
Faculty of
Engineering
and Computer Science
Institute of Databases and
Information Systems

Process Automation and Optimization
for the Audit Committee
Bachelor Thesis at Ulm University

Submitted by:
Kevin Andrews
kevin.andrews@uni-ulm.de

Reviewer:
Prof. Dr. Manfred Reichert

Supervisor:
Jens Kolb

2012

Version May 7, 2012

c© 2012 Kevin Andrews

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/ or send a letter to
Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.
Compiled with: PDF-LATEX 2ε

Contents

1 Introduction 1

1.1 The Audit Committee and its Tasks . 1

1.2 Process Optimization Potential with BPMS . 2

2 Current Processes of the Audit Committee 5

2.1 Documentation of the Different Processes . 5

2.1.1 BAföG Funding Approval . 6

2.1.2 ECTS Credit Acknowledgment . 7

2.1.3 Changing of Major . 10

2.1.4 Attribution of Course Credits . 11

2.1.5 Work Experience Acknowledgment . 14

2.1.6 Thesis Deadline Extension . 15

3 Optimization of the Thesis Deadline Extension Process 19

3.1 Optimization Changes to the TDE Process . 19

3.2 Creating the Process Model in the AristaFlow BPM Suite 22

3.3 Planning the Implementation . 24

4 Implementation 25

4.1 Implementing an AristaFlow Component . 25

4.1.1 Process Parameters . 26

4.1.2 Activity Configurations . 27

4.1.3 Multiple Optional Parameters . 29

4.1.4 Debugging a Component . 30

4.1.5 Exception Handling . 30

4.2 PDF Printer Component . 31

4.3 PDF Filler Component . 32

4.4 Encrypted Mailer Component . 33

4.5 PDF Signer Component . 34

4.6 The Finished Process . 35

5 Conclusion 39

A Paper-Based Forms 41

B Component Source Codes 45

iii

1 Introduction

This thesis gives the reader extensive information on the processes of the audit committee of

Ulm University. Furthermore it closely examines the thesis deadline extension process and gives

the reader an introduction on how to go about optimizing an existing process and implementing

it as an automated process in a business process management suite (BPMS).

Business process optimization (BPO) is an important topic for any company because "the com-

panies with the most efficient processes survive" [1]. Ulm University is not the typical company

referred to in the quote, but definitely has a lot in common with one, foremost the need to save

money. And saving money is usually done by maximizing the amount of work one paid worker

can complete. The optimization this thesis examines is automation through software, moving

away from paper-based forms and copying machines to purely digital processes, in hopes of

saving time for secretaries, students and members of audit the committee of Ulm University.

The task of optimizing a business process has four basic steps, as described by J.S. Arlbjorn [1]:

1. Analysis

2. Design

3. Implementation

4. Evaluation

These steps also provide the basic outline for this thesis. Sections 1 and 2 analyze the audit

committee and its processes. Section 3 examines options on how to design an optimized pro-

cess for automation. Section 4 goes into detail on implementing an automated process, and

finally Section 5 gives an evaluation of the optimized process and process automation of this

sort in general.

1.1 The Audit Committee and its Tasks

The audit committee of Ulm University has numerous tasks. This thesis examines a few exam-

ples that involve multiple people and organizational units within the university. The examined

processes are for instance the acknowledgment of credits from other universities or other ma-

jors within Ulm University, creating certificates for students making them eligible for BAföG1, and

naturally extension of thesis deadlines for bachelor master and diploma students. These tasks

1Bundesausbildungsförderungsgesetz

1

1 Introduction

also offer the most optimization and automation potential which as the main topic of this thesis

makes them relevant to this paper.

1.2 Process Optimization Potential with BPMS

Process optimization to the extent examined in this thesis is all about reducing media breaks

and reducing the amount of time needed to process individual steps.

An introductory example for a non-automated process is given in Figure 1.1.

User

Org Unit 1

Agent 1

Org Unit 2

Agent 2

Figure 1.1: Non-automated Process

Assume a user needs a request serviced that requires information or input from two organiza-

tional units (OrgUnit) in his enterprise. He writes down the request, and takes it to the agent

in OrgUnit 1. The agent then types the request into the computer, prints out the partial result,

and returns it to the user. The user then takes the request to OrgUnit 2 and the agent there for

completion. The user’s request could not be fully serviced in OrgUnit1 because the agent there

does not have access to the same information systems as the agent in OrgUnit 2 and vice versa.

In OrgUnit 2 the agent must again input the request into the computer and print out the results.

The request is now serviced and the user has his results.

The speed at which this process can be executed is mostly limited by the media breaks. And for

correct execution one is assuming that the user and both agents know where exactly to forward

the request to. Optimization of this process can be achieved by automation using business

process management software, like the AristaFlow BPM Suite2. Ideally the whole process would

2http://www.aristaflow.com/

2

1.2 Process Optimization Potential with BPMS

take place digitally, involving only forms and connections to the involved information systems,

thereby eliminating all media breaks. This way the participants of the process do not have

to physically change their location and need not have knowledge about process details. The

process would then be, from the user’s point of view, the content of Figure 1.2.

Print out resultEnter request
User

Request serviced elsewhere,
result as e-mail

Figure 1.2: User’s View of Automated Process

The actual servicing of the request would still be done by the agents 1 and 2 in the different

organizational units, so the complete process would be as seen in Figure 1.3.

Print out result

Enter request
User

Agent 1

Agent 2
User

E-mail

Figure 1.3: Complete View of Automated Process

The flow of information in the process would be handled entirely by a BPMS, as a BPMS has a

model of the process. Using this model it can determine where the information entered by the

student has to go next. The BPMS would also inform the next agent in the process flow that it is

his turn to complete a step of the process.

A BPMS could also notify the student of acceptance or rejection of his request by e-mail. Without

going further into the details of the specific processes it is clear how this reduction of media

breaks can significantly reduce the time spent on a process both for students and the audit

committee.

3

1 Introduction

Naturally there are some real world limitations on how purely digital a process can be, espe-

cially in public administration. These stem from for instance legal issues or the need to archive

important applications or other documents physically.

4

2 Current Processes of the Audit Committee

As mentioned in Section 1 the audit committee currently has numerous tasks, some of which will

be described in the following. This thesis assumes that the reader has basic knowledge of pro-

cess management and BPMN1, which will be used to document the underlying processes.The

following as-is processes are examined:

• BAföG funding approval (2.1.1)

• ECTS credit acknowledgment (2.1.2)

• Changing of major (2.1.3)

• Attribution of course credits (2.1.4)

• Work experience acknowledgment (2.1.5)

• Thesis deadline extension (2.1.6)

2.1 Documentation of the Different Processes

The following processes all have four main participants: the student requiring a service from

the audit committee, the chairman of the audit committee, his secretary and a representative

of the student administration. The student is always the initiator of the process. The secretary

acts as a contact person between the student and the chairman, informs the student adminis-

tration about the result of the process and is also responsible for the archiving of any legally

binding documents created during the process. The chairman of the audit committee is the sole

decision-making entity in the processes and therefore needs a broad knowledge about the dif-

ferent majors. The student administration registers the outcome of the process in the university’s

IT system.

In the following the processes are described in textual form as well as BPMN models. The BPMN

notation can be looked up in [8].

1Business Process Management Notation

5

2 Current Processes of the Audit Committee

2.1.1 BAföG Funding Approval

This process is necessary when a student receiving BAföG funding is asked by the state to

provide confirmation from the university that he or she is studying there and achieving the nec-

essary grades and credits enabling the student to receive the BAföG advancements. The BPMN

model for this process can be found in Figure 2.1.

The processes is started by the student visiting the secretary of the audit committee, bringing

a current course assessment and the form which he has to fill out for the BAföG approval. The

student gives the form and assessment to the secretary, who checks both for completeness

and hands them on to the chairman if they are. The student may now leave. The chairman

then checks the assessment and makes sure the student has achieved the minimum required

credits necessary for BAföG funding approval. If that is the case he signs the form, stamps it

and informs his secretary. The secretary notifies the student by e-mail that he can get back his

filled out form. The student then returns to the secretary and picks up his form. This concludes

the process.

P
rü

fu
n

gs
au

ss
ch

u
ss

 In
fo

rm
at

ik

Se
kr

et
ar

ia
t

P
A

V
P

rü
fu

n
gs

au
ss

ch
u

ss
-

V
o

rs
it

ze
n

d
er

St
u

d
en

t

Sekretariat PAV
besuchen

Leistungen
durchsehen

BAFÖG-Formular
unterschreiben &

stempeln

Unterlagen auf
Vollständigkeit

prüfen

Unterlagen vollständig?

Ja

Nein

Formular im
Sekretariat PAV

abholen

BAFÖG-
Bestätigung

BAFÖG-Formular &
Leistungsnachweis erhalten

Unterlagen übergeben E-Mail-Benachrichtigung erhalten

Student per E-Mail
benachrichtigen

BAFÖG-Formular und
Leistungsnachweis mitbringen

Figure 2.1: BAföG Funding Approval

6

2.1 Documentation of the Different Processes

2.1.2 ECTS Credit Acknowledgment

In the event that a student received ECTS2 points from a different university, be it after spending a

year in a foreign country or changing universities permanently to Ulm University, the student may

have these acknowledged by the audit committee and assigned to his current course credits. The

underlying process is explained here in textual form and as a BPMN model spread over Figures

2.2 and 2.3.

The process is initiated by the student filling out the paper-based form ”Antrag auf Anerkennung

von Prüfungsleistungen” (Appendix A.2). Afterwards the student takes the filled out form contain-

ing a list of courses passed at a different university to a professor responsible for the student’s

field of study.

The professor compares the contents of the other university’s courses to those of Ulm University,

and signs the form if satisfied. The student then fills out the form ”Antrag Prüfungsausschuss

Informatik” (Appendix A.1), in which he can state which services he needs from the audit com-

mittee, in this case ECTS credit acknowledgment.

The student may now visit the chairman’s consultation hour, to which in addition to both forms he

has to bring his current course assessment and certificates for the externally received credits.

The student gives the forms, assessment and certificates to the secretary.

The secretary checks the forms and certificates for completeness and hands them on to the

chairman if they are complete. The chairman then signs the student’s application form and

proceeds to calculating the equivalent German grades (if necessary). The paperwork is handed

back to the secretary who creates the notification letter from a standard template.

The letters are printed out twice and signed by the chairman. A copy of the first printout is

physically archived along with the forms and the student’s course assessment. The original of

the first printout is then handed to the student as proof of acceptance. The second printout is

sent by in-house post to the student administration, who enters the grades and credits into the

university information system LSF3. This concludes the process.

2European Credit Transfer and accumulation System
3Lehre-Studium-Forschung

7

2 Current Processes of the Audit Committee

P
rü

fu
n

gs
au

ss
ch

u
ss

 In
fo

rm
at

ik

Se
kr

et
ar

ia
t

P
A

V
P

rü
fu

n
gs

au
ss

ch
u

ss
-

V
o

rs
it

ze
n

d
er

St
u

d
en

t

„Antrag auf
Anerkennung von

Prüfungsleistungen“
ausfüllen

Unterlagen
durchsehen

Bescheid erstellen Bescheid 2x
ausdrucken

Beide Bescheide
unterschreiben

Gleichwertigkeit der
Prüfung durch
zuständigen

Professor feststellen

„Antrag
Prüfungsausschuss

Informatik“
ausfüllen

Antrag des
Studenten

unterschreiben

Vollständigkeit der
Unterlagen
überprüfen

Umrechnung der
Noten bestimmen

Unterlagen vollständig?

