Towards Run-time Flexibility for Process
Families: Open Issues and Research Challenges*

Clara Ayora', Victoria Torres!, Manfred Reichert?, Barbara Weber?, and
Vicente Pelechano!

! Universitat Politécnica de Valencia
{cayora, vtorres, pele}@pros.upv.es
2 University of Ulm, Germany
manfred.reichert@uni-ulm.de
3 University of Innsbruck, Austria
barbara.weber@uibk.ac.at

Abstract. The increasing adoption of process-aware information sys-
tems and the high variability of business processes in practice have re-
sulted in process model repositories with large collections of related pro-
cess variants (i.e., process families). Existing approaches for variability
management focus on the modeling and configuration of process vari-
ants. However, case studies have shown that run-time configuration and
re-configuration as well as the evolution of process variants are essential
as well. Effectively handling process variants in these lifecycle phases re-
quires deferring certain configuration decisions to the run-time, dynam-
ically re-configuring process variants in response to contextual changes,
adapting process variants to emerging needs, and evolving process fam-
ilies over time. In this paper, we characterize these flexibility needs for
process families, discuss fundamental challenges to be tackled, and pro-
vide an overview of existing proposals made in this context.

Key words: Run-time Flexibility, Variability, Process Families

1 Introduction

In recent years, the increasing adoption of Process-aware Information Systems
(PAISs) has resulted in large process model repositories [4]. Since Business Pro-
cess (BP) models often vary, depending on their application context [6, 19], these
repositories usually comprise large collections of related process model variants
(process variants for short) [15]. Such process variants pursue the same or sim-
ilar business objective (e.g., treatment of a patient or maintenance of vehicles
in a garage), but may differ in their logic (i.e., process logic) due to varying
application context at either design time or run-time (e.g., regulations found in
different countries and regions, products or services being delivered, or customer

* This work has been developed with the support of MICINN under the project EV-
ERYWARE TIN2010-18011.

2 Clara Ayora et al.

categories) [18, 4]. A collection of related process variants is denoted as pro-
cess family. Examples can be found in almost every domain; e.g., [8] describes
a process family for vehicle repair and maintenance with more than 900 process
variants with country-, garage-, and vehicle-specific differences.

Properly dealing with process families constitutes a main challenge to reduce
development and maintenance efforts in large process repositories. Designing and
implementing each process variant from scratch and maintaining it separately
would be inefficient and costly for companies. Thus, there is a great interest in
capturing common process knowledge only once and re-using it in terms of refer-
ence process models, e.g., ITIL in IT service management, reference processes in
SAP’s ERP system, or medical guidelines. Even though respective proposals fos-
ter the reuse of common process knowledge, typically, they lack comprehensive
support for explicitly describing variations [20]. In addition, they only provide
limited support for run-time (re-)configuration and evolution (i.e., run-time flex-
ibility), which inhibits the ability of an organization to respond to changes in an
agile way. To deal with exceptions, uncertainty, and evolving processes, however,
process families need to provide run-time flexibility as well [29].

In recent years, several proposals have been made to deal with process fam-
ilies. In the BP management field, model-driven techniques provide diverse so-
lutions for managing process variants [23, 21, 8], i.e., for modeling, configuring,
executing, and monitoring a process family. However, run-time flexibility and the
evolution of process families have not been sufficiently considered so far. In turn,
[9, 11] focus on flexibility issues at the execution level. Based on code injection, a
process variant can be partially adapted to new environmental needs. However,
respective techniques are difficult to apply for non-technical stakeholders and
only cover parts of their flexibility needs. In the context of adaptive PAISs, in
addition, solutions for enabling process flexibility are proposed [30, 31]. Despite
the fact that these proposals are well suited for single process models, they can-
not face the challenges raised by process model families. Finally, in the field of
Software Product Lines, flexibility issues in product families are discussed [10],
i.e., feature models allow specifying variations between members of a product
family. However, these techniques focus on design time configuration, neglecting
run-time configuration support.

