
Process and Data: Two Sides of the Same Coin?

Manfred Reichert

Institute of Databases and Information Systems, Ulm University, Germany
manfred.reichert@uni-ulm.de

Abstract. Companies increasingly adopt process management technol-
ogy which offers promising perspectives for realizing flexible informa-
tion systems. However, there still exist numerous process scenarios not
adequately covered by contemporary information systems. One major
reason for this deficiency is the insufficient understanding of the inher-
ent relationships existing between business processes on the one side
and business data on the other. Consequently, these two perspectives
are not well integrated in many existing process management systems.
This paper emphasizes the need for both object- and process-awareness
in future information systems, and illustrates it along several examples.
Especially, the relation between these two fundamental perspectives will
be discussed, and the role of business objects and data as drivers for both
process modeling and process enactment be emphasized. In general, any
business process support should consider object behavior as well as ob-
ject interactions, and therefore be based on two levels of granularity.
In addition, data-driven process execution and integrated user access to
processes and data are needed. Besides giving insights into these funda-
mental characteristics, an advanced framework supporting them in an
integrated manner will be presented and its application to real-world
process scenarios be shown. Overall, a holistic and generic framework
integrating processes, data, and users will contribute to overcome many
of the limitations of existing process management technology.

1 Introduction

Despite the widespread adoption of process management systems [1] there exist
many business processes not adequately supported by these systems. In this
context, different authors state that many deficiencies of contemporary process
management systems (PrMS) can be traced back to the missing integration
of processes and data [2–11]. Although processes and data seem to be closely
related, a unified understanding of the inherent relationships existing between
them is still missing.

In the PHILharmonicFlows project, we analyzed numerous business pro-
cesses from different domains which require a tight data integration [12–15].
We learned that many of these processes are data-driven and that their support
requires object-awareness; i.e., the progress of these processes depends on the
processing of certain business data represented through business objects. Ob-
jects comprise a set of object attributes and are inter-related. In this context,

business processes coordinate the processing of business objects among different
users enabling them to cooperate and communicate with each other. Most exist-
ing PrMS, however, mainly focus on business functions and their flow of control,
whereas business objects are ”unknown” to them. As a consequence, most PrMS
only cover simple data elements needed for control flow routing and for supplying
input parameters of activities with values. In turn, business objects are usually
stored in external databases and are outside the control of the PrMS. Hence,
existing PrMS are unable to adequately support object-aware processes [16].

This paper shows that process and data are actually two sides of the same
coin. Section 2 introduces the main characteristics of data-driven and object-
aware processes, which we gathered in a number of case studies [12, 13, 17] (see
[18] for details about the research methodology applied). Following this, Sec-
tion 3 sketches core components of our PHILharmonicFlows framework, which
enables comprehensive support of data-driven and object-aware processes. Sec-
tion 4 discusses related work and Section 5 concludes the paper with a summary.

2 Data-driven and Object-aware Processes

We first discuss fundamental characteristics of data-driven and object-aware
processes, we derived from a more detailed property list related to process mod-
eling, execution, and monitoring. The respective properties were discovered in
an extensive analysis of processes currently not adequately supported by pro-
cess management technology [12, 13, 16, 14]. To ensure that the processes we
considered are not ”self-made” examples, but constitute real-world processes of
high practical relevance, we further analyzed processes implemented in existing
business applications. Further, we have deep insights into the code and process
logic of these applications. To justify our findings, we complemented our process
analyses by an extensive literature study ensuring relevance and completeness.

2.1 Application Example

We discuss the characteristics of data-driven and object-aware processes along
a simple job recruitment scenario (cf. Fig. 1).

Example 1 (Recruitment) In recruitment, applicants may apply for job

vacancies via an Internet online form. Once an application has been submit-
ted, the responsible personnel officer in the human resource department is
notified. The overall process goal is to decide which applicant shall get the job.
If an application is ineligible the applicant is immediately rejected. Other-
wise, personnel officers may request internal reviews for each applicant.
In this context, the concrete number of reviews may differ from application

to application. Corresponding review forms have to be filled by employees

from functional divisions. They make a proposal on how to proceed; i.e., they
indicate whether the applicant shall be invited for an interview or be rejected.
In the former case an additional appraisal is needed. After the employee has

filled the review form she submits it back to the personnel officer. In the
meanwhile, additional applications might have arrived; i.e., reviews relating
to the same or to different applications may be requested or submitted at differ-
ent points in time. The processing of the application, however, proceeds while
corresponding reviews are created; e.g., the personnel officer may check the
CV and study the cover letter of the application. Based on the incoming
reviews he makes his decision on the application or initiates further steps
(e.g., interviews or additional reviews). Finally, he does not have to wait
for the arrival of all reviews; e.g., if a particular employee suggests hiring the
applicant he can immediately follow this recommendation.

