
Event-driven Exception Handling for
Software Engineering Processes

Gregor Grambow1, Roy Oberhauser1, Manfred Reichert2

1 Computer Science Dept., Aalen University
{gregor.grambow, roy.oberhauser}@htw-aalen.de

2Institute for Databases and Information Systems, Ulm University, Germany
manfred.reichert@uni-ulm.de

Abstract. In software development projects, process execution typically lacks
automated guidance and support, and process models remain rather abstract.
The environment is sufficiently dynamic that unforeseen situations can occur
due to various events that lead to potential aberrations and process governance
issues. To alleviate this problem, a dynamic exception handling approach for
software engineering processes is presented that incorporates event detection
and processing facilities and semantic classification capabilities with a dynamic
process-aware information system. A scenario is used to illustrate how this
approach supports exception handling with different levels of available
contextual knowledge in concordance with software engineering environment
relations to the development process and the inherent dynamicity of such
relations.

Keywords: Complex event processing; semantic processing; event-driven
business processes; process-aware information systems; process-centered
software engineering environments

1 Introduction

The development of software is a very dynamic and highly intellectual process that
strongly depends on a variety of environmental factors as well as individuals and their
effective collaboration. In contrast to industrial production processes that are highly
repetitive and more predictable, software engineering processes have hitherto hardly
been considered for automation. Existing software engineering (SE) process models
like VM-XT 1 or the open Unified Process 2 are rather abstract (of necessity for
greater applicability) and thus do not really reach the executing persons at the
operational level 3. In sparsely governed processes without automated data
assimilation and process extraction, deviations from the planned process, exceptions,
or even errors often remain undetected. Even if detected, an automated and effective
exception handling is hard to find.

To increase the level of standardization (i.e., usage, repeatability, conformance,
etc.) of process execution, automated support for SE processes is desirable. To enable

this in a holistic way, an automated solution should be capable of some kind of
process exception handling so that the occurrence of exceptions does not deteriorate
process performance. Further, automated process exception support will only be
acceptable if it is not too complex or more cumbersome than manual handling 4.
Automated handling implies automated detection of exceptions that depends on the
capabilities of the system managing the processes 5. However, existing process-aware
information systems (PAIS) are still rather limited regarding detection and handling
of exceptions 6. Exceptions can arise for reasons such as constraint violations,
deadline expiration, activity failures, or discrepancies between the real world and the
modeled process 7. Especially in the highly dynamic SE process domain, exceptions
can arise from various sources, and it can be difficult to distinguish between
anticipated and unanticipated exceptions. Even if they are detected, it can be difficult
to directly correlate them to a simple exception handler. Due to its high dynamicity,
SE has been selected as first application domain, but the generic concept can also be
applied to other domains.

Two fictional scenarios from the SE domain illustrate the issues:
- Scenario 1 (Bug fixing): In applying a bug fix to a source code file, the

removal of a known defect might unintentionally introduce other problems to
that file. E.g., source code complexity might increase if multiple people
applied “quick and dirty” fixes. Thus, the understandability and
maintainability of that file might drop dramatically and raise the probability of
further defects.

- Scenario 2 (Process deviation): In developing new software, the process
prescribes the development and execution of a unit test to aid the quality of
the produced code. For various reasons, the developer omits these activities
and integrates the produced code into the system. This could eventually
negatively affect the quality of that system.

These scenarios demonstrate the various challenges an automated process
exception handling approach for SE faces: Exceptions can arise relating to various
items such as activities, artifacts, or the process itself. Many of these exceptions may
be difficult to detect, especially for a PAIS without direct knowledge of the
environment. It may also be unclear when exactly to handle the exception and who
should be responsible. Generally, the knowledge about the exception can vary greatly,
making unified handling difficult and the application of standardized exception
handlers unsuitable. Both of the aforementioned scenarios will be used to show the
applicability of our approach to SE processes and their exception handling.

The remainder of this paper is organized as follows: Section 2 introduces the novel
exception handling approach, followed by Section 3 showing its technical realization.
An application scenario is presented in Section 4 and related work is discussed in
Section 5. Finally, Section 6 presents the conclusion.

