
Data Transformation and Semantic Log Purging
for Process Mining?

Linh Thao Ly1, Conrad Indiono2, Jürgen Mangler2, and Stefanie Rinderle-Ma2

Institute of Databases and Information Systems, Ulm University, Germany
thao.ly@uni-ulm.de

Faculty of Computer Science, University of Vienna, Austria
{conrad.indiono, juergen.mangler, stefanie.rinderle-ma}@univie.ac.at

Abstract. Existing process mining approaches are able to tolerate a
certain degree of noise in process log. However, processes that contain in-
frequent paths, multiple (nested) parallel branches, or have been changed
in an ad-hoc manner, still pose challenges. For such cases, process min-
ing typically returns “spaghetti-models”, that are hardly usable even as
a starting point for process (re-)design. In this paper, we address these
challenges by introducing data transformation and pre-processing steps
that improve and ensure the quality of mined models for existing process
mining approaches. We propose the concept of semantic log purging, i.e.,
the cleaning of logs based on domain specific constraints utilizing knowl-
edge that typically complements processes. Furthermore we demonstrate
the feasibility and effectiveness of the approach based on a case study
in the higher education domain. We think that semantic log purging
will enable process mining to yield better results, thus giving process
(re-)designers a valuable tool.

Key words: Process mining, Data transformation, Log purging, Constraints

1 Introduction

Process Mining has developed as promising technique for analyzing process-
oriented data in various ways: process discovery refers to the extraction and
establishment of process models, process analysis addresses the analysis and
comparison of processes. Both kinds of techniques are based on logs that store
temporally ordered events about process executions. Though the Process Mining
Manifesto [1] states that process event logs should be treated as “first class
citizens” by enterprises, reality is often different: data are distributed over several
sources and are often not directly available as temporally structured event logs.
However, neglecting such “second class level” data sources might lead to missing
out relevant and valuable analysis results as well as limit the applicability of
process mining techniques dramatically. Hence, in order to utilize application

? The work presented in this paper has been partly conducted within the project I743
funded by the Austrian Science Fund (FWF).

data sources, the development of adequate methods for data transformation as
pre-processing phase of a process mining project becomes essential.

Similar to data mining, data quality is crucial for process mining. In this
case, the heterogeneity of log data sources (including applications that enable
non-sequential or flexible execution of tasks) might account for the following
cases that usually hamper the application of process mining techniques:

1. Incorrect/incomplete log data (in the following addressed as noise).
2. Log data contributed by parallel branches.
3. Infrequent traces.
4. Log data contributed by ad-hoc changed instances.

Case (1) has been mainly tackled at the algorithmic level. The Genetic Miner
[2] and the Heuristics Miner [3], for example, are by design able to tolerate a
certain degree of noise in the logs. We do not focus on such kinds of incorrect /
incomplete log data and rely on the features of the process mining tool. For case
(2), post-processing methods in order to reduce the ”spaghetti-degree” of the
resulting process models have been proposed [4]. A special case worth mention-
ing is processes which include late modeling (e.g. BPMN ad-hoc subprocesses).
Allowing to invoke a set of optional process steps in arbitrary order is identical
to the modeling of parallel branches for all possible sequence variations of these
steps. Detection of such cases is, to the best of our knowledge, currently not
possible. (3) Infrequent traces are the result of normal process execution, but
sparsely occur in process logs because they depend on rare conditions (e.g. credit
lines over e100 million have to be signed by the board of directors). Sometimes
they are implemented using automatic exception handling logic as can be defined
in current process execution languages (i.e. planned exception handling). Cur-
rent frequency-based approaches would discard cases of category (3). Case (4),
to the best of our knowledge, is currently not covered by existing approaches:
results may range from wrong process models to complete graphs (for parallel
or ad-hoc changed instances). Ad-hoc changed instances typically involve the
intervention of humans (i.e. unplanned exception handling).

In this paper, we will address the following two research questions:

1. Data transformation: How can we support the (automatic) transformation
of temporal application data to process logs?

2. Data quality: Is it possible to increase the process mining quality for existing
mining algorithms through semantic pre-processing?