Fig. 1. Example of a recruitment process from the human resource domain

2.2 Basic Characteristics

Basically, data must be manageable in terms of object types comprising object
attributes and relations to other object types (cf. Fig. 2a). At run-time, the dif-
ferent object types comprise a varying number of inter-related object instances,
whereby the concrete instance number should be restrictable by lower and upper
cardinality bounds (cf. Fig. 2b). For each application, for example, at least one
and at most five reviews must be initiated. While for one application two reviews
are are available, another one may comprise three reviews (cf. Fig. 1).
In accordance to data modeling, the modeling and execution of processes can be
based on two levels of granularity: object behavior and object interactions.

Fig. 2. Data structure at build-time and at run-time

Object Behavior To cover the processing of individual object instances, the
first level of process granularity concerns object behavior. More precisely, for
each object type a separate process definition should be provided (cf. Fig. 3a),
which can be used for coordinating the processing of an individual object in-
stance among different users. In addition, it should be possible to determine in
which order and by whom the attributes of a particular object instance have
to be (mandatorily) written, and what valid attribute values are. At run-time,
the creation of an object instance is directly coupled with the creation of its
corresponding process instance. In this context, it is important to ensure that
mandatorily required data is provided during process execution. For this reason,
object behavior should be defined in terms of data conditions rather than based
on black-box activities.

Example 2 (Object behavior) For requesting a review the responsible person-
nel officer has to mandatorily provide values for object attributes return

date and questionnaire. Following this, the employee being responsible for
the review has to mandatorily assign a value to object attribute proposal.

Object Interactions Since related object instances may be created or deleted
at arbitrary points in time, a complex data structure emerges, which dynami-
cally evolves depending on the types and number of created object instances.
In addition, individual object instances (of the same type) may be in different
processing states at a certain point in time.
Taking the behavior of individual object instances into account, we obtain a
complex process structure in correspondence to the given data structure (cf. Fig.
3a). In this context, the second level of process granularity comprises the interac-
tions that take place between different object instances. More precisely, it must
be possible to execute individual process instances (of which each corresponds
to a particular object instance) in a loosely coupled manner, i.e., concurrently
to each other and synchronizing their execution where needed. First, it should
be possible to make the creation of a particular object instance dependent on

Fig. 3. Process structure at build-time and at run-time

the progress of related object instances (creation dependency). Second, several
object instances of the same object type may be related to one and the same
object instance. Hence, it should be possible to aggregate information; amongst
others, this requires the aggregation of attribute values from related object in-
stances (aggregation). Third, the executions of different process instances may
be mutually dependent; i.e., whether or not an object instance can be further
processed may depend on the processing progress of other object instances (ex-
ecution dependency). In this context, interactions must also consider transitive
dependencies (e.g., reviews depend on the respective job offer) as well as trans-
verse ones (e.g., the creation of an interview may depend on the proposal made
in a review) between object instances (cf. Fig. 3).

Example 3 (Object interactions) A personnel officer must not initiate
any review as long as the corresponding application has not been finally sub-
mitted by the applicant (creation dependency). Furthermore, individual review
process instances are executed concurrently to each other as well as concurrently
to the application process instances; e.g., the personnel officer may read
and change the application, while the corresponding reviews are processed.
Further, reviews belonging to a particular application can be initiated and
submitted at different points in time. Besides this, a personnel officer should
be able to access information about submitted reviews (aggregative information);
i.e., if an employee submits her review recommending to invite the applicant

for an interview, the personnel officer needs this information immediately.
Opposed to this, when proposing rejection of the applicant, the personnel

officer should only be informed after all initiated reviews have been submit-
ted. Finally, if the personnel officer decides to hire one of the applicants,
all others must be rejected (execution dependency). These dependencies do not
necessarily coincide with the object relations. As example consider reviews and
interviews corresponding to the same application; i.e., an interview may
only be conducted if an employee proposes to invite the applicant during the
execution of a review process instance.

Data-driven Execution In order to proceed with the processing of a particular
object instance, usually, in a given state certain attribute values are mandatorily
required. Thus, object attribute values reflect the progress of the corresponding
process instance. In particular, the activation of an activity does not directly
depend on the completion of other activities, but on the values set for object
attributes. More precisely, mandatory activities enforce the setting of certain
object attribute values in order to progress with the process. If required data
is already available, however, mandatory activities can be automatically skipped
when being activated. In principle, it should be possible to set respective at-
tributes also up front ; i.e., before the mandatory activity normally writing this
attribute becomes activated. However, users should be allowed to re-execute a
particular activity, even if all mandatory object attributes have been already
set. For this purpose, data-driven execution must be combined with explicit user
commitments (i.e., activity-centred aspects). Finally, the execution of a manda-
tory activity may also depend on available attribute values of related object
instances. Thus, coordination of process instances must be supported in a data-
driven way as well.