2 Flexible Exception Handling

To respond to the special properties of dynamic SE process execution, this paper
proposes an advanced process exception handling approach. It is grounded on two

properties: the ability to automatically gather contextual information utilizing special
sensors and complex event processing; and second, an enhanced flexibility in the
handling of the exceptions is achieved by the separation of different concerns
regarding exception handling. These concerns include the determination of the
responsible person or concrete insertion of counter measures into the process.

Our approach can be roughly understood as an extended flexible variant of ECA
(Event-Condition-Action) 8. The three phases are called Recognition, Processing, and
Action here, as illustrated in Fig. 2. The steps involved in the phases of this approach
rely on the following component definitions:

Event: Event is used to capture a multitude of possible events that may occur
during an SE project. These include, but are not limited to, events that can be related
to various exceptions. Examples include the saving of a source code artifact in an
integrated development environment (IDE) or the execution of a static source code
analysis tool that provides certain metrics. These metrics can be indicative of an
arising problem and thus lead to an exception.

Exception: The notion of Exception is utilized to classify a deviation from the
planned procedure that was recognized to have a potential negative impact on the
process and thus should be dealt with to avoid such an impact. In literature 9,
typically there is a distinction between anticipated exceptions, whose occurrence can
be easily foreseen, and unanticipated exceptions. For anticipated exceptions, standard
exception handlers can be defined. That is usually not possible for the unanticipated
ones. Since SE projects typically feature a very dynamic process and it may be
difficult so foresee a multitude of possible exceptions, our approach does not
discriminate between anticipated and unanticipated exceptions. It also does not use
standard exception handlers tied to specific exceptions. Flexibility is improved
through the explicit separation of events, exceptions, handling of the exceptions,
responsible persons, and the point in the process where a handling is invoked. Thus,
occurring events can be classified and it can be separately determined whether
exceptions shall be raised, what to do with them, when to do it, and who shall do that.
Additionally, the approach manages different levels of knowledge about occurring
events. Depending on that level of event knowledge, it can be decided whether a more
generic exception shall be raised or rather a specialized one. Fig. 1 exemplifies
different hierarchically structured exceptions belonging to three defined exception
categories.

Fig. 1. Exception hierarchy extract

As stated in 10, anticipated exceptions occurring during the execution of pre-specified
workflows include the following categories: activity failures, deadline expiration,
resource unavailability, discrepancies (between a real-world process and its

computerized counterpart), and constraint violations. These can be covered by the
exception types Activity-related Exception, Artifact-related Exception, and Process-
related Exception depicted in Fig. 1. Consider Scenario 1 from the introduction: the
code complexity of a source code artifact is very high and was introduced by some
activity. The problem may be detected much later and relate more to the artifact than
to the activity in that case. Furthermore, the appropriate person to deal with the
problem could be the one responsible for the entire artifact rather than the last person
who worked on it.

Handling: The notion of Handling is used to describe activities executed as
countermeasures for a triggered exception. Since SE exceptions are usually complex
and of semantic nature, no simple rollback of the activities that caused the exception
can be done. As an example, consider the activity of bug fixing (Scenario 1): While
fixing a bug, this activity can also introduce additional problems to the code such as
increased code complexity. This can happen when the person applying the bug fix is
not the one responsible for the processed artifact. As a countermeasure, an explicit
refactoring can become necessary. Handling neither comprises the person to execute
these activities nor the time or point in the process where they are to be executed.

Responsible: Responsible captures the responsible person for a Handling. As in
Scenario 1, this can be the one who executed an activity introducing the exception or
the one responsible for an artifact related to an exception.

Target: Target is the point in the process where the Handling is executed. For
certain exceptions, it can be suitable to integrate Handling directly into the workflow
where the exception occurred whereas in other cases a separate exception handling
workflow has to be executed.

The procedure is illustrated in Fig. 2 and described in the following phases and
steps.

Fig. 2. Abstract Exception Handling Concept

Recognition Phase: In this phase, low and high level events are gathered from the
environment in the following steps:

1. Event Detection: To enable automated assistance for exception handling, the
detection of events related to exceptions must be automated. In a SE project,
these events relate to processed activities and artifacts and thus also to
supporting tools. Our exception handling approach utilizes a set of sensors that
enable gathering of event information from various tools.

