
Updatable Process Views for User-centered
Adaption of Large Process Models

Jens Kolb, Klaus Kammerer and Manfred Reichert

Institute of Databases and Information Systems
Ulm University, Germany

{jens.kolb,klaus.kammerer,manfred.reichert}@uni-ulm.de

http://www.uni-ulm.de/dbis

Abstract. The increasing adoption of process-aware information sys-
tems (PAISs) has resulted in large process model collections. To support
users having different perspectives on these processes and related data,
a PAIS should provide personalized views on process models. Existing
PAISs, however, do not provide mechanisms for creating or even chang-
ing such process views. Especially, changing process models is a frequent
use case in PAISs due to changing needs or unplanned situations. While
process views have been used as abstractions for visualizing large process
models, no work exists on how to change process models based on respec-
tive views. This paper presents an approach for changing large process
models through updates of corresponding process views, while ensuring
up-to-dateness and consistency of all other process views on the pro-
cess model changed. Respective update operations can be applied to a
process view and corresponding changes be correctly propagated to the
underlying process model. Furthermore, all other views related to this
process model are then migrated to the new version of the process model
as well. Overall, our view framework enables domain experts to evolve
large process models over time based on appropriate model abstractions.

1 Introduction

Process-aware information systems (PAISs) provide support for business pro-
cesses at the operational level. A PAIS strictly separates process logic from
application code, relying on explicit process models. This enables a separation
of concerns, which is a well established principle in computer science to increase
maintainability and to reduce costs of change [1]. The increasing adoption of
PAISs has resulted in large process model collections. In turn, each process
model may refer to different domains, organizational units and user groups, and
comprise dozens or even hundreds of activities [2]. Usually, the different user
groups need customized views on the process models relevant for them, enabling
a personalized process abstraction and visualization [3]. For example, managers
rather prefer an abstract process overview, whereas process participants need a
detailed view of the process parts they are involved in. Hence, providing per-
sonalized process views is a much needed PAIS feature. Several approaches for

http://www.uni-ulm.de/dbis


creating process model abstractions based on process views have been proposed
[4,5,6]. However, these proposals focus on creating and visualizing views, but
do not consider another fundamental aspect of modern PAISs: change and evo-
lution [1,7]. More precisely, it is not possible to change a large process model
through editing or updating one of its view-based abstractions. Hence, process
changes must be directly applied to the core process model, which constitutes
a complex as well as error-prone task for domain experts, particularly in con-
nection with large process models. To overcome this limitation, in addition to
view-based process abstractions, users should be allowed to change large process
models through updating related process views.
In the proView1 project, we address these challenges by not only supporting the
creation and visualization of process views, but additionally providing change
operations enabling users to modify a process model through updating a related
process view. In this context, all other views associated with the changed process
model are migrated to its new version as well. Besides view-based abstractions
and changes, proView allows for alternative process model representations (e.g.,
tree-based, form-based, and diagram-based) as well as interaction techniques
(e.g., gesture- vs. menu-based) [8,9,10]. Overall goal is to enable domain experts
to “interact” with the (executable) process models they are involved in.

Visualization Engine

Change Engine

CS2CS1 CS3

Migrate Views

Create Appearance

Refactor Update CPM

Create Schema Refactor

CPM

Business Process 1

View3

View2

View1
2

1
34

5 6 7

PAIS1

PAIS2

E
x
e

c
u

ti
o

n
 &

 M
o

n
it
o

ri
n

g
 

E
n

g
in

e

e
x
e

c
u

te

visualize

change

ü ü 

ü ü ü 

Fig. 1. The proView Framework

Fig. 1 gives an overview of the proView framework: A business process is
captured and represented through a Central Process Model (CPM). In addition,
for a particular CPM, so-called creation sets (CS) are defined. Each creation set
specifies the schema and appearance of a particular process view. For defining,
visualizing, and updating process views, the proView framework provides en-
gines for visualization, change, and execution & monitoring.
The visualization engine generates a process view based on a given CPM and the
information maintained in a creation set CS, i.e., the CPM schema is transformed
to the view schema by applying the corresponding view creation operations spec-
ified in CS (Step 5©). Afterwards, the resulting view schema is simplified by ap-
plying well-defined refactoring operations (Step 6©). Finally, Step 7© customizes
the visual appearance of the view (e.g., creating a tree-, form-, or activity-based
visualization [5,8]). Section 2 provides insights into these steps.

1 http://www.dbis.info/proView



When a user updates a view schema, the change engine is triggered (Step

1©). First, the view-based model change is propagated to the related CPM using
well-defined change propagation algorithms (Step 2©). Next, the schema of the
CPM is simplified (Step 3©), i.e., behaviour-preserving refactorings are applied
to foster model comprehensibility (e.g., by removing surrounding gateways not
needed anymore). Afterwards, the creation sets of all other views associated with
the CPM are migrated to the new CPM schema version (Step 4©). This becomes
necessary since a creation set may be contradicting with the changed CPM
schema. Finally, all views are recreated (Steps 5©- 7©) and presented to users.
Section 3 presents the view update operations and migration rules required to
change business processes through editing and updating process views. Section
4 then discusses related work and Section 5 summarizes the paper.

2 Fundamentals on Process View Creation

Section 2.1 defines the notion of process model and useful functions. Section
2.2 then discusses how process views can be created and formally represented
in proView (i.e., Step 5©, Fig. 1). Section 2.3 introduces behaviour-preserving
process model refactorings enabling lean and comprehensible process views.