The contribution of this paper is two-fold. First, we will present a method for
query-based data collection and transformation of temporal application data into
process logs. Secondly, a data cleaning method based on semantic log purging
will be proposed. This method utilizes semantic knowledge on the processes in
the form of process constraints. Based on the process constraints, (1) process logs

can be checked for instances that violate one or more process constraints. (2) The
log can be filtered according to expected behavior thus allowing to untangle ad-
hoc or highly parallel sections. In both cases, filtering out constraint violations
can lead to an improvement of the process mining results in terms of reduced
“spaghetti-degree” [5] of the processes.

In order to evaluate our approaches on data transformation and semantic log-
purging for data cleaning, we apply them to a realistic data set from the higher
education domain (HEP project, www.wst.univie.ac.at/communities/hep/).
The HEP data set consists of ten different process types (reflecting different
courses). For this paper we selected one course, which took place in three con-
secutive years. Collecting data for this course yielded 330 instances (students)
with 18511 events. We also, together with the instructors, collected a set of pro-
cess constraints, that served as the basis for the sematic log purging. In the end
we used a goal process to compare the result quality of the mined processes.

The paper is structured as follows: In Sect. 2, we introduce the applied
methodology and provide fundamentals on the HEP data set. Sect. 3 addresses
the transformation of temporal application data to process logs. Semantic log
purging is introduced in Sect. 4. The results from our study are summarized in
Sect. 5. Related work is discussed in Sect. 6. The paper closes with a summary
and an outlook in Sect. 7.

2 Applied Methodology and the HEP Data Set

As mentioned in the introduction, this paper focuses on new techniques for data
transformation and cleaning in order to improve the quality of mined processes,
embedded within a case study to show the feasibility of the approach. In this
section, we describe considerations regarding the applied methodology as well as
the raw data set and the associated reference process models.

2.1 Methodology

Figure 1 depicts the methodology applied in this paper, comparing process min-
ing results with and without pre-processing by semantic log purging.

Data transformation Traditionally, the raw log data is transformed into some
kind of data format. In the case of applications that aggregate several pro-
cess steps, this may also include transformation and import of data into a
database.

Process mining In order to obtain a process model from the logs, we apply
the Heuristics Miner using the ProM process mining framework [6]. Being
the mining approach most resilient towards noise [3], the Heuristics Miner
is not as prone to deriving “spaghetti models” as for example the Alpha
Algorithm. All mining algorithms in general seem to have problems with
parallel executions which are seldom correctly detected and lead to a cobweb
of intertwined tasks.

Temporal
Application

Data

Target
Process
Models

Purged
Process Log

Data

Process Log
Data

Process
Models
unpurged

Process
Models
purged

Process

Data

Mining

+ Assessment+Transformation +

Semantic Process

Assessment+
+

Log Purging Mining
+

Fig. 1. Methodology for Evaluating Effectiveness of Semantic Log Purging

Assessment In the final step, models are typically analyzed and sanity-checked.

As outlined in the introduction, our goal is to clean the log in order to improve
the overall quality of the mined process models. We assume that the quality of a
mined process is high when an assessment concludes that: (i) Infrequent traces
are correctly included in the result. (ii) Parallel branches are correctly identified.
Logs stemming from processes which include late modeling yield meaningful
results (a small set of branches). (iii) Ad-hoc changed instances stemming from
manual repair are not incorporated in the process model. This implies that no
tasks and/or edges have to be removed or added.

Our idea is that with a small set of constraints we are able to (1) filter the
logs on a semantic basis without purging infrequent traces, (2) separate parallel
branches, and (3) select typical execution patterns for ad-hoc execution. Thus
we introduced the lower branch in Fig. 1 where we redefine/add the steps:

Data transformation In order to allow for a wider range of data sources,
we introduce a DSL (domain specific language) that allows for performant,
stream-based live-accumulation and transformation of log data to arbitrary
formats (MXML, XES, CSV).