2. Event Aggregation: Automatically recognized events relating to the tools in
an SE project provide information about currently executed activities.
Nevertheless, these events are often of rather atomic nature (like saving file)
and provide no information about the complex activity a person is processing.

Therefore, these atomic events need to be processed and aggregated to derive
higher-level events of more semantic value (like the application of a bug fix).

Processing Phase: In this phase, all necessary parameters for the exception
handling are determined using the following steps:

3. Event Classification: Event classification can be used to gain more
knowledge about the event to be able to find a specific handling later. For
example, if a static analysis tool detects deterioration in the quality of a source
code artifact, it can be classified as to what kind of source code artifact it
relates, e.g., an artifact that constitutes an interface of a component or a test
code artifact. In order to effectively automatically the usage of the detected
events, they must also be related to the current project. The current focus of
the project should be considered, like the defined quality goals that can be
important in various situations (the modeling of these for use with automated
support has been shown in 11.) For example, if a static analysis tool detects a
rise in code complexity of certain source code artifacts, and performance is
very important for that project this may be no special event. However, it may
be an important event if, for example, the most important quality goals are
maintainability or reliability. These factors can be incorporated when deciding
whether an exception shall be raised according to an event.

4. Handling Determination: When an exception has occurred, it has to be
decided when and how to take measures against it. This also depends on the
current project situation. The situation can be classified using different
parameters like risk or urgency (as shown in 12). If urgency is high, meaning
there is a high schedule pressure on the project, one might decide not to
address the exception immediately but to retain it for deferred handling. Since
our approach, using event classification, can cope with different levels of
knowledge about events, it might also be decided to retain an exception if the
knowledge about it does not suffice for immediate automatically supported
handling.

5. Responsible Determination: If it is decided to take immediate action in case
of an exception, the person responsible for that action has to be determined.
There can be different possibilities: For example, if an exception relating to an
activity occurred, the processor of that activity can be responsible or, if an
exception occurred relating to an artifact, the responsible person for that
artifact (or, e.g. source code package) can be also responsible for handling the
exception. There may not be a direct responsible for each processed artifact,
but responsibilities can be hierarchically structured to simplify determination
of the responsible party (as described in 13).

6. Target Determination: When the responsible party for handling the exception
is determined, the concrete point in the process has to be determined where the
handling is applied. As in Scenario 1, if a person introduced an exception
while performing an activity and the respective workflow is still running, it
can be feasible to directly integrate the handling into that workflow. In other
cases, a new workflow for the same or another person can be started.

7. Exception Retainment: If, due to various parameters of the situation, no
immediate handling is favored, the exception is retained in a special exception

container. That container can be analyzed, e.g., at the end of an iteration by the
project manager.

Action Phase: In this phase the concrete execution of the selected exception
handling is done via the following steps:

8. Handling Preparation: After all parameters for the handling of an exception
are determined, the concrete handling has to be prepared, i.e., a new workflow
instance has to be created or the handling has to be integrated seamlessly into
a running workflow instance.

9. Handling Execution: Finally, the prescribed handling is executed by the
chosen person.

10. Deferred Handling: When exceptions are retained, a human can decide for
which exceptions a deferred handling is preferred. Therefore, an additional
GUI will be developed presenting a list of retained exceptions and enabling
manual determination of a handling or discarding of the exception.

3 Proof-of-Concept Implementation

The realization of the presented concept is based on our previously developed
framework CoSEEEK (Context-aware Software Engineering Environment Event-
driven Framework) 14. The framework is intended to provide holistic support for the
software development process and this paper presents the newly added exception
handling approach on the process level. The framework features a loosely coupled
event-driven architecture incorporating various modules. The modules relevant to this
new approach will now be described briefly.

Event Detection: This module builds upon the Hackystat framework 15, which
provides a rich set of SE tool sensors, to enable the automatic detection of various SE
events. Examples of these tools are IDEs or version control systems.

Event Processing: Complex Event Processing (CEP) is applied in this module
utilizing the tool esper 16. Thus, basic events like saving a file can be consolidated
into higher-level events like bug fixing.