Example 4 (Data-driven execution) During a review request the personnel
officer must mandatorily set a return date. If a value for the latter is avail-
able, a mandatory activity for filling in the review form is assigned to the re-
sponsible employee. Here, in turn, a value for attribute proposal is mandatorily
required. However, even if the personnel officer has not completed his review
request yet (i.e., no value for attribute return data is available), the employee

may optionally edit certain attributes of the review (e.g., the proposal). If a
value of attribute proposal is already available when the personnel officer

finishes the request, the mandatory activity for providing the review is automati-
cally skipped. Opposed to this, an employee may change his proposal arbitrarily
often until he explicitly agrees to submit the review to the personnel officer.
Finally, the personnel officer makes his decision (e.g., whether to reject or
to accept the applicant) based on the incoming reviews.

Variable Activity Granularity For creating object instances and changing
object attribute values, form-based activities are required. Respective user forms
comprise input fields (e.g., text-fields or checkboxes) for writing and data fields
for reading selected attributes of object instances. In this context, however, dif-
ferent users may prefer different work practices. In particular, using instance-
specific activities (cf. Fig. 5a), all input fields and data fields refer to attributes
of one particular object instance, whereas context-sensitive activities (cf. Fig.
5b) comprise fields referring to different, but related object instances (of poten-
tially different type). When initiating a review, for example, it is additionally
possible to edit the attribute values of the corresponding application. Finally,
batch activities involve several object instances of the same type (cf. Fig. 5c).
Here, the values of the different input fields are assigned to all involved object
instances in one go. This enables a personnel officer, for example, to reject a

number of application in one go. Depending on their preference, users should be
able to freely choose the most suitable activity type for achieving a particular
goal. In addition to form-based activities, it must be possible to integrate black-
box activities. The latter enable complex computations as well as the integration
of advanced functionalities (e.g., provided by web services).

Fig. 4. Different kinds of activities

Moreover, whether certain object attributes are mandatory when processing a
particular activity might depend on other object attribute values as well; i.e.,
when filling a form certain attributes might become mandatory on-the-fly. Such
control flows being specific to a particular form should be also considered.

Example 5 (Activity Execution) When an employee fills in a review, ad-
ditional information about the corresponding application should be provided;
i.e., attributes belonging to the application for which the review is requested.
For filling in the review form, a value for attribute proposal has to be assigned.
If the employee proposes to invite the applicant, additional object attributes will
become mandatory; e.g., then he has to set attribute appraisal as well. This is
not required if he assigns value reject to attribute proposal. Further, when a
personnel officer edits an application, all corresponding reviews should
be visible. Finally, as soon as an applicant is hired for a job, for all other
applications value reject should be assignable to attribute decision by filling
one form.

Integrated Access To proceed with the control flow, mandatory activities must
be executed by responsible users in order to provide required attribute values.
Other attribute values, however, may be optionally set. Moreover, users who are
usually not involved in process execution should be allowed to optionally execute
selected activities. In addition to a process-oriented view (e.g. work lists), a data-
oriented view should be provided enabling users to access and manage data at
any point in time. For this purpose, we need to define permissions for creating
and deleting object instances as well as for reading/writing their attributes.
However, attribute changes contradicting to specified object behavior should

be prevented. Which attributes may be (mandatorily or optionally) written or
read by a particular form-based activity not only depends on the user invoking
this activity, but also on the progress of the corresponding process instances.
While certain users must execute an activity mandatorily in the context of a
particular object instance, others might be authorized to optionally execute this
activity; i.e., mandatory and optional permissions should be distinguishable.
Moreover, for object-aware processes, the selection of potential actors should
not only depend on the activity itself, but also on the object instances processed
by this activity. In this context, it is important to take the relationships between
users and object instances into account.

Example 6 (Integrated Access) A personnel officer may only decide on
applications for which the name of the applicants starts with a letter be-
tween ’A’ and ’L’, while another officer may decide on applicants whose
name starts with a letter between ’M’ und ’Z’. An employee must mandato-
rily write attribute proposal when filling in a review. However, her manager

may optionally set this attribute as well. The mandatory activity for filling the
review form, in turn, should be only assigned to the employee. After submit-
ting her review, the employee still may change her comment. In this context, it
must be ensured that the employee can only access reviews she submitted be-
fore. However, attribute proposal, in turn, must not be changed anymore. The
personnel officer might have already performed the proposed action.