Semantic log purging Based on expert interviews, we identify a set of fun-
damental constraints that a process has to obey. These constraints are used
to semantically clean the log data obtained from the transformation step. In
particular, the constraints help to enforce certain expected behaviors in the
mined models. If it is possible to identify parallel branches, the constraints
can also be used to separate these branches, with the intention to mine them
separately.

2.2 Raw Data from a Blended Learning Environment

In order to evaluate our approach we utilized data collected through our univer-
sity’s SOA learning platform [7]. In particular, we selected a set of 10 different

computer science courses (process) that were known to (1) be conducted every
year, (2) have a reasonably stable underlying process, and (3) utilize one or more
of 4 learning services (Forum, Submission and Grading, Registration, Program
Code Evaluation). For the purpose of this paper, we selected one course, which
took place 3 times over the last three years, was attended by over 330 students
(some of them attended multiple times) and yielded a total of 18511 events.

data

Forum Register Submission Code

• Subscription to (pre-defined) services
• Realized by services instances

Fig. 2. Abstract View on HEP Data

As depicted in Fig. 2, the data was collected from a set of existing learning
services. The particular course we selected consisted of Forum (to ask questions),
Registration (for appointments and topics) and Submission (for uploading exer-
cises). For this paper, we created a snapshot and anonymized the original data.

2.3 The Reference Process Model

From interviews with the involved actors in selected learning process, we created
the following reference process model (cf. Fig. 3 and Fig. 4) in order to be able
to compare it to the results of the mining. The model describes the process as
envisioned by the three course instructors. For each student (process instance)
the course starts with a Kickoff Meeting, followed by the parallel execution
of three subprocesses. Within Exercises the students have to solve up to 7
tasks consisting of different subtasks within a certain time frame (cf. Fig. 4).
After the timely Upload of a solution, the student presents the solution. This
presentation is evaluated by the instructor. In parallel to all subtasks, the stu-
dents might ask questions in the Forum. A similar procedure is executed for the
Milestone subprocess during which students upload and present solutions that
are evaluated by the instructor. For both, Exercises and Milestones the stu-
dent collects points. This process, though quite small, offers possible challenges
for process mining, i.e., parallelism, ad hoc process fragments, and loops.

3 Transformation of Temporal Application Data to
Process Logs

As described in the previous section, in the real world logs often are not readily
available but have to be aggregated from a multitude of data sources and for-
mats. Sometimes, processes include applications that, in turn, allow for a series

Lecture

~

Lecture forum:
ask question

Kick-off meeting Exam

+

Exercises

+

Milestones

Presentation points

Milestone points

Mile
sto

ne
 po

int
s ≥

30
 an

d

Pres
en

tat
ion

 po
int

s
≥ 20

 an
d

Exe
rci

se
 co

un
ter

 ≥
thr

es
ho

ld

Enrollment

Subtask counter

Fig. 3. Reference Course Process Model (Super Process in BPMN Notation)

+

Exercise 1

+

Exercise 2

+

Exercise 3

+

Exercise 4

+

Exercise 5

+

Exercise 6

+

Exercise 7

Exercises

Exercise

forum: ask

question

Exercise

deadline
Exercises 1-7

Upload

exercise

Subtask

S
tu
d
e
n
t

In
s
tr
u
c
to
r

Presentation points

Task

Present

exercise

Evaluate

presentation

Fig. 4. Reference Course Process Model (Subprocess Exercises in BPMN Notation)

of steps (i.e. subprocesses). In order to incorporate such information into pro-
cess logs, often a series of complex transformation steps involving databases has
to be carried out (which cannot be done at runtime). The goal is to generate
chronological log files suitable for process mining.

In order to avoid the above mentioned shortcomings, we designed a data
extraction and transformation method building on a functional query-based
domain specific language (DSL) written in Haskell. The full tool-chain used
for extracting the data for this paper is available under https://github.com/

indygemma/uni_bi2. Advantages of our approach include:

– Access data from heterogeneous sources without manual intermediate steps.

