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Abstract. Declarative process models are increasingly used since they fit better
with the nature of flexible process-aware information systems and théreeq
ments of the stakeholders involved. When managing business preciesaddi-
tion, support for representing time and reasoning about it becoraegkiGiven

a declarative process model, users may choose among differgattavaxecute

it, i.e., there exist numerous possible enactment plans, each omaiimgsspe-
cific values for the given objective functions (e.g., overall completime). This
paper suggests a method for generating optimized enactment planlang
minimizing overall completion time) from declarative process models with ex
plicit temporal constraints. The latter covers a number of well-knowrkfiaw
time patterns. The generated plans can be used for different parigaesprovid-

ing personal schedules to users, facilitating early detection of criticakisitsa

or predicting execution times for process activities. The proposecapipris
applied to a range of test models of varying complexity. Although the optimiza
tion of process execution is a highly constrained problem, results indicate th
our approach produces a satisfactory number of suitable solutionsalations
optimal in many cases.

Keywords: declarative models, temporal constraints, constraint programming,
planning, scheduling, clinical guidelines

1 Introduction

Nowadays, there exists a growing interest in aligning imfation systems (IS) in a
process-oriented way and in managing the supported prexestectively. Typically,
processes are specified in an imperative way. However, @¢ekprocess models have
been increasingly used allowing their users to speweifat has to be done instead of
how[24]. Given a declarative process model, users may choose@mumerous ways
to execute this model, i.e., there exist many different emant plans for a given decla-
rative model, each one presenting specific values for retesajective functions (e.g.,
overall completion time or costs).
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Fig. 1. Overview of our approach.

Moreover, formal specification and operational supporéofpioral constraints con-
stitute fundamental challenges for any process-awarenrgton system. In [16], we
presented a set of workflow time patterns for the systemadiltiation and comparison
of workflow metamodels and tools supporting temporal agp@ttese time patterns are
based on empirical evidence we gained from several casestud

For supporting users working on declarative workflows witpliit temporal cons-
traints, this paper suggests a method for generating gpthenactment plans. That is,
generating plans fixing the start and end times of the aietdvénd resources used from
declarative models, while considering resources and teshponstraints. In particular,
generated plans aim at optimizing given objectives (e.mimizing overall completion
time). We built upon the work presented in [3] where we prauban extension of the
declarative language ConDec [24], named ConDec-R. Thigdes capabilities for rea-
soning about resources and parallel execution of non-pgrgesractivities with known
duration. Moreover, we proposed an approach for generafitigmized enactment plans
based on ConDec-R specifications. This paper significartgnels this work by addi-
tionally supporting selected time patterns [16], i.e., penal ConDec-R (TCondec-R)
specifications are considered. Hence, higher expressisaram be achieved and more
realistic problems managed.

Figure 1 provides an overview of our approach. Taking predeformation as a
starting point, the TConDec-R specification is defined. Fthis specification, opti-
mized enactment plans can be automatically generated hispraictivities to be exe-
cuted are selected and ordergiafining problen14]), considering the control-flow
as well as the temporal constraints imposed by the constrased specification. Fur-
thermore, as stated, the generation of enactment plarteddla a declarative model
requires that both the temporal and the resource perspedciie considereg¢hedu-
ling problem[7]). For planning and scheduling (P&S) the activities inavoptimizing
the objective function, a constraint-based approach id.use

The generated plans can improve process support and beauskifiedrent purposes:
(i) providing users with a personal schedule, allowing thtenimprove their perfor-
mance regarding activity executions [11], (ii) facilitagi early detection of critical sit-
uations through early notifications and escalations, @ng(edicting execution times
for future activities, which allows users to make informextidions [31]. In summary,
the main contributions of this paper are: (1) an extensioth@fapproach presented in
[3] (i.e., generating optimized enactment plans from CartRespecifications) by pro-
viding improved expressiveness through complex tempanastraints [16], and (2) the
application of the proposed approach to a range of test madetrying complexity.

Section 2 introduces an application example that emphadiwmeneed for our ap-
proach. Section 3 gives backgrounds on related researels.a®ection 4 details the



TConDec-R language and Section 5 shows how optimized pmbe generated. Sec-
tion 6 deals with the evaluation, while Section 7 presentsteal discussion. Section
8 summarizes related work and Section 9 concludes the paper.

2 Application Example

To motivate the need for our approach we consider compupgrastifor clinical guide-
lines. Clinical processes require the cooperation of diffie organizational units and
medical disciplines [18]. In this context, clinical guideds have been suggested for
different medical disciplines to assist physicians in deaj about appropriate medical
treatment for their patients under specific clinical cirstiamces [12]. Overall goal is
to improve the quality of patient care and to reduce costpt@g respective clinical
knowledge and incorporating it in clinical guidelines camentially increase the effec-
tiveness of patient treatment processes [18, 22]. In suatnaimonment optimal pro-
cess support becomes crucial. Traditional languages faleftiog clinical computer-
interpretable guidelines (CIGs) are of imperative nat@® B0], which usually results
in complex process models for which all possible treatmeanarios need to be pre-
specified. Moreover, imperative languages usually pregaited capabilities to pro-
vide flexibility for modelling and executing clinical guililees [22, 21, 26]. This consti-
tutes a barrier for applying process management to headtlsaace the state of patients
usually cannot be predicted, and hence the exactly regtreatiment (or sequence of
diagnostic and therapeutic procedures) is not known aipfio increase flexibility and
to reduce complexity of clinical process models, declaea@lG models [22, 21] have
been increasingly used to better fit with the nature of preeagare clinical IS and the
requirements of the involved stakeholders [20].

