
Data Flow Abstractions and Adaptations through
Updatable Process Views

Jens Kolb,
Ulm University, Germany
jens.kolb@uni-ulm.de

Manfred Reichert
Ulm University, Germany

manfred.reichert@uni-ulm.de

ABSTRACT
The increasing adoption of process-aware information sys-
tems (PAISs) has resulted in large process model collections.
To support users having different perspectives on these pro-
cesses and related data, a PAIS should enable personalized
views on process models. Existing PAISs, however, do not
provide mechanisms for creating such process views or even
changing them. Especially, changing process models is a fre-
quent use case in PAISs due to evolving needs or unplanned
situations. While process views have been used as abstrac-
tions for visualizing process models, no work exists on how
to change process models based on related views. This paper
extends our approach for abstracting and changing process
models based on updatable process views with a focus on
the data perspective. In the context, of a view change we
ensure up-to-dateness and consistency of all process views
related to the same process model. To define process ab-
stractions well-defined view creation operations can be ap-
plied. Further, updates on process views (including the data
perspective) are correctly propagated to the underlying pro-
cess model. Then, all other views related to this process
model are migrated to the new version of the process model.
Overall, our view framework enables domain experts to not
only evolve the behavior of large processes based on appro-
priate model abstractions, but also the data perspective.

1. INTRODUCTION
Process-aware information systems (PAISs) provide sup-

port for business processes at the operational level. A PAIS
strictly separates process logic from application code, relying
on explicit process models [1]. This enables a separation of
concerns, which is a well established principle in computer
science to increase maintainability and to reduce costs of
change [2]. The increasing adoption of PAISs has resulted in
large process model collections. In turn, each process model
may refer to different domains, organizational units, and
user roles, and it may comprise dozens or even hundreds of
activities [3]. Usually, different user groups need customized

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’13 March 18-22, 2013, Coimbra, Portugal.
Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$10.00.

views on the process models relevant for them, enabling a
personalized process abstraction and visualization [4]. For
example, business managers rather prefer an abstract pro-
cess overview, whereas process participants need a detailed
view of the process parts they are involved in. Hence, pro-
viding personalized process views is a much needed PAIS
feature. Several approaches for creating process model ab-
stractions based on process views have been proposed [5, 6,
7]. However, these focus on view creation and visualization,
but neither consider the data perspective of process models
nor process model evolution [2, 1]. More precisely, most ex-
isting techniques for creating process views do not allow for
properly abstracting the data perspective of a process model
(e.g., through creating business objects). Further, changing
the data perspective of a large process model based on up-
dates of corresponding model abstractions is also not sup-
ported. Hence, changes must be directly applied to the core
process model, which constitutes a complex as well as error-
prone task for domain experts, particularly at the presence
of large process models. To overcome this drawback, in addi-
tion to creating process model abstractions, users should be
allowed to change the control and data flow of large process
models through updates of corresponding process views.
In the proView1 project, we address these challenges by not
only supporting the creation and visualization of process
views, but by additionally providing change operations that
enable users to modify a process model through updating
any related process view [8]. In this context, all other views
defined for the changed process model must be migrated to
its new version as well. Note that this paper focuses on the
abstraction and adaptation of the data perspective, while
the approach we described in [8] deals with behavioural (i.e.,
control flow) changes. Besides view-based abstractions and
changes, proView enables alternative process model repre-
sentations (e.g., tree-based, form-based, and diagram-based)
and provides different interaction techniques (e.g., gesture-
vs. menu-based) [9, 10, 11]. Our overall goal is to enable
domain experts to interact with (executable) process models
they are involved in.
Fig. 1 gives an overview of the proView framework: A busi-

ness process is captured and represented through a Central
Process Model (CPM). In addition, for a particular CPM,
so-called creation sets (CS) are defined. Each creation set
specifies the schema and appearance of a particular process
view. Section 2 gives more details. For defining, visualizing,
and updating process views, the proView framework pro-
vides engines enabling visualization, change, and execution

1http://www.dbis.info/proView

Visualization Engine

Change Engine

CS2CS1 CS3

Migrate

Views

Create

Appearance

Create

Schema
Refactor

Business Process 1

View2

1
4

5 6 7

E
x
e

c
u

ti
o

n
 &

 M
o

n
it
o

ri
n

g

E
n

g
in

e

e
x
e

c
u

te

visualize

change

..
.