Ja

Nein

Zuordnung oder
Anerkennung von Prüfungsleistungen

Deckblatt,
Antrag,Leistungsnachweis erhalten

Student

Prüfungsausschuss

Figure 2.2: ECTS Credit Acknowlegment A

8

2.1 Documentation of the Different Processes

P
rü

fu
n

gs
au

ss
ch

u
ss

 In
fo

rm
at

ik

Se
kr

et
ar

ia
t

P
A

V

St
u

d
en

t
St

u
d

ie
n

se
kr

et
ar

ia
t

Sprechstunde PAV
besuchen

Bescheid im
Sekretariat abholen

Bescheid in Fach
„PA-Abholung“

legen

Ersten Druck
kopieren

Kopie, Antrag,
Leistungsnachweis

archivieren

Zuordnung in LSF
System eintragen

Email Benachrichtigung erhaltenUnterlagen übergebenStudent

Student per E-Mail
benachrichtigen

Zweiten Druck
CC unterstreichen
und per Hauspost

an Studiensekretariat

Prüfungsausschuss

Hauspost mit CC
des Bescheides erhalten

Ausgefülltes Deckblatt, unterschriebenen Antrag, Bescheinigung
über extern erbrachte Prüfungsleistungen und aktuellen
Leistungsnachweis mitbringen

Figure 2.3: ECTS Credit Acknowlegment B

9

2 Current Processes of the Audit Committee

2.1.3 Changing of Major

This process is required when a student seeks to change his major field of study. It most of-

ten encapsulates the process attribution of course credits (cf. Section 2.1.4). The process is

documented in the BPMN model in Figure 2.4.

The process is initiated by the student filling out the paper-based forms ”Antrag Prüfungsauss-

chuss Informatik” and ”Antrag Studiengangwechsel” (Appendix A.3). Afterwards the student vis-

its the chairman’s consultation hour, to which in addition to both forms he has to bring his current

course assessment. The student gives the forms and assessment to the secretary. The secre-

tary checks the forms and the assessment for completeness and hands them on to the chairman

if they are complete. The chairman then decides into which semester the student will be setteled

in in his new major. After having appended the information to the ”Antrag Studiengangwechsel”

the process attribution of course credits (cf. Section 2.1.4) is started as a sub-process to ensure

correct attribution of credits the student received in his previous major to his new major. Once

the sub-process terminates the student receives the completed and signed forms and presents

these to the student administration for approval. This concludes the process.

P
rü

fu
n

gs
au

ss
ch

u
ss

 In
fo

rm
at

ik

Se
kr

et
ar

ia
t

P
A

V
P

rü
fu

n
gs

au
ss

ch
u

ss
-

V
o

rs
it

ze
n

d
er

St
u

d
en

t Sprechstunde PAV
besuchen

Unterlagen
durchsehen

„Antrag
Prüfungsausschuss

Informatik“
ausfüllen

Vollständigkeit der
Unterlagen
überprüfen

Unterlagen vollständig?

Ja

Nein

Wechsel vom
Studiensekretariat
genehmigen lassen

Antrag mit
Fachsemester
ergänzen und

unterschreiben

Zuordnungen
bestimmen und

bearbeiten

Entscheidung über
Zuordnung

zu Fachsemester
treffen

Studiengang
wechseln

Deckblatt,
Antrag,

Leistungsnachweis erhalten

Unterlagen übergeben Ausgefüllten Antrag
erhalten

Ausgefüllten Antrag
dem Studenten Übergeben

Ausgefülltes Deckblatt, Antrag für Studiengangwechsel und
aktuellen Leistungsnachweis mitbringen

Figure 2.4: Changing of Major

10

2.1 Documentation of the Different Processes

2.1.4 Attribution of Course Credits

This process is similar to the process described in Section 2.1.2, ECTS credit acknowledgment,

although in this case the credits that the student has achieved stem from different fields of study

at Ulm University. The BPMN model of this process is spread over Figures 2.5 and 2.6 This

process is also, most of the time, part of the process changing of major, detailed in Section

2.1.3.

The process is initiated by the student filling out the paper-based form ”Antrag auf Anerkennung

von Prüfungsleistungen”. The student then fills out the paper-based form ”Antrag Prüfungsauss-

chuss Informatik”, in which he can state which services he needs from the audit committee, in

this case credit acknowledgment.

He or she may now visit the chairman’s consultation hour, to which he has to bring his current

course assessment in addition to both forms. The student gives the forms and assessment to

the secretary.

Afterwards the secretary checks the forms and the assessment for completeness and hands

them on to the chairman if they are complete. The chairman checks the list of courses the

student passed in his previous major and creates a recommendation for the attribution of the

achieved course credits to the new major. If the student agrees to the recommendation the

chairman signs the student’s application form. The paperwork is handed back to the secretary

who creates the notification letter from a standard template.

The letters are printed twice and signed by the chairman. A copy of the first printout is physically

archived along with the forms and the student’s course assessment. The first printout is then

handed to the student. Then the second printout is sent by in-house post to the student adminis-

tration who enter the grades and credits counting towards the student’s new major into the LSF

system. This concludes the process.

11

2 Current Processes of the Audit Committee

P
rü

fu
n

gs
au

ss
ch

u
ss

 In
fo

rm
at

ik

Se
kr

et
ar

ia
t

P
A

V
P

rü
fu

n
gs

au
ss

ch
u

ss
-

V
o

rs
it

ze
n

d
er

St
u

d
en

t

„Antrag auf
Anerkennung von

Prüfungsleistungen“
ausfüllen

Sprechstunde PAV
besuchen

Unterlagen
durchsehen

Bescheid erstellen

„Antrag
Prüfungsausschuss

Informatik“
ausfüllen

Antrag des
Studenten

unterschreiben

Äquivalente
Prüfungen/

Zuordnungen
ermitteln

Vollständigkeit der
Unterlagen
überprüfen

Vorschlag für
Zuordnungen an

Studenten senden

Unterlagen vollständig?

Ja

Nein

Zuordnung oder
Anerkennung von Prüfungsleistungen

Deckblatt,
Antrag,Leistungsnachweis erhalten

Student

Prüfungsausschuss

Ausgefülltes Deckblatt, unterschriebenen Antrag
und aktuellen Leistungsnachweis mitbringen

Figure 2.5: Attribution of Course Credits A

12

2.1 Documentation of the Different Processes

P
rü

fu
n

gs
au

ss
ch

u
ss

 In
fo

rm
at

ik

Se
kr

et
ar

ia
t

P
A

V
P

rü
fu

n
gs

au
ss

ch
u

ss
-

V
o

rs
it

ze
n

d
er

St
u

d
en

t
St

u
d

ie
n

se
kr

et
ar

ia
t

Bescheid bei
Sekretariat abholen

Bescheid 2x
Ausdrucken

Beide Bescheide
unterschreiben

Ersten Druck
kopieren

Kopie, Antrag,
Leistungsnachweis

archivieren

Bescheid in Fach
„PA-Abholung“

legen

Zuordnung in LSF-
System eintragen

E-Mail Benachrichtigung erhaltenUnterlagen übergebenStudent

Student per E-Mail
benachrichtigen

Zweiten Druck
CC unterstreichen
und per Hauspost

an Studiensekretariat

Prüfungsausschuss

Hauspost mit CC des Bescheides erhalten

Figure 2.6: Attribution of Course Credits B

13

2 Current Processes of the Audit Committee

2.1.5 Work Experience Acknowledgment

This process is necessary when the student wishes to have work experience accumulated before

or during his studies acknowledged in form of an internship or course at the university.

This is only possible for students currently studying for a diploma major and therefore the process

will most likely be phased out in a few years. The BPMN model documenting the process can

be found in Figure 2.7.

The process is initiated by the student filling out the paper-based form ”Antrag Prüfungsauss-

chuss Informatik”. The student can now visit the chairman’s consultation hour, to which in addi-

tion to the form he must bring a certification from the former workplace. The student gives the

form and certification to the secretary, who checks both for completeness and hands them on to

the chairman if they are.

The chairman now decides whether to acknowledge the student’s practical work experience

as a university course or practicum. Once he has made his decision he informs his secretary

who then either enters the acknowledgment into the LSF system or informs the student of the

rejection by e-mail. This concludes the process.

P
rü

fu
n

gs
au

ss
ch

u
ss

 In
fo

rm
at

ik
St

u
d

en
t

(D
ip

lo
m

)

Se
kr

et
ar

ia
t

P
A

V
P

rü
fu

n
gs

au
ss

ch
u

ss
-

V
o

rs
it

ze
n

d
er

„Antrag
Prüfungsausschuss

Informatik“
ausfüllen

Unterlagen
durchsehen

Vollständigkeit der
Unterlagen
überprüfen

Unterlagen vollständig?

Nein

Ja

Sprechstunde
PAV besuchen

Antrag stattgeben?

Anerkannte
berufsbezogene

Tätigkeiten im LSF
eintragen

Nein

Student per E-Mail
über Ablehnung

informieren

Ja

Anerkennung
berufsbezogener

Tätigkeiten

Deckblatt,
Nachweis der Tätigkeiten erhalten

Unterlagen übergeben

Ausgefülltes Deckblatt,
Bescheinigungen der Tätigkeit
mitbringen

Figure 2.7: Work Experience Achnowlegment

14

2.1 Documentation of the Different Processes

2.1.6 Thesis Deadline Extension

This process is necessary when a student currently writing a bachelor’s, master’s or diploma

thesis has ample reasons for requiring a deadline extension. The deadline for a bachelor’s

thesis may be extended up to two weeks, the deadline for a master’s or diploma thesis up to

four weeks. The request for a thesis deadline extension must be made not later than one month

before the original deadline. This is the most relevant process for this thesis as it is the process

that is optimized and automated using a BPMS in the course of this thesis. Automation could

naturally have been applied to any of the processes but the thesis deadline extension process

being one of the more complex was chosen as an example. The as-is model of the process is

spread over Figures 2.8 and 2.9.

The process is, akin to the other discussed processes, initiated by the student. He has to write a

letter of reasoning for the thesis deadline extension. This letter is given to the supervisor of the

thesis and has to be signed by him. Afterwards the student fills out the form ”Antrag Prüfungsaus-

schuss Informatik”. He may now visit the chairman of the audit committee’s consultation hour,

to which he has to bring the filled out form, the signed letter of reasoning and a current course

assessment.

He hands this paperwork to the secretary of the audit committee who checks it for completeness

and hands it on to the chairman if it is complete. The chairman must now reach one of three

decisions: he may either grant the extension, deny it or grant only a partial extension. In case the

chairman denies the extension he informs the student thereof by e-mail. If he grants it partially

he must still decide on a new deadline date.

After having fixed a new deadline, the process continues in the same way as it would if the

chairman were to grant the full extension the student asked for. In both cases the secretary

types the letter of notification which gets printed twice. Both printouts are then signed by the

chairman, and the first signed printout is copied and physically archived along with the letter

of reasoning and the course assessment. The second printout is sent by in-house post to the

student administration, who in turn enters the new deadline into the LSF system. The secretary

of the audit committee also informs the student that his notification letter is ready to be picked

up. This concludes the process.

15

2 Current Processes of the Audit Committee

P
rü

fu
n

gs
au

ss
ch

u
ss

 In
fo

rm
at

ik

Se
kr

et
ar

ia
t

P
A

V
P

rü
fu

n
gs

au
ss

ch
u

ss
-V

o
rs

it
ze

n
d

er

St
u

d
en

t
B

et
re

u
er

Begründungs-
schreiben erstellen

Unterlagen
durchsehen

Antrag stattgeben?

Bescheid zur
Fristverlängerung

erstellen

Ja

Nein

Vollständigkeit der
Unterlagen
überprüfen

Neue
Frist bestimmen

Ja,mit
Einschränkung

Ggf. Wiedervorlage
nach Fristablauf mit

dem Student
vereinbaren

Unterlagen vollständig?

