
Schema Evolution in Object and Process-Aware
Information Systems: Issues and Challenges

Carolina Ming Chiao, Vera Künzle, and Manfred Reichert

Institute of Databases and Information Systems, Ulm University, Germany
{carolina.chiao,vera.kuenzle,manfred.reichert}@uni-ulm.de,

Abstract. Enabling process flexibility is crucial for any process-aware
information system (PAIS). In particular, implemented processes may
have to be frequently adapted to accommodate to changing environ-
ments and evolving needs. When evolving a PAIS, corresponding process
schemas have to be changed in a controlled manner. In the context of
object-aware processes, which are characterized by a tight integration
of process and data, PAIS evolution not only requires process schema
evolution, but the evolution of data and user authorization schemas as
well. Since the different schemas of an object-aware PAIS are tightly in-
tegrated, modifying one of them usually requires concomitant changes
of the other schemas. This paper presents a framework for object-aware
process support and discusses major requirements and challenges for en-
abling schema evolution in object-aware PAIS.

1 Introduction

Contemporary PAISs are usually activity-driven; i.e., processes are modeled in
terms of “black-box” activities and their control flow, defining the order and
constraints for executing these activities. Business data, in turn, is treated as
a second-class citizen [4, 1] and is usually stored in external databases. Hence,
activity-centric PAISs are unable to provide immediate access to process-related
information at any point of time. Moreover, many PAIS limitations (e.g., appli-
cation data only being accessible in the context of an activity) can be traced
back to the missing integration of process and data [5, 6, 7, 8]. To address these
drawbacks, we have developed the PHILharmonicFlows framework, which allows
for the operational support of object-aware processes at two levels of granular-
ity: object behavior and object interaction [7, 9]. In addition, data-driven process
execution as well as integrated access to process and application data become
possible. One aspect neglected so far PHILharmonicFlows concerns the evolution
of object-aware processes and their components (i.e., the schemas defining ob-
ject behavior and interactions, data structures, and user authorization). In this
context, one does not only have to deal with changes of process schemas (in-
cluding their propagation to running instances), but of other components of the
object-aware PAIS as well (e.g., changes of the data model might affect object
behavior and object interactions). Generally, when evolving one particular com-
ponent of an object-aware PAIS, this might necessitate changes of dependent



2 Carolina Ming Chiao, Vera Künzle, Manfred Reichert

components as well (with potentially cascading effects). This paper discusses
some of the fundamental challenges to be tackled when targeting at schema evo-
lution in object-aware PAISs. These challenges were derived from case studies
as well as a comprehensive literature study.

Section 2 gives an overview of the PHILharmonicFlows framework. The chal-
lenges emerging in the context of schema evolution in an object-aware PAIS are
presented in Section 3. Section 4 discusses related work, and Section 5 concludes
the paper.

2 Object-aware Process Support

We first present a simple process scenario along which we introduce basic con-
cepts related to object-aware processes. This scenario deals with proposing ex-
tension courses at a university; i.e., courses for professionals that aim at refresh-
ing and updating their knowledge in a certain area of expertise. To propose
an extension course, the course coordinator must create a project describing it.
The latter must be approved by the faculty coordinator as well as the extension
course committee.

Example 1 (Extension course proposal): The course coordinator cre-
ates an extension course project using a form. In this context, he must provide
details about the course, like name, start date, duration, and description. Fol-
lowing this, professors may start creating the lectures for the extension course.
Each lecture, in turn, must have detailed study plan items, which describe the
activities of the lecture. To each lecture, (external) invited speakers may be
assigned. The latter either may accept or reject the invitation.

After receiving the responses for these invitations and creating the lectures,
the coordinator may request an approval for the extension course project.
First, it must be approved by the faculty director. If he wants to reject it,
he must provide a reason for his decision and the course must not take place.
Otherwise, the project is sent to the extension course committee, which will
evaluate it. If there are more rejections than approvals, the extension course

project is rejected. Otherwise, it is approved and hence may take place.

