
Enabling Personalized Visualization of Large Business
Processes through Parameterizable Views

Manfred Reichert,
Jens Kolb

Ulm University, Germany
{manfred.reichert,

jens.kolb}@uni-ulm.de

Ralph Bobrik
Detecon AG
Switzerland

ralph.bobrik@
detecon.com

Thomas Bauer
Hochschule Neu-Ulm
Neu-Ulm, Germany
thomas.bauer

@hs-neu-ulm.de

ABSTRACT
Process-aware information systems (PAISs) need to support
personalized views on business processes since different user
groups have distinguished perspectives on these processes
and related data. Existing PAISs, however, do not provide
mechanisms for creating and visualizing such process views.
Typically, processes are displayed to users in exactly the
same way as originally modeled. This paper presents a flex-
ible approach for creating personalized process views based
on parameterizable operations. Respective view-building
operations can be flexibly composed in order to hide pro-
cess information or abstract from it in the desired way. De-
pending on the chosen parameterization of the operations
applied, we obtain process views with more or less relaxed
properties (e.g., regarding the degree of information loss or
soundness). Altogether, the realized view concept enables a
more flexible visualization of large business processes satis-
fying the needs of different user groups.

1. INTRODUCTION
The field of Enterprise Engineering combines system en-

gineering and strategic management to streamline compa-
nies in terms of organisational structure, products and busi-
ness processes. Therefore process-aware information sys-
tems (PAISs) are an integral part to support business pro-
cesses at an operational level. Further, PAISs strictly sepa-
rate process logic from application code, relying on explicit
process models. This enables a separation of concerns, which
is a well established principle in computer science to increase
maintainability and to reduce costs of change [1]. In this con-
text, companies have to deal with a large number of business
processes involving different domains, organizational units,
and tasks. Generally, these processes are stored in central
process repositories [2]. In large companies, such reposito-
ries can easily contain several thousands of process models
[3]. Each of these process models comprises a large number
of activities, and involve a multitude of user groups. Usu-
ally, each of these user groups needs a different view on the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC EE’12 March 25-29, 2012, Riva del Garda, Italy.
Copyright 2012 ACM 978-1-4503-0857-1/12/03 ...$10.00.

process with customized visualization and information gran-
ularity [4]. For example, managers rather prefer an abstract
overview, whereas process participants need a detailed view
of those process parts they are involved in. Thus, person-
alized process visualization is a much needed PAIS feature.
Despite its practical importance, current PAISs do not of-
fer adequate visualization support. Often, process models
are displayed to the user as drawn by the process designer.
Generally, these process models are too complex and, hence
not comprehensible to most users, e.g. due to the numer-
ous technical activities to execute the process. Some tools
allow altering the graphical appearance of a process and hid-
ing selected aspects (e.g., data flow). However, sophisticated
and flexible concepts for creating and managing user-specific
views are missing.

To elaborate basic visualization requirements several case
studies [5] were conducted resulting in three dimensions of
process visualization [6]. First, it must be possible to re-
duce complexity by hiding or aggregating process informa-
tion not being relevant in the given context. Second, the
notation and appearance of process nodes (e.g., activities
and data objects) should be customizable [6]. Third, differ-
ent presentation formats (e.g., process graph, table) need to
be supported.
Our Proviado project provides a generic framework for visu-
alizing large processes, which considers these three dimen-
sions. Fig. 1 sketches the corresponding architecture. For vi-
sualizing application-spanning processes, process data from
heterogeneous sources is integrated and translated into the
Proviado process format (a) [7]. The way a process shall be
displayed to a particular user role is defined by a Visualiza-
tion Model comprising relevant configuration data (b), like
the process part to be visualized or the notation to be used.
Taking this information the Visualization Engine generates
an abstracted process schema (c) and adapts the graphi-
cal representation of its nodes (d). Finally, the user-specific
view, which may include run-time data (e.g., status infor-

Visualization

Engine

Vis.Model A

source system II Process Schema in Generic
Representation Format

Process Model
Data

Transformation
and Integration

Vis.Model B

run-time data

Workflow
Mgmt System

User Manager

Visualization According to
Vis.Model A

a

b

c

d

e

f

Process Execution

PDM
System

Visualization According to
Vis.Model B

...

Visualization Engine

Process Model
Transformation
and Integration

Run-Time Data

Workflow Mgmt
System

User Manager

View According to Vis.Model A

a

f

Process
Execution

PDM System

View According to Vis.Model B

Generic
Process Schema ...

Structure

Transformation

Notation

Transformation
d

Visualization

Creation
e

Vis.Model A Vis.Model B ...
b

c

Figure 1: Proviado Framework

mation, application data) is created (e). Using multiple
Visualizations Models allows us to realize customized and
personalized process visualizations (f).

This paper focuses on the parameterizable Structure Trans-
formation component (Fig. 1c), i.e., on the provision of a
flexible component for building process views. Such a com-
ponent must cover a variety of use cases. For example, it
should be possible to build views only containing activi-
ties the current user is involved in or only showing non-
completed process regions. As another example, consider
executable process models which often contain technical ac-
tivities (e.g., data transformation steps) to be excluded from
visualization. Finally, selected process nodes may have to
be hidden or aggregated to meet confidentiality demands.
Proviado allows creating respective process views based on
well defined, parameterizable view operations. These rely
on both graph reduction and graph aggregation techniques.
While the former can be used to remove nodes from a process
model, the latter are applied to abstract from certain pro-
cess information (e.g., aggregating several activities to one
abstract node). Proviado additionally supports the flexible
composition of such basic view operations to realize more
sophisticated process abstractions. The basic idea of build-
ing process views has been already sketched in [8, 9]. In
this paper we introduce more advanced view operations and
their formal properties. Further, we use the view-building
operations for enabling parameterization of high-level view
operations.