In addition, temporal constraints play a fundamental roléhe context of clinical
guidelines [29, 9, 2, 8]. For example, for most therapeutozpdures, the execution of
related activities has to obey temporal constraints caricgractivity orders, activity
durations, and the temporal time lags between activitieguin, in other scenarios
(e.g., drug administration), activities have to be repgateriodically. Moreover, there
are implicit temporal constraints that can be derived frobendontrol-flow of a process
model (e.qg., synchronization), or from the scheduling tamnsts of a CIG.

CIGs are usually modelled by hypothesizing their applaatin an environment
providing all required resources; guidelines are devalaggtean abstract level without
focusing on a specific execution context [18, 20]. This wagceting a CIG model
requires that temporal constraints and the resource peigpare considered, i.e., rea-
soning about resource needs and availability is requiretebler, given a declarative
CIG model, clinical staff may choose among numerous wayxé¢ege such model.
The selection of an appropriate enactment plan, howeveheguite challenging since
performance goals of the process should be considered sodroe capacities be taken
into account.

As stated, the proposed approach considers declarativelsnatith explicit tem-
poral constraints and resource reasoning, and hence,uitébke for managing CIGs.
However, our approach is not restricted to clinical envinents, but can also be applied



to other domains where processes are rather flexible andevieamporal constraints
play an important role (e.g., automotive industry and fliglainning [16]).

3 Background

To automatically generate optimized enactment plans fronsttaint-based specifica-
tions (cf. Section 3.1), the areas of constraint prograngmptenning, and scheduling
(cf. Section 3.2) are combined in this work.

3.1 Constraint-based Process Models

In our proposal we use the declarative language ConDec {25sbasis for the control-
flow specification. We consider ConDec to be a suitable laggusince it allows spec-
ifying process activities together with the constraintbéosatisfied for correct process
enactment and for achieving the specified goal. MoreovenD@ae allows specifying a
wide set of process models in a simple and flexible way. Corf®estends ConDec
with estimates and resources [3].

Definition 1. A constraint-based process model S= (ActsCgp, R) consists of a set of
activities Acts, a set of constraintg& and a set R of available resources. For each
activity a€ Acts, resource constraints can be specified by associatiegdle of the
required resource with that activity.

The activities of a constraint-based process model can éeueed arbitrarily of-
ten if not restricted by any constraint. ConDec templatd$ pnstitute parameterized
graphical representations of high-level constraints betwactivities which can be di-
vided into the following categories:

1. Existence constraints unary relationships concerning the number of times an ac-
tivity is executed. As examplé&xactly(N,A)specifies thaA must be executed ex-
actly N times.

2. Relation constraints positive binary relationships used to establish what khou
be executed. As examplBrecedence(A,Bjpecifies thaB may only be executed
if Ais executed beforehand.

3. Negation constraints negative binary relationships used to forbid the executi
activities in specific situations. As examphotCoexistence(A,Bpecifies that if
B is executed? cannot be executed, and vice versa.

Usually, several ways to execute constraint-based prouesels exist, i.e., there
are different ways to execute a constraint-based procedsimile fulfilling all cons-
traints. The different valid execution alternatives, hegrecan vary greatly in respect to
their quality, i.e., in how well different performance otfiges can be achieved. Thus,
we propose to automatically generate optimized executi@msgfor a constraint-based
model. We accomplish this by applying constraint prograngrfor P&S the process
activities (cf. Section 5).



3.2 Scheduling, Planning and Constraint Programming

The area of scheduling [7] includes problems for which itdrees necessary to deter-
mine an enactment plan for a set of activities related by teaigonstraints. Moreover,
the execution of activities requires resources, henceethesvities may compete for
limited resources. In general, the goal in scheduling isrtd & feasible plan satisfying
both temporal and resource constraints. Usually, sevéjattive functions are consi-
dered for optimization, e.g., minimization of completiameé. In a wider perspective,
in Al planning [14], the activities to be executed are noabBshed a priori, hence it
becomes necessary to select them from a set of alternatides astablish an ordering.

Constraint programming (CP) [27] has been successfully dige P&S purpose
[28]. To solve a problem through CP, it needs to be modellettasstraint satisfaction
problem(CSP).

Definition 2. A CSP P = (V,D,Ccsp) is composed out of a set of variables V, a set
of domains of values D for all variables, and a set of consiti®iG sp between varia-
bles, such that each constraint represents a relation betveesubset of variables and
specifies the allowed combinations of values for these bbasa

A solution to a CSP consists of assigning values to CSP \asabuch that the
assignments satisfy all the constraints. Further, in GiBajlconstraints, i.e., constraints
capturing a relation between a non-fixed number of variabkasbe defined to improve
the modelling of the problems.

