e.g., to add
or delete control edges). [59] measures process model similarity based on change primitives and
suggests mining techniques using this measure. Similar techniques exist in the field of associ-
ation rule mining [47], frequent sub-graph mining [60] and graph pattern discovery [61]; here
common edges between different nodes are discovered to construct a common sub-graph from
a set of graphs. We refer to [62] for a survey on graph mining topics and algorithms. However,
graph-based approaches do not consider important features of a process meta model; e.g., they
are unable to deal with silent activities, cannot differentiate between AND- and XOR-branchings
or Loops, and cannot guarantee the soundness of the discovered process model.

Considering Configurable Workflow Models [56], all process variants are merged into one
reference model based on inheritance rules known from Petri Nets [40]. Though techniques like
questionnaire-based configuration contribute to make the right configuration decisions [63], the
resulting model turns out to be complex and often contains numerous decision points (see the
case reported in [64]). This approach even becomes more difficult when dealing with a large
collection of process variants not being equally important. In this case, an extremely large or
complex process model results which contains too many decision points and cannot differentiate
between important variants and trivial ones. In fields like healthcare, such complex models are
not preferred due to the resulting configuration efforts [65, 2].

To mine high-level change operations, [14] presents an approach based on process mining
techniques, i.e., the input consists of a change log and process mining algorithms are applied
to discover the execution sequences of the changes (i.e., the change meta process). However,
this approach simply considers each change as individual operation such that the result is more
like a visualization of changes rather than their mining. [66] introduces a technique to rank
activities based on their potential involvement in process configurations. However, it cannot
provide suggestions on how to involve these activities in model changes to improve the reference
process model.

34

9. Summary and Outlook

We presented challenges, scenarios and algorithms for mining a collection of process vari-
ants. In particular, we introduced, evaluated and compared two algorithms for discovering a
reference process model out of a collection of block-structured process variants. Adopting the
discovered model as new reference process model makes future process configuration easier,
since less efforts for configuring the variants will be required. Our heuristic algorithm can take
the original reference model into account such that users can control to what degree the discov-
ered model differs from the original one. This way, we can avoid Spaghetti-like process models,
and also control how many changes we want to perform. Through a simulation of several thou-
sands process models we learned that the heuristic algorithm applies the important changes at
the beginning of the search and is able to scale up. The clustering algorithm, in turn, does not
presume any knowledge about the original reference process model the process variants were
configured from. By only looking at the variant collection, it can quickly discover a reference
process model in polynomial time and provide additional information on how well each part of
the discovered reference model fits to the variants. We successfully applied the two algorithms
to practical cases. We further compared them with existing process mining algorithms. Results
indicate good performance of our algorithms in both structure and behavior aspect. However, it
would be useful to integrate them with existing process mining algorithms such that we can take
both the structural and the behavioral perspective into account in order to cover more general
cases [18]. As we learned, data-flow also constitutes an important part of process configurations.
Therefore, we want to additionally consider this perspective in future research.

Acknowledgment: This work was done in the MinAdept project, which has been supported
by the Netherlands Organization for Scientific Research under contract number 612.066.512.

References

[1] B. Mutschler, M. Reichert, and J. Bumiller. Unleashing the effectiveness of process-oriented information systems:
Problem analysis, critical success factors and implications. IEEE Trans. Sys. Man. & Cyb., 38(3):280–291, 2008.

[2] R. Lenz and M. Reichert. IT support for healthcare processes - premises, challenges, perspectives. Data & Knowl-
edge Engineering, 61(1):39–58, 2007.

[3] T.H. Davenport. Mission Critical - Realizing the Promise of Enterprise Systems. Harvard Business School, 2000.
[4] B. Weber, M. Reichert, and S. Rinderle-Ma. Change patterns and change support features - enhancing flexibility in

process-aware information systems. Data and Knowledge Engineering, 66(3):438–466, 2008.
[5] B. Weber, S. Sadiq, and M. Reichert. Beyond rigidity - dynamic process lifecycle support: A survey on dynamic

changes in process-aware information systems. Computer Science - R&D, 23(2):47–65, 2009.
[6] A. Hallerbach, T. Bauer, and M. Reichert. Managing process variants in the process lifecycle. In ICEIS ’08, pages

154–161. Springer, 2008.
[7] M. Rosemann and W.M.P. van der Aalst. A configurable reference modelling language. Information Systems,

32(1):1–23, 2007.
[8] M. Reichert and P. Dadam. ADEPTflex - supporting dynamic changes of workflows without losing control. Journal

of Intelligent Information Systems, 10(2):93–129, 1998.
[9] M. Rosenmann. Potential pitfalls of process modeling: part B. BPM Journal, 12(3):127–136, 2006.