The implementation of view operations is by far not triv-
ial and may require complex process schema transforma-
tions. Besides activity aggregations may become complex,
e.g. when aggregating non-connected activities. Further-
more, it should be possible to flexibly configure the proper-
ties of a process view depending on application needs. If the
focus is on process visualization, for example, view proper-
ties may be relaxed. Opposed to this, more rigid constraints
become necessary if views shall be updatable or executable.

Section 2 gives background information needed for un-
derstanding this paper. In Section 3 we introduce the for-
mal foundations of parameterizable process views. Section
4 gives insights into practical issues and presents more com-
plex examples for defining and creating process views. Sec-
tion 5 discusses related work and Section 6 concludes with
a summary.

2. BACKGROUNDS
Each process is represented by a process schema consist-

ing of process nodes and the control flow between them (cf.
Fig. 2). For control flow modeling, control gateways (e.g.,
ANDsplit, XORsplit) and control edges are used.

Definition 1. A process schema is defined by a tuple P =
(N,E,EC,NT) where:

• N is a set of process nodes,

• E ⊂ N ×N is a precedence relation
(notation: e = (nsrc, ndest) ∈ E),

• EC : E → Conds ∪ {True} assigns optionally transi-
tion conditions to control edges,
• NT : N → {Activity, ANDsplit, ANDjoin,ORsplit,

ORjoin,XORsplit,XORjoin} assigns to each n ∈ N a
node type NT (n); N is divided into disjoint sets of ac-
tivity nodes A (NT = Activity) and gateways S (NT 6=
Activity).

Note that this definition focuses on the control flow per-
spective. In particular, it can be applied to existing activity-
oriented modeling languages (e.g. BPMN). However, the
view operations presented in Section 3 consider other pro-
cess perspectives as well (e.g., data elements, data flow).
Furthermore, Proviado also considers loop structures. We
exclude the latter in the paper due to lack of space (see [10]
for details); i.e., we only consider acyclic process graphs.

We assume that a process schema has one start and one
end node. Further, it has to be connected; i.e., each activity
can be reached from the start node, and from each activity
the end node is reachable. Finally, branches may be arbi-
trarily nested, but must be safe (e.g., a branch following a
XORsplit must not merge with an ANDjoin).

Definition 2. Let P = (N,E,EC,NT) be a process schema
and let X ⊆ N be a subset of activity nodes. The subgraph
P ′ induced by X is called SESE (Single Entry Single Exit)
fragment iff P ′ is connected and has exactly one incoming
and one outgoing edge connecting it with P.

Based on a process schema P related process instances can
be created and executed at run-time. Regarding the process
instance from Fig. 2, for example, activities A and B are
completed, C and N are activated (i.e., offered as work items
in user worklists), and H and K are running.

Definition 3. A process instance I is defined by a tuple
(P,NS,H) where

• P denotes the process schema on which I is running,

• NS : N → ExecutionStates := {NotActivated,Acti−
vated,Running, Skipped, Completed} describes the ex-
ecution state of each node n ∈ N ,

• H = 〈e1, . . . , en〉 denotes the execution history of I
where each entry ek is related either to the start or
completion of a particular process activity.

For an activity n ∈ N with NS(n) ∈ {Activated,Running}
all preceding activities either must be in state Completed
or Skipped, and all succeeding activities must be in state
NotActivated. Further, there is a path π from the start
node to n with NS(n′) = Completed ∀n′ ∈ π.

3. FUNDAMENTALS ON BUILDING VIEWS
We first introduce basic view-building operations and rea-

son about properties of resulting view schemas. As first
example consider the process instance from Fig. 3a. As-
sume that each of the activity sets {B,C,H,K}, {J, L},
and {T,U, V } shall be aggregated, i.e., replaced by one ab-
stract node. Assume further that activity sets {E,F,G} and
{R,S} shall be hidden. Fig. 3b shows a possible view result-
ing from respective aggregations and reductions. Generally,
process views exhibit an information loss when compared
to the original process. As important requirement, view-
building operations should have a precise semantics and be

B

MK

G

JH

D

L

IA

C

P
Q

R

s

t

FE

UT V

S

N O

activityAND split

control flow edge

XOR split

XOR join

branching condition

activity states:
completed
running
activated

SESE block

(Single Entry Single Exit)

AND join

Figure 2: Example of a process instance

applicable to both process schemas and instances. Further,
it should be possible to remove process nodes (reduction)
or to replace them by abstracted ones (aggregation). When
building views it is fundamental to preserve the structure
of non-affected process regions. Finally, the effects of view-
building operations should be parameterizable to meet ap-
plication needs best and to be able to control the degree of
information loss.

We first give an abstract definition of a process view. The
concrete properties of such a view depend on the applied
view operations and their parameterization.