Our PHILharmonicFlows framework allows for the comprehensive support
of such scenarios. In particular, it overcomes many limitations of existing PAISs
by enabling a tight integration of process and data [7, 8]. The framework sup-
ports object-aware processes focusing on the processing of business data and
business objects respectively. In this context, object-awareness means that the
overall process model is structured and divided according to the object types
involved. These object types are organized in a data model and may refer to
other object types or be referenced by them. Moreover, for each object type, a
separate process type, defining the corresponding object behavior, exists. At run-
time, each object type then may comprise a varying number of object instances.



Schema Evolution in Object and Process-Aware Information Systems 3

Since the creation of an object instance is directly coupled with the creation of a
corresponding process instance, a complex process structure emerges. Thereby,
process instances referring to object instances of the same type are executed
asynchronously to each other as well as asynchronously to process instances re-
lated to object instances of different types. However, their execution may have to
be synchronized at certain points in time. Overall, we differentiate between micro
and macro processes to capture object behavior as well as object interactions.

RUN‐TIME

BUILD‐TIME
Data Model

Micro Process

Macro Process

Object Type States

Micro Steps

Micro Transitions

Macro Steps

Macro Transitions Relations

Attributes

Coordination
Overview Tables Worklists

Forms

Authorization

Process Context

Aggregation

Transverse

Permissions

User Assignment

a

b

d

c

e

Fig. 1. Overview of the PHILharmonicFlows Framework

Data model (cf. Fig. 1a): A data model defines the object types as well
as their attributes and relations (including cardinalities).

Example 2 (Data structure): Fig. 2a illustrates the data model relating
to Example 1. Object types lecture and decision committee refer to object type
extension course project. In turn, object types invitation and study plan item

refer to lecture. At run-time, these relations allow for a varying number of inter-
related object instances whose processing must be coordinated. Additionally,
cardinality constraints restrict the minimum and maximum number of instances
of an object type that may reference the same higher-level object instance. Fig.
2b shows a corresponding run-time data structure.

Micro process level (cf. Fig. 1b): To express object behavior, for each
object type of a data model, a micro process type must be defined. At run-time,
the creation of an object instance is directly coupled with the creation of a
corresponding micro process instance. The latter coordinates the processing of
the object instance among different users and specifies the order in which object
attributes may be written. For this purpose, a micro process type comprises a
number of micro step types (cf. Fig 1b), of which each refers to one specific
object attribute and describes an atomic action for writing it. At run-time, a



4 Carolina Ming Chiao, Vera Künzle, Manfred Reichert

Data Model

a

object type

extension course project
name

description

lecture
name

description

1...n

decision committee
acceptance
comment

relation

1...n

invitation
speaker

acceptance

study plan item
topic

description

1..10
cardinality

0..5

attributes

Data Instances

b
name

description

extension course project
Creative Writing

Unraveling the dynamics of story 
creation

name
description

name
description

lecture
Character development

Creating a fictional 
character

decision committee
acceptance
comment

decision committee
acceptance
comment

acceptance
comment

decision committee
Approved
Nice idea

invitation
speaker

acceptance

invitation
Neil Gaiman

Accepted

date
description

study plan item
date

description

study plan item
Character description

Create the basis of a char.

object 
instances

Process Structure

c
name

description

study plan item
date

description

study plan item
date

description

study plan iteminvitation
speaker

acceptance

invitation

lecture
name

description
name

description

lecture decision committee
acceptance
comment

decision committee
acceptance
comment

decision committee
acceptance
comment

decision committee

object 
behavior

extension course project

dependency 
between process 

instances

Fig. 2. Data Structure (Data Model and Instances) and Process Structure

micro step is reached if a value is set for the corresponding attribute; i.e., a data-
driven execution is enabled. Further, micro step types may be inter-connected
using micro transition types in order to express their default execution order.
When using form-based activities, these transition types define the order in which
input fields shall be filled (i.e., the internal logic of forms).

