
Model-Driven User Interface
Generation and Adaptation in

Process-Aware Information Systems

Jens Kolb, Paul Hübner and Manfred Reichert

Institute of Databases and Information Systems
Ulm University, Germany

{jens.kolb,paul.huebner,manfred.reichert}@uni-ulm.de

http://www.uni-ulm.de/dbis

Abstract. The increasing adoption of process-aware information sys-
tems (PAISs) has resulted in a large number of implemented business pro-
cesses. To react on changing needs, companies should be able to quickly
adapt these process implementations if required. Current PAISs, how-
ever, only provide mechanisms to evolve the schema of a process model,
but do not allow for the automated creation and adaptation of their user
interfaces (UIs). The latter may have a complex logic and comprise, for
example, conditional elements or database queries. Creating and evolv-
ing the UI components of a PAIS manually is a tedious and error-prone
task. This technical report introduces a set of patterns for transforming
fragments of a business process model, whose activities are performed
by the same user role, to UI components of the PAIS. In particular, UI
logic can be expressed using the same notation as for process modeling.
Furthermore, a transformation method is introduced, which applies these
patterns to automatically derive UI components from a process model
by establishing a bidirectional mapping between process model and UI.
This mapping allows propagating UI changes to the process model and
vice versa. Overall, our approach enables process designers to rapidly
develop and update complex UI components in PAISs.

1 Introduction

Process-aware information systems (PAISs) separate process execution from ap-
plication code, i.e., the implementation of process activities. Hence, separation
of concerns, which is a well-established principle in computer science is realized
based on explicit process models. When initially capturing business processes in
process models, focus is put on business aspects, while technical aspects concern-
ing later process execution are excluded. Usually, the resulting business process
models cover the users’ activities at a fine-grained level (cf. Figure 1a). Hence,
before deploying such a business process model in the PAIS, therefore, it must
be revised and customized. For example, several human tasks, forming a pro-
cess fragment in the business process model, may have to be combined into one
activity in the executable process model (cf. Figure 1b). This activity is then

http://www.uni-ulm.de/dbis

2 Jens Kolb, Paul Hübner and Manfred Reichert

implemented by a respective user interface (UI) component in the PAIS, e.g.,
a user form whose corresponds to the one of the initial process fragment (cf.
Figure 1c). Based on such a logic, for example, form elements may be disabled
when selecting a certain check box, or database queries or web services may be
run in the background to fetch or save data. Overall, both the implementation
and maintenance of the UI components in a PAIS is a cumbersome and costly
task. In particular, this hinders quick adaptations of process implementations
[1].

Select

Customer

Choose

Contact

Type

Edit

Address
Review

Account

Accept

Message

Decline

Message

Create

Customer

Clerk

Clerk

Clerk

Clerk

Manager

Manager

Manager Approve

Account
Clerk Manager

Edit

Customer

CustId:int

Approve Account: Man...

Edit Customer: Clerk UI

Choose Contact Type

Edit Address

Street

City

 E-MailContact

a) Initial (Business) Process Model b) Executable Process Model c) User Interface Components

Activity

XOR

AND

Data Element SESE block

(Single Entry Single Exit)

Fig. 1. Deriving UI Components from a Business Process Model

The proper evolution of the processes implemented in a PAIS is a critical
success factor for any company [2]. It not only requires changes of the process
models, but of the associated UI components and their internal logic as well
(e.g., adding new input fields). Process model evolution is a well-understood fea-
ture in modern PAIS [3,4]. There exist editors for defining and changing simple
UI components of the PAISs (e.g., moving or renaming input fields in a user
form). However, complex changes of the internal logic of user forms can not be
accomplished by users, but require process implementers to intervene. Moreover,
the automatic propagation of changes made in the UI components to business
process model and vice versa is not supported.
This paper addresses these issues through the automatic generation of com-
plex UI components out of process model fragments. In this context, we first
present common patterns for transforming process fragments to UI components.
Thereby, we distinguish between elementary and complex transformations. While
elementary transformation patterns (ETP) transform single activities of a pro-
cess model to simple UI elements, complex transformation patterns (CTP) enable
the mapping of entire process fragments and their logic to UI components, show-
ing the same behaviour as the original process fragment does. Additionally, we
provide an advanced transformation method for business process models that
allows generating sophisticated UI components out of these models based on the
user roles assigned to process activities. This method further allows propagating
changes of UI components to the corresponding process model and vice versa.
Especially, for human-centric processes, our transformation method decreases
the effort for evolving PAIS to accommodate to changing needs.
The paper is structured as follows: Section 2 introduces basic notions. Section
3 describes common patterns for transforming process model fragments to UI
components. Section 4 then presents a method for transforming process models

Automatic User Interface Generation 3

to a set of UI components. This method is based on transformation patterns
and role-based process views. Section 5 sketches our proof-of-concept prototype.
Section 6 discusses related work and Section 7 summarizes the paper.

2 Basic Notions

A process model is described in terms of a directed graph whose node set com-
prises activities, gateways, and data elements. An activity either corresponds to
a human task and thus requires user interactions, or to a service representing
an automated task. In turn, gateways can be categorized into AND, XOR and
Loop and are used for modeling parallel/conditional branchings and loop struc-
tures. Edges between activities and/or gateways represent precedence relations,
i.e., the control flow of the process model (cf. Figure 1a). Furthermore, data
elements comprise primitive data elements and complex ones. Primitive data
elements cover elementary data values of the process model and have one of the
following types: integer, float, boolean, string, date, or URI. In turn, complex
data elements compose primitive and/or complex data elements. Based on this,
the data flow is defined by a set of directed edges connecting data elements and
activities. Writing a data element is expressed through an edge pointing from an
activity to the data element. In turn, reading a data element is expressed through
an edge from this data element to the activity. We presume that process models
are well-structured [5,6], i.e., sequences, branchings (of different semantics), and
loops are specified as blocks with well-defined start and end nodes having the
same gateway type. These blocks, also known as SESE (single-entry-single-exit)
blocks, may be nested, but are not allowed to overlap (cf. Figure 1a).