Similar to CSPs, constraint optimization problems (CORsDef. 3) require solu-
tions that optimize certain objective functions.

Definition 3. ACOP P, = (V,D,Ccsp,0) is a CSP including an objective function o to
be optimized.

Several mechanisms are available for solving CSPs and GOPscomplete search
algorithms, i.e., performing a complete exploration of arsk space which is based on
all possible combinations of assignments of values to thie @8iables. Regardless of
the used search method, the global constraints can be irapteoh through filtering
rules (i.e., rules responsible for removing values whictndbbelong to any solution)
to efficiently handle the constraints in the search for sohst

4 TConDec-R: Temporal Constraint-based Process Language

To schedule process activities when generating optiminedtenent plans, ConDec-R
is used (cf. Section 3.1). As motivated, we extend ConDeo-RGonDec-R (cf. Def.
4) by including templates related to selected time patf@}$ patternTP1(Time Lags
between Two Activitig@senables the definition of different kinds of time lags betwe
two activities; patteriTP2 (Durationg allows specifying the duration of process ele-
ments; patteriT P4 (Fixed Date Elementprovides support for specifying a deadline;

4 Since events are not specified in the considered constraint-base@dgngn this approach,
unlike in [16], only time patterns over activities are considered.



patternTP5(Schedule Restricted Elemgatlows restricting the execution of a particu-
lar element by a schedule; pattéfR6 (Time Based Restrictiohallows restricting the
number of times a particular process element can be exewitigid a predefined time
frame; pattermP7 (Validity Period) allows restricting the lifetime of a process element
to a given validity period; patteriP8 (Time Dependent Variabilijyallows varying
control-flow depending on the execution time or time lagsvieen activities/events;
patternTP9 (Cyclic Elementsallows specifying cyclic elements which are performed
iteratively considering time lags between cycles; andgpa®P10(Periodicity) allows
specifying periodically recurring process elements atdiogyto an explicit periodicity
rule (for a description of the complete set of time patteseg [16]). Moreover, for ev-
ery TConDec-R temporal template all the relations whichséaged in Allen’s interval
algebra[1] (i.e., start-start, start-end, end-start,@mdtend) can be specified.

Definition 4. A TConDec-R process model TCR= (ActsCr,R) is a constraint-based
process model S (Acts Cgp, R), Cgp C Cr, in which G includes temporal constraints.

As example, Fig. 2(a) shows a simple TConDec-R model reptiegethe ther-
apy of a patient: (1)Actsis composed out of two activitied, which has an esti-
mated duration of 2h and requires a resource with RileandB, which has an es-
timated duration of 4h and requires a resource with Rile (2) Cr is composed out
of the following constraints: afExactly3,A), meaning thatA must be executed ex-
actly three times, bigxactly(2, B), expressing tha must be executed exactly twice, c)
DailyScheduleStaff, [8am 10am ), meaning that each execution®dfmust be started
between 8 am and 10 am (specific case for TP5EydjicStart— Start(B, [12h,48h]),
meaning that between the start of two executionB tifere must be at least 12h and at
most 48h (specific case for TP9), andReecedenceEnd Start(A, B, [2h,4h]), mean-
ing that there must be a time lag of at least 2h and at most 4ieleetthe end of any
execution ofA and the start time of the first execution®{specific case for TP1); and
(3) Ris composed out of[R0, 1], [R1, 1]}, which means that there is 1 resource with
role RO, and 1 resource with roleL. In this example, all activities may be only executed
between 8am and 4pm (specific case for TP5).

5 From TConDec-R to Optimized Enactment Plans

Activities and constraints are specified in a TConDec-R rhddeereby, several ways
to execute this model might exist. Each of these executi@nredtives leads to specific
values of the objective function, i.e., the overall comiplettime, to be optimized. To
generate optimized execution plans for a specific TConDewRel, a constraint-based
approach for P&S the process activities is proposed. Thistcaint-based approach
includes the modelling of the declarative workflow as COP [pEf. 3, Section 5.1),
the use of global constraints implemented through filteririgs (cf. Section 5.2), and
search algorithms for solving the COP (cf. Section 5.3).

5.1 COP Model for TConDec-R Specifications

As first step, the TCondec-R model needs to be representedBsRegarding the
CSP model, recurring process activities (repeated detiyitf. Def. 5), which may be
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Fig. 2. From TConDec-R specification to process enactment plan.

executed arbitrarily often if not restricted by any conisifreare modelled as sequence
of optional scheduling activities (cf. Def. 6). This is ré@ual since each execution of a
process activity is considered as a single activity to becalied to a specific resource
and be temporarily placed in the enactment plan, i.e.gfatlues for its start and end
times.

Definition 5. Arepeated activity ra = (dur,role, nt) is a process activity which may be
executed several times, i.e., several instances of the aetivgy may exist in the con-
text of a particular process instance. A repeated actistgescribed by the estimated
duration of the process activity (i.e., dur), the role of tequired resource for activity
execution (i.e., role), and a CSP variable specifying thmber of times the process
activity is executed (i.e., nt).