Definition 4. Let P = (N,E,EC,NT) be a process schema
with activity set A ⊆ N . Then: A process view on P is a
process schema V (P) = (N ′, E′, EC′, NT ′) whose activity
set A′ ⊆ N ′ can be derived from P by reducing and aggre-
gating activities from A ⊆ N . Formally:

• AU = A ∩ A′ denotes the set of activities present in
both P and V (P),

• AD = A \A′ denotes the set of activities present in P ,
but not in V (P); i.e., reduced or aggregated activities:
AD ≡ AggrNodes ∪RedNodes
• AN = A′ \ A denotes the set of activities present in
V (P), but not in P . Each a ∈ AN is an abstract
activity aggregating a set of activities from A:

1. ∃AggrNodesi, i = 1, . . . , n with

AggrNodes =
•⋃

i=1,...,n

AggrNodesi

2. There exists a bijective function aggr with:
aggr : {AggrNodesi|i = 1, . . . , n} → AN

Using the notions from Def. 4 for a given process schema P
and related view V (P) we introduce function V Node : A→
A′, which maps each process activity c ∈ AU ∪ AggrNodes
to a corresponding activity in the view :

V Node(c) =

c c ∈ AU

aggr(AggrNodesi) ∃i ∈ {1, . . . , n} :

c ∈ AggrNodesi
undefined c /∈ AU ∪AggrNodes

For each view activity c′ ∈ A′, V Node−1(c′) denotes the
corresponding activity or the set of activities aggregated by
c′ in the original schema. Finally more complex process
views are created by composing a set of view operations,
which also define the semantics of the view (cf. Sec. 4).

3.1 Building Process Views Based on Schema
Reduction

Any view component should be able to remove activities
in a process. For example, this is required to hide irrelevant

B

MK

G

JH

D

L

IA

C

P
Q

R

s

t

FE

BCHK

M

D
IA

P
Qs

t

JL

UT V

S

N O

N O

TUV

build view

Aggregate(B,C,H,K)

Aggregate(L,J)

Reduce(E,F,G)

Reduce(R,S)

Aggregate(T,U,V)

b)

a)

Figure 3: Example of a process view

REDUCECF({B,C,D})

a)

C D EA

C D EBA

D EA

A E

RedActivity(B)

RedActivity(C)

RedActivity(D)

A
D

F

A D F

A

B

F

D

A

B

F

D

BA

r
s

t

BA

r Ú s

t

b)

c)

d) e)

A
B

C

A
C

s

t

s

t

RedActivity(B)

Figure 4: Recution and simplification operations

or confidential process details from a particular user group.
For this purpose, Proviado provides an elementary reduction
operation (cf. Fig. 4b). Based on it, higher-level reduction
operations for hiding a set of activities at once can be re-
alized. Reduction of an activity (RedActivity) is realized
by removing it together with its incoming/outgoing edges
from the schema. Then a new control edge is inserted be-
tween the predecessor and successor of the removed activity
(cf. Fig. 4b). For reducing activity sets, the single-aspect
view operation ReduceCF is provided. Single-aspect op-
erations focus on elements of one particular process aspect.
Reduction is performed stepwise, i.e., for all activities to be
removed, RedActivity is applied (cf. Fig. 4a). Note that the
algorithms we apply are context-free and may introduce un-
necessary process nodes (e.g. empty branches). Respective
nodes are purged afterwards by applying well-defined sim-
plification rules to the created view schema. For example,
when reducing a complete branch of a parallel branching, the
resulting control edge may be removed as well (cf. Fig. 4d).
In case of an XOR-/OR-branching, however, the empty path
(i.e., control edge) needs to be preserved. Otherwise an in-
consistent schema would result (cf. Fig. 4b). Similarly, when
applying simplification rules to XOR-/OR-branches respec-
tive transition conditions must be recalculated (cf. Fig. 4c).
Reduction of activities always comes along with an informa-
tion loss, while preserving the structure of the non-reduced
schema parts, i.e., the activities being present in both pro-
cess and view schema. The latter can be expressed using
the notion of order preservation. For this we introduce par-
tial order relation � (⊆ N ×N) on process schema P with
n1 � n2 ⇔ ∃ path π in P from n1 to n2.

Definition 5. Let P = (N,E,EC,NT) be a process schema
with activity set A ⊆ N and let V (P) = (N ′, E′, EC′, NT ′)
be a view on P with activity set A′ ⊆ N ′. Then: V (P) is
called order-preserving iff ∀n1, n2 ∈ A with n1 6= n2 and n1 �
n2 : n′1 = V Node(n1) ∧ n′2 = V Node(n2)⇒ ¬(n′2 � n′1).

This property reflects that the order of two activities in
a process schema must not be reversed in a correspond-
ing view. Obviously, the reduction operations depicted in
Fig. 4ab are order preserving. Generally, this property is
fundamental for ensuring the integrity of process schemas
and corresponding views. A stronger notion is provided by
Def. 6. As we will see later, in comparison to Fig. 4ab there
are view operations which do not comply with Def. 6.

Definition 6. Let P = (N,E,EC,NT) be a process schema
with activity set A ⊆ N and let V (P) = (N ′, E′, EC′, NT ′)
be a corresponding view withA′ ⊆ N ′. Then: V (P) is strong
order-preserving iff ∀n1, n2 ∈ A with n1 6= n2 and n1 � n2 :
n′1 = V Node(n1) ∧ n′2 = V Node(n2)⇒ n′1 � n′2.

3.2 Building Process Views Based on Schema
Aggregation

The aggregation operation enables merging a set of activi-
ties into one abstracted node. Depending on the structure of
the subgraph induced by the respective activities, different
schema transformations may have to be applied. In par-
ticular, the aggregation of non-connected activities necessi-
tates a more complex restructuring of the process schema.
Fig. 5 shows the elementary operations for building aggre-
gated views. The depicted operations follow the policy to
substitute the activities in-place by an abstract one (if possi-
ble) while maintaining order-preservation (cf. Def. 5). Note
that in-place substitution is always possible when aggregat-
ing a SESE fragment (cf. Def. 2). If none of the oper-
ations from Fig. 5ade can be applied, AggrAddBranch (cf.
Fig. 5b) is used. It identifies the nearest common ances-
tor and successor of all activities to be aggregated and adds
a new branch between them (cf. Fig. 5b). Alternatively,
aggregation of non-connected activities can be handled by
applying elementary operations of type AggrSESE (cf. Sec.
4). Finally, when aggregating activities directly following a
split node there exist two alternatives (cf. Fig. 5e). The first
one aggregates activities applying AggrAddBranch, the sec-
ond one shifts activities to the position preceding the split
node (AggrShiftOut).