Context Management: The Context Management module incorporates various
types of information concerning users, activities and processes, and aggregated
events. It manages the connection between the project context and the workflows and
is responsible for determination of the exceptions as well as the handlings to be
applied. Information is managed via semantic web technology: an OWL-DL ontology
17 serves as an information store, while Pellet 18 is used for logical reasoning.
Additionally, Pellet executes rules written in the semantic web rule language (SWRL)
19. Note that the execution of SWRL rules does not endanger the decidability of the
OWL-DL ontology in this case, since Pellet supports DL-safe rules execution 20. For
programmatic access to the ontology, the Jena framework 21 is used.

Process Management: The responsibilities of this module, in view of this
scenario, include not only guarantees for correct process execution and reliability, but
also adaptability of running workflows to be able to integrate contemporaneous
measures for triggered exceptions. Therefore, AristaFlow 22 was chosen since it
supports dynamic adaptations of running workflow instances. Further information on

correctness guarantees, adaptation facilities, and other features can be found in [22].
For CoSEEEK to automatically govern workflow execution, and to connect this with
contextual facts and apply automated workflow adaptations, the workflows have been
contextually annotated in the ontology. This is illustrated in Fig. 3. The concept of the
Work Unit maps an activity in process management and the Work Unit Container
maps a workflow in process management.

Fig. 3. Contextual process annotations

In the following, the realization of the process illustrated in Fig. 2 shall be briefly
described. The process can be initiated by various events detected from tools or
triggered by users. These events are aggregated using predefined CEP patterns and
then received by the Context Management module. Therein, the reasoner further
classifies the events as exemplified in the following:

))(
)(Pr(

ysisStaticAnalIDEoolrelatedToT
ArtifactSourceCodenentojectComporelatedTo

EventEventSourceCode

In the given example, a source code event constitutes an event that is related either
to a source code file, an IDE, or a static analysis tool. After classification of the event,
it is decided if an exception shall be raised due to the event. This is done by SWRL
rules and exemplified in the following:

SourceCodeComplexityEvent(EventSCE)
∧hasGoal(currentProject, goalMaintainability)

→ raisesException(EventSCE, CodeComplexityException)
The example illustrates the raising of a ‘Code Complexity Exception’ if a ‘Source

Code Complexity’ event occurs and one of the goals of the current project is
maintainability. The creation of the individual exception in the ontology is done
programmatically. Thereafter, it is determined with SWRL rules how this exception
shall be handled. This decision can incorporate situational properties. In the
aforementioned example of the ‘Source Code Complexity Exception’, it can be
decided to retain the exception, e.g., if ‘Urgency’ is very high in the current project
(or phase or iteration). This will connect the exception to a list associated to the
project (or phase or iteration) to be decided upon later by a human. If the situation
allows immediate handling, that handling is connected to the exception and the
responsible party is determined. This is done with SWRL rules and depends on the
type of exception as described in Section 2. The last fact to determine is the concrete
target where the handling is to be applied. This is realized by Extension Points that
are illustrated in Fig. 3. Via Extension Points, certain Work Units can be defined that
enable extending the process. The former have certain properties to distinguish which
kinds of extensions are possible (like the application of exception handling - for

another example of their use we refer to 23). CoSEEEK automatically determines the
next upcoming Extension Point and initiates automated integration into the running
workflow as illustrated in Fig. 4.

The contextual extension of the process management concepts does impose
additional configuration effort since workflows would have to be modeled as well as
concepts in the ontology. However, this effort can be limited: The direct mappings of
the process management concepts can be automatically generated. Future work will
include the development of web based GUIs to model the other required concepts
(e.g., Extension Points) and their connections in the ontology.

4 Application Scenario

This section illustrates the application of the approach by means of Scenario 2. In that
scenario, new source code is developed and the respective developer omits prescribed
testing activities. Fig. 4A shows an excerpt of a workflow governing these activities
(‘Implement Solution’, ‘Implement Developer Test’, ‘Run Developer Test’, ‘Integrate
and Build’) modeled in AristaFlow.