– Utilization of data streams instead of tables. This leads to efficient memory
utilization for large data sets.

– For the data streams, arbitrary nesting of selections, projections, updates,
and joins becomes possible.

– Once defined, transformations can be reused for equal or similar data sources.

Data Transformation

Step 1: Transform Data to
an Internal Object

Representation (IOR)
Step 2: Persist IOR

Step 3: Run
Queries on IOR

Step 4: Transform
IOR to Target
Representation

+

Fig. 5. The Data Transformation Subprocess

In the following, we give an overview of the involved concepts. We choose
a CSV based format as it can be imported into process mining and semantic
log purging tools. The CSV file consisted of: (1) timestamp, (2) instance id (i.e
student id), (3) agent id (i.e originator of the event), (4) role (i.e. student, lec-
turer, tutor), (5) task name, and (6) data elements encoded as JSON (Javascript
Object Notation). We use the four-step process depicted in Fig. 5 to break up
transformation tasks for single data sources into a series of subtasks.

Step 1 - Transform to IOR: In order for queries to work uniformly on het-
erogeneous data, we transform the original data sets into an internal object
representation (IOR). Data formats that are relevant for our example are: CSV,
XML and raw file metadata (access time, file size). Since some of the data is
deeply hierarchical, one of the design goals was to keep the hierarchical nature
intact in the IOR. In order to also enable data stream operations, children are
enriched with data properties of their parents (push down). For our data, an
object instance corresponds to a single XML/CSV element (e.g. student). The
IOR is thus populated by crawling once over the initial data set and creating
object instances for each encountered element.

Step 2 - Persist IOR: In step 2, the IOR is compressed and serialized to disk.
For step 3, files are only read when required. The resulting list of files represents
the index on which queries can operate in the next step.

Step 3 - Run Queries on IOR: In this step, we define query functions that op-
erate on the previously defined object streams. The idea is to apply arbitrary
transformations on the objects before extracting them and passing them on for
conversion to the target representation. The index is iterated until all the objects
required for the subsequent step are present. The basic available operations are
derived from relational algebra: select and join. Furthermore, it is possible to
update (transform) objects according to custom rules. All operations return ob-
ject streams, thus allowing for arbitrary nesting of operations. The DSL further
supports a Fuzzy Join, which works on value ranges or value functions. The final
operation in step 3 typically is the data extraction, that transforms objects into
data rows. Fig. 6 shows a simple example, where a person record and a group
record are selected, then joined (after the group records hierarchical structure
is enriched (update)) and finally extracted. The extraction function required in
our case was groupSortAll. Altogether, for our course data set, the algorithm
as depicted in Fig. 7 was applied.

Fig. 6. A Simple Query Example

Step 4 - Transform IOR to Target Representation: In step 4, the extracted object
rows are transformed into the final log (format).

A related tool for data transformation is XESame [6], which enables domain
experts without programming experience to create transaction logs from data
sources. This is achieved by a GUI-driven interface, wherein the user defines the
mapping of source fields to target fields in the log. To make this mapping possible,
XESame expects the input data to be tabular. Our approach does not make
assumptions on the input nor on the output data, allowing all kinds of structured
data formats – be they hierarchical or tabular – to serve as input. Employing an
embedded DSL does require users to be comfortable with programming; but this
allows for arbitrary complex data transformations in the form of flexible queries
applied uniformly on heterogeneously structured data.

4 Semantic Log Purging

In contrast to existing algorithmic approaches to deal with noise data such as
the Heuristics Miner [3], semantic log purging aims at cleaning the log at the
semantic level. The basic idea of semantic log purging is to improve the quality of
the logs by checking the encoded cases for compliance with fundamental domain-
specific constraints. The logs representing cases that are incorrect with respect
to these constraints are purged from the log set. It is notable that while noise
stemming from spurious data (e.g., missing events) is often characterized by its