2.1 Process Model

A process model is represented by a process schema consisting of process nodes
and the control flow between them (cf. Fig. 2). For control flow modeling, gate-
ways and control flow edges are used (cf. Definition 1).

A

B

C F G

D

E

StartFlow Activity

ANDsplit
ET_SoftSync

EndFlow

LOOPsplitLOOPjoin XORsplit XORjoin

ANDjoin

SESE block

(Single Entry Single Exit)

Fig. 2. Example of a Process Model

Definition 1 (Process Model). A process model is defined as a tuple P =
(N,E,EC,NT,ET ) where

– N is a set of nodes (i.e., activities and gateways),

– E ⊂ N×N is a precedence relation (e = (nsrc, ndest) ∈ E with nsrc 6= ndest),

– EC : E → Conds ∪ {True} assigns transition conditions to control edges,
– NT : N → {StartF low,EndF low,Activity, ANDsplit, ANDjoin,XORsplit,

XORjoin, LOOPsplit, LOOPjoin} assigns a node type NT (n) to each node n ∈
N ; N is divided into disjoint sets of activity nodes A (NT = Activity) and gate-
ways S (NT 6= Activity), i.e., N = A ∪ S, and

– ET : E → {ET Control, ET SoftSync,ET Loop} assigns a type ET (e) to each
edge e ∈ E.



Definition 1 can be used for representing the schemas of both the Central
Process Model (CPM) and its associated process views. Note that this definition
focuses on control flow. In particular, it can be applied to existing activity-
oriented modeling languages, but is not restricted to a specific one. This paper
uses BPMN as notation due to its widespread use. We further assume that a
process schema is well-structured, i.e., sequences, branchings (of different se-
mantics), and loops are specified as blocks with well-defined start and end nodes
having the same gateway type. These blocks—also known as SESE blocks (cf.
Definition 2)—may be arbitrarily nested, but must not overlap (like, e.g., blocks
in BPEL). To increase expressiveness, sync edges are supported, which allow
for a cross-block synchronization of parallel activities (as BPEL links do). For
example, in Fig. 2, activity E must not be enabled before G is completed.

Definition 2 (SESE). Let P = (N,E,EC,NT,ET ) be a process model and
X ⊆ N be a subset of activity nodes (i.e., NT (n) = Activity, ∀n ∈ X). Then:
Subgraph P ′ induced by X is called SESE (Single Entry Single Exit) block iff P ′

is connected and has exactly one incoming and one outgoing edge connecting it
with P. Further, let (ns, ne) ≡ MinimalSESE(P,X) denote the start and end
node of the minimum SESE comprising all activities from X ⊆ N .

How to determine SESE blocks is described in [11]. Since we presume a well-
structured process schema, a minimum SESE can be always determined.
To determine the predecessor and successor of a single node or SESE block
within a process model P = (N,E,EC,NT,ET ), operations np = pred(P,N

′
)

and ns = succ(P,N
′
) with N

′ ⊆ N are provided. Thereby np is the only node

having exactly one outgoing edge ep = (np, n) ∈ E, n ∈ N
′
. In turn, since N

′

represents a SESE, ep is the only incoming edge of any node in N
′

connecting

it with P . Similarly, succ(P,N
′
) returns the node directly succeeding set N

′
.

2.2 Process View Creation

To create a process view on a process model, the latter has to be abstracted.
For this, proView provides elementary view creation operations. In turn, these
may be combined to realize high-level view creation operations (e.g., show all
my activities and their precedence relation) in order to support users in creating
process views easily [12]. At the elementary level, two categories of operations are
required: reduction and aggregation. An elementary reduction operation hides an
activity of the original process model in the process view created. For example,
operation RedActivity(V, n) removes node n together with its incoming and
outgoing edges, and inserts a new edge linking the predecessor of n with its
successor in view V (cf. Fig. 3a). A formal definition can be found in [12,13].
An aggregation operation, in turn, takes a set of activities as input and com-
bines them into an abstracted node in the process view. For example, operation
AggrSESE(V,N

′
) removes all nodes of the SESE block, containing activities

from set N
′

(including their edges), and inserts an abstract activity in the re-
sulting process view instead (cf. Fig. 3b). Furthermore, elementary operation



A B C D E

F

{LATE_EARLY}

X
{LATE_LATE}

X

EARLY_* LATE_* *_EARLY *_LATE

{EARLY_LATE,EARLY_EARLY}
X

X

a) RedActivity(V,B)

V1: V2:

CPM:

A B CDEA C D

OpV2={

RedActivity(F),

AggrSESE(C,D,E}

Change in View V1

InsertParallel

({C,D},X,V1)

1

a) Initial Situation

2 Determining Insert 

Position in CPM 

(depends on Parameter 

InsertBlockMode)

3 Migrating Views

Results b)+c)

InsertBlockMode=

LATE_EARLY

A B CDEX

X

A B C D E

b) Updated View V2

AggrPartlyMode=AGGR AggrPartlyMode=SHOW

c) Updated View V2

A B C

A C

b) AggrSESE(V,{B,C})

A B C D

A BC D

A

B C

D

c) AggrComplBranches(V,{A,B,C})

ABC

D

Fig. 3. Examples of Process View Creation Operations

AggrComplBranches(V,N
′
) aggregates complete branches of an XOR/AND

block to a branch with one abstracted node. N
′
must contain the activities of

these branches (i.e., activities between split and corresponding join gateway)
that shall be replaced by a single branch with one aggregated node (cf. Fig. 3c).
Generally, a process view can be created through the consecutive application of
elementary operations on a process model. Remember that this process model
represents a particular business process and is denoted as Central Process Model
(CPM). A particular CPM may have several associated views. Note that the pre-
sented view operations consider other process perspectives (e.g., data elements
and data flow) as well; due to lack of space we omit further details.