Refactor3
Update

CPM
2

PAIS1

ü ü ü

PAIS2

ü ü ü

PAISn

ü ü ü
View3

View1

CPM

Figure 1: The proView Framework

& monitoring. The visualization engine generates a process
view based on a given CPM and the information maintained
in creation set CS, i.e., the CPM schema is transformed to
the view schema by applying the corresponding view cre-
ation operations specified in CS (Step 5©). Afterwards, the
resulting view schema is simplified by applying well-defined
refactoring operations (Step 6©). Finally, Step 7© customizes
the visual appearance of the view, e.g., by creating a tree-,
form-, or activity-based visualization [6, 9]. Section 3 pro-
vides insights into these steps.

When a user updates a view schema, the change engine
is triggered (Step 1©). First, the view-based model change
is propagated to the underlying CPM using well-defined
change propagation algorithms (Step 2©). Next, the schema
of the modified CPM is simplified (Step 3©), i.e., behaviour-
preserving refactorings are applied to foster model compre-
hensibility, e.g., by removing surrounding gateways not needed
anymore. Afterwards, the creation sets of all other views
associated with the CPM are migrated to the new CPM
schema version (Step 4©). This becomes necessary since a
creation set may be contradicting with the changed CPM
schema. Finally, all views are recreated (Steps 5©- 7©) and
presented to users. Section 4 presents view update opera-
tions and migration rules required to change business pro-
cesses based on process view updates. Section 5 sketches the
validation of proView. Section 6 discusses related work and
Section 7 summarizes the paper.

2. BACKGROUND
A process model is represented by a process schema con-

sisting of process nodes as well as the control and data flow
between them (cf. Fig. 2). For control flow modeling, gate-
ways and control flow edges are used (cf. Definition 1). Data
flow is expressed through data elements and corresponding
read/write data edges.

A

B

C F G

D

E

StartFlow Activity

ANDsplit
ET_SoftSync

EndFlow

LOOPsplit

LOOPjoin

XORsplit XORjoin

ANDjoin

SESE block (Single

Entry Single Exit)

d1

C

DataElement ReadAccess

WriteAccess

Figure 2: Example of a Process Model

Definition 1. A process model is defined as a tuple P =
(N,D,E,EC,NT,ET) where:

• N is a set of nodes (i.e., activities and gateways),

• D is a set of data elements,

• E = CE ∪̇DE is a set of edges that comprises control
flow edges CE ⊂ N × N and data flow edges DE ⊂
(N ×D) ∪ (D ×N),

• EC : E → Conds ∪ {True} assigns transition condi-
tions to control edges,

• NT : N → {StartF low,EndF low,Activity, ANDsplit,
ANDjoin,XORsplit,XORjoin, LOOPsplit, LOOP−
join} assigns node type NT (n) to each node n ∈ N ;
N is divided into disjoint sets of activity nodes A
(NT = Activity) and gateways S (NT 6= Activity),
i.e., N = A ∪̇ S,

• ET : E → {ET Control, ET SoftSync,ET Loop,
ET DataF low} assigns an edge type ET (e) to each
edge e ∈ E,

• DET : E → {always, optional, never} describes the
type of data access for each data edge.