Step 3: Run Queries on IOR

Select/Update/Join extractHEP groupSortAll to_ csv

Step 4: Transform IOR to Target
Representation

Fig. 7. Algorithm Applied Within Step 3

Semantic Log Purging

ifi id Event
Model

Process
Constraints

Verification
Reports

Purged Logs
Unpurged

Logs

Log Data Import
and

Event Model
Derivation

Modeling of
Process

Constraints in
SeaFlows Toolset

Log Verification

Log Purging
Based on
Verification
Reports

Fig. 8. The Overall Process of Semantic Log Purging

low frequency of occurrence within the logs, cases violating semantic constraints
can even outnumber the cases complying with the constraints if this behavior
is enabled by the system. Thus, semantic log purging may favor less frequent
behaviors (e.g., infrequent traces as described in Sect. 1) and introduces a bias
with respect to desired properties of the mined process model. Unlike frequency-
based log cleaning, our approach does not purge infrequent traces unless they
violate imposed constraints.

The specific semantic constraints relevant to the application can be obtained
for example by interviewing domain experts. Clearly, the choice of semantic con-
straints used for log purging heavily affects the mined process models. Therefore,
experimenting with constraints with different enforcement levels (e.g., high or
low) can be helpful to identify the constraint set that leads to the best results
with respect to the desired process model properties described in Sect. 2.1. Thus,
an iterative approach is recommended.

The overall process of semantic log purging is illustrated in Fig. 8. The par-
ticular steps are detailed in the following.

Step 1 - Log import: We opted for the SeaFlows Toolset [8] in order to conduct
semantic log purging. SeaFlows Toolset is a framework for verifying process mod-
els, process instances, and process logs against imposed constraints. It enables
graphical modeling of constraints based on the events and their parameters (e.g.,
originator or event-specific data) contained in the logs. In an initial step, the
logs in the form of CSV files are imported into SeaFlows Toolset where an event
model for the logs is established. In particular, all events and their parameters
are identified and can be used for specifying constraints.

Step 2 - Constraint specification: Based on interviews of a domain expert, we
identify fundamental semantic constraints that have to be obeyed by the cases.
Table 1 summarizes these constraints. We modeled the identified constraints in
SeaFlows using the event model of the process logs. Fig. 9 shows a screenshot of
the SeaFlows graphical constraint editor where the constraints are designed. In
SeaFlows, a constraint is modeled as an directed graph consisting of a condition
part and consequence parts. Fig. 10 depicts the modeled constraint c2 and the
corresponding logic formula. More details on the underlying formalism called
compliance rule graphs is provided in [9].

Table 1. Examples of Semantic Constraints Imposed on the Example Course

Constraint Enforcement level

c1 For each milestone, no upload must take place after the
corresponding milestone deadline.

high

c2 For each exercise, no upload must take place after the cor-
responding exercise deadline.

high

c3 For each uploaded milestone, the instructor gives feedback. low

Fig. 9. Screenshot of the SeaFlows Graphical Constraint Editor

Step 3 - Log verification: In the third step, the cases of the log are automatically
checked for compliance with the modeled constraints. In order to select specific
branches for mining, there need to be additional constraints to remove tasks
from unwanted branches. In our example we created separate logs for exercises
and milestones. As shown in Fig. 11, SeaFlows Toolset then provides a detailed
report on the detected violations of each case. In particular, for each case the
violation report details which constraints are violated through which events.

Step 4- Log purging: Based on the detailed verification reports, we purged the
log. For the case study, we removed only those cases violating constraints with
strict enforcement level as only these really conflict with the expected process
behavior. As illustrated by Fig. 1, the resulting log set is then used for the process
mining (i.e. the Heuristics Miner which is resilient towards noise [3]).