Ja

Nein

Begründungs-
schreiben

unterschreiben

Fristverlängerung

Deckblatt, Begründung,
Leistungsnachweis erhalten

Student über
Ablehnung informieren

Begründungschreiben
an Betreuer übergeben

Begründungsschreiben
zurückerhalten

Begründungsschreiben erhalten Unterschriebenes Begründungsschreiben
übergeben

Student

Prüfungsausschuss

Spätestens 4 Wochen vor Abgabe, Maximale
Verlängerung: 2 Wochen bei Bachelorarbeit, 4
Wochen bei Masterarbeit

Figure 2.8: Thesis Deadline Extension A

16

2.1 Documentation of the Different Processes

P
rü

fu
n

gs
au

ss
ch

u
ss

 In
fo

rm
at

ik

Se
kr

et
ar

ia
t

P
A

V
P

rü
fu

n
gs

au
ss

ch
u

ss
-

V
o

rs
it

ze
n

d
er

St
u

d
en

t
St

u
d

ie
n

se
kr

et
ar

ia
t

Sprechstunde des
PAV besuchen

Bescheid in
Sekretariat abholen

„Antrag
Prüfungsausschuss

Informatik“
ausfüllen

Bescheid 2x
ausdrucken

Bescheide
unterschreiben

Ersten Druck
kopieren

Kopie, Begründung,
Leistungsnachweis

archivieren

Bescheid in Fach
„PA-Abholung“

legen

Fristverlängerung in
LSF-System
eintragen

E-Mail Benachrichtigung
erhalten

Unterlagen übergeben Ablehnung erhalten

Student

Student per E-Mail
benachrichtigen

Zweiten Druck
CC unterstreichen
und per Hauspost

an Studiensekretariat

Prüfungsausschuss

Hauspost mit CC des Bescheides erhalten

Ausgefülltes Deckblatt, unterschriebene Begründung und
aktuellen Leistungsnachweis mitbringen

Figure 2.9: Thesis Deadline Extension B

17

2 Current Processes of the Audit Committee

The documentation of the processes makes it clear that there is a lot of room for optimization

through automation as the current processes involve many paper-based forms, physical reloca-

tion of the student and usage of the, in contrast to electronic mail, slow in-house post of Ulm

University.

18

3 Optimization of the Thesis Deadline Extension

Process

This section discusses the necessary steps in optimizing the thesis deadline extension process.

The process, as it is being currently executed at the university, is described in Section 2.1.6 and

the corresponding BPMN model is spread over Figures 2.8 and 2.9.

The first step in optimizing the thesis deadline extension (TDE) process was to contemplate

possible automation entry points in the process. The aim is to make the process as completely

digital as possible, except for physical archiving. The changes made are detailed in Section 3.1.

Sections 3.2 and 3.3 describe the first steps leading up to a process implementation, specifically

modelling and planning the implementation of the optimized process in a specific BPMS.

3.1 Optimization Changes to the TDE Process

The need for optimizing the TDE process stems from the numerous media breaks and excessive

use of paper-based forms and print-outs. The following changes aim at speeding up the process

as a whole and reducing the workload for the participants.

The first major change to the TDE process is to eliminate the need for the student in question to

fill out a paper-based form and visit the consultation hour offered by the chairman of the audit

committee (cf. Figure 3.1) by using a web form. The information gathered in this form is the

basis for the process instance.

St
u

d
en

t

Write Letter of
Reasoning

Visit
Consultation Hour

Fill out
„Antrag

Prüfungsausschuss
Informatik“

Requires Thesis
Deadline Extension

Deliver PaperworkGive Letter
to Supervisor

Receive signed Letter
from Supervisor

Figure 3.1: Student’s As-Is Process

19

3 Optimization of the Thesis Deadline Extension Process

The letter of reasoning, signed by the supervisor, is no longer physically handed to the secretary

of the audit committee, but instead scanned and uploaded as a PDF file to the web form. This

change is reflected in Figure 3.2.
St

u
d

en
t

Write letter of
reasoning

Scan letter

Upload letter and
relevant information
to audit committee

web form
Requires thesis

deadline extension
Give letter

to supervisor
Receive signed letter

from supervisor

Figure 3.2: Student’s Optimized Process

The advantages of this change are obvious: the student’s information is, without the secretary

having to type it into her computer, available digitally in the process. Also the student does

not have to show up in person in order to make his request. These two facts save time for all

participants.

The secretary is now informed by the process that a new instance has been started. She may

now check the submitted web form and PDF files for completeness. If she deems the forms to

be complete she may signal the process to send them on to the chairman of the audit committee

for further review. In case the forms are not complete she has the option to send the student

an e-mail detailing the missing information. The template for this e-mail and the student’s e-mail

address are provided to her by the business process management suite.

As soon as the secretary marks the form data as complete the BPM suite signals the chairman

by adding an item to his work list. The chairman may now review the data entered by the student

and examine the uploaded PDF files. He is also shown a form (cf. Figure 3.3) with options,

these include rejecting the student’s request for an extension of his thesis deadline, accepting

it or sending an e-mail to the student requesting him to come in person to the next consultation

hour. In case the student is summoned the form will be re-added to the chairman’s work list, so

he can make an informed decision after the consultation hour.

After the chairman has accepted the deadline extension the BPMS automatically creates a letter

of notification as a PDF using the student’s data. This letter is attached to a short automated

e-mail and is sent to the student. The letter is now digitally signed in preparation for being sent

to the student administration. Once the PDF has been digitally signed the BPMS attaches it to

an e-mail which is then encrypted and sent to the student administration.

The student administration now enters the information from the PDF letter into the LSF system.

A very simple view on the typical execution of the process is given in Figure 3.4.

20

3.1 Optimization Changes to the TDE Process

Figure 3.3: Chairman’s Web Form Options

A
u

d
it

 C
o

m
m

it
te

e

Se
kr

et
ar

ia
t

P
A

V
P

rü
fu

n
gs

au
ss

ch
u

ss
-

V
o

rs
it

ze
n

d
er

St
u

d
en

t
St

u
d

en
t

A
d

m
in

is
tr

at
io

n

Fill out web form

Decide about TDE

Enter TDE into LSF
System

Check Information
for Completeness

Requires Thesis
Deadline Extension

Receive
Approval E-Mail

Receive E-Mail

New Item in Worklist

Figure 3.4: Oversimplified View on Optimized Process

21

3 Optimization of the Thesis Deadline Extension Process

3.2 Creating the Process Model in the AristaFlow BPM Suite

After having decided which parts of the process to automate and having a clear idea how the

finished process should ideally work, the next step is to model the process in a BPMS. For this

purpose the AristaFlow BPM Suite1 is used [2]. The AristaFlow BPM Suite helps modelers by

enforcing guidelines, part of the correctness by construction principle described in [2]. Some of

these conform to the 7PMG2, specifically G3 ”Use one start and one end event”, G4 ”Model as

structured as possible” and G5 ”Avoid OR routing elements” [6].

The implementation-ready model should only reflect aspects of the later process that are opti-

mized. For instance a BPMN model of a simple process, in which a secretary has to print out a

form and then sign it by hand, would only contain the printing out of the form, as the signing of

the document can not be automated. It is possible though to have an activity in the AristaFlow

model reminding the secretary of signing the document.

Figure 3.6 is an example of how a part of the BPMN model of the TDE process (cf. Figure 3.5)

was translated into an implementation-ready AristaFlow process model.

P
rü

fu
n

gs
au

ss
ch

u
ss

In

fo
rm

at
ik

Se
kr

et
ar

ia
t

P
A

V

St
u

d
en

t
B

et
re

u
er

Begründungs-
schreiben
erstellen

Sprechstunde
PAV besuchen

„Antrag
Prüfungsausschuss

Informatik“
ausfüllen

Vollständigkeit der
Unterlagen
überprüfen

Unterlagen vollständig?

Begründungsschreib
en unterschreiben

...

...

Fristverlängerung

Deckblatt,
Begründung,Leistungsnachweis erhalten

Unterlagen übergeben

Begründungschreiben
an Betreuer übergeben

Begründungsschreibenz
zurückerhalten

Begründungsschreiben erhalten Unterschriebenes Begründungsschreiben übergeben

Figure 3.5: Partial Process (BPMN)

Figure 3.6: Partial Process (AristaFlow)

1http://www.aristaflow.com/
2Seven Process Modeling Guidelines

22

3.2 Creating the Process Model in the AristaFlow BPM Suite

As can be seen in this short example, the AristaFlow model is a lot less detailed than the BPMN

model. This is of course, due to the non-automatable parts missing and the optimization. In

AristaFlow process logic is contained in the activities themselves. An example of this is the

message flow in the BPMN model between the student and secretary, the handing over of the

paperwork. In the AristaFlow model the activity the secretary completes contains information

about where to get the student’s information entered into the web form and the signed reasoning

letter PDF from.

Figure 3.7 showcases the final part of the automated process model in AristaFlow. Note the

parallelization achieved through automation of printing, automated e-mails to the student and

student administration and digital archiving in contrast to the original process, depicted in Figure

3.8.

Figure 3.7: Activity Parallelization in AristaFlow

P
rü

fu
n

gs
au

ss
ch

u
ss

 In
fo

rm
at

ik

Se
kr

et
ar

ia
t

P
A

V
P

rü
fu

n
gs

au
ss

ch
u

ss
-

V
o

rs
it

ze
n

d
er

St
u

d
en

t
St

u
d

ie
n

se
kr

et
ar

ia
t

Bescheid 2x
ausdrucken

Bescheide
unterschreiben

Ersten Druck
kopieren

Kopie, Begründung,
Leistungsnachweis

archivieren

Bescheid in Fach
„PA-Abholung“

legen

Bescheid in
Sekretariat abholen

Fristverlängerung in
LSF-System
eintragen

...

E-Mail Benachrichtigung
erhalten

Hauspost mit CC
des Bescheides erhalten

Student per E-Mail
benachrichtigen

Zweiten Druck
CC unterstreichen
und per Hauspost

an Studiensekretariat

Figure 3.8: Sequential Execution of Previous Process

23

3 Optimization of the Thesis Deadline Extension Process

3.3 Planning the Implementation

After having created the basic process model without any assigned activity functions or data

elements, the next step is to plan the implementation of the activities in the model. This was

done by creating a list of activity templates needed for the TDE process in AristaFlow. The basic

requirements were:

1. Displaying web forms for gathering of student information

2. Uploading PDF files into the process

3. Displaying interfaces for the secretary and the chairman to review information and make

decisions

4. Sending automated and template-based e-mails

5. Automatically filling PDF forms

6. Digitally signing PDF forms with certificates

7. Sending of e-mails with encrypted PDF attachments

8. Displaying and printing PDF files

Some of these requirements can be fulfilled by default AristaFlow activities, for instance the ”user

form” activity for the web forms and interfaces, which can also handle file uploads by users and

display these files to other users, using local software such as Adobe reader. Other requirements

however, such as encryption and digital signing, require implementations as components for

AristaFlow, effectively creating new activities for use with the process.

To be more precise, requirements 1 through 4 can be fulfilled by AristaFlow without requiring

an activity implementation, requirements 5 through 8 on the other hand require a specific imple-

mentation as they are not included in the standard AristaFlow tool set. The implementation of

these components is detailed in Section 4.

24

4 Implementation

4.1 Implementing an AristaFlow Component

In order to be able to program an AristaFlow component one needs to understand what a com-

ponent is. Simply put it is a small Java application that AristaFlow can run as an activity in

the process model. The basic idea is to hide the complexity of the component’s code from the

process modeler, as ”a process implementer should not need to know the details about the

implementation of these application functions” [3].

This section only describes the basics of programming such a component. After the implemen-

tation is complete the component has to be registered in the AristaFlow Activity Repository. This

is where the necessary information for component use by the Process Template Editor is saved.

This is, in essence, a list of the parameters the component expects from the process and of what

data types these must be.

AristaFlow has an open API that has a ”modular and service-oriented design” [4], meaning that

new components can be easily developed, extending AristaFlow by any number of capabilities.

One of the more prominent examples of this is the WJ&P WebFormDesigner1, described in detail

in [7]. The form designer allows the creation of web forms like the ones used in the TDE process

in a WYSIWYG style.

In the following the creation of more basic components is discussed, i.e. without a GUI; ba-

sically Java console applications. Such a component must have one main class that extends

ExecutionEnvironment2, one constructor with a specific signature (cf. Listing 4.1), and a run()

method that has to end with a specific ending statement to inform the execution engine that

the activity has finished. The run() method may contain any Java code, using different libraries,

calling methods from different classes, or almost anything else you could do in standard Java.

Also the component must reference the aristaflow-integration-libraries.jar, containing the classes

and methods needed for component creation. In conclusion, the necessary lines of code for an

AristaFlow component are given in Listing 4.1.