To coordinate the processing of individual object instances among different
users, micro step types can be aggregated to state types. At the instance level, a
state may only be left if the values for all attributes associated with the micro
steps of the respective state type are set.

under creation
name start_date faculty credits description

under approval 
faculty

decision_faculty

rejected

rejected

approved
under approval 

extension course 
committee

approved

Course Coordinator

Faculty Director

state type micro step types

micro transition 
types

Authorization Table

P

under creation

CC

MW

Extension Course 
Project

name
start_date
faculty
credits

R
MW R
MW R
MW R
MWdescription

decision_faculty
reason_rejection

R

Micro Process Type
object type

attribute

state type

attribute 
permissions

a b

rejected faculty
reason_
rejection

Faculty Director

Fig. 3. Micro Process Type and Authorization Table for State “under creation”

Example 3 (Micro process type): Fig. 3a shows the micro process type
related to object type extension course project. While the extension course
project is in state under creation, the course coordinator may set the attributes
to which the corresponding micro step types refer (e.g., name, start date, or
description). Following this, a user decision is made in state under approval

faculty; i.e., the faculty director either approves or rejects the extension course
project. If the value of attribute decision faculty corresponds to rejected, a
value for attribute reason rejection is required.



Schema Evolution in Object and Process-Aware Information Systems 5

User authorization (Fig. 1c): User roles are associated with the different
states of a micro process type. At run-time, corresponding users must assign re-
quired attribute values, as indicated by the micro steps related to the respective
state; i.e., a mandatory activity (i.e., a user form) is created and assigned to
the user’s worklist. To allow for optional activities, for each object type, PHIL-
harmonicFlows additionally generates an authorization table. More precisely, it
allows granting different permissions to user roles for reading and writing at-
tribute values as well as for creating and deleting object instances (cf. Fig. 1d).
Furthermore, permissions may vary depending on the state of an object instance.
The framework ensures that each user, who must execute a mandatory activity,
owns corresponding write permissions; i.e., data and process authorization are
compliant with each other. The initially generated authorization table may be
further adjusted by assigning optional permissions to other users. In this context,
we differentiate between mandatory and optional write permissions. Attributes,
permissions, and the described micro process logic together provide the founda-
tion for automatically generating user forms at run-time. In particular, when
taking the currently activated state of the micro process instance into account,
the authorization table specifies which input fields can be read or written by the
respective user in this state. Opposed to existing PAISs, any alteration directly
affecting the forms becomes transparent to the end-user; i.e., the forms do not
need to be manually updated.

Example 4 (Authorization Table): In Fig. 3b, in state under creation

of micro process type extension course project, the course coordinator (CC)
has mandatory write (MW) permission for attributes name, start date, faculty,
credits, and description. A professor (P), in turn, has read permission (R) to
these attributes in the respective state.

Macro process level (cf. Fig. 1d): At run-time, object instances of the
same or different types may be created or deleted at arbitrary points in time;
i.e., the data structure dynamically evolves depending on the number of created
object instances and the types. In particular, whether subsequent states of micro
process instances can be reached may depend on other micro process instances as
well; i.e., the processing of an object instance may depend on the processing of a
varying number of instances of a related object type. Taking these dependencies
among objects into account, a complex process structure results (Fig. 2c). To
enable proper interaction among the micro process instances, a coordination
mechanism is required to specify the interaction points of the processes involved.
For this purpose, PHILharmonicFlows automatically derives a state-based view
for each micro process type. This view is then used for modeling macro process
types defining the respective object interactions. The latter hides most of the
complexity of the emerging process structure from users. Each macro process
type (Fig. 4) consists of macro step types and macro transitions types connecting
them. As opposed to traditional process modeling approaches, where process
steps are defined in terms of black-box activities, a macro step type always



6 Carolina Ming Chiao, Vera Künzle, Manfred Reichert

refers to an object type together with a corresponding state type; i.e., the latter
serve as interface between micro and macro process types.

The activation of a particular macro state might depend on instances of dif-
ferent micro process types. To express this, for each macro step type, a respective
macro input type has to be defined. The latter can be connected to several in-
coming macro transitions. At run-time, a macro step is enabled if at least one
of its macro inputs becomes activated.