In this paper, we characterize run-time flexibility needs of process families
using two case studies for illustration purposes. We discuss open issues and re-
search challenges regarding run-time (re-)configuration and evolution of process
variants. Further, we provide a review of methods, technologies, and tools for BP
variability, and discuss how they address respective run-time flexibility issues.

Section 2 presents two examples of process families used for illustration pur-
pose. In Section 3, we define the main concepts for process families and intro-
duce existing variability proposals. Section 4 analyzes run-time flexibility needs
of process families. Finally, Section 5 summarizes the paper.

Run-time Flexibility for Process Families 3

2 Examples of Process Families

To illustrate run-time flexibility needs of process families, we refer to process
families from the healthcare and automotive domains, which we analyzed in two
case studies. More precisely, our first family comprises more than 90 process
variants for handling medical examinations, either standard (i.e., planned) or
emergency (i.e., unplanned), in large hospitals [14]. In turn, our second process
family consists of more than 20 variants dealing with product change manage-
ment in the automotive domain.

A) Process Variant Sy B) Process Variant S, C) Process Variant S D) Process Variant S,

Request Request
Standard Medical Standard Medical
Examination Examination
Order Medical Order Medical
Examination Examination
Arange Register Medical

Examination

Request
Emergency Medical
Examination

Order Medical
Examination

Register
Emergency
Medical Exam.

Standard Medical
Examination

2|
F
2
2

Order Medical
Examination

Arrange
Appointment for
Medical Exam.

Appointment for
Medical Exam.

Y

S Inform
{ l Patient Transport Patient
Prepare Inform Prepare Inform
Patient Patient Patient Patient
_> <_I Transport Patient Perform Medical
Examination

Perform Medical
Examination

Perform Medical
Examination
Perform Perform Perform Perform Perform Perform
Xeray Lab test MRT Xeray Lab test MRT

Create Medical
Report

Read and
Validate Medical
Report

Perform Perform Perform
Xeray Lab test MRT

-«

S|

Perform Perform Perform
X-ray Lab test MRT

©

Transport Patient
(Return)

Create Medical
Report

Read and

Validate Medical

Report

Transport Patient

(

3
3
£
2

Create Medical
Report

Create Medical
Report

Read and
Validate Medical
Report

Read and
Validate Medical
Report

Fig. 1. Process Variants for Handling Medical Examinations

Process Family 1 (Handling Medical Examinations). Fig. 1 exem-
plifies four simplified process variants of a process family for handling medical
examinations. These variants have several activities in common (highlighted in
grey), e.g., Order Medical Examination, Perform Medical Examination, Perform
X-ray, Perform Lab Test, Perform MRT, and Create Medical Report. However,
the variants also show differences, e.g., in respect to the kind of examination
(i.e., standard vs. emergency medical examination), the way the examination is
scheduled (e.g., making and appointment or simply registering the examination),

4 Clara Ayora et al.

or the need for the presence of specific activities depending on the given context
and configuration settings (e.g., Prepare Patient or Transport Patient).

Process Family 2 (Product Change Management). In the automotive
domain, product change management constitutes a complex process [6, 7] for
which different variants exist, depending on the implementation costs and change
impact, as well as the product phase during which the change is requested (e.g.,
development, start-up, or production).

3 Coping with Business Process Variability

This section provides basic notions related to BP variability (cf. Section 3.1) and
introduces existing proposals for enabling it (cf. Section 3.2).

3.1 Basic Notions

When dealing with variability, it is important to define (1) what parts of the BP
model may vary according to a specific context, (2) what alternatives fit in each
of those parts, and (3) which conditions make these alternatives being selected.
The first issue refers to the identification of the parts being subject to variation,
which are commonly known as variation points. The second issue refers to the
different alternatives that exist for these variation points, which we denote as
process fragment substitutions. The third issue refers to the contexrt in which
these variations occur. Such context is usually represented by a set of variables
gathered in a contexrt model in which the BP model is used. When combining
these variability aspects, we obtain a configurable process model, which is capable
of representing the complete process family, i.e., collection of process variants.
Two major approaches are discussed in literature to define a configurable pro-
cess model: behavioral and structural [18]. While a behavioral approach is based
on a unique artifact integrating the behavior of all family members (i.e., process
variants), a structural approach results in a set of artifacts, separately represent-
ing different aspects of the process family (e.g., commonalities captured in a base
process model and variations captured in change artifacts). Despite these differ-
ences, configurable process models—irrespective of the approach used—allow
eliminating redundancies by representing variant commonalities only once. Fur-
ther, they allow fostering model reuse, i.e., model parts can be shared among
multiple variants [26]. After creating the configurable process model, it must be
verified, i.e., it has to be ensured that all derivable variants are syntactically cor-
rect. Additionally, the configurable process model must be validated, i.e., it must
be ensured that the business requirements are properly reflected by the model.
Given a configurable process model and taking the current context conditions
into account, an individualization process is performed to derive a particular pro-
cess variant [13]. According to the process enactment system chosen, the derived