[10] A. Hallerbach, T. Bauer, and M. Reichert. Capturing variability in business process models: the Provop approach.
Journal of Software Maintenance and Evolution, 22(6-7):519–546, 2010.

[11] B. Weber, M. Reichert, W. Wild, and S. Rinderle-Ma. Providing integrated life cycle support in process-aware
information systems. Int’l Journal of Cooperative Information Systems, 19(1):115–165, 2009.

[12] B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. On structured workflow modelling. In CAiSE’00, pages
431–445. LNCS 1789, Springer, 2000.

[13] R.M. Dijkman, M. Dumas, L. Garcia-Banuelos, and R. Kaarik. Aligning business process models. In EDOC’09,
pages 45–53, 2009.

[14] C.W. Günther, S. Rinderle-Ma, M. Reichert, W.M.P. van der Aalst, and J. Recker. Using process mining to learn
from process changes in evolutionary systems. Int’l J. of Business Process Int. and Mgmt, 3(1):61–78, 2008.

35

[15] B. Weber, M. Reichert, J. Mendling, and H.A. Reijers. Refactoring large process model repositories. Computers in
Industry, page accepted for publication.

[16] A. Rozinat and W.M.P. van der Aalst. Conformance checking of processes based on monitoring real behavior.
Information Systems, 33(1):64–95, 2008.

[17] A.K. Alves de Medeiros. Genetic Process Mining. PhD thesis, Eindhoven University of Technology, NL, 2006.
[18] W.M.P van der Aalst, T. Weijters, and L. Maruster. Workflow mining: Discovering process models from event

logs. IEEE Trans. on Knowl. and Data Eng., 16(9):1128–1142, 2004.
[19] A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering workflow models from event-based data using little

thumb. Integr. Comput.-Aided Eng., 10(2):151–162, 2003.
[20] B.F. van Dongen and W.M.P. van der Aalst. Multi-phase process mining: Building instance graphs. In ER’04,

pages 362–376. LNCS 3288, Springer, 2004.
[21] C. Li, M. Reichert, and A. Wombacher. Discovering reference models by mining process variants using a heuristic

approach. In BPM’09, LNCS 5701, pages 344–362. Springer, 2009.
[22] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow patterns. Distributed and

Parallel Databases, 14(1):5–51, 2003.
[23] M. zur Muehlen and J. Recker. How much language is enough? Theoretical and practical use of the business

process modeling notation. In CAiSE’08, pages 465–479. LNCS 5074, Springer, 2008.
[24] J. Mendling. Metrics for Process Models: Empirical Foundations of Verification, Error Prediction and Guidelines

for Correctness, volume 6 of LNBIP. Springer, 2008.
[25] BPEL. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf.
[26] W.M.P. van der Aalst and K. van Hee. Workflow Management: Models, Methods, and Systems. MIT Press, 2002.
[27] J. Mendling, B.F. van Dongen, and W.M.P. van der Aalst. Getting rid of OR-joins and multiple start events in

business process models. Enterprise Information Systems, 2(4):403–419, 2008.
[28] C. Li, M. Reichert, and A. Wombacher. On measuring process model similarity based on high-level change opera-

tions. In ER ’08, pages 248–262. Springer LNCS 5231, 2008.
[29] M. Reichert. Dynamische Ablaufänderungen in Workflow-Management-Systemen. PhD thesis, Ulm University,

Germany, 2000.
[30] M. Reichert, S. Rinderle, U. Kreher, and P. Dadam. Adaptive process management with ADEPT2. In ICDE ’05,

pages 1113–1114. IEEE Computer Press, 2005.
[31] J. Vanhatalo, H. Völzer, and J. Koehler. The refined process structure tree. Data & Knowledge Engineering,