1www.wjp.de
2de.aristaflow.adept2.core.runtimemanager.executionenvironments.ExecutionEnvironment

25

4 Implementation

1 public class Somecomponent extends ExecutionEnvironment

2 {

3 public Somecomponent (A c t i v i t y I n s t a n c e a c t i v i t y I n s t a n c e)

4 {

5 / / c reate Execut ionEnvironment

6 super (a c t i v i t y I n s t a n c e) ;

7 }

8 public void run ()

9 {

10 / / ∗
11 ANY CODE HERE

12 ∗ / /

13

14 / / shutdown component

15 sessionContext . getRuntimeEnvironment () . app l i ca t ionC losed () ;

16 }

17 }

Listing 4.1: Empty AristaFlow Component

The code in Listing 4.1, however, has no functionality at all. In order for a component to have

any functionality it needs to be able to read data from and write data to the process. There are

two types of data an AristaFlow component can read from the process as it is being executed:

• Process parameters

• Activity configurations

In the following Sections 4.1.1 and 4.1.2 these two types of data are described in detail.

4.1.1 Process Parameters

The process parameters are what the AristaFlow Process Template Editor (PTE) refers to as

data elements. They encapsulate data that is reused and exchanged in the process. In the TDE

process examples of data elements are the student’s e-mail address, that was gathered from a

web form or the PDF file the student uploaded. As per convention, data elements in the process

model should only contain dynamic data specific to one instance of a process.

One line of code (cf. Listing 4.2) is necessary to prepare a new component for reading and

writing of process parameters, it is inserted into the run()method:

1 DataContext dataContext = sessionContext . getDataContext () ;

Listing 4.2: Getting the Process’ DataContext, enabling Access to all Data Elements

The variable dataContext can now be used with the line of code listed in Listing 4.3 to access

the data element named someparameter.

1 S t r i n g someString = dataContext . re t r ieveSt r ingParamete rVa lue (" someParameter ") ;

Listing 4.3: Retrieving a String Parameter

26

4.1 Implementing an AristaFlow Component

Note that someParameter has to be the exact name of the data element in the process model

and that the correct method corresponding to the type of data element has to be used, for

example retrieveDateParameterValue() for a Date object.

The variable someString is now filled with the content of the data element from the process model

at run-time and can be freely manipulated like any other Java object. The DataContext class,

and its instance dataContext also have further methods for other standard Java data types, such

as Boolean or Integer. AristaFlow also supports the usage of User-Defined Data Types (UDT)

in its process models, that can be read as Byte[] objects in the component.

Once manipulated, data can be reinserted into the process instance. This is done by again

leveraging methods offered to us by the DataContext class, as shown in Listing 4.4:

1 dataContext . s toreStr ingParameterValue (" someParameter " , someString) ;

Listing 4.4: Storing a String Parameter

This will save the value of someString to the data element someParameter in the process in-

stance.

4.1.2 Activity Configurations

The second type of data a component may read from the process model are activity configu-

rations. Activity configuration data is appended by the process modeler to an activity. Activity

configurations are mostly strings telling a component to act in a certain way at run-time, they

are static in the process model and as such are the same for all instances of a certain process

model.

A short example to clarify the roles of activity configurations and process parameters is given in

Figure 4.1. The process writes an integer each to the data elements Number A and Number B.

The activity on the second node then completes a calculation using the integers.

Figure 4.1: Simple Calculation Process

27

4 Implementation

The type of calculation performed, i.e. adding or subtracting the two numbers, is defined by

the second node’s activity configuration, as shown in Figure 4.2. In the example the activity

configuration in Figure 4.2 configures the activity to add the two numbers.

Figure 4.2: Setting an Activity Configuration

Obviously the component must support activity configurations and the run() method must there-

fore be modified (cf. Listing 4.5).

The activityConfiguration variable may now be used to gain access to the strings in the activity

configuration (cf. Listing 4.6).

1 A c t i v i t y C o n f i g u r a t i o n a c t i v i t y C o n f i g u r a t i o n = a c t i v i t y I n s t a n c e . ge tCon f i gu ra t i on () ;

Listing 4.5: Getting the Process’ Activity Configuration

1 S t r i n g someConf igura t ionSt r ing= a c t i v i t y C o n f i g u r a t i o n . g e t S t r i n g (" someConf igurat ion ") ;

Listing 4.6: Retrieving a String from the Activity Configuration

Finally returning to the example from Figure 4.1 the complete code listing for a working calcula-

tion component would be the content of Listing 4.7.

28

4.1 Implementing an AristaFlow Component

1 public class Ca lcu la to r extends ExecutionEnvironment

2 {

3 public Ca lcu la to r (A c t i v i t y I n s t a n c e a c t i v i t y I n s t a n c e)

4 {

5 super (a c t i v i t y I n s t a n c e) ;

6 }

7

8 public void run ()

9 {

10 DataContext dataContext = sessionContext . getDataContext () ;

11 A c t i v i t y C o n f i g u r a t i o n a c t i v i t y C o n f i g u r a t i o n = a c t i v i t y I n s t a n c e . ge tCon f i gu ra t i on () ;

12

13 / / I n tege rs re turned by the process are i n f a c t o f type long

14 long numberA = dataContext . re t r ieve In tegerParameterVa lue ("Number A") ;

15 long numberB = dataContext . re t r ieve In tegerParameterVa lue ("Number B") ;

16 S t r i n g calcu lat ionMode= a c t i v i t y C o n f i g u r a t i o n . g e t S t r i n g (" Calculat ionMode ") ;

17

18 long r e s u l t ;

19 i f (ca lcu la t ionMode . equals ("ADD")) r e s u l t =numberA+numberB ;

20 i f (ca lcu la t ionMode . equals ("SUB")) r e s u l t =numberA−numberB ;

21

22 dataContext . s tore In tegerParameterValue ("Number C" , r e s u l t) ;

23

24 sessionContext . getRuntimeEnvironment () . app l i ca t ionC losed () ;

25 }

26 }

Listing 4.7: Calculation Component Example

Note that the return value of the retrieveIntegerParameterValue() method is actually a long. Apart

from that Listing 4.7 is the composition of all previous listings in this section. Imports are omitted

in the example as they are generally automatically generated by a suitable IDE such as Eclipse.

4.1.3 Multiple Optional Parameters

An advanced feature in component creation is to allow an undefined amount of optional param-

eters. This could be used to expand the Calculator example to allow the adding of an undefined

amount of integers.

To do this, a Set of all attached process parameters is needed (cf. Listing 4.8:

1 Set<ProcessModelParameter > processParameters = a c t i v i t y I n s t a n c e . getParameters (AccessType .READ) ;

Listing 4.8: Creating a Set of all Process Parameters

This Set does not contain the data of the process parameters but has information like the name

and data type of all attached parameters.

29

4 Implementation

To get an ArrayList of all attached data elements of the integer data type the following code in

Listing 4.9 would suffice.

1 Ar rayL i s t < In teger > l i s t = new Ar rayL i s t < In teger > () ;

2 for (ProcessModelParameter p : processParameters)

3 {

4 / / the AdeptDataType c lass has f i e l d s f o r a l l supported data types

5 i f (p . getDataType () ==AdeptDataType . INTEGER)

6 l i s t . add (dataContext . re t r ieve In tegerParameterVa lue (p . getName ())) ;

7 }

Listing 4.9: Getting all Attached Integer Parameters

4.1.4 Debugging a Component

As components will not run in Eclipse or any other Java IDE, debugging is done by logging errors

to a java.util.logging.Logger. The logged errors can be viewed at run-time in the AristaFlow Test

Client. A simple way of defining a Logger variable in the run() method is described in Listing

4.10.

1 Logger log = Logger . getAnonymousLogger () ;

Listing 4.10: Creating a Logger Object

An exemplary usage for the Logger is given in Listing 4.11.

1 Logger log = Logger . getAnonymousLogger () ;

2 i f (ca lcu la t ionMode . equals ("ADD")) r e s u l t =numberA+numberB ;

3 else i f (ca lcu la t ionMode . equals ("SUB")) r e s u l t =numberA−numberB ;

4 else l og . severe (" I n c o r r e c t or missing c a l c u l a t i o n mode ! ") ;

Listing 4.11: Usage of the Logger for Debugging

”Incorrect or missing calculation mode!” will now be displayed in the AristaFlow Test Client’s log

on execution of the component if the modeler forgot to set the activity configuration properly.

4.1.5 Exception Handling

It is important to properly handle exceptions in an AristaFlow component as ”process-aware

information systems will not be accepted by users if rigidity of idleness due to failures comes

with them” [5]. To support the error handling techniques described in [5], the Java component

has to tell AristaFlow what went wrong, when a run-time exception happens.

Exceptions in an AristaFlow component are split into two main types:

• ApplicationFailedException

• ApplicationEnvironmentException

30

4.2 PDF Printer Component

If a ”standard” Java error is caught in a try-catch() block, for instance an IOException, the best

practice is to throw a new ApplicationFailedException with an error message, state information

(can be null), an error code, and the exception itself. This will hand the exception on to the Test

Client and show it to the user (cf. Listing 4.12). The ApplicationErrorCodes class has error code

fields for most standard Java exceptions.

1 catch (IOExcept ion e)

2 {

3 throw new App l i ca t i onFa i l edExcep t i on

4 (" F i l e could not be read " , null , App l ica t ionErrorCodes . IOEXCEPTION, e) ;

5 }

Listing 4.12: Exemplary IOException Throwing

ApplicationEnvironmentExceptions are exceptions caused by AristaFlow specific influences to

the component, for instance a read attempt on a missing non-optional process parameter would

throw a NoSuchParameterException. These exceptions are handled slightly different than stan-

dard Java exceptions, as they are AristaFlow specific.

As can be seen in Listing 4.13, the thrown exception is of the ApplicationEnvironmentException

type and does not contain the state information that the ApplicationFailedException does. Again,

the error codes themselves are found in the ApplicationErrorCodes class.

1 catch (NoSuchParameterException e)

2 {

3 throw new Appl ica t ionEnv i ronmentExcept ion

4 (" Parameter missing " , App l ica t ionEr rorCodes .PARAMETER_NOT_EXISTING, e) ;

5 }

Listing 4.13: Exemplary NoSuchParameter Throwing

Having covered most of the necessary techniques for creating a component, the next sections

describe the components implemented for use in the TDE process.

4.2 PDF Printer Component

The PDF Printer component was developed to cope with the physical archiving requirement

of the TDE process (cf. Section 2.1.6). It uses the com.sun.pdfview package3, specifically

the PDFRenderer class, and the classes of java.awt.print to print a PDF file. The PDF file to

be printed is provided by a process parameter in FileUDT format. FileUDT is an XML based

AristaFlow specific format, that encapsulates data and meta data, such as MIME-type etc. into

a Java object or process model data element.

The activity configuration for the component tells the component what printer name and what

paper size to use. If none of these are specified, the component prints to the default printer

using A4 paper.

3http://java.net/projects/pdf-renderer

31

4 Implementation

The core concept of the component is to implement the java.awt.print.Printable interface with a

new class, using the PDFRenderer and PDFPage classes as described in the online tutorial for

the com.sun.pdfview package. Wrapping a PDFFile in this new class via the constructor makes

it printable using java.awt.print.

ACTIVITY CONFIGURATION DESCRIPTION

Printer Name Must be the exact printer name. ex. "printserver/printername"
Paper Size The paper size to print to: "A3","A4","A5","Letter" or "Legal".

PROCESS PARAMETERS DESCRIPTION

PDF :UDT This FileUDT must encapsulate a PDF file.

Table 4.1: Activity Configuration and Process Parameters for PDF Printer Component

4.3 PDF Filler Component

In order to allow AristaFlow to fill AcroForms and static XFA PDF forms, the PDF Filler compo-

nent was developed. The application of the component in the TDE process is the filling of a PDF

template for the notification letter which is sent to the student and the student administration.

The PDF template is an AcroForms PDF form, with the Ulm University letterhead and form fields

for the address, the title of the letter and most of the text. The template is created using Adobe

Acrobat 8 or newer. The fields are filled with the information gathered from the student by the

TDE process and its web forms. This data, which is managed as data elements in the process

instance, is handed to the component in form of process parameters. Fields like the letter head-

ing field, which consist of multiple pieces of data, can be concatenated using rules defined in the

activity configuration (cf. Table 4.2).