For each repeated activityt scheduling activities exist, which are added to the CSP
problem specification, apart from including a variable

Definition 6. A scheduling activity a; = (st, et,res sel) represents the i-th execution
of a repeated activity a, i.e., a specific process activistance, where st and et are
CSP variables indicating the start/end times of activitg@xrion (each execution of a
process activity needs to be temporarily placed in the enant plan), res is a CSP
variable representing the resource used for execution,selds a CSP variable indi-

cating whether the activity is selected for execution.

Moreover, an additional CSP variable representing theath@mpletion time (OCT),
is included in the CSP model, extending the CSP to a COP (d¢f. De

Definition 7. A COP-TConDec-R problem related to a TConDec-R process model
TCR= (ActsCr,R) (cf. Def. 4) is a COP p= (V,D,Ccsp 0) (cf. Def. 3) where:

— The set of variables V is composed out of all CSP variabldsidied in the CSP
model plus the CSP variable related to overall completioneti(OCT), i.e., \=
{nt(a),a c Actst U {st(a),et(ai),resa),sel(a),i € [1..nt(a)],a € Acts; UOCT.



CyclicStartStart(a,[1i,1s]) is added OR bounds of st(ai) for any i changed ->
for (int i = 1; i < UB(nt(a)); i++){
SchedulingActivity al = ai;
SchedulingActivity a2 = ai+l;

if (LB(s (al)) (1li)>LB (st (a2))) {LB(st(a2))<-LB(st(al))+(1li)} //LB(st(al+1))>=LB(St(al))+ll
if (UB( ))>UB t(a2))-(1i)) {UB(st(al))<-UB(st(a2))-(1li)} //UB(st(ai))<=UB(st(ai+l))-
if (LB(st(a2) - (ls)>LB(st(al))) {LB(st(al))<-LB(st(a2))-(ls)} //LB(st(ai))>=LB(st(ai+l))-
if (UB(st(a2))>UB(st(al) +(1ls)) {UB(st(a2))<-UB(st(al))+(ls)} //UB(ai+l )< UB (s t(al+1))+ls

Fig. 3. Filtering Rule for the CyclicStartStart Template

— The set of constraintsdgpis composed out of the global constraints (implemented
by the filtering rules) related to the TConDec-R constrainttuded in G together
with the constraints from the proposed CSP mode.:

e A specific execution of a repeated activity precedes the eedution of the
same activity, i.e¥i: 1<i<nt(a):et(a) < st(a1) for each repeated activity
ac Acts.

e The nt variable is directly related to the sel variables @ #ssociated schedu-
ling activities, i.e.Vi: 1 <i<nt(a):sella)=1AVi>nt(a) : sel(a) =0 for
each repeated activity @ Acts.

e OCT = maXcacts(€t(@n(a)))-

— The set of domains D is composed out of the domains for ea@blafrom V.
— The objective function to be optimized is overall comptetime, i.e., o= OCT.

In this way, the COP model which was proposed for ConDec-RiBpations [3]
has been extended by including: (1) a new global constraimg¢dch of Allen’s inter-
val algebra relation of each specific case of every suppadei@goral constraint, i.e.,
time patterns TP2, TP4, TP5, TP6, TP7, TP8, TP9, and TP10(na new global
constraint for each of Allen’s interval algebra relationevkry relation and negation
ConDec constraint for allowing the specification of timeddge., time pattern TP1).
Moreover, when all process activities may be executed ireaifip time frame|li, Is],
the constraint®ailyScheduleStaf, [li,|s|) and DailyScheduleEng, [li,1s]) are in-
cluded for every activity € Actswhich is not involved in any other schedule constraint
(cf. Fig. 2(b)). This is needed since teeandet variables can take any value, e.g., a
value corresponding to 4 am, if not restricted by any congtra

Figure 2 also shows the translation from a TConDec-R spatiific into a CSP so
that the CSP variables and constraints are stated as exglaimef. 7 (cf. Fig. 2(b)).

5.2 Filtering Rules

For each TConDec-R template our constraint-based propudates a related global
constraintimplemented through a filtering rule. Since werst ConDec-R[3] by time
patterns, new filtering rules related to these time pattieaws been developed, i.e., one
filtering rule for each new global constraint (cf. Sectioh)5As examples, Fig. 3 and 4

5 Resources are implicitly constrained since the solver which is used psavidigh-level cons-
traint modelling specific to scheduling which includes the managementoédesources.

6 A detailed description of the ConDec-R filtering rules can be found at
http://regula.lsi.us.es/MOPIlanner/FilteringRules.pdf.