Definition 1 can be used for representing the schemes
of both the Central Process Model (CPM) and associated
process views. In particular, it can be applied to activity-
centered modeling languages, even though not restricted to
a particular one. This paper uses BPMN as notation due
to its widespread use. Further, to each data edge e func-
tion DET (e) assigns a value indicating whether the corre-
sponding data element is always, optionally or never ac-
cessed. Thereby, always indicates that the data element
is mandatory for the corresponding activity. In turn, op-
tional expresses that it is not mandatory to perform the
activity. If no correspondence exists, DET returns never.
We further assume that a process schema is well-structured,
i.e., sequences, branchings (of different semantics), and loops
are specified as blocks with well-defined start and end nodes
having same gateway type. These blocks—also known as
SESE blocks (cf. Definition 2)—may be arbitrarily nested,
but must not overlap (like blocks in WS-BPEL). To increase
expressiveness, sync edges allow for a cross-block synchro-
nization of parallel activities (similar to BPEL links). In
Fig. 2, for example, activity E must not be enabled before
completing G.

Definition 2. Let P = (N,D,E,EC,NT,ET) be a pro-
cess model and X ⊆ N be a subset of activity nodes (i.e.,
NT (n) = Activity, ∀n ∈ X). Then: Subgraph P ′ induced
by X is called SESE (Single Entry Single Exit) block iff
P ′ is connected and has exactly one incoming and one out-
going edge connecting it with P . Further, let (ns, ne) ≡
MinimalSESE(P,X) denote the start and end node of the
minimum SESE comprising all activities from X ⊆ N .

How to determine SESE blocks is described in [12]. Since
we presume a well-structured process schema, a minimum
SESE can be always determined.

3. VIEW CREATION OPERATIONS
To create a process view on a given process model, proper

abstraction techniques applied to this model are required.
For this purpose, proView provides elementary view creation
operations. In turn, these elementary operations may be
combined to realize high-level operations (e.g., show all my
activities and their precedence relation). In particular, such
high-level operations enable users to create process views at

a high level of abstraction [13].
At the elementary level, two categories of operations are
distinguished: reduction and aggregation. An elementary
reduction operation hides any process element (e.g., data
element or activity) of the original process model in the cre-
ated process view. In turn, an elementary aggregation oper-
ations abstracts a set of process nodes to one node, e.g., by
combining a set of data elements/activities into one abstract
business object/activity.

Generally, a process view can be created through the con-
secutive application of elementary operations to a process
model. Remember that the latter represents a business pro-
cess and is denoted as Central Process Model (CPM). Gen-
erally, any CPM may have several associated process views.

Definition 3. Let CPM be a process model. A process
view V(CPM) is described through a creation set CSV =
(CPM,Op, PS) with:

• CPM = (N,D,E,EC,NT,ET) is the process model
for which the view is defined; CPM is denoted as Cen-
tral Process Model,

• Op = 〈Op1, . . . , Opn〉 is the sequence of elementary
view creation operations applied to CPM: Opi ∈
{RedActivity,RedDataElement,AggrSESE, . . .},

• PS = (PS1, . . . , PSm) defines the settings (i.e., val-
ues) of a number of configuration parameters for the
view creation operations applied.

Definition 3 expresses that a process view can be created
through the consecutive application of the operations spec-
ified in the corresponding creation set. In this context, con-
figuration parameters (shortly: parameter) are required to
describe how high-level operations shall be mapped to ele-
mentary view creation operations, depending on the selected
nodes in the CPM (see [13] for details). Section 4 shows that
these parameters are required to enable automatic change
propagation from a view to its underlying CPM.
A node n in a process view V either directly corresponds
to node n of the CPM or it abstracts a set of CPM nodes.
CPMNode(V, n) reflects this by returning either node n or
a node set Nn of CPM = (N,D,E,EC,NT,ET), depend-
ing on the creation set CSV = (CPM,Op, PS) with Op =
〈Op1, . . . , Opk〉.