68(9):793–818, 2009.
[32] E.W. Dijkstra. Notes on structured programming. pages 1–82, 1972.
[33] P. Dadam and M. Reichert. The ADEPT project: A decade of research and development for robust and flexible

process support - challenges and achievements. Computer Science - R & D, 23(2):81–97, 2009.
[34] M. Minor, A. Tartakovski, D. Schmalen, and R. Bergmann. Agile workflow technology and case-based change

reuse for long-term processes. International Journal of Intelligent Information Technologies, 4(1):80–98, 2008.
[35] H.A. Reijers and J. Mendling. Modularity in process models: Review and effects. In BPM’08, pages 20–35. LNCS

5240, Springer, 2008.
[36] J. Mendling, H.A. Reijers, and W.M.P. van der Aalst. Seven process modeling guidelines (7pmg). Information &

Software Technology, 52(2):127–136, 2010.
[37] C. Combi and M. Gambini. Flaws in the flow: The weakness of unstructured business process modeling languages

dealing with data. In OTM Conferences (1), pages 42–59. LNCS 5870, Springer, 2009.
[38] L. Thom, M. Reichert, and C. Iochpe. Activity patterns in process-aware information systems: Basic concepts and

empirical evidence. Int. J. of Business Process Int. and Mgmt, 4(2):93–110, 2009.
[39] S. Rinderle. Schema Evolution in Process Management Systems. PhD thesis, Ulm University, Germany, 2004.
[40] W.M.P. van der Aalst and T. Basten. Inheritance of workflows: an approach to tackling problems related to change.

Theor. Comput. Sci., 270(1-2):125–203, 2002.
[41] S. Rinderle-Ma, M. Reichert, and B. Weber. On the formal semantics of change patterns in process-aware infor-

mation systems. In ER’08, LNCS 5231, pages 279–293, 2008.
[42] A. Lanz, U. Kreher, M. Reichert, and P. Dadam. Enabling process support for advanced applications with the

AristaFlow BPM Suite. In BPM’10 Demonstration Track. Vol. 615 CEUR-WS.org, 2010.
[43] A.V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques, and Tools (2nd Edition).

Addison Wesley, 2006.
[44] D. Harel and R.E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM Journal on Computing,

13(2):338–355, 1984.
[45] C. Li, M. Reichert, and A. Wombacher. Representing block-structured process models as order matrices: Basic

concepts, formal properties, algorithms. Technical Report TR-CTIT-09-47, University of Twente, NL, 2009.
[46] G. F. Luger. Artificial Intelligence: Structures and Strategies for Complex Problem Solving. Pearson, 2005.
[47] P.N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison-Wesley, 2005.

36

[48] J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., USA, 1993.
[49] A.M. Law. Simulation modeling and analysis. McGraw-Hill Higher Education, 2006.
[50] C. Li, M. Reichert, and A. Wombacher. A heuristic approach for discovering reference models by mining process

model variants. Technical Report TR-CTIT-09-08, University of Twente, The Netherlands, March 2009.
[51] D.J. Sheskin. Handbook of Parametric and Nonparametric Statistical Procedures. CRC Press, 2004.
[52] A. Wombacher, P. Fankhauser, and E. Neuhold. Transforming bpel into annotated deterministic finite state automata

for service discovery. Web Services, IEEE International Conference on, 0:316, 2004.
[53] B.F. van Dongen, A.K.A. de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and W.M.P. van der Aalst. The ProM

framework: A new era in process mining tool support. In ICATPN, pages 444–454. LNCS 3536, 2005.
[54] J. Dehnert and R. Rittgen. Relaxed soundness of business processes. In CAiSE ’01, pages 157–170. LNCS 2068,

Springer, 2001.
[55] C. Li, M. Reichert, and A. Wombacher. The MinAdept clustering approach for discovering reference process

models out of process variants. Int’l J. of Cooperative Information Systems, 19(3 & 4):159–203, 2010.
[56] F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La Rosa. Configurable workflow models. Int. J.