3 A Framework Enabling Data-driven and Object-aware
Processes

In the PHILharmonicFlows project, we developed a framework that enables the
characteristic properties of data-driven and object-aware processes and hence
contributes to overcome many of the limitations of existing process management
technology. The PHILharmonicFlows framework will be described in this sec-
tion using another illustrating example. In particular, the framework provides
advanced concepts and components enabling comprehensive support for data-
driven and object-aware processes.

3.1 Illustrating Example

We first present another example of an object-aware process along which we will
illustrate basic concepts of the PHILharmonicFlows framework.

The selected scenario deals with proposing extension courses at a university;
i.e., courses for professionals that aim at refreshing and updating their knowl-
edge in a certain area of expertise. In order to propose a new extension course,
the course coordinator must create a project describing it. The latter must be
approved by the faculty coordinator as well as the extension course committee.

Example 7 (Extension course proposal) The course coordinator creates
a new extension course project using a form. In this context, he must pro-
vide details about the course, like name, start date, duration, and description.
Following this, professors may start creating the lectures for the extension
course. Each lecture, in turn, must have detailed study plan items, which de-
scribe the activities of the lecture. For each lecture, there may be some (external)
invited speakers. The latter either may accept or reject the invitation.
After receiving the responses for the invitations and creating the lectures,
the coordinator may request the approval of the extension course project.
First, it must be approved by the faculty director. If he wants to reject it,
he must provide a reason for his decision and the course must not take place.
Otherwise, the project is sent to the extension course committee for evalu-
ation. If there are more rejections than approvals, the extension course

project is rejected. Otherwise, it is approved and hence may take place.

Extension course project
Creative Writing

01/04/2012
English

40 Hours
This course will focus on the
dynamics of story creation.

Invitation
Neil Gaiman

accepted

Study Plan Item
01/04/2012

Character Description
101

In this class, the
students will be asked
to create the basics of

a character.

Lecture
Lecture

Character Development
10 Hours

John Smith
How to develop a

character in a fictional
story.

Invitation
Invitation Study Plan Item

External

Review
invitation

Review
invitation

Faculty

Create
extension

course project
approved faculty

Course Coordinator
Max Meyer

Create lecture
Professor

Paul Thomson

Create lecture
Professor
Mark Moore

Faculty
Approve extension

course project Faculty Director
Lola Lee

Extension Course
Committee

Committee Member
Peter Frank

Faculty

Professor
Paul Thomson

Create study
plan item

Invited Speaker
Neil Gaiman

Invited Speaker
Douglas Adams

Invited Speaker
Terry Pratchett

users activities
data

structure
activities users

Approve extension
course project

Decision
Committe

Decision
Committe

Decision
Committe

Committee Member
Frank Ferdinand

Committee Member
Sonya Sun

Interesting course.

Create study
plan item

Approve extension
course project

Approve extension
course project

Review
invitation

Fig. 5. Extensions course proposal

3.2 Selected Components of the PHILharmonicFlows Framework

The PHILharmonicFlows framework supports object-aware processes focusing
on the processing of business data and business objects respectively. More pre-
cisely, object-awareness means that the overall process model is structured and
divided according to the object types involved. In turn, these object types are
organized in a data model and may be related to other object types. Moreover,

for each object type, a separate process type defining its object behavior exists.
At run-time, each object type then may comprise a varying number of object
instances. Since the creation of an object instance is directly coupled with the cre-
ation of a corresponding process instance, a complex process structure emerges.
Thereby, process instances referring to object instances of the same type are
executed asynchronously to each other as well as asynchronously to process in-
stances related to objects of different types. However, their execution may have
to be synchronized at certain points in time. Overall, PHILharmonicFlows differ-
entiates between micro and macro processes which allow capturing both object
behavior and object interactions. Furthermore, the execution of micro and macro
processes is data-driven and integrated access to processes and data objects is
enabled. Finally, different kinds of activity granularities are supported.

RUN‐TIME

BUILD‐TIME
Data Model

Micro Process

Macro Process

Object Type States

Micro Steps

Micro Transitions

Macro Steps

Macro Transitions Relations

Attributes

Coordination
Overview Tables Worklists

Forms

Authorization

Process Context

Aggregation

Transverse

Permissions

User Assignment

a

b

d

c

e

Fig. 6. Overview of the PHILharmonicFlows framework

Data model A data model defines the object types as well as their correspond-
ing attributes and relations with cardinalities (cf. Fig. 6a).