Extension 
Course Project

under 
creation

Invitation

create 
invitation

Study Plan 
Item
create 
item

Extension 
Course Project

rejectedDecision 
Committee

start macro step

state

macro input

macro step type

object type

Lecture

create 
lecture

Invitation

responded

Study Plan 
Item

finished

Lecture

finished

Decision 
Committee

approved

rejected

Extension 
Course Project

approved

Extension 
Course Project

under approval 
faculty

Decision 
Committee

notified

Decision 
Committee

under 
approval

Fig. 4. Example of a Macro Process Type

Coordination (cf. Fig. 1e): To take the dynamically evolving number of
object instances as well as the asynchronous execution of corresponding micro
process instances into account, for each macro transition, a corresponding coor-
dination component needs to be defined. For this purpose, PHILharmonicFlows
utilizes object relations from the data model. More details about the coordina-
tion components can be found in [7].

3 Challenges

As shown, data structures as well as fine-grained authorization mechanisms
are incorporated into the PAIS. Regarding PHILharmonicFlows, not only the
schemas of micro and macro process are required to evolve, but the data schemas
and authorization settings as well. Another challenge stems from the interde-
pendences among the different components of an object-aware PAIS (i.e., object
types, micro process types, macro process type, authorization table, etc.) (cf. Fig.
1). More precisely, changing one of these components might necessitate changes
of dependent components. In turn, the latter might trigger cascading changes.
This section discusses challenges related to schema evolution in object-aware
PAISs. Thereby, both type and instance levels are presented in a single as well
as cross perspective. In the former perspective, we discuss which requirements
are needed to evolve a particular component. The cross-perspective, in turn,
focuses on the challenges regarding secondary changes due to the dependencies
among components.



Schema Evolution in Object and Process-Aware Information Systems 7

3.1 Schema Evolution at Type Level

Fig. 5. Metamodel of a) Activity-centric PAIS and b) PHILharmonicFlows

Evolution in single perspective. First, a set of primitive change opera-
tions with precise semantics is required for accomplishing changes of each per-
spective. Such a set must be complete, i.e., the change operations comprising
this set must allow transforming a valid schema S to any other valid schema
S′ [15]. Compared to activity-centric PAISs (Fig. 5a), in which a process model
comprises activities, events, gateways, and connectors (edges), defining a com-
plete set of change operations for object-aware PAISs causes more efforts due to
the vast number of components (Fig. 5b). In particular, we must define change
operations for each perspective (e.g., data schema, micro process schema, macro
process schema, and user authorization) (cf. Fig. 6). Particularly, for each com-
ponent, at least one operation for adding and deleting it must be defined. Note
that similar concerns hold for other proposals related to data-centric processes
(e.g., artifact-centric [4, 13] or product-based processes [16]).

Data Model

add attribute
delete attribute
add relation
delete relation

add object type
delete object type

Micro Process Type

add micro step type
delete micro step type
add micro transition 

type
(…)

Macro Process Type
add macro step type
delete macro step type
add macro transition 

type
delete macro 

transition type
(…)

User Authorization
add attribute 

permission

(…)

delete attribute 
permission

add object permission
delete object 

permission

add micro process type
delete micro process 

type

Fig. 6. Set of Primitive Change Operations

Moreover, when applying a change to a schema, schema correctness must
not be affected; i.e., the changed schema must confirm with a set of correctness
constraints. For example, when adding a micro step type in a state type, the
latter must not refer to an attribute, if this attribute is already referred by
another micro step type having same state type [9].



8 Carolina Ming Chiao, Vera Künzle, Manfred Reichert

Example 5 (Change scenario I: add attribute): When the faculty

director approves the extension course project, he may add comments on the
extension course in question.

Example 5 refers to object type extension course project (cf. Fig. 3b). To be
more precise, a new attribute is needed; i.e., the change operation add attribute

should be applied. However, this change must be in accordance with the cor-
rectness constraints set out by PHILharmonicFlows. For example, the attribute
must have a unique name (e.g., approval remarks). Besides, only adding a new
attribute to the object type is not sufficient. To make the attribute accessible
at run-time, a respective attribute permission must be created as well; e.g., the
faculty director must obtain an optional write permission for this attribute.

Evolution in cross-perspective. As shown in Example 5, focusing only on
the component, which is primarily changed, is insufficient. Instead, the change
of one component may trigger secondary (i.e., cascading) changes in other com-
ponents.