3 User Interface Transformation Patterns

This section introduces a set of well-elaborated patterns for transforming a pro-
cess fragment to a corresponding UI component. Section 3.1 discusses how we
identified these UI transformation patterns. Section 3.2 then introduces Elemen-
tary Transformation Patterns (ETP), which constitute the basis for the Complex
Transformation Patterns (CTP) presented in Section 3.3.

3.1 Pattern Identification

The goal of our research is to identify and apply a general set of UI transfor-
mation patterns, which allow mapping process fragments to UI components. To
achieve this goal, we first describe a three-step method, which we apply for iden-
tifying relevant UI transformation patterns (cf. Figure 2). In Step 1, we analyze
and evaluate PAIS engineering projects in which we were involved in the past.
More precisely, we analyze the business process models from these projects as
well as their technical implementation and related UI components. In Step 2,

4 Jens Kolb, Paul Hübner and Manfred Reichert

we analyze existing PAISs (e.g., IBM WebSphere Lombardi, AristaFlow BPM
Suite [7]) and their support for UI generation. Finally, in Step 3 we scan existing
literature on model-driven development (MDD) of UI components [8,9,10].

The empirical results of these three steps are used to specify general UI
transformation patterns. These either transform single process model elements,
like activities and their inputs/outputs, to simple UI elements (i.e.,elementary
transformation patterns (ETP)) or entire process fragments to complex UI com-
ponents (i.e., complex transformation patterns (CTP)).

UI

Transformation

Patterns

Research

Question

UI

Transformation

Method

Step 2: Analyze PAISs

Step 1: BPM Projects Evaluation

Step 3: Literature Screening

Step 4: Develop

Trans. Method

Fig. 2. Transformation Pattern Identification Method

Based on the identified transformation patterns, Step 4 develops a transforma-
tion method allowing for the automatic generation of the UI components of
the PAIS by extracting role-specific process fragments from process models and
transforming them into related UI components (cf. Section 4).

3.2 Elementary Transformation Patterns

Elementary transformation patterns (ETP) enable the transformation of single
process model elements to simple UI elements. For example, an activity may
be transformed into a simple user form. Thereby, the respective ETP considers
activity input/output data elements and maps them to form elements.

Each transformation pattern has a unique pattern name. Its description sum-
marizes the actions required to transform the process elements to corresponding
UI elements. Furthermore, a real-world application example illustrates the ap-
plication of the pattern. In this context, process elements are represented using
BPMN and UI elements are illustrated in terms of screen mock-ups. The problem
description refers to situations in which the patterns may be applied. The imple-
mentation defines implementation-specific requirements to be met to realize the
pattern in a PAIS. Related patterns refers to related transformation patterns,
e.g., patterns to be co-applied with the current pattern.

ETP1 (Human Activity Transformation). This pattern describes the ele-
mentary transformation of a single activity to a Form Group Element (FGE)
(cf. Table 1); i.e., for each human activity of a process model, an FGE is gen-
erated. In modern PAIS, usually, such an FGE is represented by a dialog window.

ETP2 (Service Activity Transformation). The counterpart of ETP1 is
given by pattern ETP2 (cf. Table 1). ETP2 creates application stubs for auto-
mated tasks not performed by a user; i.e., no user interaction element is created,
but a stub for integrating application code executed by the PAIS. In BPMN,

Automatic User Interface Generation 5

respective activities are denoted as service activities. For example, a service ac-
tivity could fetch data from a database, which is then displayed to the human
user. Pattern ETP2 is needed to automatically generate complete UI compo-
nents enabling interactions with both users and backend systems (cf. Section
3.3).

ETP1: Human Activity Transformation
Description: A human activity of a business process model (i.e., an activity to be performed

by a human resource) is transformed into a Form Group Element (FGE). An
FGE corresponds to a UI element that contains UI elements for displaying or
editing data.

Example: A clerk must perform an activity, in which customer data is edited.

Edit

Customer

Data
⇒

Edit Customer

FGE

Problem: To perform a human activity within a PAIS, a user interaction is required.

Implementation: An FGE can be implemented in terms of a dialog window. In the context of
CTPs, an FGE constitutes a grouping element of the UI.

Related Pattern: ETP2

ETP2: Service Activity Transformation
Description: A service activity is transformed into an application stub executable by the

PAIS. No human interaction is required.

Example: Customer data shall be retrieved from an external ERP system.

Fetch

Customer Data ⇒
public class AccountCreationProcess{

public Customer fetch(Integer customerID){

// fetch customer data from CRM system

Customer customerData = ...

return customerData;

}

}

Problem: Complex UI components not only require direct user interactions, but also
interactions with backend information systems. Hence, service activities need
to be integrated with the UI components as well.

Implementation: For service activities, application stubs need to be created. Application com-
ponents then may be provided by the process implementer.

Related Patterns: ETP1

Table 1. Pattern Descriptions for Patterns ETP1 and ETP2

ETP3 (Data Flow Transformation). This elementary pattern allows trans-
forming data elements and associated data flow edges to respective UI elements
(cf. Table 2). Pattern ETP3 as well as related patterns ETP3.1-ETP3.4 gen-
erate Field Elements (FE) within an FGE; i.e., when generating the FGE (cf.
ETP1), the data elements and edges of a process activity are transformed to in-
put/output field elements of a UI component. In this context, patterns ETP3.1
and ETP3.2 are applied to indicate whether the respective field element is read-
only or editable (with optionally pre-filled value). Further, ETP3.3 transforms
the data type of a data element to the FE; e.g., a boolean data element is
transformed to a radio button element with two choices. Finally, ETP3.4 allows
transforming a business object to a UI component built upon ETP3.3.