Definition 3 (Process View). Let CPM be a process model. A process view
V(CPM) is described through a creation set CSV = (CPM,Op, PS) with:

– CPM = (N,E,EC,NT,ET ) is the process model underlying the view and
denoted as Central Process Model,

– Op = 〈Op1, . . . , Opn〉 is the sequence of elementary view creation operations
applied to CPM: Opi ∈ {RedActivity, AggrSESE,AggrComplBranches},

– PS = (PS1, . . . , PSm) is a tuple of parameters and corresponding parameter
values defined for a specific view.

Definition 3 expresses that a process view can be created through the consec-
utive application of the operations contained in the corresponding creation set.
In this context, configuration parameters (shortly: parameter) are required to
describe how high-level operations shall be mapped to elementary view creation
operations depending on the selected nodes in the CPM (see [12] for details). Sec-
tion 3 will show that these parameters are required to enable automatic change
propagation from a view to its underlying CPM.
A view node n either directly corresponds to node n of the CPM or it abstracts
a set of CPM nodes. CPMNode(V, n) reflects this by returning either node n or
a node set Nn of CPM = (N,E,EC,NT,ET ), depending on the creation set
CSV = (CPM,Op, PS) with Op = 〈Op1, . . . , Opk〉.

CPMNode(V, n) =

{
n n ∈ N

Nn ∃Opi ∈ Op : Nn
Opi−→ n



2.3 Refactoring Operations

When creating process views, unnecessary control flow structures might result
due to the generic nature of the view creation operations applied, e.g., single
branches of a parallel branching might be empty or a parallel branching only
have one remaining branch. In such cases, gateways can be removed in order to
obtain a more comprehensible schema of the process view. For example, the view
in Fig. 4a is created by reducing activity B. Afterwards, an AND block only
surrounding activity C remains. In this case, the surrounding AND gateways
can be removed without losing the predecessor/successor relations of the view
activities (i.e., behaviour is preserved). Fig. 4b shows another example reducing
activity B within a sequence. Afterwards, the synchronizing relationships become
obsolete and hence can be removed. Fig. 4c shows an example of nested AND
gateways which may be combined to simplify the model.

A
D

F

A D F

A

B

F

D

A

B

F

D

d) e)

A D

C

A DC

a)

A
B

F

D

A B

F

D

b)

A C

D

A CD

c)

A D

C

RedActivity(V,B)

B A C

D

B

RedActivity(V,B)

Fig. 4. Examples of View Refactoring Operations

The proView framework offers a set of operations for refactoring the schema
of process views, without affecting the dependencies of activities within the view
and hence without changing behavioural semantics [13].

3 Changing Processes through Updatable Process Views

Process views are not only required for enabling personalized process visualiza-
tion through abstracting the underlying CPM. They also shall provide the basis
for changing large process models based on appropriate abstractions. Section 3.1
describes how updates of a process view can be accomplished and then propa-
gated to the underlying CPM. Section 3.2 presents migration rules for updating
all other process views associated with the changed CPM as well.

3.1 Updating Process Views

When allowing users to change a business process model based on a personal-
ized process view, it has to be ensured that this change can be automatically
propagated to the underlying CPM without causing syntactical or semantical
errors. Hence, well-defined view update operations are required guaranteeing for
a proper propagation of view updates to the corresponding CPM. Table 1 gives



Operation Parameter & Value Description
InsertSerial(V, n1, n2, nnew) InsertSerialMode = {

EARLY,
LATE,
PARALLEL}

Inserts activity nnew between n1 and n2

in view V . The parameter describes the
propagation behaviour of this insertion.

InsertParallel(V, n1, n2, nnew)
InsertCond(V, n1, n2, nnew, c)
InsertLoop(V, n1, n2, nnew, c)

InsertBlockMode = {
EARLY EARLY,
EARLY LATE,
LATE EARLY,
LATE EARLY}

Inserts activity nnew as well as an AND/
XOR/Loop block surrounding the SESE
block defined by n1 and n2 in view V .
The first (last) part of the parameter
value before (after) the underline spec-
ifies the propagation behaviour of the
split (join) gateway.

InsertBranch(V, g1, g2, c) InsertBranchMode = {
EARLY,
LATE}

Inserts an empty branch between split
gateway g1 and join gateway g2 in view
V . In case of conditional branchings or
loops, a condition c is required.

InsertSyncEdge(V, n1, n2) - Inserts a sync edge from n1 to n2 in V ,
where n1 and n2 belonging to different
branches of a parallel branching.

DeleteActivity(V, n1) DeleteActivityMode = {
LOCAL,
GLOBAL}

Deletes activity n1 in view V . The pa-
rameter decides whether the activity is
deleted locally (i.e., reduced in the view)
or removed from the CPM (i.e., global).

DeleteBranch(V, g1, g2) - Deletes an empty branch between gate-
ways g1 and g2 in view V .

DeleteSyncEdge(V, n1, n2) - Deletes a sync edge between activities
n1 and n2 in view V .

DeleteBlock(V, g1, g2) DeleteBlockMode={
INLINE,
DELETE}

Deletes an AND/XOR/Loop block en-
closed by gateways g1 and g2 in view
V . The parameter describes whether el-
ements remaining in the block shall be
inlined or deleted.