Example 6 (Change scenario II: delete attribute): The start date of
the course will not be specified in the extension course project anymore.

Authorization Table

Extension Course 
Project

name
start_date
faculty

(…)

delete 
attribute

1

P

Data Model Micro Process Type

under creation
name start_date faculty

Course Coordinator

(…)
(…)

delete micro step type2
delete micro transition 
type

2.1

under creation

CC
MW

Extension Course 
Project

name
start_date
faculty

(…)

R
MW R
MW R

(…)
delete attribute 
permission

3

Fig. 7. Change Scenario II - Delete Attribute

In Example 6, operation delete attribute is applied to attribute start date.
However, to maintain correctness of the data schema, micro and macro process
schemas, and user authorization settings, cascading changes are required as well.
Fig. 7 illustrates the effects of this attribute deletion. At the micro process type,
the micro step type associated with the deleted attribute must be deleted as
well. Again, only deleting the micro step type might not be sufficient. In the
given example, for instance, the user must be informed about the inconsistency
of the micro process type due to the “gap” left between micro step types name

and faculty. In addition, attribute permissions in the authorization table must
be deleted as well.

Example 7 (Change scenario III - add object type): When approving
the extension course project by the extension course committee, the members



Schema Evolution in Object and Process-Aware Information Systems 9

of the committee may ask questions to the course coordinator. These questions

must be answered, before committee members make their decision.

Authorization Table / User AuthorizationData Model Micro Process Type

Extension 
Course Project

Lecture Decision 
Committee

Invitation Study 
Plan 
Item

Question 
Commitee
question
answer

1..n 1..n

1..n0..5 1..10

Question 
Commitee

question
answer

CC

create 
question

CEC
MW R

CC

answer 
question

CEC
R R
R MW

create question
question

answer question
answer

finished

Course Coordinator

Commitee 
Member

add object type1 add micro process 
type

2

add attribute1.1
add state type2.1

(…)

add attribute permission3
add object type 
permission

4

add relation1.2

Macro Process Type

Decision 
Committee

under 
approval

Decision 
Committee

Decision 
Committee

approved

rejected(…)
add macro step 
type

6

add state responsible5

add macro 
transition 
type

(…)

(…)

6.1

Decision 
Committee

notified

Question 
Committee

create 
question

Question 
Committee

finished

Fig. 8. Change Scenario III - Add Object Type

In Example 7, a new object type question committee is added to the data
model. Accompanying to this, a micro process type needs to be added as well
as respective attributes and user permissions (cf. Fig. 8). In this particular case,
new instances of object type question committee may only be created when an
instance of object type decision committee is initialized; i.e., when the extension

course project is approved by the committee members. Additionally, the micro
process instance related to object instance decision committee might continue its
execution only after finishing all micro process instances of object type question

committee (i.e., all questions of a committee member are answered). Therefore,
new synchronization points must be added to enable the interaction between
the two object types; i.e., new macro step types must be created in the macro
process type as well. However, the addition of new macro step types is a design
choice in the given context; i.e., the engineer may decide to change the macro
process type, but this is not essential to maintain correctness of all schemas in
the given scenario.

As shown, there are two categories of secondary changes: mandatory and
optional ones. A mandatory secondary change must be applied to maintain cor-
rectness of all related schemas. For example, when deleting an attribute, the
micro step types referring to it as well as corresponding attribute permissions
must be deleted as well. In turn, optional secondary changes refer to design
choices made by the user when changing a schema. Hence, mechanisms identi-
fying the impact caused by any schema change become necessary. In particular,
these must identify and inform the user about required (i.e., mandatory) sec-
ondary changes. To modify the schemas in a controlled manner, an input from
the user confirming the schema modification is needed. Therefore, an interface



10 Carolina Ming Chiao, Vera Künzle, Manfred Reichert

assisting the user with decision making is required. In addition, such an interface
must assist users by displaying optional secondary changes to them. In Example
7, adding new macro step types contribute on examples of optional secondary
changes. In turn, the addition of new macro transition types to connect the
macro step types are mandatory secondary changes, once they are necessary to
avoid inconsistencies at the macro process type.