Run-time Flexibility for Process Families 5

process variant is then transformed such that it can be deployed on this system
[5]. Fig. 2 shows how to move from the definition of a process family to the
creation and execution of a process variant instance. It shows a traditional view
when dealing with process families. However, this is not sufficient (as illustrated
in Section 4) since run-time (re-)configuration and evolution of process families
should be covered along the entire BP lifecycle as well.

s Configurable:Process Model
= Variation I
£ point . S e
@ 1
? ~ ., —
8 ? ° F &] B
Hi—8 B ! | |
n Y < < -/ Y
7| (g B Cgm =
8 Option 1 Option 2 Option 3
o Structural approach Behavioral approach
c
o
g - ~
] L e 2 1 ,'/[Y —0
=3
) -
2 T oMM e
= Process Family
5 , i
ks .
A Process Variant
s 0 ! Deployment
] O v v —~{+ }-0
g | v Completed 4_[7|_1
x | + Activated :
W x skipped Process Variant Instance

Fig. 2. From Process Family Definition to Process Variant Enactment

3.2 Existing Proposals Dealing with BP Variability

In literature, there are different proposals dealing with BP variability: PESOA
[23], C-EPC [21], RULE (Rule representation and processing) [12], Provop [8],
PPM (Partial Process Models) [16], and Worklets [1]. PESOA and C-EPC are
both behavioral approaches for capturing variability in process families [23, 21].
To identify variation points in the configurable process model, PESOA defines a
set of annotations related to the variable activities, while C-EPC makes use of
configurable functions (i.e., activities) and connectors (e.g., OR gateway). The
conditions that instantiate the alternatives for such variation points are defined
through features or configuration requirements. In turn, Provop is a structural
approach, i.e., a process variant is configured by applying a set of pre-defined
change operations (i.e., change artifacts) to a base process model [8]. RULE
is a behavioral approach that applies business rules (i.e., change artifacts) to
configure process variants from a process template (i.e., base process model)
[12]. In turn, PPM is a query-based approach where process variants combine
their own concrete activities with behavior-inherited from parent processes [16].

6 Clara Ayora et al.

Finally, Worklets allow handling exceptions at run-time through dynamic re-
configuration. A worklet is a complete workflow specification which, based on
context conditions, handles one specific task in a composite parent process [1].

4 Run-time Flexibility in Process Model Families

In our context, flexibility represents the ability of a process family to change
selected model parts, while keeping other model parts stable [24]. Due to the
high dynamics in real-world environments, not all configurations can be made
at design time. Thus, run-time flexibility arises as one of the core challenges for
managing process families. Specifically, it requires the ability to deal with pre-
planned changes and dynamic evolution (cf. Fig. 3) [30]. While the first issue
refers to the run-time configuration of process variants (i.e., deferring the reso-
lution of variation points to run-time) as well as their run-time re-configuration
(i.e., switching between process variant models), the second issue deals with the
evolution of single process variants (e.g., to copy with non-planned situations
in a specific process variants) or the evolution of the entire process family (i.e.,
to deal with the re-design of the configurable process model). For each of these
issues, we provide a general description, an illustrative example, a discussion of
how existing proposals support them, and challenges to be tackled.