6 Jens Kolb, Paul Hübner and Manfred Reichert

ETP3.1 (WRITE Data Flow Transformation). ETP3.1 transforms the
write access of a process activity to a data element to an editable form ele-
ment (cf. Table 2). The data type of the form element is determined by ETP3.3.
Overall, ETP3.1 ensures that the respective FE is editable and the user provides
data, which is then mapped to the corresponding data element of the process
model at run-time.

ETP3: Data Flow Transformation
Description: UI components are used to display and edit data elements of the process model.

Pattern ETP3 as well as patterns ETP3.1-ETP3.4 transform these data ele-
ments and associated data edges to Field Elements (FE).

Example: A user edits customer data, while performing a particular activity.

Edit

Customer

Data

DataType:Name

⇒
Edit Customer

Name: DataType-specific Field Elem.

FE

Problem: Human activities and associated data elements require UI field elements al-
lowing the user to fill in or update information.

Implementation: FGEs generated by ETP1 have to be enriched with FEs. This is done through
the application of the elementary patterns ETP3.1-3.4.

Related Patterns: ETP1, ETP3.1-ETP3.4

ETP3.1: WRITE Data Access Transformation
Description: A WRITE data access of an activity to a data element requires an input field

element (FE) placed on the FGE and allowing the user to enter data. The
value entered in the FE is then written to the respective data element.

Example: A user inserts customer data when executing activity Edit Customer.

Edit

Customer

Data

DataType:Name

WRITE Data

Access ⇒
Edit Customer

Name: DataType-specific Input Field

Problem: Inserting data values through UI components is crucial for users interacting
with the PAIS.

Implementation: When generating a FE, methods are required to forward the data entered by
the user to the corresponding data element in the PAIS. The respective FE
must be editable.

Related Patterns: ETP1, ETP3

Table 2. Pattern Descriptions for Patterns ETP3 and ETP3.1

ETP3.2 (READ Data Transformation). ETP3.2 transforms the read access
of an activity to a data element to a read-only form element (e.g., a non-editable
text label, cf. Table 3). At run-time, the FE is pre-filled with the value of the
process data element.
In certain cases, an activity has both incoming and outgoing data edges linking
it with the same data element; i.e., the activity may read and update the respec-
tive data element. Hence, both patterns ETP3.1 and ETP3.2 are applied. As a
result, a pre-filled FE is obtained whose value may be updated when executing
the activity and UI component respectively.

Automatic User Interface Generation 7

ETP3.3 (Primitive Data Type Transformation). This pattern transforms
the primitive data types integer, float, boolean, string, date, and URI to typed
form elements (cf. Table 3). For example, type date is transformed to an input
field with a date picker validating the input. Overall, the most relevant primitive
data types used in process models are covered [11]. Additionally, the respective
form element is added to the FGE of the corresponding process activity.

ETP3.2: READ Data Access Transformation
Description: A READ data access creates a read-only field element (FE) in the UI, display-

ing the value of the respective process data element to the user.

Example: Customer data is displayed to a clerk in his UI component.

Edit

Customer

Data

DataType:Name

READ Data

Access ⇒
Edit Customer

Name: Read-only Label Field

Problem: For displaying process data elements, read-only FEs within the UI component
are required.

Implementation: Outgoing data edges of an activity are transformed to read-only FEs, which
are pre-filled with the values of the respective data elements at run-time.

Related Patterns: ETP1, ETP3

ETP3.3: Primitive Data Type Transformation
Description: Primitive data types require the generation of specific UI form elements in a

consistent and comprehensible style.

Example: A form for editing the business object customer data requires the processing
of data elements like customer number or birth date. These have primitive
data types and must be mapped to a respective FE.

URI:Data6

 Date:Data5

 Float:Data2

 Integer:Data1

 Boolean:Data3

 String:Data4

Edit

Customer

Data

⇒

Edit Customer

Integer Input FieldData1:

Float Input FieldData2:

false

true
Data3:

String Input FieldData4:

M

May 12

T W T F S S

1 2 3 4 5 6

7 8 9
1
0

1
1

1
2

1
31

4
1
5

1
6

1
7

1
8

1
9

2
02

1
2
2

2
3

2
4

2
5

2
6

2
72

8
2
9

3
0

3
1

Date-Time Input FieldData5:

URI Input FieldData6:

Boolean Input Field

Problem: For process data elements accessed by an activity, different form elements,
depending on the respective primitive data types, have to be generated.

Implementation: Each data element, having a primitive data type, is transformed to a specific
FE and placed within the FGE of the associated activity.

Related Patterns: ETP1, ETP3

Table 3. Pattern Descriptions for Patterns ETP3.2 and ETP3.3

ETP3.4 (Business Object Data Type Transformation). To handle com-
plex data types (i.e., business objects), pattern ETP3.4 can be applied (cf. Table
4) [12]. It deals with data assembled of primitive or other complex data types. For
example, a customer business object may consist of the primitive data elements
name, street, and birth date. The implementation of pattern ETP3.4 creates form
group elements for logically grouping the primitive data elements the business
object consists of.

8 Jens Kolb, Paul Hübner and Manfred Reichert

ETP3.4: Business Object Data Type Transformation
Description: A business object is transformed to an FGE. This FGE contains subordinate

FEs for the data elements (with primitive data types) the business object
consists of. For each primitive data type, ETP3.3 is applied. If the business
object refers to other business objects, ETP3.3 is applied recursively.

Example: A customer business object contains an s address business object that, in
turn, consists of primitive data type attributes.