3.2 Schema Evolution at Instance Level

Evolution in single perspective. When evolving schemas in an object-aware
PAIS, we must ensure that no error occurs concerning object instances and
corresponding micro and macro process instances. Hence, for each schema (e.g.,
data schema, micro and macro process schemas, and user authorization settings),
different issues arise. For example, when modifying a data schema, the risk of
data loss must be taken into account, since missing data might cause several
inconsistencies for running processes. For example, when deleting an attribute
from an object type, some object instances or micro process instances related to
the object type in question may still depend on data related to this attribute,
causing inconsistencies at run-time. To avoid respective problems, data relating
to the deleted attribute must still be accessible for reading or writing; i.e., even
if in the new schema this attribute does not exist, it must be possible that old
object and micro process instances refer to a schema where this attribute (and
its respective data) still exists. For this, mechanisms for data schema versioning
must be provided. With them, different versions of the same data schema may
co-exist, letting instances that were created before modifying the data schema
refer to older schema versions.

A similar problem arises when evolving a micro process schema. If a micro
step type or a state type is deleted, there might be inconsistencies in running
micro process instances, since they now refer to inexistent micro steps or states.
To avoid such inconsistencies, these instances must be able to reach such states
or micro steps by referring to the old schema version, but not the new one.
However, only maintaining different versions of the schema is not sufficient. The
engineer may decide that running micro process instances should be executed
according the new schema, if possible. Therefore, a mechanism permitting the
migration of micro process instances to the a new schema version is needed.
However, not all micro process instances can be migrated to the new schema.
For example, when deleting a state type, micro process instances for which this
state is currently activated must not migrate to the new version. If micro steps
relating to the deleted state were already executed, migrating these micro process
instances might create inconsistencies regarding their execution. Hence, precise
migration and correctness criteria must be established.

Evolution in cross-perspective. As shown in Section 3.1, changing a com-
ponent triggers a set of secondary changes. These secondary changes must be
also taken into account at the instance level. When managing schema versions,
for each schema, it becomes necessary that all involved instances (object in-
stances, micro process instances and macro process instances) refer to consistent



Schema Evolution in Object and Process-Aware Information Systems 11

schema versions; i.e., the different schema versions must not have inconsistencies
like micro process instances referring to missing attributes or macro processes
referring to missing micro process states. Regarding Example 6, for instance,
when object instances refer to a new data schema version, for which attribute
start date no longer exists, the respective micro process instances must refer to
that micro process schema version, for which the respective micro step does not
exist as well. Otherwise, there will be a schema inconsistency.

4 Related Work

PHILharmonicFlows provides a comprehensive framework for object-aware pro-
cesses, enabling advanced support for object behavior, object interactions, and
data-driven process execution. In [8], we have already shown that traditional
approaches (i.e., imperative and declarative process paradigms) do not meet
these properties. In literature, a number of approaches enabling data-centric
processes are discussed, but they do not consider the aforementioned properties
in a comprehensive and integrated way [8, 7]. Moreover, although approaches
like artifact-based processes [4, 13] and product-based workflows [16] provide
rich capabilities for process modeling, they do not explicitly take runtime issues
into account.

Schema evolution in object-oriented databases (OODB) might trigger con-
sistency problems in respect to external applications as well. Frameworks like
ORION [2], OTGen [11], and GemStone [14] provide mechanisms for automated
database reorganization. Concerning business process evolution, [17] defines a
set of change patterns as well as change support features to adequately cope
with business process changes. In [15], a formal framework for comprehensive
support of process type and process instance changes is defined.

In the context of data-driven processes, [12] describes strategies for adapting
data-driven process structures both at design- and run-time. However, changes
in the definition of a single data object type (e.g., adding or deleting object at-
tributes) are not considered. Regarding artifact-centric workflows, an approach
focusing on dynamically modifiable workflow models is presented in [18]. How-
ever, this approach does not focus on artifact modifications.