DailyScheduleEnd(ai, [1i,1ls]) is added OR bounds of et(ai) changed ->

// a) // c)

1f((LB(et(ai))%(24*60)) < (1i)){ if((UB(et(ai))%(24*60)) > (1ls)){
int day = LB(et(ai))/24*60; int day = UB(et(ai))/24*60;
int newValue = day* (24*60) + 1i; int newValue = day*(24*60) + ls;
LB (et (ai)) <- newValue; UB (et (ai)) <- newValue;

} }

// o) // d)

if ((LB(et(ai))%(24*60)) > (1s)){ if ((UB(et(ai))%(24*60)) < (1i)){
int day = LB(et(ai))/24*60; int day = UB(et(ai))/24*60;
int newValue = (day+1)*(24*60) + 1i; int newValue = (day-1)*(24*60) + 1ls;
LB (et (ai)) <- newValue; UB (et (ai)) <- newValue;

} } }

Fig. 4. Filtering Rule for the DailyScheduleEnd Template

show the filtering rules related to ti@yclicStartStarta, [li,|s]) andDailySchedule
End(a, [li,ls])” global constraints, whetgB(var) andLB(var) represent the upper and
lower bounds of the domain ofar, respectively. Most of the newly developed filter-
ing rules present a propagation reasoning similar to therateded in the ConDec-R
filtering rules, i.e., they basically differ in the considgon of the time lags (see Fig.
3 for an example). However, for the filtering rules relatedhte schedule templates, it
becomes necessary to reason about the day in which the upp&aveer bounds of the
start and/or end time variables are placed. Specificaliyhifiltering rule of Fig. 4, for
every activity executiom; the next reasoning is carried dus) if the lower bound of
et(a) corresponds to a time of a daywhich is lower than the timé, then that lower
bound is updated to the tintieof the dayd; b) if the lower bound o&t(a;) corresponds
to a time of a day which is greater than the tinis, then that lower bound is updated
to the timeli of the day afted; c) if the upper bound oét(a;) corresponds to a time of
a dayd which is greater than the tinds, then that upper bound is updated to the time
Is of the dayd; and d) if the upper bound ddt(a;) corresponds to a time of a day
which is lower than the timé&, then that upper bound is updated to the timef the
day befored.

In this way, the constraints stated in the TConDec-R spetifio (cf. Def. 4) can
be easily included in the CSP model through the related glodrzstraints. Moreover,
the related filtering rules increase the efficiency in thede#or solutions, since during
the search process these filtering rules remove inconsiskres from the domains of
the variables. In the CSP model, initial estimates are madegdper and lower bounds
of variable domains, and these values are refined duringetirels process.

5.3 Search Algorithms

Once the problem is modelled, several constraint-basedhanéms can be used to
obtain the solutions of the COP (cf. Def. 3), i.e., optimizedctment plans (cf. Def. 8).
For the empirical evaluation of this paper, we use the headsmplete search method

7 Note that since th®ailyScheduleEng, [li,|s]) constraint individually affects each activity
execution, the filtering mechanism for every scheduling activity is caoigdn a separated
way to increase the efficiency. In this way, tBailyScheduleEngh, [li,1s]) constraint is im-
plemented through the s@DailyScheduleEngh;, [li,1s]),i € [1..nt(a)]} of filtering rules.

8 To deal with different time granularities, all the temporal specificationthefTConDec-R
model are automatically converted to minutes when generating the CSP.



setTimeg17] since it has demonstrated its ability to obtain goodisohs to complex
scheduling problems.

Definition 8. An enactment plan consists of: (1) the number of times each activity is
executed, (2) the start and end times for each activity @i@gland (3) the resource
which is used for each activity execution.

Figure 2(d) shows an enactment plan which represents thes@8fon of Fig. 2(c)
related to the TConDec-R specification of Fig. 2(a).

Since the generation of optimal plans has NP-complexity, [£& not possible to
ensure the optimality of the generated plans for all casks. developed constraint-
based approach, however, allows solving the considerdalggns in an efficient way,
reaching solutions which are optimal in many cases (cf.iSe€).

6 Empirical Evaluation

To evaluate the effectiveness of our approach, a contretkperiment has been con-
ducted. Section 6.1 describes the design underlying therempnt, and Section 6.2
shows the experimental results and the data analysis.

6.1 Experimental Design

Purpose: The purpose of the empirical evaluation is to analyze theatieh of our
proposal in the generation of optimal enactment plans fr@orDec-R (i.e., temporal
ConDec-R) specifications.

Objects: Considering the application scenario from Section 2, thpigoal evalua-
tion is based on the generic TConDec-R model (cf. Fig. 5)ctvingpresents a specific
treatment to be applied td#patients. This scenario has been selected, since it inelude
typical relations present in actual CIGs. It further consad representative set of time
patterns. In this context, we presume that all activitiey i@ executed between 8am
to 8pm.

The generic TConDec-R model of Fig. 5 is specified by reptathe variables
{#P,#R0,#R1, Dacacts} With specific values, beinB, the estimated duration fer Re-
garding the number of patients valug®4# {5, 10,15}, and for the number of resources
with rolesRO andR1 values{5,10} are considered. In addition, different games of du-
rations for each process activity are assunm@y gince this aspect has great influence
on the complexity of the search for optimums. Note that thesmered problems are
an extension of typical scheduling problems. 30 instancesandomly generated for
each TConDec-R model by varying activity durations betweand 30 minute8.

Independent Variables: For the empirical evaluation, (1) the number of patients
(i.e., #°), (2) the number of available resources with rB& or R1, respectively (i.e.,
#RO0, #R1), and (3) the game which establishes the activity durat{oe.,G) are taken
as independent variables.