Exercise

Language constructs to model process constraints

Antecedent: Consequence:

Modeled constraint for c2

Exercise

Exercise submission
deadline

Upload exercise

Event occurs

Event is absent

Event occurs

Event is absent

Ordering relation

Antecedent: Consequence:

Ordering relation

e: Exercises
a: Exercise submission deadline

(a exercise = e (b: Upload exercise b exercise = e Order(a b)))

Constraint formula for c2

(a.exercise = e  ¬ (b: Upload exercise b.exercise = e Order(a,b)))

Fig. 10. Example of Constraint c2

Fig. 11. Screenshot of the Violation View

5 Evaluation Based on HEP

As discussed in Section 2.1 and illustrated in Fig. 1, we compare the process
models mined from the original and from the purged logs against the expected
reference models. For the overall case study, we analyzed ten course types (among
them a course on advanced database systems (DBS) that serves as example in
the paper). The example course has 18511 events and more than 330 cases. For
brevity, we will present details on only the example course in the following.

5.1 Observations and Findings

Table 2 compares the process models mined from the original and from the
purged log with each other. As discussed in Sect. 4, we exploited semantic knowl-
edge about the subprocesses to mine them separately as their parallel nature
makes it very difficult to mine meaningful process models otherwise. For each
semester, in which the course took place, we mined a separate process model,
respectively, as the particular process may vary in each semester.

Table 2. Quantitative Comparison of the Mined Process Models

Process Model: Original Process Model: Purged

Subprocess Tasks Edges Tasks Edges

Exercise (SE01) 21 31 21 30

Milestone (SE01) 20 22 20 26

Exercise (SE03) 29 38 29 36

Milestone (SE03) 27 37 27 34

Exercise (SE04) 29 40 26 34

Milestone (SE04) 23 32 23 32

Qualitative analysis revealed two cases: the process models mined from purged
logs are equal or smaller (case A)/ bigger (case B) than the original models
(w.r.t. the nodes and edges). Interestingly, all models mined from purged logs
are closer to the expected reference models (cf. Section 2.3) than the models
mined from the original logs. In case A, spurious edges were removed in the
models from purged logs reducing the “spaghetti-degree” of the models. In case
B, the original models were overabstracted. Here, the models mined from purged
logs contain more expected edges. In the Exercise subprocess (SE04), optional
activities were removed from the model. In the Milestone subprocess (SE04), a
spurious edge was replaced by an expected edge.

A partial process model of the DBS course obtained from mining using original logs

A partial process model of the DBS course obtained from mining using purged logs

Fig. 12. Original vs. Purged Logs (Exercise Subprocess)

Fig. 13. Original Mined Process Model vs. Process Model Mined from Purged Logs

Example Fig. 12 depicts the Exercise subprocess (SE03) mined from the original
process logs and the one mined from purged logs. The process models cover
the activities of the example course concerning the exercises conducted in the
course. As the figure shows, both models mainly differ in the last part where the
originally mined process model is more complex (i.e., has more edges) than the
process model mined from the purged log.

In the detail view of these processes in Fig. 13, we can see that the model
mined from the original logs contain edges that are not allowed by the reference
process model. For example, from the submission deadline of Exercise 4 there is
a path to the submission deadline of Exercise 6 without passing the submission
deadline of Exercise 5. As the deadlines are system generated events, this cannot
occur in practice. Such paths in the mined process model are caused by the
submission events occurring after the submission deadline, which violates the
imposed constraints (cf. Table 1). In contrast, the process model mined from
the purged logs does not contain such edges as the cases with submission events
after the deadline are removed from the log set.

5.2 Lessons Learned

We observed that semantic log purging indeed improves the quality of the mined
models with respect to the properties described in Sect. 2.1. We observed that
with a small set of constraints the process models mined from the purged logs
are already quite close to the reference models. Due to the semantic log filtering,
ad-hoc changed instances that violate the constraints were purged from the data
set (cf. case (4) in Sect. 1) and thus do not contribute to the mined models.

Fig. 14. Fraction of Log
Entries Used for Mining

As we also used constraints to extract branches
(for separate mining), it was interesting to see that
after removing all unnecessary events and incorrect /
incomplete cases (noise), often only a small fraction of
cases remained (see Fig. 14). The separate mining of
parallel branches has proven to be a valid approach
to reduce the “spaghetti-degree” of process models
mined from log data contributed by parallel branches

(cf. case (2) in Sect. 1). As the approach does not rely
on frequency, infrequent traces are not filtered out and
thus, can be incorporated in the mined process models (cf. case (3) in Sect. 1).