Run-time Flexibility

Pre-planned Changes Dynamic Evolution
Run-time Configuration of ~ Run-time Re-Configuration Evolution of Single Evolution of the
a Process Variant a Process Variant Process Variants ~ Process Model Family

Fig. 3. Run-time Flexibility for Process Model Families

4.1 Run-time Configuration of Process Variants

General Description. As illustrated in Fig. 2, process variant instances are
executed according to the schema of the process variant model configured at
design time. However, certain configuration decisions (i.e., resolutions of varia-
tion points) can only be made during run-time when needed context information
becomes available. Thus, techniques are required that allow deferring the reso-
lution of variation points to the run-time. In addition, the subject of run-time
configuration may refer to any modeling element (e.g., activities, resources, data,
events, or operations); i.e., proper support for dynamically configuring arbitrary
model elements during the execution of process variant instances is needed.

Example 3 (Run-time configuration of a process variant). In the med-
ical examination process (cf. Process Family 1), the tests to be performed (i.e.,
X-ray, MRT, and Lab tests) only become known once the patient has been exam-
ined. Hence, their selection can only be done once process variant instances are

Run-time Flexibility for Process Families 7

enacted. In addition, the role in charge of a treatment may change depending
on the disease diagnosed. Finally, whether activities related to patient trans-
portation are needed is decided during run-time depending on the status of the
patient. As soon as this information becomes available, the process variant model
of the respective instance should be configured accordingly, e.g., by removing the
activities dealing with transportation.

Existing Support. Current variability proposals do not provide proper sup-
port for run-time configuration of process variants. Despite the fact that most
proposals provide basic run-time support for process variants (e.g., execution
of process variant instances), none of them allows for the inclusion of variation
points in process variant models and their run-time configuration by end-users.

Challenges. One challenge is to ensure soundness of the (partially) dynamically
configured process variant. Even though configuration is partially performed at
run-time, soundness should be ensured at design time, i.e., for each process
variant models its soundness should be guaranteed at design time even if parts
of the model are dynamically configured at run-time. Existing proposals [28, 7]
mainly focus on control flow, but have neglected other perspectives of process
variants so far (e.g., resources, data flow, events). Another challenge is to decide
by whom, when, and based on which information run-time configurations may be
made. Sometimes, this might be accomplished automatically based on context
information, which can be derived from process data, while in other cases user
interactions are required. For the latter, intelligent user support at a high level of
abstraction is needed. Finally, techniques for visualizing dynamic configuration
options are needed.

4.2 Run-time Re-Configuration of Process Variants

General Description. Application context may dynamically change during
run-time [25], making a re-configuration of a running process variant instance
necessary to allow it to switch from the current process variant model to another
one [27]. Unlike ad-hoc changes (i.e., unplanned changes) known from adaptive
PAISSs, re-configuration options are usually known at design time and hence can
be captured in the configurable process model.

Example 4 (Run-time re-configuration of a process variant). In the
context of product change management (cf. Process Family 2), for a particular
car model, a change may be requested by a supplier in the start-up phase. As-
sume that during the processing of this change request, which may take several
weeks or even longer, the car model switches to phase production. Then, the
change request must be handled by a process variant model different from the
one applied in the start-up phase; e.g., different procedures for estimating the

8 Clara Ayora et al.

costs of the requested change and for approving it are needed. Therefore, the
process variant instance needs to be executed according to a different process
variant model, i.e., one must switch to another pre-specified process variant.

Existing Support. Run-time re-configuration of process variants is partially
covered by existing proposals. In Provop, it is supported by including wvari-
ant branchings in the configured process variant model and encapsulating the
change operations within the variant branches. Worklets allow for run-time re-
configuration since their instantiation is performed dynamically based on context
changes. In this line, existing proposals for handling exceptions (e.g., exception
handling patterns [22]) can be used for enabling run-time re-configurations of
process variants. However, neither PESOA, nor C-EPC, nor RULE, nor PPM
provide such re-configuration support. Finally, in the area of product families,
software system run-time re-configuration is provided by using feature models
[3]. By enabling/disabling features, systems dynamically switch from one feature
configuration (i.e., a system configuration in terms of functionality) to another.