Edit

Customer

Data

Customer:

CustomerData

Customer
#firstName: String

#lastname: String

#address: Address

Address

#street: String

#houseNumber: int

#zip: int

Business

Object

1

* ⇒

Edit Customer

Customer Business Object

String Input FieldFirstName:

String Input FieldLastName:

Address Business Object

String Input FieldStreet:

Integer Input FieldZip:

Problem: Business objects may comprise primitive data elements as well as business
objects (complex data elements). All these data elements must be extracted
and respective UI elements be generated for them.

Implementation: Before generating FEs, all primitive data elements of a business object have to
be extracted recursively and grouped according to the schema of the business
object.

Related Patterns: ETP3, ETP3.3

Table 4. ETP3.4: Business Object Data Type Transformation

3.3 Complex Transformation Patterns

Complex Transformation Patterns (CTPs) allow transforming entire process
fragments of a process model, whose activities shall be performed by the same
user, to corresponding UI components. When creating such a UI component
both the control and data flow of the respective process fragment are consid-
ered. Hence, each of the generated UI components covers parts of the overall
process logic. Furthermore, by combining role-specific activities in the same UI
component, unnecessary UI context switches can be avoided. To structure such
a UI component, tab elements—called Tab Container Elements (TCE)—are in-
troduced. Moreover, a CTP interconnects TCEs according to the control flow of
the process fragment to which it is applied. In this context, single activities and
related data elements of the process fragment are transformed using ETPs.

CTP1 (Process Model Transformation). For a process fragment whose ac-
tivities shall be processed by the same user or user role, pattern CTP1 generates
a User Interface Dialog (UID) (cf. Table 5). Such a UID is a toplevel container
and is represented by a dialog window in the PAIS, which contains a number of
UI elements representing the activities and data elements.

CTP2 (Sequence Block Transformation). This pattern deals with the trans-
formation of a sequence of activities (and SESE blocks respectively) to TCEs
(cf. Table 5). For each activity (or SESE block) of the sequence, a TCE element
is generated and linked to other TCEs according to the given activity sequence.

Automatic User Interface Generation 9

CTP1: Process Model Transformation
Description: For a particular process fragment, a surrounding User Interface Dialog (UID),

i.e., a toplevel container window, is generated. Following this, all other UI
elements related to activities of this fragment are generated based on ETPs
and CTPs, and are then embedded in the UID.

Example: All interactions with a clerk shall be done using the same UI component.

Process

Fragment
Select

Customer

Choose

Contact

Type

Edit

Address

Create

Customer

Send

Decision ⇒
Account Creation: Clerk UI

UID

Problem: The UI elements related to the activities and data elements of a particular
process fragment need to be mapped to a toplevel container window. The
UI flow logic (e.g., the ordering in which field elements may be displayed or
written) corresponds to the control flow of the given process fragment.

Implementation: For each process fragment, a UID element (dialog window) is generated.

Related Patterns: None

CTP2: Sequence Block Transformation
Description: A sequence of activities (and SESE blocks respectively) is transformed into

a sequence of Tab Container Elements (TCE) to be processed in the same
sequential order.

Example: A clerk first edits the customer data. Afterwards, he edits the corresponding
contact data.

Edit

Customer

Edit

Contact

Sequence Block

⇒
Account Creation: Clerk UI

Edit Customer

Edit Contact

Edit Customer

TCE

Problem: Human activities, performed in sequence by the same user (role), shall be ac-
complished using the same UI component, instead of using separate UI com-
ponents (e.g., dialog windows) for each activity.

Implementation: For each activity (or SESE block), a TCE element is created. The order in
which these TCEs may be processed, corresponds to the one of the respective
activities.

Related Patterns: ETP1, ETP2, ETP3, CTP3

Table 5. Pattern Descriptions for Patterns CTP1 and CTP2

CTP3 (Parallel Block Transformation). This pattern transforms parallel
activities (or SESE blocks) of a process fragment to respective UI elements within
the same UID. The UI elements may then be accessed concurrently (cf. Table 6).
The resulting UI component is similar to the one of a single activity (cf. ETP1,
Table 1). However, pattern CTP3 not only covers the transformation of activities
or SESE blocks arranged in parallel. It also enables the concurrent processing of
arbitrary SESE blocks arranged in parallel to the respective UI elements.

CTP4 (XOR Block Transformation). This pattern is applied for trans-
forming an XOR branching of a given process fragment to the UI component
(cf. Table 6). CTP4 generates independent TCEs for each branch of the XOR
branching. The decision, which branch and hence which TCE shall be selected,
is made during run-time based on process data; e.g., whether the TCE element
for creating a new customer or the one for editing an existing customer shall be
displayed, depends on decision data that only becomes available during process

10 Jens Kolb, Paul Hübner and Manfred Reichert

execution. In particular, run-time data for deciding which of the branches of an
XOR branching shall be executed, is required.

CTP3: Parallel Block Transformation
Description: A parallel block and its activities are mapped to a single TCE for their pro-

cessing. This TCE allows for their concurrent.

Example: While editing the address of a customer, the contact type the customer wants
to use for communication can be entered in parallel.

Choose

Contact

Type

Edit

Address

AND Block

⇒
Account Creation: Clerk UI

Edit Contact (AND)

Choose Contact Type

Edit Address

Problem: Activities (or SESE blocks) of a process fragment, which are performed in
parallel by the same user (role), shall be mapped to the same UI component;
UI elements then must be displayable/editable concurrently.

Implementation: When applying CTP3, for each parallel branch, FGEs are added to the TCE.

Related Patterns: ETP1, ETP2, ETP3, CTP2

CTP4: XOR Block Transformation
Description: An XOR block and its branches are usually mapped to multiple UI components

in the PAIS, one for each branch. By contrast, CTP4 transforms them to one
TCE, if the corresponding activities are performed by the same user role. At
run-time, this TCE then only displays the UI elements corresponding to the
activities (or SESE blocks) of the selected branch.