Except AggrAddBranch the operations presented are strong
order-preserving (cf. Def. 6). However, AggrAddBranch vi-
olates this property. For example, in Fig. 5b order relation
D � E is not preserved after applying this operation.

Definition 7. Let P = (N,E,EC,NT) be a process schema
with activity set A ⊆ N . Then: DP = {(n1, n2) ∈ A ×
A|n1 � n2} is denoted as dependency set and reflects all
direct and transitive control flow dependencies between any
two activities.

We are interested in the relation between the dependency
set of a process and a related process view. For this pur-
pose, let DP be the dependency set of P and DV (P) be
the dependency set of view V (P). We further introduce a
projection of the dependencies from V (P) on P denoted as
D′V (P). It can be derived by substituting the dependencies
of the abstract activities by the ones of the original activ-
ities. As example consider AggrShiftOut in Fig. 5e. We
obtain DP = {(A,B), (B,C), (C,F), (A,D), (D,E), (E,F)}
and DV (P) = {(A,BD), (BD,C), (BD,E), (C,F), (E,F)}.
Further D′V (P) = {(A,B), (B,C), (D,C), (C,F), (A,D),

(B,E), (D,E), (E,F)} holds. As one can see, D′V (P) con-
tains additional dependencies. We denote this property as
dependency-generating.

Calculation of D′V (P): For n1 ∈ AN , n2 ∈ A′: remove

all (n1, n2) ∈ DV (P); insert {(n, n2)|n ∈ aggr−1(n1)} in-
stead (analogously for n2 ∈ AN); finally insert the depen-
dencies between AggrNodes, i.e., DP [AggrNodes] = {d =
(n1, n2) ∈ DP |n1 ∈ AggrNodes ∧ n2 ∈ AggrNodes}

Now we can classify effects on the dependencies between
activities when building a view.

C DBA E

DA

BCE

AggrAddBranch

ZA

A Z

SESE

N

AggrSESE b)a)

A
B

ED

C

A
E

C

Alternative 1:
Alternative 2:

BD
AggrAddBranch

AggrShiftOut

A
E

C
BD

A

B

GF

C

ED

r

s

t

A
GF

r Ú s

t

AggrComplBranches

BCDE

d)

A
B C

ED

r

s

A B

E

r
s

r Ú s
CD

AggrAddBranchc)

e)

Figure 5: Elementary aggregation operations

Definition 8. Let P = (N,E,EC,NT) be a process schema
and let V (P) be a corresponding view. Let DP and D′V (P)

be the dependency sets as defined above.

• V (P) is denoted as dependency-erasing iff there ex-
ist dependency relations in DP not existing in D′V (P)

anymore.

• V (P) is denoted as dependency-generating iff D′V (P)

contains dependency relations not contained in DP .

• V (P) is denoted as dependency-preserving iff it is
neither dependency-erasing nor dependency-generating.

Generally reduction operations are dependency-erasing. When
aggregating activities, however, there exist elementary op-
erations of all three types. In Fig. 5, for instance, Ag-

grSESE is dependency-preserving, while AggrAddBranch is
dependency-erasing as (B,C) /∈ D′V (P) holds; finally, Aggr-

ShiftOut is dependency-generating: (B,E) ∈ D′V (P). The-
orem 1 explains the relation of dependency properties (cf.
Def. 8) and order-preservation (cf. Def. 5).

Theorem 1. Let P = (N,E,EC,NT) be a process schema
and let V (P) be a corresponding view. Then:

• V (P) is dependency-erasing ⇒
V (P) is not strong order-preserving

• V (P) is dependency-preserving ⇒
V (P) is strong order-preserving

The proof of Theorem 1 can be based on the definition of
the properties and dependency sets, and is omitted here. In
summary, we have presented a set of elementary aggregation
operations. Each of them fits to a specific ordering of the
activities to be aggregated. In Section 4.1 we combine these
operations into more complex ones utilizing the discussed
properties.

Generally, additional aspects have to be covered includ-
ing data elements, data flow, and attributes of process el-
ements. Regarding data elements, for example, aggrega-
tion operations (e.g., to create abstract business objects)
and reduction operations (e.g., to hide technical data ele-
ments) are provided by the Proviado framework. Fig. 6a
shows an example of a simple aggregation. Here, data ele-
ments {D1, D2} are aggregated and data edges connecting

activities with data elements are re-linked when aggregating
{B,C,D,E} to preserve a valid process model.

Further, Proviado offers functions enabling attribute ag-
gregations. Fig. 6b, for example, applies a MIN-function to
the aggregation set in order to determine start time, a MAX-
function for calculating end time, and a SUM-function for
aggregating cost attributes.