Table 1. Update Operations for Process Views

an overview of the view update operations supported by proView.
Propagating view changes to the underlying CPM is not straightforward. In

certain cases, there might be ambiguities regarding the propagation of the view
change to the underlying CPM. For example, it might not be possible to deter-
mine a unique position for inserting an activity in the CPM due to the abstrac-
tions applied when creating the view (cf. Fig. 5).
Consider the example from Fig. 5. Inserting activity Y in view V 1 and propagat-
ing this change to the underlying CPM results in a unique insert position, i.e.,
this view update can be automatically propagated to the CPM without need for
resolving any ambiguity. By contrast, inserting activity X in view V 1 allows for
several insert positions in the related CPM. More precisely, there are ambiguities
in how to transform the view change into a corresponding CPM change, i.e., X
may be inserted directly after activity A or directly before activity C. Note that
this ambiguity is a consequence of the reduction (i.e., deletion of B) applied
when creating the view. However, when propagating view updates to a CPM,
users should not be burdened with resolving such ambiguities. Hence, to enable
automated propagation of view updates to a CPM, proView supports param-
eterizable propagation policies. Hereafter, we introduce parameterizable view
update operations that can be configured differently to automatically propagate
view updates to a CPM resolving ambiguities if required (cf. Table 1).



Algorithm 1: InsertSerial(V,n1,n2,nnew)

Pre n
′
1 = last(CPMNode(V, n1)), n

′
2 = first(CPMNode(V, n2))

Post if(succ(CPM,n
′
1) == n

′
2)

InsertNode(CPM,n
′
1, n

′
2, nnew, Activity)

else switch(InsertSerialMode) :

EARLY : InsertNode(CPM,n
′
1, succ(CPM, {n

′
1}), nnew, Activity)

LATE : InsertNode(CPM, pred(CPM, {n
′
2}), n

′
2, nnew, Activity)

PARALLEL : (ns, nj) = MinimalSESE(CPM, {n
′
1, n

′
2})

InsertNode(CPM, pred(CPM, {ns}), ns, gs, ANDsplit)
InsertNode(CPM,nj , succ(CPM, {nj}), gj , ANDjoin)
InsertEdge(CPM, gs, gj , ET Control)
InsertNode(CPM, gs, gj , nnew, Activity)

InsertEdge(CPM,n
′
1, nnew, ET SoftSync)

InsertEdge(CPM,nnew, n
′
2, ET SoftSync)

Table 2. View Update Operation: InsertSerial

For example, consider view update operation InsertSerial in Fig. 5. Here, pa-
rameter InsertSerialMode defines whether X is inserted directly after A (i.e., In-
sertSerialMode=EARLY ) or directly before C (i.e., InsertSerialMode=LATE ).
Each configuration parameter has a default value (printed in bold in Table 1),
but can be set specifically for any view and stored in parameter set PS of creation
set CS (cf. Section 2.2). We exemplarily provide algorithms for operations In-
sertSerial and InsertParallel to indicate how a view change can be transformed
into a corresponding CPM change taking such parameterizations into account.

A X C YB D E

A B C YX D E

InsertNode(CPM,C,D,Y)

InsertNode(CPM,A,B,X)

InsertNode(CPM,B,C,X)

CPM‘:

?

AggrSESE(V1,{D,E})

RedActivity(V1,B)

InsertSerialMode

EAR
LY

LATE

X

View V1:

A C DE

Y

InsertSerial(V1,C,DE,Y)

InsertSerial(V1,A,C,X)

?

CPM‘‘:

Fig. 5. Ambiguity when Propagating View Changes to the CPM

InsertSerial. As shown in Fig. 5, InsertSerial(V, n1, n2, nnew) adds an activity
to the schema of process view V . Activity n1 describes the node directly preceding
and n2 the node directly succeeding the activity nnew to be added to process view
V . Algorithm 1 (cf. Table 2) shows how a view change described by operation
InsertSerial can be transformed into a schema change of the related CPM. First
of all, the nodes of the CPM corresponding to n1 and n2 are determined. If
one of these nodes is an aggregated one, CPMNode returns a set of nodes. In
this case, first/last returns the first/last node within this set (regarding control
flow). When applying this change, it is checked whether nodes n

′

1 and n
′

2 (i.e.,
corresponding CPM nodes of n1 and n2) are direct neighbours. In this case,
nnew can be directly inserted between these two nodes by applying the basic
change operations InsertNode and InsertEdge to the CPM (cf. Table 3). In turn,



if n
′

1 and n
′

2 are no direct neighbours in the CPM2, it must be decided where to
insert the activity, taking the value of parameter InsertSerialMode into account.
As shown in Table 2, when setting this parameter to EARLY, the activity is
directly inserted after n

′

1 (cf. Table 3). In turn, when choosing value LATE, it
is inserted directly before n

′

2. Finally, parameter value PARALLEL determines
the minimum SESE block containing activities n

′

1 and n
′

2. This is followed by
adding an AND block surrounding the SESE block. The latter is accomplished by
adding an ANDsplit and ANDjoin gateway as well as an empty branch between
them. Finally, nnew is added to this empty branch. To ensure that the same
precedence relations as for the process view are obeyed, sync edges from n

′

1 to
nnew and from nnew to n

′

2 are inserted as well.