Challenges. Accurate information about the current context and upcoming
context changes must be provided. Thus, monitoring as well as prediction tech-
niques are needed. For this purpose, existing context monitors (e.g., ASTRO [2])
can be used to gather the required context information. In addition, switching
from one process variant to another requires sophisticated exception handling
beyond already existing techniques (e.g., to abort branches no longer needed
[18]). Overall, run-time re-configuration should be supported in a controlled,
efficient, and comprehensible manner [7, 6]. For example, consistent process in-
stance states (including data consistency) must be ensured before continuing
executing the process variant instance on the new process variant model.

4.3 Evolution of Single Process Variants

General Description. For many application scenarios, it is unrealistic to as-
sume that all possible situations can be anticipated at design time and thus be
incorporated into the configurable process model a priori. As a consequence,
at run-time situations might emerge in which a process variant model no longer
reflects the business case happening in the real world. In such a situation, autho-
rized process participants should be allowed to evolve process variants models
to realign their specification to the real-world business case. In addition, such
evolution may also require the propagation of the changes to running process
variant instances [30].

Example 5 (Evolution of a single process variant). For medical exam-
inations, due to new regulations, every time the patient is transported, an extra

Run-time Flexibility for Process Families 9

physical examination shall be performed. Thus, process variants including pa-
tient transportation need to be modified accordingly. For this, the variant model
is evolved and changes are propagated to respective instances, if desired.

Existing Support. Existing variability proposals do not provide support for
evolving process variants. However, in the area of adaptive PAISs, there are tech-
niques enabling users to evolve process definitions and allowing for propagating
changes to process variant instances [18]. Finally, there exist other proposals that
allow adapting process variant instances at the execution level. For example, by
injecting pieces of code, running process variant instances can be modified ac-
cording to context changes [9, 11]. However, they are not suitable for evolving
process variant models since they do not cover changes of the variant model.

Challenges. When evolving a single process variant, proper change propagation
to running process variant instances is necessary. Note that this might be a
complex task in case a process variant contains variation points that may be
dynamically configured. In addition, changes in a single process variant model
may require checking whether other process variants are affected as well. In the
latter, the affected process variants need to be changed accordingly.

4.4 Evolution of the Process Family

General Description. To deal with environmental changes (e.g., changes of
legal regulations), a process family must evolve at the schema level, i.e., changes
of the configurable process model to address the changing requirements (e.g., by
adopting additional variation points), increase its quality, or optimize its use. As
a result, a new process family is obtained. In this context, co-existing schema
versions of a configurable process model may have to be maintained.

Example 6 (Evolution of the process family). Due to newly emerg-
ing legal requirements for medical examinations, every patient needs to sign an
extra document before being examined. Hence, the configurable process model
must be modified since several process variants are affected by that change,
leading to the evolution of the whole process family. In addition, the extra docu-
ment is also relevant for patients for which the medical examination has already
been started. Thus, evolving the process family requires the propagation of the
changes to all configured process variants and—if desired—to running process
variant instances.

Existing Support. C-EPC, Provop, and Worklets support the evolution of
configurable process models, but not the propagation of respective changes to
already configured process variants. In turn, in RULE, configurable process mod-
els can be evolved by adding new rules: changes are automatically propagated to
process variants. Neither PESOA nor PPM support such an evolution. Support
for handling different versions is provided by none of the proposals.

10 Clara Ayora et al.

Challenges. Schema evolution of process model families may require the propa-
gation of the changes to affected configured process variants and—if desired—to
their running process variant instances [17]. In addition, this propagation should
be performed correctly and efficiently. Furthermore, evolution may include new
variation points for which the resolution time is deferred to run-time. Thus,
their proper run-time configuration is required. Finally, conflicts between single
process variants which have been individually evolved (cf. in Sect. 4.3), and the
evolution of the configurable process model need to be handled. Even though
similarities with evolution techniques known from adaptive PAISs exist [18], they
cannot be directly applied for evolving configurable process models with their
specific modeling elements and their dynamically configured parts. Therefore,
different strategies for change propagation are needed.