B

E

DA

C

D1

D2

BCDEA

D3

D3
D1D2

data

element

data flow

edge
optional data flow

AggrShiftOuta)

BA C

start: 01.08.11

end: 05.08.11

cost: 2500

start: 07.08.11

end: 14.08.11

cost: 4100

start: 06.08.11

end: 07.08.11

cost: 600

ABC

start: 01.08.11

end: 14.08.11

cost (sum): 7200

AggrSESEb)

start = min(ni.start)
end = max(ni.end)
cost = sum(ni.cost)

Aggr. Functions

Figure 6: Aggregation of (a) data elements, (b) at-
tributes

3.3 Applying Views to Process Instances
So far, we have only considered views on process schemas.

This section additionally introduces views on process in-
stances (cf. Def. 3). When building respective instance
views their execution state (i.e. states of concrete and ab-
stract activities) must be determined and the trace relating
to the instance view logically needs to be adapted. Exam-
ples are depicted in Fig. 7a (reduction) and Fig. 7b (aggre-
gation). Function V NS calculates the state of an abstract
activity based on the states of the aggregated activities.

V NS(X) =

NotActivated ∀x ∈ X : NS(x) /∈ {Activated,Run−
ning, Completed} ∧
∃x ∈ X : NS(x) = NotActivated

Activated ∃x ∈ X : NS(x) = Activated ∧ ∀x ∈ X :

NS(x) /∈ {Running, Completed}
Running ∃x ∈ X : NS(x) = Running ∨

∃x1, x2 ∈ X : NS(x1) = Completed ∧
(NS(x2)=NotActivated ∨NS(x2)

=Activated)

Completed ∀x ∈ X : NS(x) /∈ {NotActivated,

Running,Activated}∧
∃x ∈ X : NS(x) = Completed

Skipped ∀x ∈ X : NS(x) = Skipped

Definition 9. Let I = (P,NS,H) be an instance of schema
P = (N,E,EC,NT) and V (P) = (N ′, E′, EC′, NT ′) be a
view on P with corresponding aggregation and reduction
sets AggrNodes and RedNodes (cf. Def. 4). Then: V (I) on
I is a tuple (V (P), NS′,H′) with:

• NS′ : N ′ → ExecutionStates with NS′(n′) =
V NS(V Node−1(n′)) assigns to each view activity a
corresponding execution state.

• H′ is the reduced/aggregated history of the instance.
It is derived from H by (1) removing all entries ei
related to activities in RedNodes and (2) for all j:

replacing the first (last) occurrence of a start event
(end event) of activities in AggrNodesj and remove
the remaining start (end) events.

Examples are depicted in Fig. 7. Fig. 7c shows the sce-
nario from Fig. 5e with execution states added. Note that
applying AggrShiftOut yields an inconsistent state as two
subsequent activities are in state Running.

Definition 10. Let I = (P,NS,H) be a process instance
and let V (I) be a corresponding view on I. Then:

• V (I) is strong state-consistent iff for all paths π
(cf. Sec. 2) in V (I) from start to end and not contain-
ing activities in state Skipped, there exists exactly one
activity in state Activated or Running.

• V (I) is state-consistent iff for all paths π in V (I)
from start to end and not containing activities in state
Skipped, there does not exists more than one activity
in state Activated or Running.

As indicated in Fig. 7a, reducing activities from a process
instance may result in a “gap” during instance execution,
if no activity is Running or Activated. Hence, reduction
is not strong state-consistent. A similar gap occurs if the
process instance has entered a deadlock. Since we solely
use our view mechanism for visualizing processes executed
by heterogeneous source systems and run-time information,
deadlock issues can be excluded here. Theorem 2 shows how
state inconsistency is correlated with dependency relations
(cf. Def. 8):

Theorem 2. Let I be a process instance and V (I) a cor-
responding view. V (I) is dependency-generating ⇒ V (I) is
not state-consistent.

Proof. Let I = (P,NS,H) be a process instance of pro-
cess P = (N,E,EC,NT) and V (I) = (V (P), NS′,H′) be a
view on I with V (P) = (N ′, E′, EC′, NT ′) being dependency-
generating. Then, there exists n′1, n

′
2 ∈ N ′ in V which gener-

ates a dependency, i.e. n′1 � n′2. Let n1 = V Node−1(n′1) ∈
N and n2 = V Node−1(n′2) ∈ N . Then: n1 � n2. Fur-
ther there are two paths in P from start to end containing
n1 and n2. Therefore, there exists a state of instance I
with NS(n1) = Running and NS(n2) = Running. Thus,
NS(n′1) = Running and NS(n′2) = Running. Since there
is a path from start to end in V (P), containing both n′1 and
n′2, the claim follows.

BC

C DBA

DA

C DBA

DA

AggrSESERedSESE b)a)

H: ‹S(A),E(A),S(B),E(B),S(C)›

H’: ‹S(A),E(A)›

H: ‹S(A),E(A),S(B),E(B),S(C)›

H’: ‹S(A),E(A),S(BC)›

c)

 BD

A
E

C

A
B

ED

C

Alternative 1:
AggrAddBranch

 BDA
E

C

Alternative 2:
AggrShiftOut

Figure 7: View operations for process instances

Table 1: Overview of operations properties
Properties

Operation st
r.

o
rd

e
r
p
re
se
rv

in
g

o
rd

e
r
p
re
se
rv

in
g

st
r.

st
a
te

c
o
n
si
st
e
n
t

st
a
te

c
o
n
si
st
e
n
t

d
e
p
e
n
d
.
p
re
se
rv

.

d
e
p
e
n
d
.
e
ra

si
n
g

d
e
p
e
n
d
.
g
e
n
e
ra

t.