Algorithm 2: InsertNode(P,n1,n2,nnew,node type)
Pre succ(P, n1) = n2, {n1, n2} ⊆ N , P = (N,E,EC,NT,ET )
Post NT (nnew) = node type

N
′

= N ∪ {nnew}
e1 = (n1, nnew), e2 = (nnew, n2) with ET (e1) = ET (e2) = ET Control

E
′

= E \ {(n1, n2)} ∪ {e1, e2}
Algorithm 3: InsertEdge(P,n1,n2, edge type)

Pre {n1, n2} ⊆ N , P = (N,E,EC,NT,ET )
Post enew = (n1, n2), ET (enew) = edge type

E
′

= E ∪ {enew}
Table 3. Basic Process Model Change Operations

We now show that the transformation of a view update (as defined by In-
sertSerial) to a corresponding change of the underlying CPM, followed by the
recreation of this view, results in the same view schema as one obtains when
directly inserting this activity in the view. We consider this as a fundamental
quality property of our view update propagation approach. For this purpose, we
introduce the notion of dependency set (cf. Definition 4).

Definition 4 (Dependency Set). Let P = (N,E,EC,NT,ET ) be a process
model. Then: DP = {(n1, n2) ∈ N ×N |n1 � n2, NT (n1) = NT (n2) = Activity}
is denoted as dependency set. It reflects all direct control flow dependencies be-
tween two activities.

For example, the dependency set of the CPM depicted in Fig. 5 is DCPM ′ =
{(A,X), (X,B), (B,C), (C, Y ), (Y,D), (D,E)}.

Theorem (InsertSerial Equivalence) Let CPM be a central process model and
DCPM be the corresponding dependency set. Further, let V be a view on CPM
with creation set CSV = (CPM,Op, PS) and corresponding dependency set DV .
Then: Inserting nnew in V can be realized by applying InsertSerial(V, n1, n3,
nnew). Concerning the dependency set, propagating this change operation to the
CPM results in the same view schema than one obtains when inserting nnew

directly in V .

2 e.g., when creating the view, the CPM might have been reduced by deleting activities
or gateways due to refactorings of the view schema



As shown, RedActivity and related refactorings may cause ambiguities. Hence,
their influence on the dependency set has to be discussed. Applying RedActivity
(V, n2) with (n

′
, n2), (n2, n

′′
) ∈ E to a process schema with dependency set D

results in D′
= D \ {(n′

, n2), (n2, n
′′
)} ∪ {(n′

, n
′′
)}, n

′
, n

′′ ∈ N .
Proof: Inserting nnew directly in view V results in dependency set D

′
V = DV ∪ {(n1, nnew),

(nnew, n3)} \ {(n1, n3)}. When inserting nnew in the CPM, we have to distinguish four cases:

Case 1 : No activity is reduced between n1 and n3, i.e., no parameter is required and D
′
CPM =

DCPM ∪ {(n1, nnew), (nnew, n3)} \ {(n1, n3)} = D
′
V .

Case 2-4: An activity (activity set) is reduced between n1 and n3, i.e., ambiguities occur and pa-

rameter InsertSerialMode becomes relevant.

Case 2: InsertSerialMode=EARLY results in D
′
CPM = DCPM∪{(n1, nnew), (nnew, n2)}\{(n1, n2)}

and RedActivity(n2) ∈ Op with {(n1, n2), (n2, n3)} ⊂ DCPM . Without loss of generality, we

may assume that just one activity is reduced between n1 and n3. Next, view V is recreated with

RedActivity(n2); this results in D
′′
V = D

′
CPM \ {(nnew, n2), (n2, n3)} ∪ {(nnew, n3)} = DCPM ∪

{(n1, nnew), (nnew, n2)} \ {(n1, n2)} \ {(nnew, n2), (n2, n3)} ∪ {(nnew, n3)} = D
′
V .

Case 3: InsertSerialMode=LATE: similar to EARLY, whereby nnew is inserted directly before n3.

Case 4: InsertSerialMode=PARALLEL: results in D
′
CPM = DCPM ∪ {(n1, nnew), (nnew, n3)} and

RedActivity(n2) ∈ Op with {(n1, n2), (n2, n3)} ⊂ DCPM . Next, V is recreated with RedActivity(n2);

this results in D
′′
V = D

′
CPM \ {(n1, n2), (n2, n3)} ∪ {(n1, n3)}. At this point, the parallel branch-

ing is still remaining in the graph, i.e., one branch containing nnew and an empty branch due to

reductions. Finally, refactorings remove unnecessary branchings: D
′′′
V = D

′′
V \ {(n1, n3)} = D

′
V .

InsertParallel. When inserting an activity in parallel to existing activities by
applying InsertParallel to a view, again the transformation of this change to
a corresponding CPM change might raise ambiguities regarding the positions
the ANDsplit and ANDjoin gateways shall be inserted. Fig. 6a illustrates this.
To deal with this ambiguity, parameter InsertBlockMode must be set. It allows
configuring the positions at which the ANDsplit (i.e., EARLY ∗, LATE ∗) and
ANDjoin respectively (i.e., ∗ EARLY , ∗ LATE) shall be inserted.

