
Activity-Oriented Clustering Techniques in
Large Process and Compliance Rule Repositories

Stefanie Rinderle-Ma1, Sonja Kabicher1, Linh Thao Ly2

1University of Vienna, Austria
Faculty of Computer Science, Workflow Systems and Technology Group

{stefanie.rinderle-ma,sonja.kabicher}@univie.ac.at
2Ulm University, Germany

Institute of Databases and Information Systems
thao.ly@uni-ulm.de

Abstract. Organizations often have to deal with large collections of
business process models and compliance rules. Particular challenges in
this context are compliance checks, consistency checks, and the mainte-
nance of the process and rule repositories. In case that a-priory knowl-
edge about dependencies within the process base and the rule base is
not available, compliance checking must be performed by verifying all
rules for each process, which turns out to be very costly in a context
of large process and rule repositories. In this paper we present activity-
oriented clustering techniques for efficient compliance checking which are
particularly applicable in process and rule repositories where no a-priori
clustering is considered. Further it is shown how the proposed clustering
techniques influence the complexity of consistency checks. Finally, quali-
tative and quantitative aspects of the presented clustering techniques are
discussed. The techniques provide a first step to effective and efficient
management of large business process and compliance rule repositories.

1 Introduction

Recently business process compliance has gained particular interest: enterprises
are more and more forced to guarantee that their business processes are exe-
cuted in accordance with certain compliance rules such as policies, regulations,
or guidelines (e.g., Sarbanes-Oxley Act or Six Sigma). Hence several approaches
to design, integrate, and verify compliance rules over business processes have
been proposed, e.g., [1]. However, none of these approaches paid attention to
the existence of large process and rule repositories, even though several case
studies show, that the amount of business processes can reach from a small set
to hundreds of business processes being subject to several hundred compliance
rules [2]. This demands for effective and efficient mechanisms to manage and
maintain process models, compliance rules, and their interconnections. Specifi-
cally, efficiency is important since verifying compliance of process models with
imposed compliance rules as well as consistency checks within the compliance
rule base are often complex and expensive. Hence, in this paper we address the



2 Stefanie Rinderle-Ma

following research questions:(a)How to determine and manage the interconnec-
tions between process models and compliance rules in an effective and efficient
manner?, (b)How to accelerate compliance as well as consistency checks?, and
(c) How to support the maintenance of compliance rule repositories?

Intuitively, instead of checking compliance of all process models for all com-
pliance rules in the repository, it might be more effective to check only those
process models for which the compliance rules are relevant. This clustering of
compliance rules is already provided by approaches that model compliance rules
for business process in a policy-oriented way [3]. The question remains whether
we can find a clustering if no a-priori knowledge is available. Furthermore, it
is necessary to evaluate the application of clustering techniques for compliance
rule and business processes (only apply clustering if beneficiary!).

In this paper we present activity-oriented clustering techniques for compli-
ance rules and process models. These techniques can be applied independently of
any a-priori knowledge such as policies associated to compliance rules and inde-
pendently of any process meta model. We discuss the effectiveness of the differ-
ent techniques based on performance considerations as well as on their effects on
compliance rule consistency and maintenance. Exemplarily, for conflict-freeness
of the compliance rule base we introduce a theorem that reduces the number
of necessary consistency checks. The techniques are illustrated based on the IT
Baseline Security use case as well as evaluated in a quantitative and qualitative
way. The presented techniques provide a first step towards effective and efficient
management of large business process and compliance rule repositories. Since
we cluster compliance rules and process models, in this paper we use the term
clustering instead of indexing. However, the clustering techniques could be also
combined with further modeling approaches.

2 Use Case and Background Information

In this section the use case ’IT baseline security’ [4] is presented and serves in
the following sections as exemplification of the basic concepts and the techniques
presented in this paper. Assume that the organization ORG works with business
process models stored in process repository, and a number of compliance rules
that affect the execution of the process models and which are stored in a rule
repository. In Fig. 4, ORG’s business process repository includes six business
processes that refer to password protection (P1), screen lock protection (P2),
protection against internet services (P3), malware scan of the data base (P4),
malware scan of outgoing data (P5), and malware scan of incoming data (P6).