KEY VALUE
addressField %s:sex%\n%s:fullName%\n%s:address%

Table 4.2: PDF Filler Activity Configuration Example

Note the concatenation format %s:someParameter%, this will later insert the content of somePa-

rameter into the activity configuration string addressField at exactly the position between the

opening % and the closing %. The usage of s: denotes that the content of someparameter

should be inserted as a String, which is always the case for the PDFFiller component, it does

not have any meaning in regard to the data type someparameter has.

The activity configuration given in Table 4.2 would tell the component to concatenate the content

of the string data element containing the student’s salutation with a new line symbol to the

student’s full name and that to, again on a new line, the content of the data element containing

his address. This concatenation is handled in the component similarly to how it is explained in

Section 4.1.3, with the addition of the usage of the SystemDataTools.formatter() method, that

fills the activity configuration string with the content carried by the appropriate attached process

parameters.

32

4.4 Encrypted Mailer Component

The PDF Filler component uses, apart from the standard AristaFlow integration library, the

iTextPDF library4. This library exposes the API necessary for parsing a PDF file in the file

system as a Java object, and manipulating it.

The basic outline of the component, after having parsed the string from the activity configura-

tion and filling its parameters, is to first get the location of the PDF template from the activity

configuration, load the file into a PDFReader object and finally parse the names of the empty

form fields in the document. The strings from the activity configuration are now written into the

corresponding fields contained in the ”key” part of the activity configuration. The form is then

flattened and handed over to the process instance. The component then unloads itself.

ACTIVITY CONFIGURATION DESCRIPTION

PDF Template Location Location of Acroforms PDF, passed as String, ex. ”D:\form.pdf”
any other Will be interpreted as PDF field name and String to fill the field.

PROCESS PARAMETERS DESCRIPTION

PDF :UDT This is the output parameter for the filled PDF form.
any other Accessible via %s:parametername% in Activity Configuration.

Table 4.3: Activity Configuration and Process Parameters for PDF Filler Component

4.4 Encrypted Mailer Component

The Encrypted Mailer component utilizes the Java Mail API, specifically the javax.mail package,

in conjunction with the bcmail and bcprov libraries, maintained by the Legion of the Bouncy

Castle5, to provide encrypted e-mail capabilities to an AristaFlow process. The component

is used in the TDE process to ensure the encryption of the e-mail containing the notification

letter as it is sent to the student administration. As the component is also capable of sending

non-encrypted MIME multipart messages it is also used on every other activity in the process

requiring the sending of an e-mail.

The component gets SMTP server configuration data from the activity configuration, such as

server address, server port, user-name/password and TLS/SSL/encryption flags. Addition-

ally to this, when running in S/MIME encryption mode, the component gets the location of a

X.509 certificate from the activity configuration. This certificate is loaded and wrapped into a

X509Certificate object, which is used to create a SMIMEEnvelopedGenerator, which in turn is

used to encrypt MIME multipart messages.

After having created the object that can encrypt the message before sending, the next step the

component undertakes is to piece together the e-mail message from the process parameters

provided to it by the process instance. The component receives the main recipient, the recipient

of the carbon copy, the subject, the body text, and optionally the attachment as process param-

eters. Encrypted Mailer then takes the body text and attachment and wraps them into separate

4http://www.itextpdf.com/
5http://www.bouncycastle.org/

33

4 Implementation

MimeBodyPart objects and then wraps these two body parts into a MimeMultiPart object. Once

this is complete a MimeMessage object is created, the recipients and sender are set and the

MimeMultiPart is attached.

The message is now ready to be sent, but is not encrypted yet, it is still of the multipart/mixed

type. Now the bcmail package, specifically the previously created SMIMEEnvelopedGenera-

tor, converts the multipart/mixed into a multipart/encrypted message, by encrypting it using the

X.509 certificate provided by the process. Once encryption is complete the MimeMessage is

sent via the SMTP server to the recipient, who can decrypt the e-mail by having the correct

private key and password for the public key contained in the X.509 certificate.

This complete process ensures that only the intended recipient of the e-mail, in the case of the

TDE process the student administration, can read the mail and the attached notification letter.

ACTIVITY CONFIGURATION DESCRIPTION

SMTP-Server The IP or DNS address of the SMTP mail-server.
SMTP-Port The port that the SMTP server uses.

From The sender e-mail address, ex. this.is@te.st.
User SMTP user name.

Password SMTP password.
Enable TLS This is used to control SSL/TLS usage.

Encrypt Message This is used to control MIME encryption.
Certificate Location Location of the certificate, ex. "D:\certificate.cer".

PROCESS PARAMETERS DESCRIPTION

to :String The primary recipient of the e-mail.
body :String This String contains the e-mail body text.

subject :String The e-mail subject.
cc :String E-mail address of the recipient of the carbon copy of this e-mail.

attachment :UDT The attachment in FileUDT format.

Table 4.4: Activity Configuration and Process Parameters for Encrypted Mailer Component

4.5 PDF Signer Component

The PDF Signer was created to allow the digital signing of a PDF document by AristaFlow. It

uses the iTextPDF library that is also used in Section 4.3 and the bcprov library that was also

used in the Encrypted Mailer (cf. Section 4.4). As the Encrypted Mailer can ensure that a sent

e-mail can only be read by someone with the correct private key, the PDF Signer can ensure, on

the receiving side, that the sender of the e-mail and its attached PDF file, is in fact the person

he states to be. This is done by signing the PDF file with a private key and password. As the

component is written in Java, the private key is in a Java keystore (JKS). The recipient has the

sender’s public key and can use this to verify that the keystore or private key, and the password

used, were correct.

34

4.6 The Finished Process

In summary, the two components PDF Signer and Encrypted Mailer give the users of the TDE

process full confidence, that the e-mails and PDF files are on the one hand only read by the

intended people and on the other are not replaced by fake files during e-mail transportation.

The component itself is relatively straightforward, it receives the location of the Java keystore in

the file system, the keystore alias and password and the type of keystore. Additionally a digital

signature of this kind needs a signature location and reason, for instance for the TDE process:

Location: Ulm, Germany

Reason: Digital Signing of Notification Letter

These two properties are also gathered from the activity configuration. Apart from this the com-

ponent gets a PDF file as a process parameter. The component first creates a PrivateKey

object from the keystore and password using methods from the bcprov library. Then it uses the

iTextPDF library to read the PDF file from the process parameter and creates a PDFStamper

object to manipulate the PDF file. The component calls the PDFStamper ’s createSignature()

method to create a digital signature from the PrivateKey object and apply it to the PDF file. The

signed document is then handed back to the process instance, ending the component.

ACTIVITY CONFIGURATION DESCRIPTION

KeystoreLocation Location Java keystore, passed as String, ex. ”D:\keystore.ks”.
KeystoreType The type of keystore in use, valid input is ”jks” or ”pkcs12”.
KeystoreAlias The alias in use in the keystore.

KeystorePassword The password for the selected alias.
SignatureLocation The physical location the signing is taking place at.
SignatureReason The reason for digitally signing the document.

PROCESS PARAMETERS DESCRIPTION

PDF :UDT This is the input/output parameter for the signed PDF form.

Table 4.5: Activity Configuration and Process Parameters for PDF Signer Component

4.6 The Finished Process

Having modeled the entire Thesis Deadline Extension process, and having implemented all

necessary components, it is time to take a look at the result. The final AristaFlow process

model can be viewed spread over Figures 4.3 and 4.4. The figures are on a double page and

rotated to allow for printing at a readable size. The completed TDE process is fully capable of

replacing the as-is process and provides a good basis for further process implementations by

effectively providing a framework for secure communication at Ulm University through the PDF

Signer and Encrypted Mailer. The source code for the components is provided in Appendix B to

allow for process specific customizations to the components if the need arises.

35

4 Implementation

Figure 4.3: Complete TDE Process A

36

4.6 The Finished Process

Figure 4.4: Complete TDE Process B

37

4 Implementation

Table 4.6 gives a short overview over the nodes in the TDE process model and which compo-

nents were used to realize their functions. Note that even though only one of the e-mails sent

during the execution of the TDE process is actually encrypted, the Encrypted Mailer component

was used for all e-mail sending nodes in the process model instead of using the FormattedMailer

provided by AristaFlow. This is done to demonstrate the ability to send regular e-mails as well as

encrypted ones with the Encrypted Mailer component and to keep maintenance of the process

simpler due to the usage of only one e-mailing component.

COMPONENT USAGE AT NODE

WJ&P Form Designer Complete Registration Form
WJ&P Form Designer Check Completeness of Records
WJ&P Form Designer Summon Student/Make Decision

Encrypted Mailer Notify Student of incomplete Records
Encrypted Mailer Send E-Mail

WJ&P Form Designer Make Decision
PDF Filler Fill Acroforms PDF

PDF Signer Sign PDF
Encrypted Mailer Notify Student of Rejection
Encrypted Mailer Notify Student of Approval

PDF Printer Print Letter
Encrypted Mailer Send E-Mail with Letter to Student Administration

Table 4.6: Component Usage in the TDE Process

38

5 Conclusion

Having analyzed, designed and implemented the optimized TDE process, according to [1] it is

time for an evaluation. The evaluation of any project similar to this is to compare the costs and

the benefits. The costs in this case are time spent on optimizing and automating the process,

and the benefits are time saved by enacting the optimized process vs. the former process.

The major part of the time spent on the optimization of the TDE process was spent on extend-

ing the AristaFlow functionality to include the capabilities discussed in Section 3.3. The size

of the implementation part of this thesis reflects this very well. If AristaFlow would ship with

an activity for every possible task needed for optimizing a given process, the workload for the

implementation would be reduced to:

• modeling the optimized activity with the correct activities

• creating or extending the org. model

• testing and deploying the finished process

As the AristaFlow BPM Suite supports the process implementer in many ways with these tasks

[2], the margin of error and thus time needed in testing is a lot less than if the process is au-

tomated ”by hand”, i.e. without a PAIS1 like AristaFlow. Also, again assuming that all needed

activities are supplied to the implementer, the ability to model the process without having to touch

code speeds up the implementation. This would be the case if for instance the other processes,

detailed in Section 2.1 were implemented in AristaFlow.

Even though automation using AristaFlow is obviously preferable to automation without a PAIS it

is still hard to judge the costs and benefits. The TDE process is simple enough to make a clear

statement on the increased speed and reduced paperwork that result from the optimization.

There are also few people involved in the process who need briefing on the new process, which

reduces deployment complexity.

The single largest problem in judging the benefit of automation is the handling of exceptions in

the process. Exceptions in this context do not necessarily mean run-time errors or computer

failures that force process participants to redo steps or restart the process. Exceptions can also

be unforeseen changes that need to be made to the process. Take for instance a student who

enters his name incorrectly into the initial web form. The secretary checks the form but does not

notice the error. The error is first noticed by the student when he receives the notification letter

with his name on it. In the current, non automated, TDE process the compensation steps for this

1Process-Aware Information System

39

5 Conclusion

would be to inform the secretary, who would open up the last printed letter, change the name,

and reprint it. In the automated process however, the process would have to be restarted, the

chairman would have to approve the thesis deadline extension from his computer again and only

then would the letter be printable with the corrected name.

One could just give the letter template to the secretary, but that would contradict the idea of the

fully automated and therefore documented process execution. The solution here would be an

ad-hoc change to the process instance, if it is still running [2]. But even this tiny change to the

process instance would require that someone thought of the occurring exception beforehand, it

would have to be modeled into the process itself as an ad-hoc change option for the user. The

ad-hoc change model described in [2] supports this claim.

Altogether, the benefits in execution speed surely do outweigh the costs and time needed to plan

and implement the process optimization as the implementation can be done relatively swiftly, with

proper planning.