Example 8 (Data structure) Fig. 7a illustrates the data model relating to
our example from Section 3.1. Object types lecture and decision committee

refer to object type extension course project. In turn, object types invitation
and study plan item refer to lecture. At run-time, these relations allow for
a varying number of inter-related object instances whose processing must be co-
ordinated. Further, cardinality constraints restrict the minimum and maximum
number of instances of an object type that may reference the same higher-level
object instance. Fig. 7b shows a corresponding data structure at run-time.

Data Model

a

object type

extension course project
name

description

lecture
name

description

1...n

decision committee
acceptance
comment

relation

1...n

invitation
speaker

acceptance

study plan item
topic

description

1..10
cardinality

0..5

attributes

Data Instances

b
name

description

extension course project
Creative Writing

Unraveling the dynamics of story
creation

name
description

name
description

lecture
Character development

Creating a fictional
character

decision committee
acceptance
comment

decision committee
acceptance
comment

acceptance
comment

decision committee
Approved
Nice idea

invitation
speaker

acceptance

invitation
Neil Gaiman

Accepted

date
description

study plan item
date

description

study plan item
Character description

Create the basis of a char.

object
instances

Process Structure

c
name

description

study plan item
date

description

study plan item
date

description

study plan iteminvitation
speaker

acceptance

invitation

lecture
name

description
name

description

lecture decision committee
acceptance
comment

decision committee
acceptance
comment

decision committee
acceptance
comment

decision committee

object
behavior

extension course project

dependency
between process

instances

Fig. 7. Data structure (data model and instances) and process structure

Micro processes To express object behavior, for each object type of a data
model, a micro process type must be defined (cf. Fig. 6b). At run-time, the
creation of object instances is then directly coupled with the creation of a cor-
responding micro process instances. The latter coordinates the processing of the
object instance among different users and specifies the order in which object
attributes may be written. For this purpose, a micro process type comprises a
number of micro step types (cf. Fig 6b), of which each refers to one specific
object attribute and describes an atomic action for writing it. At run-time, a
micro step is reached if a value is set for the corresponding attribute; i.e., a
data-driven execution is enabled. Micro step types may be inter-connected using
micro transition types in order to express their default execution order. When
using form-based activities, micro transitions define the order in which the input
fields of the respective form shall be filled (i.e., the internal processing logic of
the form). Finally, to coordinate the processing of individual object instances
among different users, several micro step types can be grouped into state types.
At the instance level, a state may only be left if the values for all attributes
associated with the micro steps of the respective state type are set.

Example 9 (Micro process type) Fig. 8a shows the micro process type of ob-
ject type extension course project. While the extension course project is in
state under creation, the course coordinator may set the attributes to which
the corresponding micro step types refer (e.g., name, start date, or description).
Following this, a user decision is made in state under approval faculty; i.e.,
the faculty director either approves or rejects the extension course project.
If the value of attribute decision faculty is rejected, a value for attribute
reason rejection is required.

User authorization PHILharmonicFlows provides advanced support for user
authorization while enabling an integrated access to process and data (cf. Fig. 6c).
User roles are associated with the different states of a micro process type. At

under creation
name start_date faculty credits description

under approval
faculty

decision_faculty

rejected

rejected

approved
under approval

extension course
committee

approved

Course Coordinator

Faculty Director

state type micro step types

micro transition
types

Authorization Table

P

under creation

CC

MW

Extension Course
Project

name
start_date
faculty
credits

R
MW R
MW R
MW R
MWdescription

decision_faculty
reason_rejection

R

Micro Process Type
object type

attribute

state type

attribute
permissions

a b

rejected faculty
reason_
rejection

Faculty Director

Fig. 8. Micro process type and authorization table for state “under creation”

run-time, users owning the respective role then must set required attribute val-
ues as indicated by the micro steps corresponding to the respective state; i.e., a
mandatory activity (i.e., a user form) is created and assigned to the user’s work
list. To enable optional activities, in addition, PHILharmonicFlows generates an
authorization table for each object type. More precisely, the framework allows
granting different permissions for reading and writing attribute values as well
as for creating and deleting object instances to different user roles (cf. Fig. 6d).
Furthermore, permissions may vary depending on the state of an object instance.
The framework ensures that each user who must execute a mandatory activity
also owns corresponding write permissions; i.e., data and process authorization
are compliant with each other. The initially generated authorization table may
be further adjusted by assigning optional permissions to other users. In this
context, we differentiate between mandatory and optional write permissions.

Attributes, permissions, and the described micro process logic also provide
the basis for automatically generating user forms at run-time. In particular,
when taking the currently activated state of the micro process instance into ac-
count, the authorization table specifies which input fields can be read or written
by the respective user in this state. Hence, any change directly affecting directly
the forms will be transparent to the end-user; i.e., the forms do not need to be
manually updated as in existing process-aware information systems.