4.5 Summary and Discussion

As discussed in Sections 4.1-4.4, when dealing with run-time flexibility in pro-
cess model families, four issues are fundamental: run-time configuration of pro-
cess variants and re-configuration of process variants, evolution of single process
variants, and evolution of the entire process model family. Table 1 summarizes
how existing variability proposals support them. For each issue, we differentiate
between no [-], partial [+/-], and full support [+].

PESOA |C-EPC|Provop |RULE |PPM|Worklets

Run-time conf. of process variants - - - - - -
Run-time re-conf. of process variants - - T - - T
Evolution of single process variants - - - - - -
Evolution of the process family - 4/- 4/- /- - +/-

Table 1. Support for Run-time Flexibility Needs

An issue partially covered by existing BP variability proposals is run-time
re-configuration of process variants. Applying different techniques, Provop and
Worklets allow dynamic switches between process variants. However, our anal-
ysis has revealed that run-time configuration and evolution of single process
variants are not well supported by any of the variability proposals. Regarding
the evolution of configurable process models, existing proposals provide basic
support, but lack advanced techniques for the controlled propagation of changes
of the configurable process model to process variants and related instances. Our
analysis has additionally shown that techniques from other areas provide partial
solutions for addressing the flexibility needs discussed. For example, in the area
of product families, support for the run-time re-configuration of software sys-
tems in terms of features is provided [3]. Based on feature models, systems may
dynamically switch from one feature configuration to another one. However, this
technique cannot be easily transferred to process model families since features
cannot be directly mapped to BP specifications. Finally, adaptive PAISs provide
techniques enabling users to evolve process schemes [18]. However, support going

Run-time Flexibility for Process Families 11

beyond existing adaptive PAISs is needed for properly handling flexibility issues
in process families.

Even though existing proposals have addressed specific aspects partially,
holistic support for run-time flexibility (encompassing integrated support for
run-time configuration, re-configuration of process variants, evolution of single
process variants, and evolution of configurable process models) is still missing.
In the context of run-time configuration, correctness of process variants, visu-
alization, and authorization (i.e., who, when, and based on what information
changes can be done) constitute, further challenges to be addressed. In addition,
sophisticated exception handling techniques (e.g., abort branches or undo al-
ready performed activities) are needed to cope with run-time re-configuration of
process variants. Finally, regarding the evolution of process families, techniques
for propagating changes to already configured process variants are required.

5 Conclusions

In this paper, we describe run-time flexibility needs of process model families
and provide an overview regarding the existing support of BP variability. Our
research has revealed that holistic support for run-time flexibility in process fam-
ilies is still missing. Although support for modeling, configuring, and executing
process variants is provided, dealing with pre-planned changes and evolution
at run-time has not been well covered yet. Therefore, in a next step, we plan
to introduce run-time flexibility in process families and develop a framework
to support the dynamic evolution of configurable process models and process
variants.

References

1. Adams, M.J.: Facilitating dynamic flexibility and exception handling for workflows.
PhD thesis, Queensland University of Technology, (2007).

2. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-Time Monitoring of In-
stances and Classes of Web Service Compositions. In Proc. ICWS, 63-71 (2006).

3. Cetina, C., Giner, P., Fons, J, Pelechano, V: Autonomic computing through reuse of
variability models at runtime: the case of smart homes. Comp. 42(10), 37-43 (2009).

4. Dijkman, R., La Rosa, M., Reijers H.A: Managing large collections of business pro-
cess models - Current techniques and challenges, Comp. in Ind. 63(2), 91-97 (2012).

5. Giinther, C.W., Rinderle-Ma, S., Reichert, M., van der Aalst, W.M.P., Recker, J.:
Using process mining to learn form process changes in evolutionary systems. Int.
Journal of Business Process Integration and Management 3(1), 61-78 (2008).

6. Hallerbach, A., Bauer, T., Reichert, M.: Context-based configuration of process
variants. In Proc. TCoB’08, 31-40 (2008).

7. Hallerbach, A., Bauer, T., Reichert, M.: Guaranteeing soundness of configurable
process variants in Provop. In Proc. CEC’09, 98-105(2009).

8. Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process
models: the Provop approach. Soft. Proc.: Impro. and Prac. 22(6-7), 519-546 (2010).