Example: If a customer entry already exists in the customer database, the form for
editing customer data is displayed. Otherwise, the form for creating a new
customer is displayed.

Select

Customer

Create

Customer

XOR Block

exists?

yes

no

⇒
Account Creation: Clerk UI

XOR Block Palceholder

Select Customer

Execution Path 1

Create Customer

Execution Path 2

Edit Customer (XOR)

exists=yes

e
x
is

ts
=
n
o

Problem: Branches of an XOR branching require the generation of several UI elements
for each branch. At run-time, only the UI elements of the selected branch shall
be displayed to the user.

Implementation: A placeholder TCE is inserted at build-time. At run-time, the decision is made
which concrete UI elements are dynamically added to that TCE.

Related Patterns: ETP1, ETP2, ETP3, CTP2

Table 6. Pattern Descriptions for Patterns CTP3 and CTP4

CTP5 (Loop Block Transformation). This pattern transforms a loop block
to elements of a UI component (cf. Table 7). For each loop, CTP5 generates a
TCE as well as corresponding UI elements for activities (or SESE blocks) nested
in this loop (cf. CTP1, Table 5). Additionally, a decision element is required to
decide whether to leave the loop after completion of a particular iteration or
trigger the next loop iteration. The iteration can be triggered by data elements
processed during loop execution (e.g., evaluating input data for validity) or by
external criteria (e.g., repeat calling someone until getting an answer).

Automatic User Interface Generation 11

CTP6 (Background Activity Transformation). Table 7 shows an advanced
scenario for transforming process fragments to UI components. CTP6 is a pat-
tern reflecting the need for dynamically loading data elements by a service activ-
ity. More precisely, data has to be fetched from or stored to a backend system,
while the user concurrently works on human activities by a user.
The next section introduces our overall UI transformation method. It applies
the introduced transformation patterns in connection with process views [13].

CTP5: Loop Block Transformation

Description: A loop block is transformed to a TCE which then may contains the UI elements
corresponding to the activities located inside this loop block.

Example: Customer data shall be first edited and then validated. Depending on the vali-
dation result, editing may have to be redone (e.g., if invalid data was entered).

Validate

Data
OK

Invalid

Edit

Customer

Loop Block

Update Customer

⇒
Account Creation: Clerk UI

Update Customer

(Loop)

Update Customer

Same UI element is

instantiated with new data

in each loop iteration

Problem: Loop blocks may consist of nested activities and SESE blocks. Each loop iter-
ation allow the user (role) to edit previously entered data.

Implementation: For each loop block, a TCE is inserted. The latter is executed as long as the
loop exit condition evaluates to false. Furthermore, all nested UI elements of
the loop block are associated with the TCE.

Related Patterns: ETP1, ETP2, ETP3, CTP2, CTP3, CTP4, CTP6

CTP6: Background Activity Transformation

Description: While human activities are performed by human resources, service activities
may automatically fetch or save data concurrently in the background.

Example: A user selects a customer name in order to edit respective customer data. After
selecting the name, in the background, all available customer information is
retrieved from the database and displayed to the user.

Background Activity Block

Fetch

Data

Select

Customer

Edit

Customer

String:CustomerID Customer:CustomerData

Background

Activity

⇒
Account Creation: Clerk UI

Select Customer

Edit Customer

Edit Customer

CustomerID:

CustomerID data element

triggers the background

activity which fetches the

respective customer data set

Problem: A service activity needs to be executed concurrently to human activities per-
formed by the same user (role). This requires the concurrent fetching/storing
of data from a database as well as the automated and dynamic displaying of
new form elements.

Implementation: Dynamic forms, which contain background activities, need a change listener
mechanism to detect user inputs and to react on them.

Related Patterns: ETP1, ETP2, CTP2

Table 7. Pattern Descriptions for Patterns CTP5 and CTP6

12 Jens Kolb, Paul Hübner and Manfred Reichert

4 Transforming Process Models to User Interfaces

Section 4 shows how the presented patterns can be used to transform process
fragments into sophisticated UI components of the PAIS. In particular, we in-
troduce a transformation method (cf. Section 4.1) and discuss how process frag-
ments can be adapted through changes of the UI components (cf. Section 4.2).

4.1 User Interface Transformation Method

To transform a complete business process model, consisting of several process
fragments, to multiple UI components, we introduced five steps (cf. Figure 3).
Thereby, the number of generated UI components depends on the number of
different users and user roles involved in the process.

Step 1. Role-specific process views [14,13,15] are created for the given process
model. To be more precise, a process view abstracts from certain aspects of the
process model. For example, it may only represent the activities of a particular
user role or organisational unit. In our context, a role-specific process view con-
stitutes the basis for creating a role-specific UI component.

Step 2. For each process view, a User Interface Dialog (UID) is created. As
aforementioned, a UID acts as a toplevel container that includes all UI elements
required for processing the activities of a specific process view. For this purpose,
pattern CTP1 is applied (cf. Table 5).

Step 3. In order to transform complete process fragments to UI elements, com-
plex transformation patterns CTP2-6 are applied. For each CTP applied, a Tab
Container Element (TCE) is generated. Each TCE is represented in the tab bar
area (cf. Figure 3, Step 3). When clicking on an item in this area, the corre-
sponding UI elements are displayed. If there are nested SESE blocks, they are
displayed in a hierarchical tree in the tab bar area.

Step 4. Single activities (ETP1+2) are transformed into Form Group Elements
(FGE). Basically, each FGE represents one activity in the process model. In case
of a parallel branching, multiple activities are displayed on a TCE element in
the UI (cf. Figure 3, Step 4).