In this paper, we do not restrict our considerations to a certain process meta
model or language. Hence, we introduce process models based on the set of activi-
tiesN and set of edges E they consist of, i.e., a process model P is defined as P :=
(N,E). To each node n ∈ N either an activity type AT from the domain of inter-
estA or a connector type CT ∈ {ANDSplit, ANDJoin,XORSplit,XORJoin}



Clustering Techniques 3

is assigned to1. Thus, a node is either an element within the process graph and
the activity type defines which activity is invoked at this point or based on the
node and its connector a certain process pattern is defined. Note that in this
paper we abstract from data flow issues and leave this to future work.

Fig. 1. IT Baseline Security: Process Models (in BPMN Notation)

Furthermore, there are eight compliance rules stored in the ORG’s compli-
ance rule repository, as illustrated in Fig. 2. Compliance rules are visualized as
compliance rule graphs (CRGs) introduced in the SeaFlows approach [5]. Note
that we use the SeaFlows formalism in this paper since due to the set-based defi-
nition of the CRGs (cf. Def. 1) it can be easily determined whether a compliance
rule refers to a process model or not.

Definition 1 (Compliance Rule Graph (CRG)). A compliance rule graph
is a 7-tuple R = (NA, NC , EA, EC , EAC , nt, p) where:

– NA is a set of nodes of the antecedent graph of R,
– NC is a set of nodes of the consequence graph of R,
– EA is a set of directed edges connecting nodes of NA,
– EC is a set of directed edges connecting nodes of NC ,
– EAC is a set of directed edges connecting nodes of the antecedent and the

consequence graph of R,
– nt : NA ∪ NC → {ANTEOCC,ANTEABS,CONSOCC,CONSABS} is a

function assigning a node type to the nodes of R, where
– ANTEOCC/ANTEABS denotes occurring/absent antecedent nodes in CRG,
– CONSOCC/CONSABS denotes occurring/absent consequence nodes in CRG,
– p is a function assigning a set of properties (e.g., activity type, data conditions)

to each node of R.

1 CT might be extended by further connector types such as ORSplit.



4 Stefanie Rinderle-Ma

Basically, each CRG is built by an antecedent and a consequence pattern
where the antecedent pattern might also be empty. Antecedent patterns can be
composed from occurrence nodes defining the occurrences of activity executions
that activate the compliance rule. Compliance rule R1 (cf. Fig. 2), e.g., is acti-
vated by the occurrence of an activity execution associated to the activity type
PC Power up. The antecedent pattern may also consist of absence nodes defin-
ing the absence of particular activity executions. This allows for refining the
occurrence pattern by putting additional conditions on the absence of activity
executions (e.g., to express patterns such as “if no malware scan is conducted
between data receipt and data access”). According to Def. 1 a compliance rule is
activated if either the antecedent is empty or if the antecedent of a compliance
rule applies. In both cases, one of the rule’s consequence patterns must also ap-
ply in order to satisfy the rule. Each consequence pattern, in turn, may consists
of occurrence as well as absence nodes and corresponding relations. Compliance
rule R2 (cf. Fig. 2), e.g., has a consequence absence node in its consequence part
demanding for the absence of activity Grant access. The pattern-based design
of a compliance rule is visualized as the Fig. 2 shows. Though the compliance
rules of our example are quite simple, it has been shown in [5] that more complex
compliance rule patterns can be composed easily using the CRG formalism.

Fig. 2. Use Case - compliance rule repository (left)/compliance rule graphs (right).

The formal semantics of a structural compliance rule is based on the corre-
sponding First Order Logic (FOL) formula. The connection between compliance
rule (graphs) and process models is accomplished by interpreting the rules over
the execution traces that can be produced on a process model. Execution traces
are a well-known concept of capturing process instances created, started, and
executed over a process model. The benefit of exploiting execution traces is that
this information is completely independent of any process meta model.