9The set of games which are used for the empirical evaluation are deaikaib
http://lwww.lsi.us.es/ quivir/irene/Games.rar.



o TConDec-R Specification
Control-flow Specification [#P ]

I CyclicStart-Start . CyclicEnd-End
| Daivscheduestart [12h,48h] (TP9) ED:(;'y[ggr:eg::ﬁ] [24h,72h] (TP9) |
[8am,10am] (TPSS I
(TP5)
| B [2] [ 3]
D D, D D
I Al A @ re—:| B el ¢ ol p I
RO PrecedenceEnd-Start (R ResponseStart—StartE Ri I
| [6h,24n] (TP1) [3n,6n] (TP1)
Precedence I
I End-End Time-basedMutual
I [1h,5h] DailyScheduleStart ExclusionStart-Start Res. I
(TP1) [4pm,8pm] (TP5) ; 24h (TP6) Avail. |
|| 7 2]« [4]y [3] [RO:#R0
[5) D X D D R1: #R1 I
| = = C »e—-| F &— :%—»—G G = H
R1 PrecedenceStart-Start RO ResponseEnd-Start |R RO
| [10h,20h] (TP1) % [5h,20n] (TP1) * I
I CyclicEnd-End Time-basedMutual Time-basedMutual I
[4h,36h] (TP9) Exclusion End- End@ Exclusion Start-| End\@z I
| D). 8h (TP6) i 12h (TP6) i
I|y_ s 3 2 2l y |
D D D, D,
Iy 0 VI S R |
ResponseStart-Start
[1h,48h] (TP1) I
[N] Legend
& Act | Act must be executed exactly N times, has an estimated duration of D, and requires a resource
with role R,

DallyScheduIeStartlEnd(A [li,Is]) (TP5): Each execution of activity A must be started/finished between /i
and Is.

CyclicStart/End-Start/End(A,[li,Is]) (TP9): A shall be performed iteratively considering a time lag of [li,/s]
between the start/end times of the cycles.

Time-basedMutualExclusionStart/End-Start/End(A,B,t) (TP6): The time lag between the start/end of any
execution of A and the start/end of any execution of B must be no less than .
PrecedenceStart/End-Start/End(A,B,[li,Is]) (TP1): There must be a time lag of [li,/s] between the start/end
time of any execution of A and the start/end time of the first execution of B.
ResponseStart/End-Start/End(A,B,[li,Is]) (TP1): There must be a time lag of [li,/s] between the start/end
time of the last execution of A and the start/end time of any execution of B.

Fig. 5. A generic TConDec-R model.

Response VariablesThe suitability of our approach is tested regarding theofoll
wing variables: (1) percentage of optimal solutions fouinel (%0 pt)1°, (2) average
time (in seconds) for getting optimal solutions, considgiihe cases in which the op-
timal solution is found (i.e.Topt(s)), and (3) average value of the objective function
obtained (i.e, overall completion tin@CT(min)).

Experimental Design:For the model depicted in Fig. 5, 360 instances (i.e. 23«

2 x 30) are generated considering different valuesh{3tvalues), R0 (2 values), R1
(2 values), ands (30 problem instances). The response variables are thematad by
considering the average values for the 30 problem instances

Experimental Execution: The machine we use is an Intel Core2, 2.13 GHz, 1.97
GB memory, running on Windows XP. For the experiments, tmeglete search method
setTimed17] is run until a 5-minutes CPU time limit is reached. To iepent the

10 The optimality of the solutions can be only ensured if the search algorithra bedpre reach-
ing the time limit. Otherwise the optimality of the reached solution is unknown.



constraint-based problems (cf. Section 5), COMET [10] ed,svhich is able to gene-
rate high-quality solutions for highly constrained probkein an efficient way. This sys-
tem provides a scheduling module offering high-level caist modelling and search
abstraction, both specific to scheduling.

6.2 Experimental Results and Data Analysis

For each problem (i.e{#P,#R0,#R1}) Table 1 shows: (1) the total number of schedu-
ling activities (cf. Def. 6) to be planned and schedule8dited Adt, and (2) the values
of the response variables (i.e.@pt, Topt, andOCT) for the 30 problem instances ran-
domly generated! As expected, the percentage of optimal solutions foundedesers
and the average time for getting optimal solutions incre@sethe number of patients
(and hence the number of scheduling activities) increeSgscifically, for 5 patients
(155 scheduling activities) the optimum is found in almdbktases (the average value
for %0pt is equal to 9916%), for 10 patients (310 scheduling activities) the agera
value for %0 pt is equal to 3666%, and for 15 patients (465 scheduling activities) the
average value for @pt is equal to 866%. Moreover, in almost all cases, the value for
%O ptincreases and the value fospt(s) decreases as the number of available resources
increases. As expected, the average valu®fom increases as the number of patients
(and hence the number of scheduling activities) increasdsle number of available
resources decreases. Additionally, it can be seen thattinder of available resources
with role R1 seems to be more influential than the number of availabtauress with
role RO in all response variables.

In general, experimental results show that despite NP-tmiitp of the problems
considered, the values for the percentage of optimal swisifiound and for the average
time for getting optimums are quite good for medium-sizedbfgms (between 155
and 465 scheduling activities). Note that getting the optimfor scheduling problems
of 155-465 activities can entail a great complexity. In fdloere are many scheduling
benchmarks of smaller size for which their optimal valuesrast even known.