5 Outlook

Our overall vision is to develop a mechanism enabling schema evolution in object-
aware PAIS; i.e., a generic component enabling evolutionary changes in object-
aware processes. However, this is a non-trivial task, since object-aware PAISs not
only comprise process schemas, but also data and user authorization schemas.
These different schemas are tightly integrated, and modifying one of them might
require concomitant changes of other schemas. In this paper, we discussed some
of the major challenges to be tackled in order to enable schema evolution in
object-aware PAISs at both type and instance level. The main challenge is to



12 Carolina Ming Chiao, Vera Künzle, Manfred Reichert

cope with concomitant changes of the different schemas; i.e., a schema change of
any component might require secondary changes of related schemas to preserve
consistency. In future work, we will provide comprehensive solutios to cope with
these challenges.

References

1. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case Handling: A New Paradigm
for Business Process Support. Data & Know. Eng., 53(2), 129–162 (2005)

2. Banerjee, J., Kim, W., Kim, H., Korth, H.F.: Semantics and Implementation of
Schema Evolution in Object-oriented Databases. In: Proc. SIGMOD’87, 331–322
(1987)

3. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow Evolution. In: Proc. ER96,
438–455 (1996)

4. Cohn, D., Hull, R.: Business Artifacts: A Data-centric Approach to Modeling Busi-
ness Operations and Processes. IEEE Data Engineering Bull., 32(3), 3–9 (2009)

5. Künzle, V., Reichert, M.: Towards Object-aware Process Management Systems:
Issues, Challenges, Benefits. In: Proc. BPMDS’09, LNBIP 29, 197–210 (2009)

6. Künzle, V., Reichert, M.: Integrating Users in Object-aware Process Management
Systems: Issues and Challenges. In: Proc. BDP’09, LNBIP 43, 29–41 (2009)

7. Künzle, V., Reichert, M.: PHILharmonicFlows: Towards a Framework for Object-
aware Process Management. Journal of Software Maintenance and Evolution: Re-
search and Practice, 23(4), 205–244 (2011)

8. Künzle, V., Weber, B., Reichert, M.: Object-aware Business Processes: Fundamental
Requirements and their Support in Existing Approaches. Int’l Journal of Informa-
tion System Modeling and Design, 2(2), 19–46 (2011)

9. Künzle, V., Reichert, M.: A Modeling Paradigm for Integrating Processes and Data
at the Micro Level. In: Proc. BPMDS’11, LNBIP 81, 201–215 (2011)

10. Künzle, V., Reichert, M.: Striving for Object-aware Process Support: How Existing
Approaches Fit Together. In: Proc. SIMPDA’11 (2011)

11. Lerner, B.S., Habbermann, A.N.: Beyond Schema Evolution to Database Reorga-
nization. In: Proc. OOPSLA/ECOOP’90, 67–76 (1990)

12. Müller, D., Reichert, M., Herbst, J.: A New Paradigm for the Enactment and
Dynamic Adaptation of Data-driven Process Structures. In: Proc. CAiSE’08, LNCS
5074, 48–63 (2008)

13. Nigam, A., Caswell, N.S.: Business artifacts: An Approach to Operational Specifi-
cation. IBM Systems Journal, 42(3), 428–445 (2003)

14. Penney, D.J., Stein, J.: Class Modification in the GemStone Object-oriented
DBMS. In: Proc. OOPSLA’87, 111–117 (1987)

15. Rinderle, S., Reichert, M., Dadam, P.: Flexible Support of Team Processes by
Adaptive Workflow Systems. Distr. and Par. Databases, 16(1), 91–116 (2004)

16. Vanderfeesten, I., Reijers, H.A., van der Aalst, W.M.P.: Product-Based Workflow
Support: Dynamic Workflow Execution. In: Proc. CAiSE’08, LNCS 5074, 571–574
(2008)

17. Weber, B., Reichert, M., Rinderle-Ma, S.: Change Patterns and Change Support
Features - Enhancing Flexibility in Process-Aware Information Systems. Data &
Know. Eng., 66(3), 438–466 (2008)

18. Xu, W., Su, J., Yan, Z., Yang, J., Zhang, L.: An Artifact-centric Approach to
Dynamic Modification of Workflow Execution. In: Proc. OTM’11, 256–273 (2011)