Fig. 4. Exception handling application

After implementing the solution, the developer directly integrates his source code.
The steps the system executes to handle that deviation (according to Fig. 2) are
explained in the following.
- Event Detection: The system detects that the user checks in certain artifacts by

sensors in his IDE and the source control system.
- Event Aggregation: From the detected events, the system derives the activity

‘Integrate and Build’ for that user. Since this is not the next intended activity in
the workflow, an ‘Activity Omitted’ event is created.

- Event Classification: That event is then contextually classified: the omitted
activities relate to testing and thus the event is classified as a ‘Testing Activity
Omitted’ event.

- Handling Determination: According to this event, an ‘Activity Omitted
Exception’ is raised that includes information about the omitted activities and the
executing person from the event.

- Responsible Determination: For this type of exception, the developer who
omitted the activities is also responsible for the handling.

- Target Determination: In the given case, the workflow of the developer is still
running. That means the respective Work Unit for the activity ‘Integrate and
Build’ is still active. For that Work Unit, an Extension Point has been defined
that can be used for handling extension integration. Thus, a direct integration
into that workflow is chosen.

- Handling Preparation: Utilizing the dynamic capabilities of AristaFlow, the
handling is integrated into the running workflow instance. This is done by the
on-the-fly insertion of a new activity during runtime that is connected to a sub-
workflow containing the handling as illustrated in Fig. 4B. Activity data
dependencies are not shown for clarity and space reasons.

Technical aspects regarding performance and scalability for different components of
the CoSEEEK framework have been previously evaluated in prior work 111213.

5 Related Work

For automatically detecting exceptional situations and determining the actions (i.e.,
workflow adaptations) required to handle them, ECA-based (Event-Condition-Action)
models have often been considered. Classically, many of these approaches limit
adaptations to currently enabled and running activities (e.g., to abort, redo, or skip
activity execution) 24. One approach to enable automated adaptations of the
unexecuted regions of a running workflow (e.g., to add or delete activities) is
AgentWork 25. It allows process adaptations to be specified at an abstract level and
independent from a particular process model based on a temporal ECA rule model.
Temporal estimates are made when an ECA rule fires during run-time to determine
which parts of a running process instance are affected by the identified exception. For
these parts, two types of changes are possible: predictive and reactive change.
Predictive changes are applied immediately whereas reactive changes are applied at
the time the concerned process fragments are entered. Another modern approach to
workflow adaptation is presented in 26. It consists of a rule-based and data-driven
approach to workflow adaptation. Therein, hierarchical context rules are utilized to
tailor workflows to changing data-contexts. Additionally, for environments involving
eventing paradigms, an event-driven adaptation pattern catalogue is also presented.
An example for this is the context-dependent cancelation of a workflow segment and
the triggering of a special handler task. These approaches are both event- and rule-
based as is CoSEEEK. However, they cannot utilize the variety of contextual events
since they lack the environmental sensors integrated via Hackystat. Furthermore,
these approaches are rather rigid in the way exceptions are handled since events,

conditions, and relating actions are statically connected. CoSEEEK not only separates
exception treatment into additional refinement steps, including semantic
classification, but also allows for flexible assignment of handlings based on various
factors. That way, an appropriate handling can be found for various situations and
different levels of knowledge about a situation. CoSEEEK also enables greater
flexibility for the handling itself by adaptively combining what is to be done, who
shall do it, and where / when it is to be applied.

Classical rule-based approaches concerning SE processes include MARVEL 27,
OIKOS 28, or Merlin 29. In MARVEL, rules are defined in its own language to
enable forward and backward chaining. Thus, the system can request additional
activities from a user executing an activity to satisfy the preconditions of the desired
action. OIKOS features rules defined in Prolog that are utilized by agents. These
cooperating agents operate in different workspaces and enable user cooperation.
Merlin also processes different contexts that are assigned to roles. Between these
contexts, artifacts are distributed to foster collaboration. As opposed to these
approaches, CoSEEEK features the combination of an extended flexible rule-based
approach with an advanced adaptive PAIS, semantic classification abilities, and
sensors providing contextual information. Therefore, process execution is more robust
and the discrepancies between the real world and the modeled process are minimized.