7 Discussion and Limitations

The current approach allows modelling processes in an eagy since the conside-
red declarative specifications are based on high-leveltints. Furthermore, time
patterns can be easily specified since the proposed caridbased language includes
temporal constraints. This is a big advantage. Althoughptaal constraints play an
important role in the context of long-running processesetsupport is very limited in
existing process management systems [16]. With our extenan increased expres-
siveness to the specification language is provided (cordparg3]), and hence more
realistic problems can be managed, e.g., CIG support inlitiiead domain (cf. Section
2). Moreover, one advantage of our proposal is that opticheaectment plans are ge-
nerated by considering all process activities; hencelatval for a global optimization

11 The set of optimized enactment plans which were generated during ihieicahevaluation
are available at http://www.Isi.us.es/ quivir/irene/OptimizedEnactmentPéans



Table 1. Experimental results (5-minutes time limit).

#P #RO #R1 #Sched Ac&60pt Topi(s) OCT(min)

5 5 5 155 96.66 0.21 3666
5 5 10 155 100 3.03 3618
5 10 5 155 100 0.94 3618
5 10 10 155 100 0.98 3618
10 5 5 310 3.33 0.86 4602.58
10 5 10 310 46.66 31.45 3833.66
10 10 5 310 10 0.83 4511.85
10 10 10 310 86.66 3.36 3715.33
15 5 5 465 0 - 6437.20
15 5 10 465 16.66 9.27 4590.43
15 10 5 465 3.33 145 6388.27
15 10 10 465 6.66 1.50 4317.93

of the objective functions. Finally, the automatic genierabf optimized plans can deal
with complex problems in a simple way, as demonstrated iti&e6. Hence, a wide
study of several aspects can be carried out by simulation.

Nonetheless, the proposed approach also presents a fawations. First, the ana-
lysts must deal with a new language for the constraint-bagedification, thus a period
of training is required to let them become familiar with T@m@t-R specifications. Sec-
ondly, the optimized process models are generated by cmirsigestimated values for
the number of process instances, activity durations, ssaliree availability, and hence
the current proposal is only appropriate for processes inwthese values can be esti-
mated. However, P&S techniques can be applied to replarcthvities in the enactment
phase by considering the actual values of the parametestatasl in [4].

8 Related Work

This paper extends the approach presented in [3] by prayidiproved expressiveness
through temporal constraints [16]. We are not aware of ahgrodpproach for genera-
ting enactment plans from declarative specifications, wewehere exist some further
proposals which could be extended in such direction [21,Zibjilar to our work, [21]
presents a declarative language based on ConDec (i.e.,&e)3@ the modelling and
enactment of CIGs. From CIGDec specifications an automatmresenting all feasible
traces can be generated. The overall completion time diatraices could be calculated
[31], and hence optimized enactment plans be generatedeWonas a disadvantage
of this approach, generating the automaton is NP complatg, unlike the proposed
approach, no heuristics is used. Additionally, CLIMB [2@utd be used to generate
quality traces from declarative specifications, and caleuits completion time. Then,
the best traces could be selected. Unlike our approachngltjer considers optimality
nor resource availability. Finally, the time patterns praed in [16] are not considered
in [21, 20].

Many constraint-based approaches for modelling and spIRi&S problems have
been proposed [27]. Moreover, several proposals exist lferifig algorithms related



to specialized scheduling constraints [5]. Therefore,cresidered problem could be
managed by adapting existing constraint-based approakloegever, these problems
include many non-typical scheduling constraints from CeaDwhich entail complex

reasoning about several combined innovative aspects asutie alternating executions
of repeated activities together with the varying numbeiiraes which these activities
are executed. Therefore, we implemented our own speciicifitf rules to increase the
efficiency in the search for solutions.

Furthermore, constraint-based approaches for procegmdesification have been
proposed in process-aware IS [19]. Unlike our approacly, dioenot consider the gene-
ration of optimized process enactment plans.

Related to the clinical domain, the CIG languages presentgd, 20, 6, 15] do not
consider time patterns. However, there are approachesdmgion the treatment of
temporal aspects in CIGs (e.qg., [29, 9, 2, 8]). Opposed tovauk, the works presented
in [29, 9, 2, 8] do not consider optimality issues when manggemporal constraints.

9 Conclusions and Future Work

This paper presents a method for generating optimized meattplans (e.g., minimiz-
ing overall completion time) from declarative temporal gges models. The generated
plans can be used for different purposes, e.g., providiegsusith a personal schedule,
facilitating early detection of critical situations, oreglicting execution times for pro-
cess activities. The proposed approach is applied to a ranigst models of varying
complexity. Results indicate that, despite the NP-coniplexf the considered pro-
blems, our approach produces solutions being optimal inyncases. As for future
work, we will explore various constraint-based solvinghtigiques and analyze their
suitability for the generation of optimized enactment glan

References

1. J.F. Allen. Maintaining knowledge about temporal intervals Pfac. Communications of
the ACM pages 832—843, 1983.

2. L. Anselma, P. Terenziani, S. Montani, and A. Bottrighi. Towardsamehensive treat-
ment of repetitions, periodicity and temporal constraints in clinical guidelinrtificial
Intelligence In Medicing38:171 — 195, 2006.