Algorithm 4: InsertParallel(V,n1,n2,nnew)
Pre (n1, n2) is SESE in view V

n
′
1 = last(CPMNode(V, n1)), n

′
2 = first(CPMNode(V, n2))

Post if(pred(V, last(CPMNode(V, n1)))! = last(CPMNode(V, pred(V, n1))))
switch(InsertBlockMode)

EARLY ∗ : n
′
1 = succ(CPM,CPMNode(V, pred(n1)))

LATE ∗ : n
′
1 = last(CPMNode(V, n1))

if(pred(V, last(CPMNode(V, n2)))! = last(CPMNode(V, pred(V, n2))))
switch(InsertBlockMode)

∗ EARLY : n
′
2 = first(CPMNode(V, n2))

∗ LATE : n
′
2 = succ(CPM,CPMNode(V, pred(V, n2)))

(ns, nj) = MinimalSESE(CPM, {n
′
1, n

′
2})

InsertNode(CPM, pred(CPM, {ns}), ns, gs, ANDsplit)
InsertNode(CPM,nj , succ(CPM, {nj}), gj , ANDjoin)
InsertEdge(CPM, gs, gj , ET Control)
InsertNode(CPM, gs, gj , nnew, Activity)

Table 4. View Update Operation: InsertParallel

Table 4 provides a detailed view of the InsertParallel operation: n1/n2 denotes
the start/end of the SESE block to which activity nnew shall be added in par-



allel. When transforming this view update to a corresponding CPM change, it
must be decided where to add the ANDsplit and the ANDjoin gateways in case
of ambiguities. Regarding the ANDsplit, for example, it is checked whether the
direct predecessor of n1 in the CPM is the same as in view schema V . If this is
not the case, parameter InsertBlockMode is used to decide whether to position
the ANDsplit at the earliest or latest possible location in the CPM. The same
procedure is applied in respect to the ANDjoin. After determining the corre-
sponding insert positions in the CPM, a minimum SESE block is determined
to properly insert the surrounding AND block with a branch containing nnew.
Fig. 6a shows an example illustrating how different insert positions depending
on the parameter value are chosen. Note that, independent of the concrete pa-
rameter value and insert position respectively, the user of view V always gets
the same model when re-applying the view creation and refactoring operations
on the CPM. Similar to InsertParallel, the propagation of a change expressed
in terms of operations InsertConditional or InsertLoop can be accomplished. In
addition to insert join/split gateways, branching condition c has to be set to
guarantee proper process execution (cf. Table 1).

A B C D E

F

{LATE_EARLY}

X
{LATE_LATE}

X

EARLY_* LATE_* *_EARLY *_LATE

{EARLY_LATE,EARLY_EARLY}
X

X

OpV1={

RedActivity(V1,B),

RedActivity(V1,E),

RedActivity(V1,F)}

View V1: View V2:

CPM:

A B CDEA C D

OpV2={

RedActivity(V2,F),

AggrSESE(V2,{C,D,E})}

Propagate Change

InsertParallel

(V1,C,D,X)

1

a) Initial Situation

2 Determining Insert 

Position in CPM 

(depends on Parameter 

InsertBlockMode)

3 Migrating Views

Results b)+c)

InsertBlockMode=

LATE_EARLY

A B CDEX

X

A B C D E

b) Migrated View V2

AggrPartlyMode=AGGR AggrPartlyMode=SHOW

c) Migrated View V2

Fig. 6. Updating the CPM after a View Change

3.2 Migrating Process Views to a new CPM Version

When changing a CPM through updating one of its associated views, all other
views defined on this CPM must be updated as well. More precisely, it must be
guaranteed that all process views are up-to-date and hence users always interact
with the current version of a process model and related views respectively. To
ensure this, after propagating a view change to a CPM, the creation sets of all
other process views must be migrated to the new CPM version (cf. Definition
3). Note that in certain cases this creation set will contradict to the CPM,
e.g., an activity might be inserted in a branch, which is aggregated through an
AggrComplBranches operation. In this case, the operation has to be adapted



including the new activity. Table 5 provides migration rules required to migrate
creation sets of associated views after updating the CPM.

Migration Rule M1:
∃AggrSESE/AggrComplBranches(V,Na) = Op1 : Na ⊃ {pred(V,Nc), succ(V,Nc)}, Op1 ∈ Op
⇒ AggrComplMode=SHOW: Op′ = Op \Op1

AggrComplMode=AGGR: Op′ = Op \Op1 ∪ {AggrSESE/AggrComplBranches(V,Na ∪Nc)}
Migration Rule M2:
∃AggrSESE/AggrComplBranches(V,Na) = Op1 : pred(V,Nc) ∈ Na ⊕ succ(V,Nc) ∈ Na

⇒ AggrPartlyMode=SHOW: Op′ = Op \Op1

AggrPartlyMode=AGGR: Op′ = Op \Op1 ∪ {AggrSESE/AggrComplBranches(V,Na ∪Nc)}
Migration Rule M3:
∃RedActivity(V, pred(V,Nc))) = Op1 ∧ RedActivity(V, succ(V,Nc)) = Op2, Op ⊃ {Op1, Op2}
⇒RedComplMode=SHOW: no action required

RedComplMode=RED: Op′ = Op ∪OpN , OpN = {n ∈ Nc|RedActivity(V, n)}
Migration Rule M4:
∃RedActivity(V, pred(V,Nc))) = Op1 ⊕ RedActivity(V, succ(V,Nc)) = Op2, Op ⊃ {Op1, Op2}
⇒RedPartlyMode=SHOW: no action required

RedPartlyMode=RED: Op′ = Op ∪OpN , OpN = {n ∈ Nc|RedActivity(V, n)}
Table 5. Process View Migration Rules