Step 5. All data elements of the process view are transformed to Field Elements
(FE). These are layouted and positioned within an FGE. In this context, there
exist different kinds of FEs depending on the data type of the respective data
element (cf. ETP3.3, Table 3).

The structure of the resulting UI component is represented through a User Inter-
face Model (UIM). Figure 4b shows an example of such a UIM. This tree-based

Automatic User Interface Generation 13

schema describes the hierarchical structure of the UI as generated by our trans-
formation method. Section 4.2 shows that this UIM can be also used to propagate
changes of the UI component to the process model and vice versa.

4.2 Synchronizing Process Model and UI Changes

After generating complex UI components for a process model through process
views and deploying them in the PAIS, users may want to modify the UI. For
example, they might add a new FE or re-position elements within the UI.

Select

Customer

Choose

Contact

Type

Edit

Address

Review

Account

Accept

Message

Decline

Message
Create

Customer

Send

Decision

Process View

TCE

XOR

Edit

Customer

User Interface Dialog (UID)

Tab Container Element (TCE)Control Flow Block

Activity Form Group Element (FGE)

Data Element Field Element (FE)

C
T

P
 A

p
p

li
c

a
ti

o
n

E
T

P
 A

p
p

li
c

a
ti

o
n

Initial Process Model

Process Model User Interface

Account Creation: Clerk UI

Edit Customer (XOR)

Edit Contact (AND)

Send Decision

Choose Contact Type

Edit Address

Street

City

 E-MailContact

Account Creation: Clerk UI

Edit Customer (XOR)

Edit Contact (AND)

Send Decision

Choose Contact Type

Edit Address

Account Creation: Clerk UI

Edit Customer (XOR)

Edit Contact (AND)

Send Decision

Account Creation: Clerk UI

Step 1: Role-Specific View Creation

Step 2: User Interface Creation

Step 3: Block Transformation

Step 4: Activity Transformation

Step 5: Data Transformation

TCE

SEQ

TCE

AND

Edit

Contact

FGE

Edit

Address

FGE

Choose

Contact

Type

FE

Contact

FE

City

FGE

Create

Customer

TCE

Send

Decision

...

FE

Street

UID

Create Account

FE

Address

...

User Interface Model

Clerk

Clerk

Clerk

Clerk

ClerkManager

Manager

Manager

User Roles

Select

Customer

Choose

Contact

Type

Edit

Address

Create

Customer

Send

Decision

Select

Customer

Choose

Contact

Type

Edit

Address

Create

Customer

Send

Decision

Select

Customer

Choose

Contact

Type

Edit

Address

Create

Customer

Send

Decision

FGE

Select

Customer

Select

Customer

Choose

Contact

Type

Edit

Address

Create

Customer

Send

Decision

ContactAddress

Fig. 3. Transformation Method

Basically, two categories of UI changes can be distinguished. Local changes
are changes not affecting the associated process view. For example, assume that
a user re-positions the FGE Edit Address within the TCE Edit Contact (AND)
in Figure 4a. Such change would not affect the execution order of the activities

14 Jens Kolb, Paul Hübner and Manfred Reichert

in the corresponding process view, i.e., it only affects the visual representation
of the UI component. Hence, the change needs not be propagated to the view.
By contrast, global changes modify the logic of the UI as well as the associated
process view. For example, the user may want to add the FGE Edit Phone
Number together with the respective FE Phone (cf. Figure 4a). This change
then affects the control flow of the underlying process view as well. The correct
position of the change within the UIM can be determined by the hierarchical
structure of the GUI (cf. Figure 4b). The changes of the UIM are then propagated
to the respective process view; note that the latter is represented by the UIM.
Finally, the change of the process view has to be propagated to the basis process
model on which the view is created. For this propagation the concepts developed
in the proView1 project can be applied [16,17].

Account Creation: Clerk UI

Edit Customer (XOR)

Edit Contact (AND)

Send Decision

Edit Phone Number

Choose Contact Type

Edit Address

Street

City

 E-MailContact

Phone

TCE

SEQ

TCE

XOR

Edit Customer

TCE

AND

Edit Contact

FGE

Choose

Contact

Type

FGE

Edit Phone

Number

FE

Contact

FE

City

FE

Phone

FGE

Select

Customer

FGE

Create

Customer

TCE

Send Decision

...... ...

... ...

TCE: Tab Container Element

FGE: Form Group Element

FE: Field Element

Edit Phone

Number

Select

Customer
Choose

Contact Type

Edit

Address

Create

Customer

Send

Decision

ContactAddress

Phone

a) Inserting New Form Elements b) Adapting the UI Model

FE

Street

c) Adapting Process Model

UID

Create Account

FE

Address

FGE

Edit

Address

Fig. 4. Adapting Process Models through Changes in the UI Component

5 Proof-of-Concept Prototype

We developed a proof-of-concept prototype for the described UI generation ap-
proach. In particular, we implemented the component enabling process view
generation as well as the described transformation patterns and method. This
UI generation prototype has been realized in the context of the proView re-
search project, which tries to reduce process model complexity for end-users by
generating personalized and tailored views on process models for them [13,14].
The prototypical implementation is based on a layered REST architecture using
the vaadin MVC web framework (cf. Figure 5). To evaluate the general validity
of the transformation patterns and method, we used the prototype to generate

1 http://www.dbis.info/proView

Automatic User Interface Generation 15

UI components for process models we gathered in several PAIS projects. This
evaluation has shown remarkable results in the sense that the UI components
generated by our approach are more or less the same as those manually im-
plemented in respective projects. Hence, both implementation and maintenance
effort in PAIS development can be significantly reduced.

Our evaluation has further shown that for sequences comprising numerous
activities, the generated UI component may become too complex. In this case,
the tab bar located on the left side of the UI contains too many entries. Here,
additional transformation patterns need to be identified. Finally, run-time issues
have not been fully considered yet. For example, it must be specified what shall
happen if a user wants to step back in the UI, i.e., derived from the defined form
logic.