Cooperative Inf. Syst., 17(2):177–221, 2008.
[57] R. Lu and S.W. Sadiq. Managing process variants as an information resource. In BPM’06, pages 426–431, 2006.
[58] R. Lu and S. W. Sadiq. On the discovery of preferred work practice through business process variants. In ER’07,

pages 165–180. Springer, 2007.
[59] J. Bae, L. Liu, J. Caverlee, L.J. Zhang, and H. Bae. Development of distance measures for process mining, discovery

and integration. Int. J. Web Service Res., 4(4):1–17, 2007.
[60] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In ICDM’01, pages 313–320. IEEE, 2001.
[61] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In ICDM’02, pages 721–724. IEEE Computer

Society, 2002.
[62] D. Chakrabarti and C. Faloutsos. Graph mining: Laws, generators, and algorithms. ACM Computing Surveys,

38(1):2, 2006.
[63] M. la Rosa, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Questionnaire-based variability modeling

for system configuration. Software and System Modeling, 8(2):251–274, 2009.
[64] F. Gottschalk, T. A. C. Wagemakers, M. H. Jansen-Vullers, W.M.P. van der Aalst, and M. La Rosa. Configurable

process models: Experiences from a municipality case study. In CAiSE’09, pages 486–500, 2009.
[65] J.S. Ash, M. Berg, and E. Coiera. Some unintended consequences of information technology in health care: the

nature of patient care information system-related errors. J. Am. Med. Inf. Ass., 11(2):104–112, 2004.
[66] C. Li, M. Reichert, and A. Wombacher. What are the problem makers: Ranking activities according to their

relevance for process changes. In ICWS’09, pages 51–58. IEEE, 2009.

Appendix A. Properties of Block-structured Process Model

Let S = (A, E, AT, ET, l) be a block-structured process model (cf. Def. 1). Then: S has the
following structural properties:

1. S has a unique start node; i.e.; ∃!s ∈ A : ∀(a1, a2) ∈ E : a2 , s.
s is the only node with AT (s) = StartFlow.

2. S has a unique end node; i.e.; ∃!e ∈ A : ∀(a1, a2) ∈ E : a1 , e.
e is the only node with AT (e) = EndFlow.

3. Let Atypes be defined as Atypes := {a ∈ A|AT (a) ∈ types}, Then:

• Each non-split node (excl. the end node) has exactly one outgoing precedence edge:
∀a ∈ A \ AAndS plit

⋃
XorS plit

⋃
EndFlow :

∃!e = (a1, a2) ∈ E with a1 = a ∧ ET (e) = Precedence.
• Each non-join node (excl. the start node) has exactly one incoming precedence edge:
∀a ∈ A \ AAndJoin

⋃
XorJoin

⋃
S tartFlow :

∃!e = (a1, a2) ∈ E with a2 = a ∧ ET (e) = Precedence.
• Any loop edge links a StartLoop node with an EndLoop node:
∀e = (a1, a2) ∈ E with ET (e) = Loop,
⇒ AT (a1) = StartLoop ∧ AT (a2) = EndLoop.

37

4. S is block-structured –i.e., the following properties hold:

• Let S plits, Joins ⊂ A be defined as follows:
S plits := AAndS plit

⋃
XorS plit, Joins := AAndJoin

⋃
XorJoin.

Then: There exists a mapping join : S plits→ Joins with:
– s ∈ S plits,⇒ s ≺ join(s).
– join is a bijective mapping, i.e., join(s1) = join(s2) for s1, s2 ∈ S plits,⇒

s1 = s2 ∧ ∀ j ∈ Joins : ∃s ∈ S plits : join(s) = j.
– Let s ∈ S plits:

The subgraph induced by {s, join(s)} ⋃ {a ∈ A|s ≺ a ∧ a ≺ join(s)} is a SESE,
i.e., a subgraph with single entry and single exit node.

– s ∈ S plits ∧ AT (s) = AndSplit(XorSplit),
⇒ AT (join(s)) = AndJoin(XorJoin).

• There exists a bijective mapping loop : AS tartLoop → AEndLoop with:
– ls ∈ AS tartLoop,⇒ loop(ls) ≺ ls
– ls ∈ AS tartLoop,⇒ The subgraph induced by
{ls, loop(ls)}⋃ {a ∈ A|loop(ls) ≺ a ∧ a ≺ ls} is a SESE.