Definition 2 (Interpretation of compliance rules). Let ΣP be the set of all
execution traces of process model P (i.e., all traces P is able to produce). Then,
the satisfaction of a compliance rule c over P is defined as:

P |= c ↔ ∀σ ∈ ΣP holds σ |= c based on the interpretation of the FOL
formula of c.



Clustering Techniques 5

For process P1, e.g.,ΣP1 = {<PC Power up, Authentication, Authorization

proof, Grant access>, <PC Power up, Authentication,

Authorization denial>}. Obviously, for all σ ∈ ΣP1: σ |= R1 holds, i.e., PC
Power up is followed by Authentication ∀ σ in ΣP1.

3 Activity-Oriented Clustering Techniques

In this section we will present activity-oriented clustering techniques for process
model and compliance rule repositories. The techniques will be discussed along
the effort of creating clusters, the cost reduction for compliance checks and their
impact on process model as well as compliance rule maintenance. As a base
line for comparison, the effort for compliance checking without applying any
clustering and indexing techniques (cf. Fig. 3a) turns out as

O(|C| ∗ |P| ∗ CEmax)
for set of process models P, set of compliance rules C, maximum compliance
checking effort CEmax ∀ P ∈ P, ∀ C ∈ C

P1 C1

Set of Process Models P Set of Compliance Rules C

P1

Pn

C2

Cm

a) Initial Situation

P1 Cl1

Set of Process Models P Compliance Rule Cluster ClP

P1

Pn
Cln

b) Scenario 1 (Algorithm 1)

Cl2

C1

Set of Compliance Rules C

C2

Cm

P1 Cl1

Set of Process Models P Process Model Cluster ClC

P1

Pn
Clm

c) Scenario 2 

Cl2

C1

Set of Compliance Rules C

C2

Cm

Cl1

Set of 

Process 

Models P

Compliance Rule Cluster ClP

Cln

d) Scenario 3 (Algorithm 2)

Cl2

Aggregated Compliance 

Rule Clusters

Cl2

Clj

Cl1j

Cln

Fig. 3. Basic Clustering Scenarios

Without any further knowledge provided by clustering or indexing techniques
(semantic or activity-oriented ones), every compliance rule has to be verified for
every process model. For the structural compliance rules considered in this paper,
all compliance checks can be decided at design time. However, for data-aware [6]
or time-aware compliance rules certain compliance checks are to be postponed to
runtime [7]. Then clustering techniques become even more favorable, including
the information on design and runtime verification.

Depending on the cardinalities of C and P, the effort of O(|C| ∗ |P| ∗CEmax)
might be not that dramatic. The potential performance bottlenecks more likely



6 Stefanie Rinderle-Ma

arise from the effort of compliance checking CEmax. For checking compliance
verification, most approaches adopt model checking techniques, e.g. based on
LTL. These techniques require the transformation of process model and compli-
ance rule into a state-transition system that has to be verified (state explosion
problem). Minimizing the number of compliance checks to the absolutely neces-
sary ones is a promising way to keep compliance checking effort under control.
Scenario 1: Activity-oriented Compliance Rule Clustering determines
all compliance rules that are to be checked for each process model. This cluster-
ing could be already given by a semantic clustering based on a policy-oriented
modeling of the compliance rules as proposed in [3]. If no semantic clustering
is provided, the connection between compliance rule and process model can be
determined in an activity-oriented way (at the moment abstracting from other
process aspects such as data) as follows: According to Def. 1 a compliance rule is
triggered over a process model, if the antecedent pattern of the compliance rule is
potentially activated. This holds true if all activities associated with antecedent
occurrence nodes of a compliance rule are contained in a process model. In gen-
eral, this criterion can be used for optimization of compliance checks, e.g., as
pre-selection before applying model-checking based techniques. Note that com-
pliance rules that are not associated with any process model are ”collected” in
complementary cluster Clcomp. Based on the set-oriented definition of compli-
ance rules and process models we can define the following function IsTriggered
(P,C) for a process model P = (N,E) and compliance rule C=(NA,...) as follows:

IsTriggered : P × C → {0, 1}

IsTriggered(P,C) :=


1 if({n ∈ NA | nt(n) = ANTEOCC} = ∅) ∨

({n ∈ NA | nt(n) = ANTEOCC} ⊂ N)

0 otherwise
Using function IsTriggered clustering of process models and compliance

rules can be easily determined based on Algorithm 1.