Fig. 5. User Form Generated by the Proof-of-Concept Prototype

6 Related Work

Generally, UI development is a time consuming and expensive task in the con-
text of PAIS development [18].

Task Models: Task models describe the actions to be performed by a user
when interacting with an information system and the respective UI to reach a
specific goal. Different variants of task models exist: Goals, Operators, Meth-
ods and Selection rules (GOMS) [19], or Hierarchical Task Analysis (HTA) [20].
These approaches describe the goals, steps and operations of a user interface.
Concurrent Task Trees (CTT), in turn, provide a hierarchical task model sup-
porting various types of tasks (e.g., automatic vs. manual task) and relationships
between tasks (e.g., sequential vs. parallel execution) [21,22]. An overview of task

16 Jens Kolb, Paul Hübner and Manfred Reichert

modeling approaches is provided in [23].

UI Description Language: As opposed to task models, UI description lan-
guages describe the concrete elements a user interface consists of, instead of their
behaviour. Nevertheless, some of these languages include basic task modeling
concepts as well [8]. Furthermore, respective languages are independent from a
specific programming language and enable software developers to describe a user
interface once, but deploy it on various devices (e.g., PC and tablets). Examples
of UI languages include: User Interface Markup Language (UIML) [24], Abstract
User Interface Markup Language (AUIML) [25], and User Interface Extensible
Markup Language (UsiXML) [26]. Based on these languages, UI descriptions can
be created at both built- and run-time.

Model-Driven UI Development: Model-driven UI development applies the
principles of Model-Driven Development (MDD) to UI development. Although
a lot of competing approaches exist, an accepted standard for model-driven UI
development is missing [8,27,28,29,30]. FlowiXML [8], for example, provides a
methodology to develop UIs for business processes, taking the organizational
structure as well as the process model into account. FlowiXML suggests an
eight-step-approach based on various model types (e.g.: CTT, Petri Nets, and
UsiXML). However, it does not allow for the automated generation of UIs. Based
on FlowiXML, [9] introduces the Business Alignment Framework. This four-
step-approach provides task models (i.e., CTT) for user tasks with in the pro-
cess model. Furthermore, a domain model supplements the task model. Based
on these models, an abstract UI description is generated and transformed into
a concrete UI component during process execution. This approach allows for
changes based on UIs and discuss how to manually align them with process
models. However, automatic propagation is not supported.
The approach provided in [31] transforms a process model into a human interac-
tion perspective, which allows UI designers to specify data elements, user roles,
tasks, and UI layout. This perspective enables detailed views on the process
model. After manually refining them, corresponding UIs are generated during
run-time. Furthermore, data-centered process management approaches offer a
different (data-centered) view on business processes. Therefore, state transitions
of process-related data elements are described. Based on this information, UIs
can be generated as well [10,32].

UI Generation in existing PAIS: Contemporary PAIS are able to create
certain UIs automatically (e.g., IBM WebSphere Lombardi [33]). To be more
precise, single activities of a process model can be transformed into simple user
forms, taking associated data elements into account similar to the ETPs. How-
ever, more complex scenarios are not covered. None of the presented approaches
allows for the automatic generation of complex user interfaces based on pro-
cess models. Finally, the adaption of process models based on changes of the
corresponding UI is only considered rudimentarily.

Automatic User Interface Generation 17

7 Conclusion

In this paper, we showed how UI components can be automatically created from
entire process fragments and process models respectively. For this purpose, el-
ementary and complex transformation patterns were identified and described.
Furthermore, a transformation method, which applies these patterns to create
complex UIs based on process views, were introduced. Our approach further en-
ables the propagation of UI changes (e.g., adding new input fields) to the asso-
ciated process model and vice versa. Finally, we implemented our UI generation
approach in a powerful proof-of-concept prototype. In summary, our approach
will contribute to reduce costs for PAIS development and maintenance.
In future research, we will address the execution aspects of process models and
associated UIs as well. In this context, features such as jumping back to an
already edited UI element will be supported by adapting the corresponding pro-
cess instance to assure a valid history of its execution. Further, we started to
implement a UI editor which uses a set of predefined UI widgets and templates
for creating sophisticated UI components for process models. In this editor, we
use our transformation method and change propagation features for deriving
complete process models from the created complex UIs.

References

1. Pradeep, H.: Process-User Interface Alignment: New Value From a New Level of
Alignment. Align Journal (October 3, 2007)

2. Reichert, M., Weber, B.: Enabling Flexibility in Process-aware Information Sys-
tems - Challenges, Methods, Technologies. Springer (2012)

3. Weber, B., Reichert, M., Mendling, J., Reijers, H.A.: Refactoring Large Process
Model Repositories. Computers in Industry 62(5) (2011) 467–486

4. Reichert, M., Dadam, P.: ADEPTflex - Supporting Dynamic Changes of Workflows
Without Losing Control. Journal of Intelligent Inf. Sys. 10(2) (1998) 93–129

5. La Rosa, M., Wohed, P., Mendling, J., ter Hofstede, A.H.M., Reijers, H.A., van der
Aalst, W.M.P.: Managing Process Model Complexity Via Abstract Syntax Modi-
fications. IEEE Transactions on Industrial Informatics 7(4) (2011) 614–629

6. Mendling, J., Strembeck, M.: Influence Factors of Understanding Business Process
Models. In: Proc. BIS’08. (2008) 142–153

7. Dadam, P., Reichert, M.: The ADEPT Project: A Decade of Research and Devel-
opment for Robust and Flexible Process Support. Computer Science - Research
and Development 23(2) (April 2009) 81–97