RedActivity + + - + - + -
AggrSESE + + + + + - -

AggrComplBranches + + + + + - -
AggrShiftOut + + - - - - +
AggrAddBranch - + + + - + -

Theorem 2 shows that AggrShiftOut always causes an in-
consistent execution state, whereas applying AggrAddBranch

maintains a consistent state.
Concerning aggregation of process instances, Proviado al-

lows aggregating collections of instances; i.e. multiple in-
stances of the same process schema are condensed to an ag-
gregated one to provide abstracted information about their
progress or to aggregate key performance data.

4. ADVANCED VIEW-BUILDING
CONCEPTS

To enable more sophisticated view-building concepts, the
presented elementary operations may be combined. Table 1
gives an overview of view properties we can guarantee for
the different elementary operations. Based on this, we can
also reason about properties of views resulting from the com-
bined use of elementary operations. For any process visu-
alization component, however, manual selection of the ele-
mentary operations to be applied is not convenient for users
since this would require indepth knowledge of these opera-
tions and their semantics. Thus, Proviado additionally pro-
vides single-aspect view operations on top of the elementary
ones for coping with more complex use cases. Single-aspect
operations analyze the context of the activities to be reduced
or aggregated in a process schema, and determine the ap-
propriate elementary operations to build the view with the
desired properties.

4.1 Parameterizable View-building Operations
The primary use case for our view-building approach is

process visualization. However, other use cases (e.g., process
modeling) can be covered as well. Thus, different require-
ments regarding the consistency of the resulting view schema

Table 2: Overview of parameters for AggregateCF
Parameter Values1 Description
dependencies preserving,

non-erasing,
non-generating,
any

The view operation applied
should be dep.-preserving,
not dep.-erasing, or not dep-
generating. Otherwise no
restrictions regarding depen-
dencies are considered.

exec. states inconsist., con-
sistent

The view operation applied
should be state consistent or
may be state inconsistent.

strategy as-is,subdivide,
expand

Activity set should be aggre-
gated as-is, may be subdi-
vided or expanded.

1default values are printed in bold face

exist. Our case studies have shown that for the visualiza-
tion of large processes minor inconsistencies or information
loss will be tolerated if an appropriate visualization can be
obtained. Obviously, inconsistencies will be not acceptable
if process updates based on views shall be enabled.

To deal with these varying goals, Proviado expands single-
aspect operations with a parameter set. This allows spec-
ifying the properties the resulting view schema shall have.
For example, the parameters of operation AggregateCF
are summarized in Table 2; e.g., when aggregating activities
directly succeeding an ANDsplit (cf. Fig. 5e) and requir-
ing that the view has to be state-consistent, Alt. 1 (i.e.
AggrAddBranch) is chosen.

In certain cases, the specified parameters may be too strict;
i.e., no elementary view operations can be found to realize
the desired properties. We provide two strategies for ad-
dressing such scenarios. The first one subdivides the set of
activities until elementary operations can be applied. The
second strategy expands the activity set. Regarding reduc-
tion, in turn, view generation is always possible due to the
way activity sets are split into single activities and the ap-
plication of RedActivity.

Fig. 8 illustrates the use of the single-aspect operation Ag-
gregateCF. It depicts a process schema together with the
set of activities to be aggregated. The view operation an-
alyzes the structure of the activities and determines which
elementary operation shall be applied. If the application
of these operations results in a view schema complying with
the properties defined by the desired parameters (dependen-
cies, execution states) it is applied as shown in Alt. 1. If
parameter strategy forces us to process the set of activities
as it is, and an appropriate operation cannot be found, view
generation is aborted with an error message. Alt. 2 shows
the result when expanding the activity set to be aggregated
to the minimum SESE-block containing all activities to be
aggregated. This strategy has been proposed in literature
as well [11, 12]. Generally, for visualization purpose it is
not always acceptable to aggregate activities originally not
contained in the aggregation set.

Alt. 3ab+ and 4 can be derived by subdividing the set of
activities to be aggregated. This is done stepwise: First, all
connected fragments are identified (Alt. 3). If the aggrega-
tion of these fragments does not meet the required proper-
ties, the fragments are further subdivided until each subset
constitutes a SESE (Alt. 4).

Altogether, parameterization of view operations signifi-
cantly increases the flexibility of our view-building approach
and allows defining exactly the view properties to be pre-
served. Considering reduction, a parameterization at the
level of single-aspect operations is not useful since reduction
of a complex set of activities is realized by calling RedActivity

repeatedly as explained in Sec. 3.1.

4.2 A Leveled Operational Approach for Re-
alizing Views

So far, we have presented a set of elementary and single-
aspect view buliding operations. Additionally, Proviado of-
fers high-level operations hiding as much complexity from
end-users as possible. As configuration parameter the single-
aspect view operations take the sets of activities to be re-
duced or aggregated, and then determine appropriate ele-
mentary operations. What is still needed are view opera-
tions allowing for a predicate-based specification of the re-

TA BCDEFGHIJKLMNOPQRS

AggrAddBranch
({B,F,G,J,M,N,P,Q,R})

AggrSESE({B,C,D,E,F,G,H,
I,J,K,L,M,N,O,P,Q,R,S})

AGGREGATE({B,F,G,J,M,N,P,Q,R})
(Single-Aspect Operation)

AggrAddBranch({B,J,M,N})
AggrSESE({F,G})
AggrSESE({P,Q,R})

AggrShiftOut({B,J,M,N})
AggrSESE({F,G})
AggrSESE({P,Q,R})

AggrSESE({B})
AggrSESE({J})
AggrSESE({M,N})
AggrSESE({F,G})
AggrSESE({P,Q,R})