Algorithm 1 Activity-oriented Compliance Rule Clustering

Require: P, C
Ensure: ClP := ∅ ∀ P ∈ P, Clcomp := ∅

for all P = (N,E) ∈ P do
for all C = (NA, NC , EA, EC , EAC , nt, p) ∈ C do

if IsTriggered(P,C) = 1 then
ClP := ClP ∪ {C}

end if
end for

end for
for all C ∈ (C \

⋃
P ClP ) do

Clcomp := Clcomp ∪ {C}
end for
return Clustering ClP , Clcomp



Clustering Techniques 7

Applying Algorithm 1 to our use case results in the clusters depicted in Fig.
4. Note that compliance rules R7 and R8 are contained within every cluster since
their antecedent pattern is empty and thus they are activated for every process
model. The number of necessary compliance checks is reduced from 48 to 19.

Fig. 4. Use Case IT baseline security - activity-oriented compliance rule clustering.

The complexity of Algorithm 1 is O(|P| ∗ |C|) which has to be considered as
initial effort for clustering, i.e., the effort typically occurs once. The effort for
compliance checking can be determined as

O(ΣP |ClP | ∗ CEmax) ≤ O(|P| ∗ |C| ∗ CEmax)
This means that each process model has to be checked for the compliance

rules contained within the associated cluster. Based on the ”clustering degree”
of the clustering the reduction in effort might be significant. In the worst case, no
clustering is achieved, i.e., all compliance rules refer to all process models. In this
case the effort for compliance checking remains the same as the effort without
applying clustering techniques. When comparing effort for compliance checking
and effort for building up the clustering we obtain the following conclusion:

O(|C| ∗ |P|) +O(ΣP |ClP | ∗ CEmax) ≤ O(|C| ∗ |P| ∗ CEmax)
The effect of clustering on maintaining compliance rule and process model

repositories will be discussed in Section 5.
Scenario 2: Compliance Checking With Process Model Clustering can
be conducted inversely to Algorithm 1: process models could be clustered for each
compliance rule in C resulting in clusters ClC ∀ C ∈ C. Again the membership
within a cluster can be determined by evaluating Cond set out in Algorithm 1.
The complexity results again in O(|P| ∗ |C|). Effort for compliance checking can
be determined as ΣC |ClC | ≤ |P|∗ |C|. Due to space limitations we omit further
discussion of Scenario 2.
Scenario 3: Aggregated Rule Clustering addresses the question whether
the results of Algorithm 1 could be still optimized by aggregating clusters. ClP1

and ClP2, e.g., both contain rule R2 (cf. Fig. 4). Hence it could be considered to
aggregate those clusters as well as the associated process models. The decision
to aggregate can only be answered by evaluating the trade-off between the ben-
efit of reducing the number of clusters and the potential performance penalty
by increasing the number of unnecessary compliance checks. Figure 5 depicts
different relations between two clusters ClP1 and ClP2.



8 Stefanie Rinderle-Ma
 

c) ClP1 = ClP2  
 

b) ClP1 ⊂ ClP2  
 

a) ClP1 ⊃ ClP2  
 

d) ClP1 ∩ ClP2 ≠ ∅ e) ClP1 ∩ ClP2 = ∅ 

ClP1:  ClP2:  

Fig. 5. Possible Relations between Compliance Rule Clusters

In case a) both clusters are equal, meaning that all of the compliance rules
contained within the clusters refer to process models P1 and P2. By merging
compliance rule clusters ClP1 and ClP2 into one cluster, the number of clusters
is reduced by one and there is no additional effort for any of both process models
P1 and P2. Thus in case a) cluster aggregation is advisable. In all other cases,
the number of clusters will be also reduced by one, but at the expense of ad-
ditional (unnecessary) compliance checks: either for P1 against ClP2 (b) or P2

against ClP1 (c) or both (d+e). The maximum number of unnecessary checks
will arise in case e. However, to decide on the question whether cluster aggrega-
tion is beneficial or not, additional information is needed, e.g., on the similarity
of process models. However, we leave these considerations to future work and
present Algorithm 2 that aggregates two clusters only if they are equal.