8. Garcia, J.G., Vanderdonckt, J., Calleros, J.M.G.: FlowiXML: A Step Towards
Designing Workflow Management Systems. Int’l Journal of Web Engineering and
Technology 4(2) (2008) 163–182

9. Sousa, K., Mendonça, H., Vanderdonckt, J., Rogier, E., Vandermeulen, J.: User
Interface Derivation from Business Processes: A Model-Driven Approach for Or-
ganizational Engineering. In: Proc. ACM SAC’08. (2008) 553–560

10. Künzle, V., Reichert, M.: PHILharmonicFlows: Towards A Framework for Object-
Aware Process Management. Journal Software Maintenance and Evolution: Re-
search & Practice 23(4) (2011) 205–244

18 Jens Kolb, Paul Hübner and Manfred Reichert

11. Russell, N., ter Hofstede, A.H.M., Edmond, D., Aalst, W.M.P.V.D.: Workflow
Data Patterns: Identification , Representation and Tool Support. In: Proc. ER
2005. (2005) 353–368

12. Hongxin, A., Yusheng, X., Zhixin, M., Li, L.: Integrating User Interfaces by busi-
ness Object States. In: Proc. ICISE’10. (2010) 2900–2903

13. Reichert, M., Kolb, J., Bobrik, R., Bauer, T.: Enabling Personalized Visualiza-
tion of Large Business Processes through Parameterizable Views. In: Proc. ACM
SAC’12, Riva del Garda (Trento), Italy (2012)

14. Kolb, J., Reichert, M.: Using Concurrent Task Trees for Stakeholder-centered
Modeling and Visualization of Business Processes. In: Proc. S-BPM ONE 2012,
CCIS 284. (2012) 237–251

15. Bobrik, R., Reichert, M., Bauer, T.: View-Based Process Visualization. In: Proc.
5th Int’l Conf. on Business Process Management, Brisbane, Australia (2007) 88–95

16. Kolb, J., Kammerer, K., Reichert, M.: Updatable Process Views for User-centered
Adaption of Large Process Models. In: Proc. Intl. Conf. on Service Oriented Com-
puting (ICSOC’12), Shanghai, China (2012) to appear

17. Kolb, J., Kammerer, K., Reichert, M.: Updatable Process Views for Adapting
Large Process Models: The proView Demonstrator. In: Proc. of the Business
Process Management 2012 Demonstration Track, Tallinn, Estonia (2012) to appear

18. Hussmann, H., Meixner, G., Zuehlke, D.: Model-Driven Development of Advanced
User Interfaces. Springer Berlin Heidelberg (2011)

19. Card, S., Moran, T., Newell, A.: The Psychology of Human-Computer Interaction.
CRC (1983)

20. Annett, J.: Hierarchical Task Analysis. CRC (2003)
21. Paternò, F., Mancini, C., Meniconi, S., Maria, V.S.: ConcurTaskTrees: A Diagram-

matic Notation for Specifying Task Models. In: Proc. IFIP TC13 Int’l Conf. on
Human-Computer Interaction. (1997) 362–369

22. Paternò, F.: ConcurTaskTrees : An Engineered Approach to Model-based Design of
Interactive Systems. The Handbook of Analysis for Human Computer Interaction
(1999) 1–18

23. Limbourg, Q., Vanderdonckt, J.: Comparing Task Models for User Interface De-
sign. The Handbook of Task Analysis for Human-Computer Interaction 6 (2004)

24. Abrams, M., Phanouriou, C., Batongbacal, A., Williams, S., Shuster, J.: UIML:
An Appliance-Independent XML User Interface Language. Computer Networks
31(11-16) (1999) 1695–1708

25. Azevedo, P., Merrick, R., Roberts, D.: OVID to AUIML-User-Oriented Interface
Modelling. In: Proc. 1st TUPIS’00. (2000)

26. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L.: USIXML: A Language
Supporting Multi-path Development of User Interfaces. In: Engineering Human
Computer Interaction and Interactive Systems. (2005) 134–135

27. Puerta, A., Eriksson, H., Gennari, J.H., Musen, M.A.: Model-Based Automated
Generation of User Interfaces. In: Proc. 12th National Conference on Artificial
Intelligence. (1994) 471–477

28. Traetteberg, H., Molina, P.J.: Making Model-Based UI Design Practical: Usable
and Open Methods and Tools. In: Proc. IUI’04. (2004) 376–377

29. Lu, X.: Model Driven Development of Complex User Interface. In: Proc. MoDELS
2007, Workshop on Model Driven Development of Advanced User Interfaces. (2007)

30. Puerta, A., Maulsby, D.: MOBI-D: A Model-based Development Environment for
User-Centered Design. In: Proc. CHI’97. (1997) 4–5

31. Sukaviriya, N., Sinha, V.: User-Centered Design and Business Process Modeling:
Cross Road in Rapid Prototyping Tools. In: Proc. INTERACT’07. (2007) 165–178

Automatic User Interface Generation 19

32. Künzle, V., Reichert, M.: A Modeling Paradigm for Integrating Processes and
Data at the Micro Level. In: Proc. 12th Int’l Working Conference on Business
Process Modeling, Development and Support (BPMDS’11). (2011) 201–215

33. Yang, S., Sun, Y., Waterhouse, J., Lau, D., Al-Hamwy, T.: Modeling and Imple-
menting a Business Process Using WebSphere Lombardi Edition 7.1. In: Proc.
CASCON’10. (2010) 374–375

	Model-Driven User Interface Generation and Adaptation in Process-Aware Information Systems
	Introduction
	Basic Notions
	User Interface Transformation Patterns
	Pattern Identification
	Elementary Transformation Patterns
	Complex Transformation Patterns

	Transforming Process Models to User Interfaces
	User Interface Transformation Method
	Synchronizing Process Model and UI Changes

	Proof-of-Concept Prototype
	Related Work
	Conclusion