40

A Paper-Based Forms

Figure A.1: Antrag Prüfungsauschuss Informatik

41

A Paper-Based Forms

Figure A.2: Antrag auf Anerkennung von Prüfungsleistungen

42

Figure A.3: Antrag auf Studiengangwechsel

43

A Paper-Based Forms

44

B Component Source Codes

Listing B.1: PDF Printer Source Code

1 package de.uulm.dbis.PDFPrinter;

2

3 import java.awt.Graphics;

4 import java.awt.Graphics2D;

5 import java.awt.Rectangle;

6 import java.awt.print.Book;

7 import java.awt.print.PageFormat;

8 import java.awt.print.Printable;

9 import java.awt.print.PrinterException;

10 import java.awt.print.PrinterJob;

11 import java.io.IOException;

12 import java.nio.ByteBuffer;

13 import java.util.logging.Logger;

14

15 import javax.print.PrintService;

16 import javax.print.attribute.HashPrintRequestAttributeSet;

17 import javax.print.attribute.PrintRequestAttributeSet;

18 import javax.print.attribute.standard.MediaSizeName;

19

20 import com.sun.pdfview.PDFFile;

21 import com.sun.pdfview.PDFPage;

22 import com.sun.pdfview.PDFRenderer;

23

24 import de.aristaflow.adept2.core.runtimemanager.executionenvironments.

ExecutionEnvironment;

25 import de.aristaflow.adept2.extensions.datatypes.FileUDT;

26 import de.aristaflow.adept2.model.common.ActivityConfiguration;

27 import de.aristaflow.adept2.model.datamanagement.

InvalidDataTypeException;

28 import de.aristaflow.adept2.model.datamanagement.

NoSuchParameterException;

29 import de.aristaflow.adept2.model.execution.ActivityInstance;

30 import de.aristaflow.adept2.model.globals.ApplicationErrorCodes;

45

B Component Source Codes

31 import de.aristaflow.adept2.model.runtimeenvironment.

ApplicationEnvironmentException;

32 import de.aristaflow.adept2.model.runtimeenvironment.

ApplicationFailedException;

33 import de.aristaflow.adept2.model.runtimeenvironment.DataContext;

34

35 /**

36 * Aristaflow component for printing pdfs

37 *

38 * @author Kevin Andrews

39 * @version 1.3 error throwing rework

40 * 1.2 added support for various paper sizes (A3,A5,Letter,Legal)

41 * 1.1 complete rework, now utilising com.sun.pdfview, no more adobe

reader

42 */

43

44 public class PDFPrinter extends ExecutionEnvironment

45 {

46 public PDFPrinter(ActivityInstance activityInstance)

47 {

48 super(activityInstance);

49 }

50

51 @Override

52 public void run()

53 {

54 DataContext dataContext = sessionContext.getDataContext();

55 ActivityConfiguration activityConfiguration = activityInstance

.getConfiguration();

56 String printerName;

57 String paperSize;

58 try

59 {

60 FileUDT fileUDT = new FileUDT(dataContext.

retrieveUDTParameterValue("PDF"));

61 printerName=activityConfiguration.getString("Printer Name"

);

62 paperSize=activityConfiguration.getString("Paper Size");

63 ByteBuffer bb = ByteBuffer.wrap(fileUDT.getData());

64 PDFFile pdfFile = new PDFFile(bb);

46

65 PDFPrintPage pages = new PDFPrintPage(pdfFile);

66 PrinterJob pjob = PrinterJob.getPrinterJob();

67 PrintRequestAttributeSet attributes = new

HashPrintRequestAttributeSet();

68 if(paperSize==null||paperSize.equals("A4"))attributes.add(

MediaSizeName.ISO_A4);

69 else if(paperSize.equals("A3"))attributes.add(

MediaSizeName.ISO_A3);

70 else if(paperSize.equals("A5"))attributes.add(

MediaSizeName.ISO_A5);

71 else if(paperSize.equals("Legal"))attributes.add(

MediaSizeName.NA_LEGAL);

72 else if(paperSize.equals("Letter"))attributes.add(

MediaSizeName.NA_LETTER);

73 else attributes.add(MediaSizeName.ISO_A4);

74 PageFormat pf = PrinterJob.getPrinterJob().getPageFormat(

attributes);

75 pjob.setJobName(fileUDT.getFileName());

76 Book book = new Book();

77 book.append(pages, pf, pdfFile.getNumPages());

78 pjob.setPageable(book);

79 PrintService[] services=PrinterJob.lookupPrintServices();

80 boolean found=false;

81 for(PrintService i:services)

82 {

83 if(i.getName().equals(printerName)){

84 found=true;

85 pjob.setPrintService(i);

86 }

87 }

88 if(found==false)Logger.getAnonymousLogger().warning("

Printing to default printer");

89 pjob.print();

90

91 } catch (IOException e)

92 {

93 throw new ApplicationFailedException("Piping failure", "",

ApplicationErrorCodes.IOEXCEPTION, e);

94 } catch (PrinterException e)

95 {

47

B Component Source Codes

96 throw new ApplicationFailedException("Printing failure", "

",ApplicationErrorCodes.

INSTANCE_ABORT_DUE_TO_INTERNAL_ERROR, e);

97 } catch (InvalidDataTypeException e)

98 {

99 throw new ApplicationEnvironmentException("parameter has

wrong data type", ApplicationErrorCodes.

PARAMETER_UNEXPECTED_TYPE, e);

100 } catch (NoSuchParameterException e)

101 {

102 throw new ApplicationEnvironmentException("parameter

missing", ApplicationErrorCodes.PARAMETER_NOT_EXISTING

, e);

103 }

104

105

106

107

108 sessionContext.getRuntimeEnvironment().applicationClosed();

109 }

110 }

111 class PDFPrintPage implements Printable

112 {

113 private PDFFile file;

114

115 PDFPrintPage(PDFFile file)

116 {

117 this.file = file;

118 }

119

120 public int print(Graphics g, PageFormat format, int index)

throws PrinterException

121 {

122 int pagenum = index + 1;

123

124 if (pagenum >= 1 && pagenum <= file.getNumPages())

125 {

126

127 Graphics2D g2 = (Graphics2D) g;

128 PDFPage page = file.getPage(pagenum);

48

129 Rectangle imgbounds = new Rectangle((int) format.

getImageableX(), (int) format.getImageableY(), (

int)format.getImageableWidth(), (int)format.

getImageableHeight());

130 PDFRenderer pgs = new PDFRenderer(page, g2, imgbounds,

null, null);

131 try

132 {

133 page.waitForFinish();

134 pgs.run();

135 } catch (InterruptedException e)

136 {

137 e.printStackTrace();

138 }

139 return PAGE_EXISTS;

140 } else

141 {

142 return NO_SUCH_PAGE;

143 }

144 }

145

146 }

Listing B.2: PDF Filler Source Code

1 package de.uulm.dbis.PDFFiller;

2

3 import java.io.ByteArrayOutputStream;

4 import java.io.File;

5 import java.io.IOException;

6 import java.text.DateFormat;

7 import java.util.HashMap;

8 import java.util.Map;

9 import java.util.Set;

10 import com.itextpdf.text.DocumentException;

11 import com.itextpdf.text.pdf.AcroFields;

12 import com.itextpdf.text.pdf.PdfReader;

13 import com.itextpdf.text.pdf.PdfStamper;

14

15 import de.aristaflow.adept2.core.runtimemanager.executionenvironments.

ExecutionEnvironment;

49

B Component Source Codes

16 import de.aristaflow.adept2.extensions.datatypes.FileUDT;

17 import de.aristaflow.adept2.model.common.ActivityConfiguration;

18 import de.aristaflow.adept2.model.common.systemdata.

BasicSystemDataFormatter;

19 import de.aristaflow.adept2.model.common.systemdata.SystemDataTools;

20 import de.aristaflow.adept2.model.datamanagement.

InvalidDataTypeException;

21 import de.aristaflow.adept2.model.datamanagement.

NoSuchParameterException;

22 import de.aristaflow.adept2.model.execution.ActivityInstance;

23 import de.aristaflow.adept2.model.globals.ActivityConstants.AccessType

;

24 import de.aristaflow.adept2.model.globals.ApplicationErrorCodes;

25 import de.aristaflow.adept2.model.processmodel.ProcessModelParameter;

26 import de.aristaflow.adept2.model.runtimeenvironment.

ApplicationEnvironmentException;

27 import de.aristaflow.adept2.model.runtimeenvironment.

ApplicationFailedException;

28 import de.aristaflow.adept2.model.runtimeenvironment.DataContext;

29

30 /**

31 * Aristaflow component for filling pdfs with forms

32 *

33 * @author Kevin Andrews

34 * @version 2.0 complete input rework (changed to parameterized

strings)

35 * 1.5 error throwing rework

36 * 1.4 flatten pdf before output

37 * 1.3 support static lifecycle xfa forms

38 * 1.2 variable amount of input parameters through parameter

configurations

39 * 1.1 IO handling with FileUDT

40 */

41 public class PDFFiller extends ExecutionEnvironment

42 {

43

44 private AcroFields fields;

45 private Boolean usesXFA;

46

47 public PDFFiller(ActivityInstance activityInstance)

50

48 {

49 super(activityInstance);

50 }

51

52 @Override

53 public void run()

54 {

55 try

56 {

57 usesXFA = false;

58 ByteArrayOutputStream out = null;

59 FileUDT fileUDT = null;

60 DataContext dataContext = sessionContext.getDataContext();

61 ActivityConfiguration activityConfiguration =

activityInstance.getConfiguration();

62

63 String pdfTemplateLocation = activityConfiguration.

getString("PDF Template Location");

64 /*

65 * create pdfreader, use it to read pdf from the

datacontext’s input

66 */

67 String fileLocation = activityConfiguration.getString("PDF

Template Location");

68 File file = new File(fileLocation);

69 fileUDT = new FileUDT(file);

70 out = new ByteArrayOutputStream();

71 PdfReader reader = new PdfReader(fileUDT.getData());

72 PdfStamper stamper = new PdfStamper(reader, out);

73 fields = stamper.getAcroFields();

74 usesXFA = fields.getXfa().isXfaPresent();

75 if (usesXFA)

76 {

77 fields.removeXfa();

78 }

79

80 Set<String> fieldNames = activityConfiguration.

getAllEntries();

81 fieldNames.remove(pdfTemplateLocation);

82

51

B Component Source Codes

83 Map<String, String> fieldNamesAndParameterizedStrings =

new HashMap<String, String>();

84 for (String s : fieldNames)

85 {

86 fieldNamesAndParameterizedStrings.put(s,

activityConfiguration.getString(s));

87 }

88

89 Set<ProcessModelParameter> activityParameters =

activityInstance.getParameters(AccessType.READ);

90 Map<String, Object> parsedActivityParameters = new HashMap

<String, Object>();

91 for (ProcessModelParameter p : activityParameters)

92 {

93

94 switch (p.getDataType())

95 {

96 case STRING:

97

98 parsedActivityParameters.put(p.getName(),

dataContext.retrieveStringParameterValue(p

.getName()));

99

100 break;

101 case INTEGER:

102 parsedActivityParameters.put(p.getName(),

dataContext.retrieveIntegerParameterValue(

p.getName()) + "");

103

104 break;

105 case DATE:

106

107 parsedActivityParameters.put(p.getName(),

DateFormat.getDateInstance(DateFormat.

MEDIUM).format(dataContext.

retrieveDateParameterValue(p.getName())));

108

109 break;

110 }

111

52

112 }

113 Map<String, String> fieldNamesAndFilledStrings = new

HashMap<String, String>();

114 for (String s : fieldNamesAndParameterizedStrings.keySet()

)

115 {

116 fieldNamesAndFilledStrings.put(s, SystemDataTools.

format(BasicSystemDataFormatter.class,

fieldNamesAndParameterizedStrings.get(s),

parsedActivityParameters));

117 }

118

119 for (String s : fieldNamesAndFilledStrings.keySet())

120 {

121

122 fields.setField(getRealFieldName(s),

fieldNamesAndFilledStrings.get(s));

123

124 }

125

126 stamper.setFormFlattening(true);

127 stamper.close();

128

129 /*

130 * write the filled pdf to a new FileUDT and store it to

the

131 * datacontext

132 */

133 fileUDT = new FileUDT(out.toByteArray(), fileUDT.

getFileName(), fileUDT.getEncoding(), fileUDT.

getMimetype(), out.toByteArray().length);

134

135 out.close();

136 dataContext.storeUDTParameterValue("PDF", fileUDT.getAsXML

());

137

138 sessionContext.getRuntimeEnvironment().applicationClosed()

;

139 }

140 catch (InvalidDataTypeException e)

53

B Component Source Codes

141 {

142 throw new ApplicationEnvironmentException("Invalid

parameter data type", ApplicationErrorCodes.