Example 10 (Authorization table) In Fig. 8b, in state under creation of
micro process type extension course project, the course coordinator (CC)
has mandatory write (MW) permission for attributes name, start date, faculty,
credits, and description. In turn, a professor (P) is authorized to read (R)
these attributes in the respective state.

Macro process level At run-time, object instances of the same and different
types may be created or deleted at arbitrary points in time; i.e., the data struc-

ture dynamically evolves depending on the types and number of created object
instances. In particular, whether subsequent states of micro process instances
can be reached may depend on other micro process instances as well; i.e., the
processing of an object instance may depend on the processing of a variable
number of instances of a related object type. Taking these dependencies among
objects into account, a complex process structure results (cf. Fig. 7c). To enable
proper interaction among the micro process instances, a coordination mecha-
nism is required to specify the interaction points of the involved processes. For
this purpose, PHILharmonicFlows automatically derives a state-based view for
each micro process type. This view is then used for modeling so-called macro
process types defining the respective object interactions (cf. Fig. 6d). The latter
hides the complexity of emerging process structure from users. Each macro pro-
cess type (cf. Fig. 9) consists of macro step types and macro transitions types
connecting them. As opposed to traditional process modeling approaches, where
process steps are defined in terms of black-box activities, a macro step type al-
ways refers to an object type together with a corresponding state type; i.e., the
latter serve as interface between micro and macro process types.

The activation of a particular macro state might depend on instances of
different micro process types. To express this, a respective macro input type has
to be defined for each macro step types. The latter can be connected to several
incoming macro transitions. At run-time, a macro step is enabled if at least one
of its macro inputs becomes activated.

Extension
Course Project

under
creation

Invitation

create
invitation

Study Plan
Item
create
item

Extension
Course Project

rejectedDecision
Committee

start macro step

state

macro input

macro step type

object type

Lecture

create
lecture

Invitation

responded

Study Plan
Item

finished

Lecture

finished

Decision
Committee

approved

rejected

Extension
Course Project

approved

Extension
Course Project

under approval
faculty

Decision
Committee

notified

Decision
Committee

under
approval

Fig. 9. Example of a Macro Process Type

To take the dynamically evolving number of object instances as well as the
asynchronous execution of corresponding micro process instances into account,
for each macro transition a corresponding coordination component needs to be
defined (cf. Fig. 6e). For this purpose, PHILharmonicFlows utilizes object rela-
tions from the data model; i.e., takes the relations between the object type of a
source macro step type and the one of a target macro step type into account. For
this purpose, the framework organizes the data model into different data levels.
All object types not referring to any other object type are placed on the top level.

Generally, any other object type is always assigned to a lower data level as the
object type it references. Based on this, PHILharmonicFlows can automatically
classify the macro transitions either as top-down or as bottom-up (cf. Fig. 10a).
If the object types of the source and sink macro step types refer to a common
higher-level object type, the macro transition is categorized as transverse.

For each of these categories of macro transition type, a particular coordina-
tion component is required. A top-down transition characterizes the interaction
from an upper-level object type to a lower-level one. Here, the execution of a
varying number of micro process instances depends on one higher-level micro
process instance. In this context, a so-called process context type must be as-
signed to the respective macro transition type. Due to lack of space, we do not
go into details. We also do not discuss transverse macro transition types here.
In turn, a bottom-up transition characterizes an interaction from a lower-level
object type to an upper-level one. In this case, the execution of one higher-level
micro process instance depends on the execution of several lower-level micro
process instances of the same type. For this reason, each bottom-up transition
requires an aggregation component for coordination. To manage the total num-
ber of lower-level micro process instances related to the dependent upper-level
micro process instance, PHILharmonicFlows provides counters; i.e., the latter
permit to control the number of micro process instances that have reached the
respective state as well as the ones that have not yet reached the state and the
ones that have skipped the same state. These counters can be used for defin-
ing aggregation conditions enabling the higher-level micro process instance to
activate the state.

Example 11 (Aggregation component) Fig. 10b shows an aggregation con-
dition (#IN < #ALL/2) expressing that the extension course project will be
approved if more than half of the committee members approve the project. In
this example, there are three micro process instances of decision committee

related to one instance of extension course project. The counter of this ex-
ample indicates that two of the running instances of decision committee have
already reached state approved (#IN = 2), while one instance has not yet reached
this state (#BEFORE=1). In this case, the condition is already fulfilled and the
upper-level micro process instance may continue its execution.