B

OM
S

LJ

D

N

KA

C

P

F

H

s

t

R

E

Q

G

I
T

B

OM
S

LJ

D

N

KA

C

P

F

H

s

t

R

E

Q

G

I
T

O

L

D

KA
S

H

s

t
E

I
T

BFGJMNPQR

C

B

OM
S

LJ

D

N

KA

C

P

F

H

s

t

R

E

Q

G

I
T

B

OM
S

LJ

D

N

KA

C

P

F

H

s

t

R

E

Q

G

I
T

O

L

D

KA
S

H

s

t
E

I
T

BJMN

C

FG

PQR

O

L

D

KA
S

H

s

t
E

I
TBJMN

C

FG

PQR

B

OM
S

LJ

D

N

KA

C

P

F

H

s

t

R

E

Q

G

I
T

S

H

s

t I
T

MN

FG

PQR
B

O

LJ

D

KA

C E

(Elementary Operation)

(Elementary Operation)

1

2

4

3

3b

3a

Base Process Model

strategy = as-is
states = default
dependencies = default

View Parameterization:

strategy = expand
states = consistent
dependencies = preserving

View Parameterization:

strategy = subdivide
states = default
dependencies = default

View Parameterization:

strategy = subdivide
states = consistent
dependencies = default

View Parameterization:

strategy = subdivide
states = consistent
dependencies = preserving

View Parameterization:

Figure 8: Views depending on quality parameters

spective activity sets. Besides, operations with built-in in-
telligence are useful, e.g. ”show only activities of a certain
user role”. To meet these requirements, Proviado organizes
view operations in four layers (cf. Fig. 9a). Thereby, high-
level operations may access lower-level ones. For defining a
view, operations from all layers can be used.

Elementary operations are tailored for a specific ordering
of the selected activity set within the process schema (cf.
Sec. 3). Single-aspect operations receive a set of activities
as input to be processed. They analyze the structure of
the activities in the process schema and select the appropri-
ate elementary operations based on the chosen parameteri-
zation. Multi-aspect operations consider elements of differ-
ent type (e.g., activities, data elements) and delegate their
processing to single-aspect operations. High-level operations
abstract from the aggregations or reductions neccessary to
build a particular view: ShowMyActivities extracts exactly
those parts the user is involved in. AggrExecutedPart only
shows those parts of the process which still may be exe-
cuted, and aggregates already finished activities. Fig. 9b

gives an example illustrating the way high-level operations
are translated into a combination of single-aspect and ele-
mentary operations, respectively.

Proviado supports additional operations at the different
levels for considering data flow and for aggregating attribute
values; e.g., to handle adjacent data elements when aggre-
gating activities (remove, aggregate, or maintain) [10].

5. RELATED WORK
IEEE 1471 recommends user-specific viewpoints for soft-

ware architectures [13]. These viewpoints are templates
from which individual views are created for a concrete soft-
ware architecture. Since this standard does not define any
methods, tools or processes, Proviado could provide there-
fore a powerful framework in the context of PAIS.
Some view-building approaches deal with inter-organizational
processes and apply views to create abstractions of private
processes just hiding implementation details [14, 15, 16, 17].
Thereby views are specified by the designer.

[18] presents an approach with predefined view types (i.e.
human tasks, collaboration view). As opposed to Proviado,
it is limited to the specified view types and it is not pos-
sible to define own user-specific views. [19] applies graph
reduction to verify structural properties of process schemas.
Proviado accomplishes this via aggregation and high-level
operations. [20] uses SPQR-tree decomposition for abstract-
ing process models. This approach neither provides high-
level abstractions nor does it take other process aspects (e.g.
data flow) into account.

[21] determines semantic similarity between activities by
analysing the structural information of a process model. The
discovered similarity is used to abstract the given process
model. However, the approach neither distinguish between
different user perspectives on a process model nor provides
concepts to manually create process views.

An approach for building aggregated views is provided
by [22]. It proposes a two-phase procedure for aggregating
parts of a process model that must not be exposed to public.
However, it focuses on block-structured graphs and neither
data flow nor attributes are considered.

Implementations of view models for monitoring purposes
are presented in [23, 24]. These approaches focus on the
mapping between original instance and process view at run-
time. Respective views have to be pre-specified manually by
the designer.

B

KI

HF

D

J

GA

C

L

E

M AB

K

HF G
L

E

M

CD

IJ

AggrExecutedPart

High-level Operation:

Aggregate(A,B,C,E,H,I)

Multi-Aspect Operation:

AGGREGATECF(A,B,C,E,H,I)

Single-Aspect Operation:

AggrShiftOut(A,B,C,E,H,I)

Elementary Operation:

Initial Process

Result

1.

2.

3.

4.

A
tt
ri
b

u
te

 O
p
.

High-level Operations

D
a

ta
 F

lo
w

 O
p
.

Multi-Aspect Operations

Single-Aspect Operations

Elementary Operations

AGGREGATECF REDUCECF

Aggregate Reduce

ShowMyActivities ...AggrExecutedPart

Control Flow Attributes Application Data

Process

a)

b)
J

GF
K

D

ABCEHI

AggrSESE

AggrShiftOut

AggrAddBranch

RedActivity

AggrComplBranch

...

A

JH

GE

C

I

F

B

K

D

...

...

Figure 9: Multi-Layer view operations

Proviado provides a holistic framework for user-centric
view-building with elementary and highl-level operations on
both control and data flow. Additionally, it takes run-time
information into account. None of the existing approaches
covers all these aspects. Further, existing approaches for
building views are based on rigid constraints not taking
practical requirements into account. For example, our first
design of a visualization-oriented view mechanism was based
on reduction and aggregation techniques for block-structured
process graphs [10]. Presenting this solution to business
users, however, we figured out that block-structured aggre-
gation does not always meet the practical requirements com-
ing with the visualization of large processes. For this reason
Proviado allows to flexibly specify the acceptable degree of
imprecision. A validation of Proviado was conducted in the
automotive domain, where users are confronted with with
complex, long-running development processes [10].