PARAMETER_UNEXPECTED_TYPE, e);

143 }

144 catch (NoSuchParameterException e)

145 {

146 throw new ApplicationEnvironmentException("Parameter

missing", ApplicationErrorCodes.PARAMETER_NOT_EXISTING

, e);

147 }

148 catch (DocumentException e)

149 {

150 throw new ApplicationFailedException("PDF could not be

read", "", ApplicationErrorCodes.

INSTANCE_ABORT_DUE_TO_INTERNAL_ERROR, e);

151 }

152 catch (IOException e)

153 {

154 throw new ApplicationFailedException("PDF could not be

read", "", ApplicationErrorCodes.IOEXCEPTION, e);

155 }

156

157 }

158

159 String getRealFieldName(String fieldName)

160 {

161 if (!usesXFA)

162 {

163 return fieldName;

164 }

165 for (String i : fields.getFields().keySet())

166 {

167 if (i.contains(fieldName))

168 {

169 return i;

170 }

171 }

172 return null;

173 }

54

174

175 }

Listing B.3: Encrypted Mailer Source Code

1 package de.uulm.dbis.EncryptedMailer;

2

3 import java.io.FileInputStream;

4 import java.io.FileNotFoundException;

5 import java.io.IOException;

6 import java.security.Security;

7 import java.security.cert.CertificateException;

8 import java.security.cert.CertificateFactory;

9 import java.security.cert.X509Certificate;

10 import java.util.ArrayList;

11 import java.util.Properties;

12 import java.util.Set;

13 import java.util.logging.Logger;

14

15 import javax.activation.DataHandler;

16 import javax.mail.Message;

17 import javax.mail.MessagingException;

18 import javax.mail.PasswordAuthentication;

19 import javax.mail.Session;

20 import javax.mail.Transport;

21 import javax.mail.internet.AddressException;

22 import javax.mail.internet.InternetAddress;

23 import javax.mail.internet.MimeBodyPart;

24 import javax.mail.internet.MimeMessage;

25 import javax.mail.internet.MimeMultipart;

26

27 import org.bouncycastle.cms.CMSAlgorithm;

28 import org.bouncycastle.cms.CMSException;

29 import org.bouncycastle.cms.jcajce.JceCMSContentEncryptorBuilder;

30 import org.bouncycastle.cms.jcajce.JceKeyTransRecipientInfoGenerator;

31 import org.bouncycastle.jce.provider.BouncyCastleProvider;

32 import org.bouncycastle.mail.smime.SMIMEEnvelopedGenerator;

33 import org.bouncycastle.mail.smime.SMIMEException;

34 import org.bouncycastle.operator.OperatorCreationException;

35

55

B Component Source Codes

36 import de.aristaflow.adept2.core.runtimemanager.executionenvironments.

ExecutionEnvironment;

37 import de.aristaflow.adept2.extensions.datatypes.FileUDT;

38 import de.aristaflow.adept2.model.common.ActivityConfiguration;

39 import de.aristaflow.adept2.model.datamanagement.

InvalidDataTypeException;

40 import de.aristaflow.adept2.model.datamanagement.

NoSuchParameterException;

41 import de.aristaflow.adept2.model.datamanagement.UDTValue;

42 import de.aristaflow.adept2.model.execution.ActivityInstance;

43 import de.aristaflow.adept2.model.globals.ActivityConstants.AccessType

;

44 import de.aristaflow.adept2.model.globals.ApplicationErrorCodes;

45 import de.aristaflow.adept2.model.processmodel.ProcessModelParameter;

46 import de.aristaflow.adept2.model.runtimeenvironment.

ApplicationEnvironmentException;

47 import de.aristaflow.adept2.model.runtimeenvironment.

ApplicationFailedException;

48 import de.aristaflow.adept2.model.runtimeenvironment.DataContext;

49

50 /**

51 * Aristaflow component for encrypting mails with a x.509.cer file

52 *

53 * @author Kevin Andrews

54 * @version 1.4 error throwing rework 1.3 made encryption,tls,cc,

attachment

55 * optional 1.2 changed to/cc/subject/body to data objects

1.1 IO

56 * handling with FileUDT

57 */

58 public class EncryptedMailer extends ExecutionEnvironment

59 {

60

61 public EncryptedMailer(ActivityInstance activityInstance)

62 {

63 super(activityInstance);

64 }

65

66 /* initialize all configuration variables as static for faster

access */

56

67 static String user;

68 static String pw;

69 static String from;

70 static String cc;

71 static String to;

72 static String host;

73 static String port;

74 static Boolean startTLS = false;

75 static String body;

76 static String subject;

77 static String certificateLocation;

78 static Boolean encryption = false;

79

80 @Override

81 public void run()

82 {

83 /* get mail-server settings from activity configuration */

84 ActivityConfiguration activityConfiguration = activityInstance

.getConfiguration();

85 certificateLocation = activityConfiguration.getString("

Certificate Location");

86 user = activityConfiguration.getString("User");

87 pw = activityConfiguration.getString("Password");

88 from = activityConfiguration.getString("From");

89 host = activityConfiguration.getString("SMTP-Server");

90 port = activityConfiguration.getString("SMTP-Port");

91 encryption = activityConfiguration.getBoolean("Encrypt Message

");

92 encryption = encryption == null ? false : encryption;

93 startTLS = activityConfiguration.getBoolean("Enable TLS");

94 startTLS = startTLS == null ? false : startTLS;

95

96 /* get attachment file and comment string from Data Context */

97 FileUDT fileUDT = null;

98 try

99 {

100 DataContext dataContext = sessionContext.getDataContext();

101 Set<ProcessModelParameter> parameters = activityInstance.

getParameters(AccessType.READ);

57

B Component Source Codes

102 ArrayList<String> parameternames = new ArrayList<String>()

;

103 for (ProcessModelParameter p : parameters)

104 {

105 parameternames.add(p.getName());

106 }

107 to= dataContext.retrieveStringParameterValue("to");

108 body = dataContext.retrieveStringParameterValue("body");

109 subject = dataContext.retrieveStringParameterValue("

subject");

110

111 if (parameternames.contains("cc"))

112 {

113 Logger.getAnonymousLogger().warning("found cc");

114 cc = dataContext.retrieveStringParameterValue("cc");

115 }

116

117 if (parameternames.contains("attachment"))

118 {

119 Logger.getAnonymousLogger().warning("found attachment"

);

120 UDTValue temp = dataContext.retrieveUDTParameterValue(

"attachment");

121 if (temp != null)

122 {

123 fileUDT = new FileUDT(temp);

124 }

125 }

126

127 }

128 catch (InvalidDataTypeException e)

129 {

130 throw new ApplicationEnvironmentException("Parameter is of

the wrong data-type", ApplicationErrorCodes.

PARAMETER_WRONG_DATA_TYPE, e);

131 }

132 catch (NoSuchParameterException e)

133 {

58

134 throw new ApplicationEnvironmentException("Parameter

missing", ApplicationErrorCodes.PARAMETER_NOT_EXISTING

, e);

135 }

136

137 /* add bouncycastle to security providers */

138 Security.addProvider(new BouncyCastleProvider());

139

140 /*

141 * load certificate and create a generator for SMIME envelopes

for later

142 * wrapping

143 */

144 FileInputStream certInput;

145 SMIMEEnvelopedGenerator encrypter = null;

146 if (encryption == true)

147 {

148

149 try

150 {

151 certInput = new FileInputStream(certificateLocation);

152 CertificateFactory cf = CertificateFactory.getInstance

("X.509");

153 X509Certificate cert = (X509Certificate) cf.

generateCertificate(certInput);

154 certInput.close();

155 encrypter = new SMIMEEnvelopedGenerator();

156 encrypter.addRecipientInfoGenerator(new

JceKeyTransRecipientInfoGenerator(cert).

setProvider("BC"));

157 }

158 catch (FileNotFoundException e)

159 {

160 throw new ApplicationFailedException("Certificate not

found", "", ApplicationErrorCodes.

PARAMETER_URI_TARGET_MISSING, e);

161 }

162 catch (CertificateException e)

163 {

59

B Component Source Codes

164 throw new ApplicationFailedException("Certificate

error", "", ApplicationErrorCodes.

INSTANCE_ABORT_DUE_TO_INTERNAL_ERROR, e);

165 }

166 catch (IOException e)

167 {

168 throw new ApplicationFailedException("Certificate can

not be read", "", ApplicationErrorCodes.

IOEXCEPTION, e);

169 }

170 catch (IllegalArgumentException e)

171 {

172 throw new ApplicationFailedException("Illegal argument

", "", ApplicationErrorCodes.ILLEGAL_ARGUMENT, e);

173 }

174 catch (OperatorCreationException e)

175 {

176 throw new ApplicationFailedException("Encrypting error

", "", ApplicationErrorCodes.

INSTANCE_ABORT_DUE_TO_INTERNAL_ERROR, e);

177 }

178 }

179 /*

180 * create and fill individual body parts (text,attachment),

add them to

181 * a multipart, encrypt and add to MIMEmessage

182 */

183 MimeMessage message = null;

184 try

185 {

186 MimeMultipart multi = new MimeMultipart();

187 MimeBodyPart text = new MimeBodyPart();

188 text.setText(body);

189 multi.addBodyPart(text);

190 if (fileUDT != null)

191 {

192 MimeBodyPart attachment = new MimeBodyPart();

193 attachment.setDataHandler(new DataHandler(fileUDT.

getData(), fileUDT.getMimetype()));

194 attachment.setFileName(fileUDT.getFileName());

60

195 if (fileUDT != null)

196 {

197 multi.addBodyPart(attachment);

198 }

199 }

200

201 message = new MimeMessage(getSession());

202 message.setFrom(new InternetAddress(from));

203 message.setRecipient(Message.RecipientType.TO, new

InternetAddress(to));

204 if (cc != null)

205 {

206 message.setRecipient(Message.RecipientType.CC, new

InternetAddress(cc));

207 }

208 message.setSubject(subject);

209 message.setContent(multi);

210 if (encryption == true)

211 {

212 MimeBodyPart complete = encrypter.generate(message,

new JceCMSContentEncryptorBuilder(CMSAlgorithm.

RC2_CBC, 40).setProvider("BC").build());

213 message.setContent(complete.getContent(), complete.

getContentType());

214 }

215 }

216 catch (AddressException e)

217 {

218 throw new ApplicationFailedException("Email address error"

, "", ApplicationErrorCodes.

INSTANCE_ABORT_DUE_TO_INTERNAL_ERROR, e);

219 }

220 catch (MessagingException e)

221 {

222 throw new ApplicationFailedException("Messagingexception

in javax.mail", "", ApplicationErrorCodes.

INSTANCE_ABORT_DUE_TO_INTERNAL_ERROR, e);

223 }

224 catch (IOException e)

225 {

61

B Component Source Codes

226 throw new ApplicationFailedException("Attachment IO Error"

, "", ApplicationErrorCodes.IOEXCEPTION, e);

227 }

228 catch (SMIMEException e)

229 {

230 throw new ApplicationFailedException("SMIME encryption

error", "", ApplicationErrorCodes.

INSTANCE_ABORT_DUE_TO_INTERNAL_ERROR, e);

231 }

232 catch (CMSException e)

233 {

234 throw new ApplicationFailedException("Encryption error", "

", ApplicationErrorCodes.

INSTANCE_ABORT_DUE_TO_INTERNAL_ERROR, e);

235 }

236

237 /* actual sending of created+encrypted MIMEmessage */

238 try

239 {

240 Transport.send(message);

241 }

242 catch (MessagingException e)

243 {

244 throw new ApplicationFailedException("Sending error", "",

ApplicationErrorCodes.