4 Related Work

In [16], we have shown why existing imperative, declarative, and data-driven
(i.e., Case Handling [2, 19, 20]) process support paradigms are unable to ade-
quately support object-aware processes. However, to enable consistency between
process and object states, extensions of these approaches based on object life
cycles have been proposed. These extensions include object life cycle compliance
[21], object-centric process models [9, 8], business artifacts [4, 22], data-driven
process coordination [5, 23], and product-based workflows [24, 6]. However, none

Data Model - Relations

Extension Course
Project #1

#2

#3

Lecture Decision
Committee

Invitation Study Plan Item

1..n 1..n

0..5 1..10

transverse

top-down

bottom-up

a
Aggregation Example

b Bottom-up Transition

Extension Course
ProjectDecision Committee

approved approved

#IN > #ALL/2

Extension Course Project

#1

#2

#3

under creation
rejected

approved

Decision Committee
Lecture

Invitation Study Plan Item

rejectedrejected

rejectedrejected
under

approval
approved

rejected

#IN = 2
#BEFORE = 1

Fig. 10. a) Kinds of relations between object Types; b) Aggregation example

of these approaches explicitly maps states to object attribute values. Conse-
quently, if certain pre-conditions cannot be met during run-time, it is not possi-
ble to dynamically react to this. In addition, generic form logic is not provided in
a flexible way; i.e., there is no automatic generation of forms taking the individ-
ual attribute permissions of a user as well as the progress of the corresponding
process into account. Finally, opposed to these approaches, PHILharmonicFlows
captures the internal logic of an activity as well.

As illustrated in Fig. 11, each characteristic from Section 2 is addressed by
at least one existing approach. Although the mentioned approaches have defi-
ciencies (see footnotes in Fig. 11), they can be considered as pioneering work
towards data-driven and object-aware process support. As opposed to PHILhar-
monicFlows, however, none of them covers all characteristics in a comprehensive
and integrated way. Also note that Fig. 11 does not make a difference between
process modeling and process execution. Though some approaches (e.g., the busi-
ness artifacts framework [4]) provide rich capabilities for process modeling, they
do not cover run-time issues (or at least do not treat them explicitly).

Interestingly, existing approaches partially consider similar scenarios, while
addressing different characteristics (see the grey boxes on the bottom of Fig. 11).
For example, order processing was taken as illustrating scenario by Case Han-
dling [2], Batch Activities [25], and Business Artifacts [4]. Case Handling ad-
dresses the need for enabling object behavior, data-driven execution, and inte-
grated access. In turn, Business Artifacts consider data-driven execution, object
behavior and object interactions. Finally, [25] describes the need for executing
several activities in one go (i.e., the execution of batch-activities). Hence, the in-
tegrated support of all characteristics described is urgently needed to adequately
cope with order processes.

Fig. 11. Evaluation of existing approaches

5 Summary

Through elaborating the main characteristics of object-aware processes, this pa-
per has shown that process and data more or less constitute two sides of the same
coin, which must be tightly integrated. Hence, data-driven and object-aware pro-
cess support will provide an important contribution towards the realization of a
more flexible process management for which daily work can be accomplished in
a more natural way than in traditional process-aware information systems. As
illustrated in Fig. 12, a comprehensive integration of processes and data entails
three major benefits:

1. Flexible execution of unstructured, knowledge-intensive processes.
2. Integrated view on processes, data, and functions to users.
3. Generic business functions, e.g., automatically generated form-based activi-

ties.

PHILharmonicFlows offers a comprehensive solution framework to adequately
support data-driven and object-aware processes. In particular, this framework
supports the definition of data and process in separate, but well integrated mod-
els. So far, PHILharmonicFlows has addressed process modeling, execution and
monitoring, and it provides generic functions for the model-driven generation of
end user components (e.g., form-based activities). Furthermore, PHILharmon-
icFlows considers all components of the underlying data structure; i.e., objects,

Fig. 12. Object-aware Process Management

relations and attributes. For this purpose, it enables the modeling of processes
at different levels of granularity. In particular, it combines object behavior based
on states with data-driven process execution. Further, it provides advanced sup-
port for process coordination as well as for the integrated access to business
processes, business functions and business data. We believe that the described
framework offers promising perspectives for overcoming many of the limitations
of contemporary PrMS.