Altogether, semantic log purging is an approach to clean the log with respect
to expected properties and thus to support the mining of reference models from
the process logs. It introduces a bias with respect to the resulting process model.
Therefore, it “guides” the mining process.

It should be noted that the collection of process constraints can happen in-
dependently of whether or not expected reference models are created before the
mining process. We also experimented with bigger sets of constraints containing
also constraints with a lower enforcement level (nice-to-have constraints). As
most logs violate these constraints, the data set would have become too small.
Therefore, a lesson learned is that an iterative approach (consisting of choosing
constraints, log purging, mining, re-choosing constraints, ...) is helpful to deter-
mine a suitable set of constraints. We can also consider the automatic application
of constraint subsets in order to find an optimal set.

6 Related Work

In general, data quality is a crucial issue for applying analysis techniques such as
data or process mining. For preparing data accordingly different cleaning tech-
niques have been developed during the last decades, cf. [10]. In particular, for
cleaning data from errors or impossible values, integrity constraints have been
utilized in the database area [11]. Though the basic idea is similar to the one of
this paper, there are two basic differences. First of all, no process-oriented data
(represented by process logs) has been subject to data cleaning approaches so
far. Process-oriented data might be particularly complex, considering at least
control and data flow, time-relations, and organizational assignments. Accord-
ingly, the associated process constraints might be quite complex as well, e.g.,
regulatory packages such as BASEL III. Further on, integrity constraints are
mostly independent of the application context, hence correcting data errors can
be accomplished without further domain knowledge (e.g., extinguishing data
with AGE < 0 [11]. In this paper, we extend these application-independent
techniques by a data cleaning approach that utilizes knowledge on the applica-
tion context of the data, representing, for example, knowledge on the order of
certain teaching courses. In practice, the existence of such knowledge can often
be assumed, for example, medical guidelines [12], internal quality controls, or
contractual policies [13].

Process mining offers a multitude of techniques to analyze logs from past
process executions [1]. By now, a variety of tools for process analysis is com-
prised by the process mining framework ProM [6]. Key to the effectiveness of
process mining is the acquisition and (pre-)processing of suitable logs. Here,
particular challenges arise from the various sources of log data in real-world ap-
plications. In [14], Funk et al. describe their setup for product usage observation
by means of process mining. Their approach allows for semantically annotating

the logged data using ontologies. Mans et al. report on their experience from a
case study on the application of process mining in the hospital context in [15].
To receive intelligible models, they had to abstract from low-level events. In our
case, we rather had to provide more low-level events in order to obtain mean-
ingful process models. As data sources are heterogeneous, no general approach
can be provided for log pre-processing besides some fundamental strategies such
as filtering particular events.

A common strategy to deal with “spaghetti-models” is to abstract from in-
frequent behavior (considered as noise) to yield simpler models, for example
employed by the Heuristics Miner [3]. Here, we would like to stress that our ap-
proach does not rely on the frequency of observed behavior but rather introduces
expectations with respect to the mined model. In [4], Fahland et al. introduce an
approach to structurally simplify a mined process model while preserving certain
equivalence notions. Such approaches are orthogonal to our work.

For auditing process logs with respect to certain properties (e.g., the con-
straints for semantic log purging), ProM offers the LTL Checker [16], a tool
that allows for checking properties specified in linear temporal logic (LTL). The
original LTL Checker only works at the granularity of activitiy labels. Thus,
additional data conditions as used by some of the constraints we experimented
with are not directly supported. An extension of the LTL Checker is introduced
in [17] in the context of semantic process mining that allows for using concepts
from ontologies as parameters of an LTL formula. Application of this approach
requires the establishment of an ontology.