6. SUMMARY AND OUTLOOK
We introduced the Proviado view mechanism and its for-

mal foundation. Further, high-level view building opera-
tions provide the required flexibility since process schemas
can be adapted to specific user groups. Reduction opera-
tions provide techniques hiding irrelevant parts of the pro-
cess, whereas aggregation operations allow abstracting from
process details by aggregating arbitrary sets of activities in
one node. Finally, parameterization of the respective oper-
ations allows specifying the quality level the resulting view
schema must comply with. This enables adaptable process
visualization not feasible with existing approaches. We have
implemented large parts of the described view mechanism in
a prototype. For usability reasons it is important to provide
appropriate methods for defining and maintaining process
views. Therefore, we are working on a comprehensive set
of user-oriented, high-level operations as well as on a view
definition language. Both will be evaluated in a user exper-
iment.

7. REFERENCES
[1] Weber, B., Sadiq, S., Reichert, M.: Beyond Rigidity -

Dynamic Process Lifecycle Support: A Survey on
Dynamic Changes in Process-Aware Information
Systems. Computer Science - Research and
Development 23 (2009) 47–65

[2] Weber, B., Reichert, M.: Refactoring Process Models
in Large Process Repositories. In: Proc. 20th CAiSE,
Montpellier, France (2008) 124–139

[3] Weber, B., Reichert, M., Mendling, J., Reijers, H.A.:
Refactoring Large Process Model Repositories.
Computers in Industry 62 (2011) 467–486

[4] Streit, A., Pham, B., Brown, R.: Visualization support
for managing large business process specifications. In:
Proc. BPM ’05. Volume 3649 of LNCS. (2005) 205–219

[5] Bobrik, R., Reichert, M., Bauer, T.: Requirements for
the visualization of system-spanning business
processes. In: Proc. DEXA Workshop. (2005) 948–954

[6] Bobrik, R., Bauer, T., Reichert, M.: Proviado -
personalized and configurable visualizations of
business processes. In: Proc. EC-Web ’06. (2006)
61–71

[7] Reichert, M., Bassil, S., Bobrik, R., Bauer, T.: The
Proviado Access Control Model for Business Process
Monitoring Components. EMISA International
Journal 5 (2010) 64–88

[8] Bobrik, R., Reichert, M., Bauer, T.: View-based
process visualization. In: International Conference on
Business Process Management (BPM’07). (2007)

[9] Rinderle, S., Bobrik, R., Reichert, M., Bauer, T.:
Business process visualization - use cases, challenges,
solutions. In: Proc. ICEIS. (2006) 204–211

[10] Bobrik, R.: Konfigurierbare Visualisierung komplexer
Prozessmodelle. Phd thesis, Ulm University (2008) (in
German).

[11] Liu, D.R., Shen, M.: Workflow modeling for virtual
processes: an order-preserving process-view approach.
Information Systems 28 (2003) 505–532

[12] Shen, M., Liu, D.R.: Discovering role-relevant
process-views for recommending workflow information.
In: DEXA’03. Volume 2736 of LNCS. (2003) 836–845

[13] IEEE 1471-2000: Recommended Practice for
Architectural Description for Software-Intensive
Systems. IEEE Standards Association (2000)

[14] Chebbi, I., Dustdar, S., Tataa, S.: The view-based
approach to dynamic inter-organizational workflow
cooperation. Data Knowl. Eng. 56 (2006) 139–173

[15] Chiu, D.K.W., Cheung, S.C., Till, S., Karlapalem, K.,
Li, Q., Kafeza, E.: Workflow view driven
cross-organizational interoperability in a web service
environment. Inf. Techn. and Mgmt. 5 (2004) 221–250

[16] Kafeza, E., Chiu, D., Kafeza, I.: View-based contracts
in an e-service cross-organizational workflow
environment. In: Techn. E-Services (TES ’01). (2001)

[17] Schulz, K.A., Orlowska, M.E.: Facilitating
cross-organisational workflows with a workflow view
approach. Data Knowl. Eng. 51 (2004) 109–147

[18] Tran, H.: View-Based and Model-Driven Approach for
Process-Driven, Service-Oriented Architectures. TU
Wien, PhD thesis (2009)

[19] Sadiq, W., Orlowska, M.E.: Analyzing process models
using graph reduction techniques. Information
Systems 25 (2000) 117–134

[20] Polyvyanyy, A., Smirnov, S., Weske, M.: The
Triconnected Abstraction of Process Models. In: Proc.
7th Int’l Conf. Business Process Management. (2009)

[21] Smirnov, S., Reijers, H., Weske, M.: A Semantic
Approach for Business Process Model Abstraction. In:
Advanced Information Systems Engineering. Volume
6741. (2011) 497–511

[22] Eshuis, R., Grefen, P.: Constructing customized
process views. Data Knowl. Eng. 64 (2008) 419 – 438

[23] Shan, Z., Yang, Y., Li, Q., Luo, Y., Peng, Z.: A
light-weighted approach to workflow view
implementation. In: Proc. APWeb. (2006) 1059–1070

[24] Schumm, D., Latuske, G., Leymann, F., et al.: State
Propagation for Business Process Monitoring on
Different Levels of Abstraction. In: Proc. 19th ECIS,
Helsinki, Finland (2011)