Algorithm 2 Aggregated Rule Clustering

Require: P, C, ClP (cf. Algorithm 1)
Ensure: P ′ = P, ClPi,j = ∅

for all ClPi , ClPj with ClPi = ClPj do
ClPi,j := ClPi ∪ ClPj

remove ClPi , ClPj

ClPi,j := {Pi} ∪ {Pj}
P ′ := P ′ \ ({Pi} ∪ {Pj})

end for
return Clustering Cli, ClPi,j , P ′

4 Clustering Effects on Maintenance Issues

There are several reasons for providing a cluster structure on compliance rules
and process models. One reason is maintenance of rule and models. Every time
a new compliance rule is added to the rule base, or fragments of compliance rule
bases are merged, consistency checks of the resulting base becomes inevitable.
Different approaches for checking knowledge base consistency exist, e.g., [8, 9].



Clustering Techniques 9

Common consistency problems are caused by redundant, conflicting, subsumed,
and circular rules. Further there might be knowledge gaps resulting from missing,
unreachable or dead-end rules [9]. In this paper, we want to investigate the
question: how do the proposed clustering techniques influence the complexity of
such consistency checks. As a first step, we claim that compliance rule sets must
be conflict-free. Formally:

Definition 3 (Conflict-free Compliance Rule Set). Let C be a set of com-
pliance rules that are imposed on a set of process models P. Then we denote C
as conflict-free, i.e.,

cf(C)=TRUE ⇐⇒
∧

FOLC is satisfiable ∀ C in C

Assume now that for C with cf(C)=TRUE, compliance rule Cnew is added.
Modifying an existing rule C to C’ can be treated analogously. Without applying
clustering techniques, the effort for checking conflict-freeness of C ∪ {Cnew}
turns out as O(|C| ∗ maxSat) where maxSat denotes the maximum effort for
checking satisfiability of Cnew and C ∈ C. In addition Cnew has to be checked
for compliance ∀ P ∈ P. Again clustering supports reduction of effort. In case
a compliance rule is added, we do not have to check all other compliance rule
whether they conflict with the new rule or not, but restrict consistency checks
to the clusters Cnew will be added to:

Proposition 1 (Conflict Checking for Compliance Clusters). Let C be
a set of compliance rules that are imposed on a set of process models P and
let cf(C)=TRUE. Let further ClP be a clustering of C over P. Assume that a
new rule Cn is added to C and consequently added to clusters ClP1

, . . . , ClPk
,

ClPi
∈ ClP , i = 1, . . . , k.2 Then:

cf(C ∪ {C})=TRUE ⇐⇒ ∀ i : cf(ClPi
∪ {C})=TRUE

Proof. ”=⇒”: cf(C ∪ {C})=TRUE =⇒ ∀ i : cf(ClPi
∪ {C})=TRUE

Follows directly from C =
⋃

P ClP .
”⇐=”: ∀ i : cf(ClPi

∪ {C})=TRUE =⇒ cf(C ∪ {C})=TRUE
Proof by contradiction:
Contradictory assumption: ∃ i with cf(ClPi ∪ {Cn}) = FALSE
ClPi

⊆ C
=⇒ cf(C ∪ {Cn}) = FALSE

=⇒ contradiction �

5 Discussion

In this section we sketch a simulation approach to quantitatively assess the ap-
plication of clustering techniques for process models and compliance rule repos-
itories. Further we discuss qualitative aspects in this context.