3. |. Barba and C. Del Valle. A Constraint-based Approach for Planaimd Scheduling Re-
peated Activities. IfProc. COPLASpages 55-62, 2011.

4. 1. Barba, B. Weber, and C. Del Valle. Supporting the Optimized Biacof Business
Processes through Recommendation®rizc. BPM Workshopgpages 135-140, 2011.

5. R.Bartik and O. Cepek. Incremental propagation rules for a precedesmgk gith optional
activities and time windows.Transactions of the Institute of Measurement and Control
32(1):73-96, 2010.

6. A. Bottrighi, F. Chesani, P. Mello, G. Molino, M. Montali, S. Montani, S.1&tg P. Teren-
ziani, and M. Torchio. A hybrid approach to clinical guideline and to basdioal know-
ledge conformance. IRroc. AIME pages 91-95, 2009.

7. P.Brucker and S. Knus€omplex Scheduling (GOR-Publication§pringer, 2006.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

. C.Combi, M. Gozzi, J.M. Juarez, and B. Oliboni. Conceptual ModealimTemporal Clinical

Workflows. InProc. TIME pages 70 — 81, 2007.

. G. Duftschmid, S. Miksch, and W. Gall. Verification of temporal schieg constraints in

clinical practice guidelinesArtificial Intelligence In Medicing25(2):93 — 121, 2002.
Dynadec. Comet Downloadst t p:// dynadec. cond support/downl oads/, 2010. [On-
line; accessed 3-October-2011].

J. Eder, H. Pichler, W. Gruber, and M. Ninaus. Personal steefbr workflow systems. In
Proc. BPM pages 216-231, 2003.

M.J. Field and K.N. LohiGuidelines for clinical practice: from development to uksstitute
of Medicine, Washington, D.C: National Academy Press, 1992.

M. R. Garey and D. S. Johnso@omputers and Intractability: A Guide to the Theory of
NP-CompletenesdNew York, NY, USA: W. H. Freeman & Co., 1979.

M. Ghallab, D. Nau, and P. TraversAutomated Planning: Theory and Practic®organ
Kaufmann, Amsterdam, 2004.

M.A. Grando, W.M.P. van der Aalst, and R.S. Mans. Reusingdabetive Specification to
Check the Conformance of Different CIGs.Pmoc. BPM Workshopgages 188-199, 2011.
A. Lanz, B. Weber, and M. Reichert. Workflow Time Patterns focBss-Aware Information
Systems. IrProc. BPMDS and EMMSA[pages 94 — 107, 2010.

C. Le Pape, P. Couronne, D. Vergamini, and V. Gosselin. Timaigecapacity compromises
in project scheduling. I®Proc. PlanSIG pages 498-502, 1994.

R. Lenz and M. Reichert. IT support for healthcare processamiges, challenges, perspec-
tives. Data & Knowledge Engineering1(1):39-58, 2007.

Ruopeng Lu, Shazia Wasim Sadiq, Guido Governatori, and Xiaogng.YDefining adap-
tation constraints for business process variant®I8) pages 145-156, 2009.

M. Montali. Specification and Verification of Declarative Open Interaction Models:gid-o
Based ApproachPhD thesis, Department of Electronics, Computer Science and Telecom-
munications Engineering. University of Bologna, 2009.

N. Mulyar, M. Pesic, W.M.P. van der Aalst, and M. Peleg. Dechegadnd Procedural Ap-
proaches for Modelling Clinical Guidelines: Addressing Flexibility IssubsProc. BPM
2007 Workshopgages 335-346, 2008.

N. Mulyar, W. M. P. van der Aalst, and M. Peleg. A pattern-basealyais of clinical
computer-interpretable guideline modelling languagé@surnal of the American Medical
Informatics Associationl4:781 — 787, 2007.

M. Peleg and et al. Comparing computer-interpretable guideline lmadlease-study ap-
proach.Journal of the American Medical Informatics Associatitf(1):52 — 68, 2003.

M. PesicConstraint-Based Workflow Management Systems: Shifting Control ts.U&eD
thesis, Technische Universiteit Eindhoven, Eindhoven, 2008.

M. Pesic, M.H. Schonenberg, N. Sidorova, and W.M.P. vanAgést. Constraint-Based
Workflow Models: Change Made Easy. @TM Conferences (1pages 77-94, 2007.

M. Reichert. What BPM Technology Can Do for Healthcare ProSegmport . InProc.
AIME, pages 2-13, 2011.

F. Rossi, P. van Beek, and T. Walsh, editdrlandbook of Constraint Programmingelse-
vier, 2006.

M.A. Salido. Introduction to planning, scheduling and constraintfaatien. Journal of
Intelligent Manufacturing21(1):1—-4, 2010.

Y. Shahar. A framework for knowledge-based temporal attgira Artificial Intelligence
90(1/2):79 — 133, 1997.

A. ten Teije, S. Miksch, and P. LucaSomputer-based Medical Guidelines and Protocols:
A Primer and Current TrenddOS Press, 2008.

W.M.P. van der Aalst, M.H. Schonenberg, and M. Song. Timdigtien based on process
mining. Information System86(2):450-475, 2011.