12 Clara Ayora et al.

9. Hermosillo, G., Seinturier, L., Duchien, L.: Creating Context-Adaptive Business
Process. In Proc. ICSOC’08, 228-242 (2010).

10. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. TR, Carniege-Mellon Univ.(1990).

11. Koning, M., ai Sun, C., Sinnema, M., Avgeriou, P.: VxBPEL: Supporting variabil-
ity for web services in BPEL. Inf. and Soft. Tech. 51(2), 258—-269 (2009).

12. Kumar, A., Wen, Y.: Design and management of flexible process variants using
templates and rules. Int. Journal Computers in Industry 63(2), 112-130 (2012).
13. La Rosa, M., Dumas, M., ter Hofstede, A.H.M.: Modelling Business Process Vari-
ability for Design-Time Configuration. In Handbook of Research on Business Process

Modeling, IGI Publisher, 204-228 (2009).

14. Li, C., Reichert, M., Wombacher, A.: Mining business process variants: challenges,
scenarios, algorithms. Data & Knowledge Engineering 70 (5), 409-434 (2011).

15. Miiller, D., Herbst, J., Hammori, M., Reichert, M.: I'T support for release manage-
ment processes in the automotive industry. In Proc. BPM’06, 368-377 (2006).

16. Pascalau, E., Awad, A., Sakr, S., Weske, M.: On Maintaining Consistency of Pro-
cess Model Variants. BPM Workshops, 289-300 (2010).

17. Reichert, M., Rinderle, S., Dadam, P.: On the common support of workflow type
and instance changes under correctness constraints. Proc. CooplIS, 407-425 (2003).

18. Reichert. M, Weber, B.: Enabling flexibility in process-aware information systems:
challenges, methods, technologies. Springer (2012).

19. Reinhartz-Berger, 1., Soffer, P., Sturm, A.: Organisational reference models: sup-
porting an adequate design of local business processes. IBPIM 4(2), 134-149 (2009).

20. Reinhartz-Berger, 1., Soffer, P., Sturm, A.: Extending the adaptability of reference
models. IEEE Trans. on Sys., Man, and Cyb. 40(5), 1045-1056 (2010).

21. Rosemann, M., van der Aalst, W.M.P.: A configurable reference modeling language.
Information Systems 32(1), 1-23 (2007).

22. Russell N.; van der Aalst W.M.P., ter Hofstede A.: Exception handling patterns in
process-aware information systems. In Proc. CAiSE’06, 288-302 (2006).

23. Schnieders, A., Puhlmann, F.: Variability mechanisms in e-business process fami-
lies. In Proc. BIS’06, 583-601 (2006).

24. Soffer, P.: On the notion of flexibility in business processes. In Proc. CAiSE’05
Workshops, 35-42 (2005).

25. Soffer, P.: Scope analysis: identifying the impact of changes in business process
models. Sof. Process: Impro. and Practice 10(4), 393-402 (2005).

26. Torres, V., Zugal, S., Weber, B., Reichert, M., Ayora, C., Pelechano, V.: A quali-
tative comparison of appraches supporting business process variability. BPM Work-
shops 2012 (to appear).

27. van der Aalst, W.M.P., Basten, T.: Inheritance of workflows: An approach to tack-
ling problems related to change. Theo. Comp. Science 270(1-2), 125-203 (2002).
28. van der Aalst, W.M.P., Dumas, M., Gottschalk, F., ter Hofstede, A.H.M., La Rosa,
M., Mendling, J.: Preserving correctness during business process model configura-

tion. Formal Asp. Comput. 22(3-4), 459-482 (2010).

29. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support
features - Enhancing flexibility in process-aware information systems. Data & Know-
eldge Engineering 66(3), 438-466 (2008).

30. Weber, B., Sadiq, S.W., Reichert, M.: Beyond rigidity - dynamic process lifecycle
support. Computer Science - R&D 23(2), 45-65 (2009).

31. Weber, B., Reichert, M., Reijers, H.A., Mendling, J.: Refactoring large process
model repositories. Computers in Industry 62(5), 467-486 (2011).