Regarding migration rule M1, Nc denotes the set of nodes added to the CPM.
If the direct predecessor and successor of this node set are both aggregated to
the same abstract node (i.e., both are element of set Na, which is aggregated
through AggrSESE or AggrComplBranches), the migration rule will be applied.
In this case, there exist two options: either node set Nc is included in the aggre-
gation or this aggregation is removed and the change is shown to the user. This
can be expressed by parameter AggrComplMode for each view: parameter value
SHOW suggests removing the aggregation operations in the creation set, while
value AGGR (default) extends the aggregated node set by the new nodes in Nc.
If only one of the nodes (i.e., the predecessor or successor of Nc) is included in
an aggregation, migration rule M2 is applied. In this case, parameter AggrPart-
lyMode expresses whether the aggregation shall be expanded (i.e., AGGR) or
resolved (i.e., SHOW ). Fig. 6bc present examples of this operation.
Migration rules M3 and M4 handle changes within reduced node sets. Analogous
to the handling of aggregation operations, migration rule M3 is applied if both
the predecessor and successor of node set Nc are removed due to a reduction.
In turn, M4 is applied if exactly only one of these two nodes is reduced. In this
case, parameter RedComplMode (or RedPartlyMode) and its values (SHOW or
RED (default)) determine whether node set Nc is visible or reduced in the view.
After migrating all creation sets belonging to a CPM, the corresponding views
are recreated (cf. Fig. 1). Applying a change to the CPM and recreating the
process views afterwards allows us to guarantee that all views are up-to-date.
Since the recreation of a process view is expensive, several optimization tech-
niques are applied. First, instead of recreating all process views, this is only
accomplished for those views affected by the change. Second, when changing the
creation set, the visualization engine exactly knows which parts of the process
view have changed and respective parts are then recreated.



4 Related Work

In the context of cross-organizational processes, views have been applied for cre-
ating abstractions of partner processes hiding private process parts [6,14,15,16].
However, process views are manually specified by the process designer, but do
not serve as abstractions for changing large process models as in proView.
An approach providing predefined process view types (i.e., human tasks, col-
laboration views) is presented in [4]. As opposed to proView, this approach is
limited to these pre-specified process view types. In particular, these views are
not used as abstractions enabling process change. In turn, [17] applies graph
reduction techniques to verify structural properties of process schemas. The
proView project accomplishes this by enabling aggregations that use high-level
operations. In [18] SPQR-tree decomposition is applied when abstracting process
models. This approach neither takes other process perspectives (e.g., data flow)
nor process changes into account.
The approach presented in [19] determines semantic similarity between activities
by analyzing the schema of a process model. The similarity discovered is used
to abstract the process model. However, this approach neither distinguishes be-
tween different user perspectives on a process model nor provides concepts for
manually creating process views.
An approach for creating aggregated process views is described in [20]. It pro-
poses a two-phase procedure for aggregating parts of a process model not to be
exposed to the public. However, process view updates to evolve or adapt pro-
cesses are not considered.
View models serving monitoring purpose are presented in [21,22]. Focus is on
the run-time mapping between process instances and views. Further, the views
have to be pre-specified manually by the designer.
In turn, [23] aligns technical workflows with business processes. It allows de-
tecting changes through behavioural profiles and propagating them to change
regions of the corresponding technical model. These regions indicate the schema
region to which the change belongs. Automatic propagation is not supported.
Similarly, [24] describes a mapping model between a technical workflow and a
business process. An automatic propagation of changes is not supported.
For defining and changing process models, various approaches exist. [25] presents
an overview of frequently used patterns for changing process models. Further, [7]
summarizes approaches enabling flexibility in PAISs. In particular, [26] presents
an approach for adapting well-structured process models without affecting their
correctness properties. Based on this, [27] presents concepts for optimizing pro-
cess models over time and migrating running processes to new model versions
properly. None of these approaches takes usability issues into account, i.e., no
support for user-centered changes of business processes is provided.
The proView framework provides a holistic framework for personalized view cre-
ation. Further, it enables users to change business processes based on their views
and guarantees that other views of the process model are adapted accordingly.
None of the existing approaches covers all these aspects and is based on rigid
constraints not taking practical requirements into account.



5 Conclusion

We introduced the proView framework and its formal foundation; proView sup-
ports the creation of personalized process views and the view-based change of
business processes, i.e., process abstractions not only serve visualization purpose,
but also lift process changes up to a higher semantical level. A set of update
operations enables users to update their view and to propagate the respective
schema change to the underlying process model representing the holistic view
on the business process. Parameterization of these operations allows for auto-
matically resolving ambiguities when propagating view changes; i.e., the change
propagation behaviour can be customized for each view. Finally, we provide mi-
gration rules to update all other process views associated with a changed process
model. Similar to the propagation, per view it can be decided how much infor-
mation about the change should be displayed to the user.
The proView framework described in this paper is implemented as a client-server
application to simultaneously edit process models based on views [28]. The im-
plementation proves the applicability of our framework. Furthermore, user ex-
periments based on the implementation are planned to test the hypothesis that
view-based process changes improve the handling and evolution of large process
models. Overall, we believe such view-based process updates offer promising per-
spectives to better involve process participants and domain experts in evolving
their business processes.

References

1. Weber, B., Sadiq, S., Reichert, M.: Beyond Rigidity - Dynamic Process Lifecycle
Support: A Survey on Dynamic Changes in Process-Aware Information Systems.
Computer Science - Research and Development 23(2) (2009) 47–65

2. Weber, B., Reichert, M., Mendling, J., Reijers, H.A.: Refactoring Large Process
Model Repositories. Computers in Industry 62(5) (2011) 467–486

3. Streit, A., Pham, B., Brown, R.: Visualization Support for Managing Large Busi-
ness Process Specifications. In: Proc. 3rd Int’l Conf. Business Process Management
(BPM’05). (2005) 205–219

4. Tran, H.: View-Based and Model-Driven Approach for Process-Driven, Service-
Oriented Architectures. TU Wien, Dissertation (2009)