References

1. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Sys-
tems: Challenges, Methods, Technologies. Springer (2012)

2. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case Handling: A new Paradigm
for Business Process Support. DKE 53 (2005) 129–162

3. van der Aalst, W.M.P., Barthelmess, P., Ellis, C.A., Wainer, J.: Workflow Modeling
using Proclets. In: Proc. CoopIS’00. (2000) 198–209

4. Bhattacharya, K., Hull, R., Su, J. In: A Data-Centric Design Methodology for
Business Processes. IGI Global (2009) 503–531

5. Müller, D., Reichert, M., Herbst, J.: Data-Driven Modeling and Coordination of
Large Process Structures. In: Proc. CoopIS’07. LNCS 4803 (2007) 131–149

6. Reijers, H.A., Liman, S., van der Aalst, W.M.P.: Product-Based Workflow Design.
Management Information Systems 20 (2003) 229–262

7. Vanderfeesten, I., Reijers, H.A., van der Aalst, W.M.P.: Product-based Workflow
Support. Information Systems 36 (2011) 517–535

8. Redding, G.M., Dumas, M., ter Hofstede, A.H.M., Iordachescu, A.: Transforming
Object-oriented Models to Process-oriented Models. In: Proc. BPM’07 Workshops.
LNCS 4928 (2007) 132–143

9. Redding, G.M., Dumas, M., ter Hofstede, A.H.M., Iordachescu, A.: A flexible,
object-centric approach for business process modelling. Service Oriented Comput-
ing and Applications (2009) 1–11

10. Künzle, V., Reichert, M.: Striving for object-aware process support: How existing
approaches fit together. In: 1st Int’l Symposium on Data-driven Process Discovery
and Analysis (SIMPDA’11). (2011)

11. Rinderle, S., Reichert, M.: Data-driven process control and exception handling in
process management systems. In: Proc. 18th Int’l Conf. on Advanced Information
Systems Engineering (CAiSE’06). Number 4001 in LNCS, Springer (2006) 273–287

12. Künzle, V., Reichert, M.: Towards object-aware process management systems:
Issues, challenges, benefits. In: Proc. BPMDS’09. LNBIP 29 (2009) 197–210

13. Künzle, V., Reichert, M.: Integrating Users in Object-aware Process Management
Systems: Issues and Challenges. In: Proc. BPD’09. LNBIP 43 (2009) 29–41

14. Künzle, V., Reichert, M.: PHILharmonicFlows: Towards a Framework for Object-
aware Process Management. Journal of Software Maintenance and Evolution: Re-
search and Practice 23 (2011) 205–244

15. Künzle, V., Reichert, M.: A Modeling Paradigm for Integrating Processes and
Data at the Micro Level. In: Proc. BPMDS’11, Springer (2011) 201–215

16. Künzle, V., Weber, B., Reichert, M.: Object-aware Business Processes: Fundamen-
tal Requirements and their Support in Existing Approaches. International Journal
of Information System Modeling and Design (IJISMD) 2 (2011) 19–46

17. Chiao, C.M., Künzle, V., Reichert, M.: Towards object-aware process support
in healthcare information systems. In: 4th International Conference on eHealth,
Telemedicine, and Social Medicine (eTELEMED 2012). (2012)

18. Künzle, V., Reichert, M.: PHILharmonicFlows: Research and Design Methodology.
Technical Report UIB-2011-05, University of Ulm, Ulm, Germany (2011)

19. Weber, B., Mutschler, B., Reichert, M.: Investigating the effort of using business
process management technology: Results from a controlled experiment. Science of
Computer Programming 75 (2010) 292–310

20. Guenther, C.W., Reichert, M., van der Aalst, W.M.: Supporting flexible processes
with adaptive workflow and case handling. In: Proc. WETICE’08, 3rd IEEE Work-
shop on Agile Cooperative Process-aware Information Systems (ProGility’08),
IEEE Computer Society Press (2008) 229–234

21. Küster, J., Ryndina, K., Gall, H.: Generation of Business Process Models for
Object Life Cycle Compliance. In: Proc. BPM’07. LNCS 4714 (2007) 165–181

22. Gerede, C.E., Su, J.: Specification and Verification of Artifact Behaviors in Busi-
ness Process Models. In: Proc. ICSOC’07. (2007) 181–192

23. Müller, D., Reichert, M., Herbst, J.: A New Paradigm for the Enactment and Dy-
namic Adaptation of Data-driven Process Structures. In: CAiSE ’08: Proceedings
of the 20th international conference on Advanced Information Systems Engineer-
ing. (2008) 48–63

24. Vanderfeesten, I., Reijers, H.A., van der Aalst, W.M.P.: Product-Based Workflow
Support: Dynamic Workflow Execution. In: Proc. CAiSE’08. LNCS 5074 (2008)
571–574

25. Sadiq, S.W., Orlowska, M.E., Sadiq, W., Schulz, K.: When workflows will not
deliver: The case of contradicting work practice. In: Proc. BIS’05. (2005)