Exception handling could be accomplished utilizing only the PAIS. For example,
most BPEL workflow engines support so-called fault handlers to enable some kind of
exception handling, for instance 30. However, these engines do not typically possess
process adaptation abilities. While AristaFlow supports this capability and enables
exception handling 31, yet in contrast to CoSEEEK the automatic exception handling
abilities of these systems are rather limited because they lack both access to context
information and semantic reasoning or classification capabilities.

6 Conclusion

SE is a very dynamic and yet immature domain and thus poses a significant challenge
for process management. Process models are often abstract and document-centric and
not directly utilized in process execution. Moreover, processes are dependent on a
variety of environmental and contextual factors. Appropriate process automation
could enhance quality and repeatability in SE to better connect the abstract processes
with the operational level. However, such a process automation system must be able
to accommodate these various aspects and be able to deal with a variety of unforeseen
situations regarding process execution in order to provide real support and be
relevant. This paper presents an extension to the CoSEEEK framework enabling a
flexible exception handling approach incorporating diverse features to support the
dynamic SE process:
- Exception occurrence detection is supported by a set of sensors gathering

environment knowledge and by CEP that combines those events to derive
higher-level events with more semantic value.

- Semantic web technology is integrated to enable classification of events based
on various factors like the current situation or the goals of a project. The

proposed approach can deal with different levels of knowledge concerning
events and exceptions and thus does not require the separation between
anticipated and unanticipated exceptions.

- The combination of environmental awareness with the semantic capabilities also
enables the discovery of links between activities and exceptions that have no
direct connection.

- The flexibility of the handling is enhanced by separating the determination of the
handling, the responsible party, and the target of the handling.

- Featuring the dynamic adaptation capabilities of AristaFlow, exception handling
is automatically and seamlessly integrated into users’ running workflows.

- If, due to various reasons, a contemporaneous handling is not favorable, deferred
handling and analysis of exceptions are also enabled.

Future work will include the industrial application to evaluate the suitability of the
approach for real life projects and to refine and extend the modeling in alignment with
industrial requirements. It is also planned to extend the deferred handling with
exception grouping and exception filters to cope with very high exception load
situations or repetitive exceptions. Finally, the application in other domains is also
considered, as the approach itself is generic. Therefore, facilities to gather contextual
information in these environments have to be developed or integrated.

Acknowledgement

This work was sponsored by BMBF (Federal Ministry of Education and Research) of
the Federal Republic of Germany under Contract No. 17N4809.

References

1. Rausch, A., Bartelt, C., Ternité, T., Kuhrmann, M.: The V-Modell XT Applied - Model-
Driven and Document-Centric Development. In 3rd World Congress for Software Quality,
VOLUME III, Online Supplement, pp. 131—138, 2005.

2. OpenUP, http://epf.eclipse.org/wikis/openup/ [May 2011]
3. Wallmüller, E.: SPI-Software Process Improvement mit Cmmi und ISO 15504. Hanser

Verlag, 2007.
4. Ellis, C., Keddara, K., Rozenberg, G.: Dynamic change within workflow systems. In: Proc.

ACM Conf. on Organizational Computing Systems (COOCS’95), pp. 10–21 (1995)
5. Luo, Z., Sheth, A., Kochut, K., Miller, J.: Exception handling in workflow systems. Applied

Intelligence 13(2), 125–147, 2000.
6. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Exception Handling Patterns in

Process-Aware Information Systems. In: Proc. CAiSE’06, pp. 288–302, 2006.
7. Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow resource

patterns. Tech. Rep. WP 127, Eindhoven Univ. of Technology, 2004.
8. Paton, N. (Ed.): Active Rules in Database Systems, Springer, Berlin, 1999.
9. Reichert, M., Weber, B.: Enabling Flexibility in Process-aware Information Systems –

Challenges, Methods, Technologies, Springer (to appear)
10. Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow resource

patterns. Tech. Rep. WP 127, Eindhoven Univ. of Technology, 2004.

11. Grambow, G., Oberhauser, R.: Towards Automated Context-Aware Selection of Software
Quality Measures. In: Proc. 5th Intl. Conf. on SW Eng. Adv., IEEE CS, 2010.