7 Summary and Outlook

This paper provides new techniques for data transformation and cleaning em-
bedded within a case study to show the feasibility of the approach. In particu-
lar, we introduced a query-based data transformation approach that is able to
transform temporal application data into process logs in different target repre-
sentations (e.g., CSV). We further propose semantic log purging as an approach
to improve the quality and intelligibility of the mined process model. In contrast
to algorithmic approaches that deal with noise data by for example applying
heuristics and thus can only capture incorrect process executions occurring in-
frequently, our approach cleans the log with respect to expected properties. In
the case study within the HEP project, we were able to confirm the feasibility of
our approaches. In future work, we will additionally examine the information on
constraint-violating cases to analyze the reasons for deviations from the process.

References

1. van der Aalst, W., et al.: Process mining manifesto. In: Business Process Manage-
ment Workshops. LNBIP (2011)

2. De Medeiros, A.K.A., Weijters, A.J.M.M.: Genetic process mining: an experimental
evaluation. Data Mining and Knowledge Discovery 14 (2007)

3. Weijters, A., van der Aalst, W.: Rediscovering workflow models from event-based
data using little thumb. ICAE 10 (2003) 151–162

4. Fahland, D., van der Aalst, W.M.P.: Simplifying mined process models: An ap-
proach based on unfoldings. In: Proc. BPM 2011. Volume 6896 of LNCS., Springer
(2011) 362–378

5. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer, Berlin Heidelberg (2011)

6. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.:
XES, XESame, and ProM 6. In: Information Systems Evolution - CAiSE Forum
2010. Volume 72 of LNBIP., Springer (2010) 60–75

7. Derntl, M., Mangler, J.: Web services for blended learning patterns. In: Proc. IEEE
International Conference on Advanced Learning Technologies. (2004) 614–618

8. Ly, L.T., Knuplesch, D., Rinderle-Ma, S., Göser, K., Pfeifer, H., Reichert, M.,
Dadam, P.: SeaFlows Toolset - Compliance verification made easy for process-
aware information systems. In: Information Systems Evolution - CAiSE Forum
2010. Volume 72 of LNBIP., Springer (2010) 76–91

9. Ly, L.T., Rinderle-Ma, S., Dadam, P.: Design and verification of instantiable com-
pliance rule graphs in process-aware information systems. In: Int’l Conf. on Ad-
vanced Information Systems Engineering. (2010) 9–23

10. Rahm, E., Do, H.: Data cleaning: Problems and current approaches. IEEE Data
Engineering Bulletin 23 (2000) 313

11. Heiko Müller, J.F.: Problems, methods, and challenges in comprehensive data
cleansing. Technical Report 164, Humboldt University Berlin (2003)

12. Dunkl, R., Fröschl, K.A., Grossmann, W., Rinderle-Ma, S.: Assessing medical
treatment compliance based on formal process modeling. In: Information Quality
in e-Health. Volume 7058. Springer Berlin Heidelberg (2011) 533–546

13. Rinderle-Ma, S., Mangler, J.: Integration of process constraints from heterogeneous
sources in Process-Aware information systems. In: Int’l Workshop Enterprise Mod-
elling and Information Systems Architectures - EMISA 2011. (2011)

14. Funk, M., Rozinat, A., de Medeiros, A.K.A., van der Putten, P., Corporaal, H.,
van der Aalst, W.M.P.: Improving product usage monitoring and analysis with
semantic concepts. In: Proc. UNISCON 2009. LNBIP, Springer (2009) 190–201

15. Mans, R.S., Schonenberg, H., Song, M., van der Aalst, W.M.P., Bakker, P.J.M.:
Application of process mining in healthcare - a case study in a dutch hospital. In:
BIOSTEC (Selected Papers). Volume 25 of CCIS., Springer (2008) 425–438

16. van der Aalst, W., de Beer, H., van Dongen, B.: Process mining and verification
of properties: An approach based on temporal logic. In: Proc. OTM Conferences
05. Volume 3761 of LNCS. (2005) 130–147

17. de Medeiros, A.K.A., van der Aalst, W.M.P., Pedrinaci, C.: Semantic process
mining tools: Core building blocks. In: Proc. ECIS 2008. (2008) 1953–1964