5. Bobrik, R., Bauer, T., Reichert, M.: Proviado - Personalized and Configurable
Visualizations of Business Processes. In: Proc. 7th Int’l Conf. Electronic Commerce
& Web Technology (EC-WEB’06), Krakow, Poland (2006) 61–71

6. Chiu, D.K., Cheung, S., Till, S., Karlapalem, K., Li, Q., Kafeza, E.: Workflow
View Driven Cross-Organizational Interoperability in a Web Service Environment.
Information Technology and Management 5(3/4) (July 2004) 221–250

7. Reichert, M., Weber, B.: Enabling Flexibility in Process-aware Information Sys-
tems - Challenges, Methods, Technologies. Springer (2012)

8. Kolb, J., Reichert, M.: Using Concurrent Task Trees for Stakeholder-centered
Modeling and Visualization of Business Processes. In: Proc. S-BPM ONE 2012,
CCIS 284. (2012) 237–251



9. Kolb, J., Rudner, B., Reichert, M.: Towards Gesture-based Process Modeling on
Multi-Touch Devices. In: Proc. 1st Int’l Workshop on Human-Centric Process-
Aware Information Systems (HC-PAIS’12), Gdansk, Poland (2012) 280–293

10. Kolb, J., Hübner, P., Reichert, M.: Automatically Generating and Updating User
Interface Components in Process-Aware Information Systems. In: Proc. 10th Int’l
Conf. on Cooperative Information Systems (CoopIS’12). (2012) to appear

11. Johnson, R., Pearson, D., Pingali, K.: Finding Regions Fast: Single Entry Sin-
gle Exit and Control Regions in Linear Time. In: Proc. Conf. on Programming
Language Design and Implementation (ACM SIGPLAN’94). (1993)

12. Reichert, M., Kolb, J., Bobrik, R., Bauer, T.: Enabling Personalized Visualization
of Large Business Processes through Parameterizable Views. In: Proc. 26th Sym-
posium On Applied Computing (SAC’12), Riva del Garda (Trento), Italy (2012)

13. Bobrik, R., Reichert, M., Bauer, T.: View-Based Process Visualization. In: Proc.
5th Int’l Conf. on Business Process Management, Brisbane, Australia (2007) 88–95

14. Chebbi, I., Dustdar, S., Tata, S.: The View-based Approach to Dynamic Inter-
Organizational Workflow Cooperation. Data & Know. Eng. 56(2) (2006) 139–173

15. Kafeza, E., Chiu, D.K.W., Kafeza, I.: View-Based Contracts in an E-Service Cross-
Organizational Workflow Environment. In: Techn. E-Services. (2001) 74–88

16. Schulz, K.A., Orlowska, M.E.: Facilitating Cross-Organisational Workflows with a
Workflow View Approach. Data & Knowledge Engineering 51(1) (2004) 109–147

17. Sadiq, W., Orlowska, M.E.: Analyzing Process Models Using Graph Reduction
Techniques. Information systems 25(2) (2000) 117–134

18. Polyvyanyy, A., Smirnov, S., Weske, M.: The Triconnected Abstraction of Process
Models. In: Proc. 7th Int’l Conf. on Business Process Management. (2009)

19. Smirnov, S., Reijers, H.A., Weske, M.: A Semantic Approach for Business Pro-
cess Model Abstraction. In: Advanced Information Systems Engineering, Springer
Berlin / Heidelberg (2011) 497–511

20. Eshuis, R., Grefen, P.: Constructing Customized Process Views. Data & Knowledge
Engineering 64(2) (2008)

21. Shan, Z., Yang, Y., Li, Q., Luo, Y., Peng, Z.: A Light-Weighted Approach to
Workflow View. APWeb 2006 (2003) (2006) 1059–1070

22. Schumm, D., Latuske, G., Leymann, F., Mietzner, R., Scheibler, T.: State Prop-
agation for Business Process Monitoring on Different Levels of Abstraction. In:
Proc. 19th ECIS. Number Ecis, Helsinki, Finland (2011)

23. Weidlich, M., Weske, M., Mendling, J.: Change Propagation in Process Models
using Behavioural Profiles. Proc. 6th IEEE Int’l Conf. Services Comp. (2009) 33–40

24. Buchwald, S., Bauer, T., Reichert, M.: Bridging the Gap Between Business Process
Models and Service Composition Specifications. In: Service Life Cycle Tools and
Technologies: Methods, Trends and Advances. IGI Global (2011) 124–153

25. Weber, B., Reichert, M., Rinderle, S.: Change Patterns and Change Support
Features - Enhancing Flexibility in Process-Aware Information Systems. Data
& Knowledge Engineering 66(3) (2008) 438–466

26. Reichert, M., Dadam, P.: ADEPTflex - Supporting Dynamic Changes of Workflows
Without Losing Control. Journal of Intelligent Inf. Sys. 10(2) (1998) 93–129

27. Rinderle, S., Reichert, M., Dadam, P.: Flexible Support of Team Processes by
Adaptive Workflow Systems. Distributed and Par. Databases 16(1) (2004) 91–116

28. Kolb, J., Kammerer, K., Reichert, M.: Updatable Process Views for Adapting
Large Process Models: The proView Demonstrator. In: Proc. of the Business
Process Management 2012 Demonstration Track, Tallinn, Estonia (2012) to appear


	Updatable Process Views for User-centered Adaption of Large Process Models
	Introduction
	Fundamentals on Process View Creation
	Process Model
	Process View Creation
	Refactoring Operations

	Changing Processes through Updatable Process Views
	Updating Process Views
	InsertSerial.
	InsertParallel.

	Migrating Process Views to a new CPM Version

	Related Work
	Conclusion