• Blocks must not overlap, i.e., their nesting must be regular. Formally:
Bstarts ≡ S plits

⋃
AEndLoop; Bends ≡ Joins

⋃
AS tartLoop.

Further, Let block be a mapping,block : Bstarts → Bends with block(s) = join(s) if
s ∈ S plits and block(s) = loop−1(s) if s ∈ AEndLoop. Then: s1, s2 ∈ Bstarts with
s1 ≺ s2 ≺ block(s1),⇒ block(s2) ≺ block(s1).

Appendix B. Proof of Theorem 1

Theorem 1 (cf. Section 3.1.3) states that we obtain a unique order matrix A for a process
structure tree T = (N,C,CT, E, l), i.e., for two nodes ai, a j ∈ N, NCA(ai, a j) exists and is unique.
The proof consists of 3 steps:

1. Based on the properties of process structure tree (cf. Theorem 2), we first prove that the
indegree of any element in a process structure tree is less or equal to 1 (cf. Theorem 3).

2. We show that for any two connected nodes in a process structure tree, there exists exactly
one path linking them (cf. Lemma 1).

3. Finally, we prove that for any two different nodes in a process structure tree, their nearest
common ancestor exists and is unique (cf. Theorem 4).

We first discuss an important property of any process structure tree T = (N,C,CT, E, l),
namely that a subtree of T does not overlap with another different subtree of T . This property is
described by Theorem 2. For a proof of Theorem 2, we refer to [31].

Theorem 2. Let T = (N,C,CT, E, l) be a process structure tree and let T ′ = (N′,C′,CT ′, E′, l′)
and T ′′ = (N′′,C′′,CT ′, E′′, l′′) be two different subtrees of T . Then: T ′ does not overlap with
T ′′; i.e., either T ′ is a subtree of T ′′, or T ′′ is a subtree of T ′, or the following property holds
((N′

⋂
N′′ = ∅) ∧ (C′

⋂
C′′ = ∅) ∧ (E′

⋂
E′′ = ∅)).

Based on Theorem 2, we can obtain Theorem 3.

Theorem 3. The indegree in(e) of any element e ∈ N
⋃

C in a process structure tree T =

(N,C,CT, E, l) is less or equal 1.
38

Proof. Assume there exists an element e ∈ N
⋃

C which has more than one predecessor; i.e.,
∃n1, n2, . . . , ni ∈ N

⋃
C : (n1, e), (n2, e), . . . , (ni, e) ∈ E and nx , ny for x, y ∈ {1, . . . , i}. Let

T (nx) and T (ny) be two subtrees that result when using nx and ny as their root elements (with
x, y ∈ {1, . . . , i}, x , y) (cf. Section 3.1.1). Then, T (nx) and T (ny) contain element e since
(nx, e) ∈ E and (ny, e) ∈ E. However, since nx , ny holds, T (nx) cannot be a subtree of T (ny), and
vice versa. Therefore, T (nx) and T (ny) overlap, which contradicts to the property described in
Theorem 2. Consequently, any element e ∈ N

⋃
C maximally has one predecessor, i.e., in(e) ≤ 1;

in(e) = 0 holds if e is the root of T .

Based on Theorem 3, we can obtain Lemma 1.

Lemma 1. For two connected nodes a, b ∈ N
⋃

C in a process structure tree T = (N,C,CT, E, l),
there exists exactly one path connecting a with b.

Proof. Let a, b ∈ N
⋃

C be two elements of T . Assume that a and b are connected with a ≺ b.
Then there exists a sequence < n0, n1, . . . , ni > with n0, . . . , ni ∈ N

⋃
C, n0 = a, ni = b and

(nk−1, nk) ∈ E for k ∈ {1, . . . , i}. According to Theorem 3, in(nk) ≤ 1 holds ⇒ The node which
directly precedes nk is unique and corresponds to nk−1. Since this applies to all k ∈ {1, . . . , i}, the
path < n0, . . . , ni > is unique.

Finally, Theorem 4 describes the existence and uniqueness of the nearest common ancestor
for any two different nodes in a process structure tree.