INSTANCE_ABORT_DUE_TO_INTERNAL_ERROR, e);

245 }

246 /* end component */

247 sessionContext.getRuntimeEnvironment().applicationClosed();

248 }

249

250 /**

251 * helper method for getting a MIME session with optional tls

support

252 */

253 private static Session getSession()

254 {

255 SMTPAuthenticator authenticator = new SMTPAuthenticator();

256 Properties properties = new Properties();

257 properties.setProperty("mail.smtp.from", user);

62

258 properties.setProperty("mail.smtp.port", port);

259 properties.setProperty("mail.smtp.host", host);

260 properties.setProperty("mail.smtp.auth", "true");

261 if (startTLS)

262 {

263 properties.setProperty("mail.smtp.starttls.enable", "true"

);

264 }

265 return Session.getInstance(properties, authenticator);

266 }

267

268 /**

269 * implementation of javax.mail.Authenticator creates an

authenticator with

270 * our user and pw combination

271 */

272 static class SMTPAuthenticator extends javax.mail.Authenticator

273 {

274 @Override

275 protected PasswordAuthentication getPasswordAuthentication()

276 {

277 return new PasswordAuthentication(user, pw);

278 }

279 }

280 }

Listing B.4: PDF Signer Source Code

1 package de.uulm.dbis.PDFSigner;

2

3 import java.io.ByteArrayOutputStream;

4 import java.io.FileInputStream;

5 import java.io.FileNotFoundException;

6 import java.io.IOException;

7 import java.security.KeyStore;

8 import java.security.KeyStoreException;

9 import java.security.NoSuchAlgorithmException;

10 import java.security.NoSuchProviderException;

11 import java.security.PrivateKey;

12 import java.security.Security;

13 import java.security.UnrecoverableKeyException;

63

B Component Source Codes

14 import java.security.cert.Certificate;

15 import java.security.cert.CertificateException;

16

17 import org.bouncycastle.jce.provider.BouncyCastleProvider;

18

19 import com.itextpdf.text.DocumentException;

20 import com.itextpdf.text.Rectangle;

21 import com.itextpdf.text.pdf.PdfReader;

22 import com.itextpdf.text.pdf.PdfSignatureAppearance;

23 import com.itextpdf.text.pdf.PdfStamper;

24

25 import de.aristaflow.adept2.core.runtimemanager.executionenvironments.

ExecutionEnvironment;

26 import de.aristaflow.adept2.extensions.datatypes.FileUDT;

27 import de.aristaflow.adept2.model.common.ActivityConfiguration;

28 import de.aristaflow.adept2.model.datamanagement.

InvalidDataTypeException;

29 import de.aristaflow.adept2.model.datamanagement.

NoSuchParameterException;

30 import de.aristaflow.adept2.model.execution.ActivityInstance;

31 import de.aristaflow.adept2.model.globals.ApplicationErrorCodes;

32 import de.aristaflow.adept2.model.runtimeenvironment.

ApplicationEnvironmentException;

33 import de.aristaflow.adept2.model.runtimeenvironment.

ApplicationFailedException;

34 import de.aristaflow.adept2.model.runtimeenvironment.DataContext;

35

36 /**

37 * Aristaflow component for signing pdf files with a keystore +

certificate

38 * @author Kevin Andrews

39 * @version 1.2 error throwing rework

40 * 1.1 IO handling with FileUDT

41 */

42 public class PDFSigner extends ExecutionEnvironment

43 {

44

45

46 public PDFSigner(ActivityInstance activityInstance)

47 {

64

48 super(activityInstance);

49 }

50

51 @Override

52 public void run()

53 {

54

55 /* get pdf file from Data Context */

56 DataContext dataContext = sessionContext.getDataContext();

57 FileUDT fileUDT = null;

58 try

59 {

60 fileUDT = new FileUDT(dataContext.

retrieveUDTParameterValue("PDF"));

61 } catch (InvalidDataTypeException e)

62 {

63 throw new ApplicationEnvironmentException("Parameter has

invalid data type!", ApplicationErrorCodes.

PARAMETER_UNEXPECTED_TYPE, e);

64 } catch (NoSuchParameterException e)

65 {

66 throw new ApplicationEnvironmentException("Parameter

missing!", ApplicationErrorCodes.

PARAMETER_NOT_EXISTING, e);

67 }

68

69 /* get configuration strings from Activity Configuration */

70 ActivityConfiguration activityConfiguration = activityInstance

.getConfiguration();

71 String keystoreLocation = activityConfiguration.getString("

KeystoreLocation");

72 String keystoreAlias = activityConfiguration.getString("

KeystoreAlias");

73 String keystoreType = activityConfiguration.getString("

KeystoreType");

74 String keystorePassword = activityConfiguration.getString("

KeystorePassword");

75 String signatureLocation = activityConfiguration.getString("

SignatureLocation");

65

B Component Source Codes

76 String signatureReason = activityConfiguration.getString("

SignatureReason");

77

78 /* add bouncycastle security provider */

79 Security.addProvider(new BouncyCastleProvider());

80

81 /* load keystore from file use password and get privatekey

from ks */

82 KeyStore ks;

83 Certificate[] chain = null;

84 PrivateKey key = null;

85 try

86 {

87 ks = KeyStore.getInstance(keystoreType, "BC");

88 ks.load(new FileInputStream(keystoreLocation),

keystorePassword.toCharArray());

89 key = (PrivateKey) ks.getKey(keystoreAlias,

keystorePassword.toCharArray());

90 chain = ks.getCertificateChain(keystoreAlias);

91 } catch (KeyStoreException e)

92 {

93 throw new ApplicationFailedException("KeyStoreException",

"",ApplicationErrorCodes.

INSTANCE_ABORT_DUE_TO_INTERNAL_ERROR, e);

94 } catch (NoSuchProviderException e)

95 {

96 throw new ApplicationFailedException("

NoSuchProviderException", "",ApplicationErrorCodes.

INSTANCE_ABORT_DUE_TO_INTERNAL_ERROR, e);

97 } catch (NoSuchAlgorithmException e)

98 {

99 throw new ApplicationFailedException("

NoSuchAlgorithmException", "",ApplicationErrorCodes.

INSTANCE_ABORT_DUE_TO_INTERNAL_ERROR, e);

100 } catch (CertificateException e)

101 {

102 throw new ApplicationFailedException("CertificateException

", "",ApplicationErrorCodes.

INSTANCE_ABORT_DUE_TO_INTERNAL_ERROR, e);

103 } catch (FileNotFoundException e)

66

104 {

105 throw new ApplicationFailedException("

FileNotFoundException", "",ApplicationErrorCodes.

IOEXCEPTION, e);

106 } catch (IOException e)

107 {

108 throw new ApplicationFailedException("IOException","",

ApplicationErrorCodes.IOEXCEPTION, e);

109 } catch (UnrecoverableKeyException e)

110 {

111 throw new ApplicationFailedException("Printing failure", "

",ApplicationErrorCodes.

INSTANCE_ABORT_DUE_TO_INTERNAL_ERROR, e);

112 }

113

114 /*

115 * create pdfreader, use it to read pdf from the datacontext’s

input

116 * FileUDT

117 */

118 PdfReader reader;

119 try

120 {

121 reader = new PdfReader(fileUDT.getData());

122 } catch (IOException e)

123 {

124 throw new ApplicationEnvironmentException("IOException",

ApplicationErrorCodes.IOEXCEPTION, e);

125 }

126

127 /*

128 * create pdf signature and set its look and feel then sign

the document

129 * with close()

130 */

131 PdfStamper stp;

132 ByteArrayOutputStream out = null;

133 try

134 {

135

67

B Component Source Codes

136 out = new ByteArrayOutputStream();

137 stp = PdfStamper.createSignature(reader, out, ’\0’);

138 PdfSignatureAppearance sap = stp.getSignatureAppearance();

139 sap.setCrypto(key, chain, null, PdfSignatureAppearance.

WINCER_SIGNED);

140 sap.setReason(signatureReason);

141 sap.setLocation(signatureLocation);

142 sap.setVisibleSignature(new Rectangle(100, 100, 200, 200),

1, null);

143 stp.close();

144

145 } catch (DocumentException e)

146 {

147 throw new ApplicationFailedException("DocumentException",

"",ApplicationErrorCodes.

INSTANCE_ABORT_DUE_TO_INTERNAL_ERROR, e);

148 } catch (IOException e)

149 {

150 throw new ApplicationFailedException("IOException","",

ApplicationErrorCodes.IOEXCEPTION, e);

151 }

152 /* write the filled pdf to a new FileUDT and store it to the

datacontext */

153 fileUDT=new FileUDT(out.toByteArray(), fileUDT.getFileName(),

fileUDT.getEncoding(), fileUDT.getMimetype(), out.

toByteArray().length);

154 try

155 {

156 out.close();

157 dataContext.storeUDTParameterValue("PDF", fileUDT.getAsXML

());

158 } catch (IOException e)

159 {

160 throw new ApplicationFailedException("IOException","",

ApplicationErrorCodes.IOEXCEPTION, e);

161 } catch (InvalidDataTypeException e)

162 {

163 throw new ApplicationEnvironmentException("Output

parameter has invalid data type",

ApplicationErrorCodes.PARAMETER_UNEXPECTED_TYPE, e);

68

164 } catch (NoSuchParameterException e)

165 {

166 throw new ApplicationEnvironmentException("Output

parameter missing", ApplicationErrorCodes.

PARAMETER_NOT_EXISTING, e);

167 }

168 /* end component */

169 sessionContext.getRuntimeEnvironment().applicationClosed();

170

171 }

172

173 }

69

Bibliography

[1] ARLBJORN, J. ; HAUG, A. : Business Process Optimization. Academica, 2010

[2] DADAM, P. ; REICHERT, M. ; RINDERLE-MA, S. ; GOESER, K. ; KREHER, U. ; JURISCH,

M. : Von ADEPT zur AristaFlow BPM Suite - Eine Vision wird Realität: "Correctness by

Construction" und flexible, robuste Ausführung von Unternehmensprozessen / University of

Ulm. 2009. – Forschungsbericht

[3] DADAM, P. ; REICHERT, M. ; RINDERLE-MA, S. ; LANZ, A. ; PRYSS, R. ; PREDESCHLY,

M. ; KOLB, J. ; LY, L. T. ; JURISCH, M. ; KREHER, U. ; GOESER, K. : From ADEPT to

AristaFlow BPM Suite: A Research Vision has become Reality / University of Ulm. 2009. –

Forschungsbericht

[4] LANZ, A. ; KREHER, U. ; REICHERT, M. ; DADAM, P. : Enabling Process Support for Advanced

Applications with the AristaFlow BPM Suite. 2010. – Forschungsbericht

[5] LANZ, A. ; REICHERT, M. ; DADAM, P. : Making Business Process Implementations Flexible

and Robust: Error Handling in the AristaFlow BPM Suite. 2010. – Forschungsbericht

[6] MENDLING, J. ; REIJERS, H. ; AALST, W. van d.: Seven Process Modeling Guidelines

(7PMG). In: Information and Software Technology (2010)

[7] MICHELER, F. : Konzeption, Implementierung und Integration einer Komponente für die

Erstellung intelligenter Formulare. 2009

[8] WHITE, S. : Introduction to BPMN. In: IBM Cooperation (2004)

71

Name: Kevin Andrews Matrikelnummer: 671626

Erklärung

Ich erkläre, dass ich die Arbeit selbständig verfasst und keine anderen als die angegebenen

Quellen und Hilfsmittel verwendet habe.

Ulm, den .

Kevin Andrews

	Introduction
	The Audit Committee and its Tasks
	Process Optimization Potential with BPMS

	Current Processes of the Audit Committee
	Documentation of the Different Processes
	BAföG Funding Approval
	ECTS Credit Acknowledgment
	Changing of Major
	Attribution of Course Credits
	Work Experience Acknowledgment
	Thesis Deadline Extension

	Optimization of the Thesis Deadline Extension Process
	Optimization Changes to the TDE Process
	Creating the Process Model in the AristaFlow BPM Suite
	Planning the Implementation

	Implementation
	Implementing an AristaFlow Component
	Process Parameters
	Activity Configurations
	Multiple Optional Parameters
	Debugging a Component
	Exception Handling

	PDF Printer Component
	PDF Filler Component
	Encrypted Mailer Component
	PDF Signer Component
	The Finished Process

	Conclusion
	Paper-Based Forms
	Component Source Codes