12. Grambow, G., Oberhauser, R., Reichert, M.: Semantic Workflow Adaption in Support of
Workflow Diversity. In: Proc. 4th Int’l Conf. on Advances in Semantic Processing, 2010.

13. Grambow, G., Oberhauser, R., Reichert, M.: Towards Automatic Process-Aware
Coordination in Collaborative Software Engineering. In: Proc. of the 6th Int’ Conf. on
Software and Data Technologies (ICSOFT 2011), NSTICC Press 2011 (to appear)

14. Oberhauser, R.: Leveraging Semantic Web Computing for Context-Aware Software
Engineering Environments. In: G. Wu (ed.) Semantic Web, In-Tech, pp. 157-179, 2010.

15. Johnson, P.M.: Requirement and Design Trade-offs in Hackystat: An In-Process Software
Engineering Measurement and Analysis System. In: Proc. of 1st Int. Symposium on
Empirical Software Engineering and Measurement, IEEE Computer Society Press, 2007.

16. Espertech Event Stream Intelligence. http://www.espertech.com/products/esper.php
[retrieved April 2011]

17. World Wide Web Consortium, OWL Web Ontology Language Semantics and Abstract
Syntax, 2004. [retrieved April 2011]

18. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL
Reasoner. Journal of Web Semantics, 2006.

19. World Wide Web Consortium: SWRL: A Semantic Web Rule Language Combining OWL
and RuleML W3C Member Submission, 2004. [retrieved April 2011]

20. B. Motik, U. Sattler, R. Studer.: Query Answering for OWL-DL with Rules. In: Proc. of the
3rd International Semantic Web Conference (ISWC 2004), pp. 549-563, 2004.

21. McBride, B.: Jena: a semantic web toolkit. Internet Computing, 2002.
22. Dadam, P., Reichert, M.: The ADEPT Project: A Decade of Research and Development for

Robust and Flexible Process Support - Challenges and Achievements. Springer, Computer
Science - Research and Development, 23(2), pp. 81-97, 2009.

23. Grambow, G., Oberhauser, R., Reichert, M.: Employing Semantically Driven Adaptation for
Amalgamating Software Quality Assurance with Process Management. In: Proc. 2nd Int’l.
Conf. on Adaptive and Self-adaptive Systems and Applications, 2010.

24. Casati, F., Ceri, S., Paraboschi, S., Pozzi, G.: Specification and implementation of
exceptions in workflow management systems. ACM TODS 24(3), 405–451, 1999.

25. Müller, R., Greiner, U., Rahm, E.: AGENTWORK: A workflow system supporting rule–
based workflow adaptation. Data & Knowledge Engineering 51(2), 223–256, 2004.

26. Döhring, M., Zimmermann, B., Godehardt, E.: Extended Workflow Flexibility using Rule-
Based Adaptation Patterns with Eventing Semantics. LNI P-175, 2010.

27. Barghouti, N.S.: Supporting cooperation in the marvel process-centered sde, in: H. Weber
(Ed.), Fifth ACM SIGSOFT Symposium on Software Development Environments, Vol. 17
of Special issue of Software Engineering Notes, Tyson’s Corner VA, pages 21–31, 1992.

28. Montangero, C., Ambriola, V.: OIKOS: constructing process-centred SDEs. In: Software
Process Modelling and Technology, A. Finkelstein, J. Kramer, and B. Nuseibeh, Eds.
Research Studies Press Advanced Software Development Series. Research Studies Press
Ltd., Taunton, UK, 131-151, 1994.

29. Junkerman, G., Peuschel, B., Schäfer, W. and Wolf, S.: Merlin: Supporting cooperation in
software development through a knowledge-based environment. In: Software Process
Modelling and Technology, Research Studies Press Ldt., Ch. 5, 103–130, 1994.

30. Kloppmann, M., Konig, D., Leymann, F., Pfau, G., Roller, D.: Business process
choreography in websphere: Combining the power of BPEL and J2EE. IBM Systems
Journal 43, 270-296, 2004.

31. Lanz, A., Reichert, M. Dadam, P.: Making Business Process Implementations Flexible and
Robust: Error Handling in the AristaFlow BPM Suite. In: CAiSE'10 Demos, Hammamet,
Tunisia, 2010.