Theorem 4. Taking two different nodes a, b ∈ N in a process structure tree T = (N,C,CT, E, l),
their nearest common ancestor NCA(a, b) exists and is unique.

Proof. Let a, b ∈ N be two different nodes and let further c ∈ C be the nearest common ancestor
of a and b. Since a and b are two different nodes, T contains at minimum two nodes and one
connector. Consequently, there must be a root connector r ∈ E with r ≺ a and r ≺ b, since nodes
constitute the leaves in the tree and cannot be a predecessor of any other tree element.

• Existence of c. Since each process structure tree has a unique root r, we obtain r ≺ a and
r ≺ b. According to Lemma 1, we can find two unique paths < n0, n1, . . . , ni > with n0 = r
and ni = a, and < n′0, n

′
1, . . . , n

′
j > with n′0 = r and n′j = b respectively. Let min(i, j) denote

the minimum of i and j. Since r = n0 = n′0, there must be a k with 0 ≤ k ≤ min(i, j) such
that n0 = n′0, n1 = n′1, . . ., nk = n′k. According to Def. 8 we obtain nk as NCA(a, b).

• Uniqueness of c. Assume there is another connector c′ , c with c′ ∈ C, which is a nearest
common ancestor of a and b. According to Def. 8 we obtain c ⊀ c′ and c′ ⊀ c. Let r be
the unique root of process structure tree T . Then we obtain r ≺ c and r ≺ c′. Since c′ is
common ancestor of a and b, we obtain c′ ≺ a and c′ ≺ b. Consequently, there are two
different paths from r to a: < r, . . . , c, . . . , a > and < r, . . . , c′, . . . , a >. This contradicts to
Lemma 1⇒ c′ cannot exist.

39

Appendix C. Heuristic Search Algorithm for Variant Mining
input : A process model S ; a collection of process variants S i, i = 1, . . . , n; allowed search distance d ;
output : Resulting process model S ′

Compute process structure tree Ti = (Ni,Ci,CTi, Ei, li) for each S i, and let AS =
⋃n

i=1 Ni /* Define AS as1
active activity set */;
S c = S /* Define initial candidate model */;2
t = 1 /* Define initial search step */ ;3
while |AS | > 0 and t ≤ d do /* Search condition */;4

S sib = S c /* Set S c as initial S sib */ ;5
Define as as the selected activity ;6
foreach a j ∈ AS do7

S kid = FindBestKid(S c) ;8
if Fitness(S kid) > Fitness(S c) then9

if Fitness(S kid) > Fitness(S sib) then10
S sib = S kid ;11
as = a j ;12

else13
AS = AS \ {a j} /* Best kid not better than its parent; */14

if Fitness(S sib) > Fitness(S c) then15
S c = S sib ; /* Initiate next iteration */ ;16
AS = AS \ {as} ;17

else18
break ;19

t = t+1 ;20

Appendix D. Block Enumeration Algorithm

input : A process model S , its process structure tree T = (N,C,CT, E, l) and its order matrix An×n
output : A set BS with all possible blocks

Define BS x be a set of blocks containing blocks with x activities. x = (1, . . . , n);1
Define each activity ai as a block Bi, i = (1, . . . , n) ;2
BS 1 = {B1, . . . , Bn}. /* initial state */ ;3
for i = 2 to n do /* Compute BS i */;4

let j = 1; let k = i;5
while j ≤ k do6

k = i - j /* A block containing k activities can only be obtained by merging7
blocks containing i and j activities */;
foreach (B j, Bk) ∈ BS j × BS k do /* judge whether B j and Bk can form a block */8

merge = TRUE; if B j
⋂

Bk = ∅ then /* Disjoint? */9
foreach (aα, aβ, aγ) ∈ B j × Bk × (N \ B j

⋃
Bk) do10

if Aaαaγ , Aaβaγ then11
merge = FALSE /* two blocks con merge only if they show same12
order relations to the activities out side the two blocks */;
break ;13

else14
merge = FALSE;15

if merge = TRUE then16
Bp = B j

⋃
Bk;17

BS i = BS i
⋃

Bp;18

j = j + 1 ;19

BS =
⋃n

x=1 BS x20

40