2 Adding Cn to corresponding clusters results in O(|P|).



10 Stefanie Rinderle-Ma

5.1 Quantitative Discussion

The quantitative evaluation of applying clustering techniques can be simulated
based on the following parameters:

– sizes of compliance rule and process model sets C and P
– =⇒ |P| clusters exist after applying clustering
– clustering degree cd with cd ∈ [0..1]

The clustering degree reflects the percentage of compliance rules that are
contained within exactly one cluster. Hence, (1 − c) ∗ |C| compliance rules are
contained in several clusters. In worst case, all (1 − c) ∗ |C| compliance rules
are contained within all |P| clusters, resulting in (1 − c) ∗ |C| ∗ |P| (compli-
ance/consistency) checks. Consequently, the overall number of checks results in

(1− c) ∗ |C| ∗ |P|+ c ∗ |C| = |C| ∗ |P| − c ∗ (|C| ∗ |P| − |C|) := f(c)
For c ∈ [0..1], function f(c) is falling in a linear way between maximum value

of f(0) = |C| ∗ |P| and a minimum value of f(1) = |C|. For c = 0 all compliance
rules are contained within all clusters (in fact resulting in no clustering at all)
with maximum number of compliance checks |C| ∗ |P|. If all compliance rules are
completely clustered in the sense that every compliance rule is only contained
within exactly one cluster, only |C| compliance checks become necessary. The
reduction in this case is |C| ∗ |P| − |C|.

In this paper, only a first simple simulation scenario is presented. However,
from this starting point, different extensions are possible, e.g., by incorporating
probability distributions over the number of compliance rules contained within
the different clusters. Further, f(c) only reflects the potential decrease in the
number of required checks. A more detailed discussion on decrease efforts will
be provided in future work.

5.2 Qualitative Discussion

On top of the effort considerations, clustering can be of help for maintaining
compliance rule sets. By applying Algorithm 1 (or 2 respectively), the set of com-
pliance rules that do not refer to any process model are filtered out. Reason for
such ”orphaned” compliance rules might be the continuous evolution of the com-
pliance rule set. The other way round, we can also detect which process models
are not subject to any compliance rule. Finally, by aggregating compliance rule
clusters as done in Algorithm 2 might yield interesting results, depending on the
aggregation strategy. Recall that the presented algorithm only aggregates equal
clusters. However, depending on the cluster relation (cf. Fig. 5) other strategies
might be pursued. In any case, if clusters can be aggregated for several process
models, this might also point to the existences of similar processes or process
families. Summarizing, clustering contributes to the quality of compliance rule
and process model sets (repositories) in the following ways:

– decreased effort for compliance checks and maintenance
– filtering out orphaned or outdated rules (cf. Clcomp in Alg. 1)



Clustering Techniques 11

– filtering out process models that are not subject to any compliance rules
– finding process similarities with respect to the imposed compliance rules

6 Related Work

For querying large process repositories, query languages on process models have
been developed [10, 11, 12]. BPMN-Q [11], e.g., is a graph-based language for
querying process models. A process model will be contained in the result set of
a BPMN-Q query if the query graph matches the process graph. In the context
of compliance checking, BPMN-Q can be used to query process model reposito-
ries for those process models containing activities or structures that are relevant
to a compliance rule [13]. Hence, finding associated process models for compli-
ance rules as necessary for clustering can be supported by such query languages,
particularly in combination with sophisticated platforms for large process repos-
itories such as APROMORE [14]. Another current stream of research deals with
the efficient evaluation of queries on process model repositories. For this, index-
ing techniques on process models have been developed [15]. As stated above,
these indexing techniques can be applied to support the efficient finding of asso-
ciations between process models and compliance rules. However, approaches for
clustering and indexing process models for compliance checking as well as for the
compliance rules themselves have not been addressed so far. Our approach can
further be combined with approaches to manage compliance rules and their rela-
tions to process models such as [3, 16]. Further, as the clustering approach does
not necessitate a particular compliance checking approach, it can be combined
with existing process model verification approaches such as [6, 17].

7 Summary and Outlook

In this work we presented activity-oriented clustering techniques that partic-
ularly support the management of large business process and compliance rule
repositories independent of any a-priory knowledge (like policies or process meta
models). Summarized in a simplified way, the activity-oriented compliance rule
clustering bundles compliance rules for each process model and the aggregated
rule clustering technique considers the relations between clusters in order to de-
cide if merging clusters reduces the number and thus the efficiency of compliance
checks. Furthermore it was shown how the clustering techniques can accelerate
consistency checks by introducing a theorem that reduces checks for conflict-
freeness of the overall compliance rule sets to respective checks on the clusters.
Finally, aspects of quantitative and qualitative evaluations of applying the clus-
tering techniques were discussed. The techniques were explained by means of
the use case IT baseline security. In future work we want to define further tech-
niques for managing large collections of business processes and compliance rules,
particularly focusing on e.g. indexing techniques, or clustering according to data



12 Stefanie Rinderle-Ma

flows in business processes. Further, the effects of process model evolution on
clustering and indexing will be investigated.

References

1. Ly, L.T., Rinderle, S., Dadam, P.: Integration and verification of semantic con-
straints in adaptive process management systems. Data & Knowledge Engineering
64(1) (January 2008) 3–23

2. Valkenburg, M.: Van ameyde international case study. Technical report,
www.bptrends.com (2010)

3. Namiri, K.: Model-Driven Management of Internal Controls for Business Process
Compliance. PhD thesis, University of Karlsruhe (2008)

4. Federal Agency for Security in IT, G.: It baseline security - catalogues.
www.bsi.bund.de (2006) in German Language.

5. Ly, L., Rinderle-Ma, S., Dadam, P.: Design and verification of instantiable compli-
ance rule graphs in Process-Aware information systems. In: Advanced Information
Systems Engineering. (2010) 9–23 10.1007/978-3-642-13094-6 3.

6. Knuplesch, D., Ly, L., Rinderle-Ma, S., Pfeifer, H., Dadam, P.: On enabling Data-
Aware compliance checking of business process models. In: Conceptual Modeling
– ER 2010. Volume 6412. (2010) 332–346

7. Tran, H., Zdun, U., Dustdar, S.: VbTrace: using view-based and model-driven
development to support traceability in process-driven SOAs. Software and Systems
Modeling 10 (2011) 5–29 10.1007/s10270-009-0137-0.

8. Suwa, M., Scott, A.C., Shortcliffe, E.H.: An approach to verifying completeness
and consistency in a Rule-Based expert system. AI Magazine 3(4) (1982)

9. Nguyen, T.A., Perkins, W.A., Laffey, T.J., Pecora, D.: Checking an expert systems
knowledge base for consistency and completeness. In: Proc. Int’l Conf. on Artificial
intelligence - Vol. 1. (1985) 375–378 ACM ID: 1625205.

10. Hornung, T., Koschmider, A., Oberweis, A.: A recommender system for business
process models. SSRN eLibrary (2007)

11. Awad, A., Sakr, S.: Querying Graph-Based repositories of business process models.
In: Database Systems for Advanced Applications. Volume 6193. (2010) 33–44

12. Francescomarino, C., Tonella, P.: Crosscutting concern documentation by visual
query of business processes. In: Business Process Management Workshops. Vol-
ume 17 of LNBIP. (2009) 18–31

13. Awad, A., Decker, G., Weske, M.: Efficient compliance checking using BPMN-Q
and temporal logic. In: Int’l Confe. Business Process Management. (2008) 326–341

14. Rosa, M.L., Reijers, H.A., van der Aalst, W.M., Dijkman, R.M., Mendling, J., Du-
mas, M., Garćıa-Bañuelos, L.: APROMORE: an advanced process model reposi-
tory. Expert Systems with Applications 38(6) (June 2011) 7029–7040

15. Jin, T., Wang, J., Wu, N., Rosa, M.L., ter Hofstede, A.: Efficient and accurate re-
trieval of business process models through indexing. In: On the Move to Meaningful
Internet Systems: OTM 2010. Volume 6426. (2010) 402–409

16. Namiri, K., Stojanovic, N.: Towards a formal framework for business process
compliance. In: Multikonferenz Wirtschaftsinformatik (MKWI 2008). (2008)

17. Liu, Y., Müller, S., Xu, K.: A static compliance-checking framework for business
process models. IBM Systems Journal 46(2) (2007) 335–261