CPMNode(V, n) =

{
n n ∈ N ∪D

Nn ∃Opi ∈ Op : Nn
Opi−→ n

3.1 Creating Process Views Based on Schema
Reduction

Any view creation component should allow removing ac-
tivities or data elements within a process view. This is
required to hide irrelevant or confidential process details
from a particular user group; e.g., hiding technical data ele-
ments (e.g., database connection data) or privacy-/security-
sensitive data elements (e.g., user names). For this purpose,
proView provides elementary reduction operations RedAc-
tivity(V,n) and RedDataElement(V,d) (cf. Fig. 3).
View creation operation RedActivity(V,n) removes node n
together with its incoming and outgoing control flow edges.
It further inserts a new control flow edge linking the prede-
cessor of n with its successor in view V (see view V1 in Fig.

A B C D E

F

{LATE_EARLY}

X
{LATE_LATE}

X

EARLY_* LATE_* *_EARLY *_LATE

{EARLY_LATE,EARLY_EARLY}
X

X

a) RedActivity(V,B)

V1: V2:

CPM:

A B CDEA C D

OpV2={

RedActivity(F),

AggrSESE(C,D,E}

Change in View V1

InsertParallel

({C,D},X,V1)

1

a) Initial Situation

2 Determining Insert

Position in CPM

(depends on Parameter

InsertBlockMode)

3 Migrating Views

Results b)+c)

InsertBlockMode=

LATE_EARLY

A B CDEX

X

A B C D E

b) Updated View V2

AggrPartlyMode=AGGR AggrPartlyMode=SHOW

c) Updated View V2

A B C

A C

b) AggrSESE(V,{B,C})

A B C D

A BC D

A

B C

D

c) AggrComplBranches(V,{A,B,C})

ABC

D

RedActivity(V1,B)

A B C

d1 d2

A C

d1 d2

A B C

d1

RedDataElement(V2,d2)

Figure 3: Process View Creation: Reduction

Algorithm 1: RedDataElement(V,d)

D
′
= D \ {d}

E
′
= E

forall (e = (es, ee) in E)
if((es == d)||(ee == d))

E
′
= E

′
\ {e}

Table 1: View Create Operation: RedDataElement

3). Furthermore, it removes all data edges associated with
node n. In certain cases, applying this operation results in
a process view with “incorrect” data flow. For example, in
Fig. 3, data element d2 is never written from the perspec-
tive of view V 1. Of course, the data flow of a CPM is not
modified when applying this operation during view creation.
View creation operation RedDataElement(V,d) removes data
element d in process view V as well as all associated data
flow edges (cf. Table 1). As opposed to operation RedActiv-
ity, data flow correctness of the CPM is preserved since all
writing and reading data flow edges are removed together
with the data element itself (cf. view V2 in Fig. 3). Obvi-
ously, the semantics of the data flow then changes compared
to the one in the corresponding CPM.
When reducing process elements in a process view unused

control flow structures may remain (e.g., empty branches).
Therefore, refactoring operations are applied to simplify the
resulting control flow structure and thus to increase view
comprehensibility [8, 3].

3.2 Creating Process Views Based on Schema
Aggregation

An aggregation operation takes a set of process nodes as
input and combines them into an abstracted node in the

process view. For example, operation AggrSESE(V,N
′
)

removes all activities of the SESE block induced by node set

N
′

and inserts an abstract activity in the resulting process
view instead (see view V1 in Fig. 4). Associated data ele-
ments are aggregated as well, iff all incoming/outgoing data

edges are connected to activities of N
′
. Other associated

data elements are kept in the view and their data edges are
reconnected to the newly aggregated activity (see view V1
in Fig. 4).

AggrComplBranches(V,N
′
) is an elementary operation

aggregating complete branches of an XOR/AND block to a

single branch with one abstracted node. N
′

must comprise
the activities of the branches (i.e., between split and cor-
responding join gateway) that shall be replaced by a single
branch with one aggregated node. In this case, data ele-
ments are handled similar to AggrSESE.

Operation AggrDataElements(V,Da) aggregates a set of

Algorithm 2: AggrSESE(V,Na)

N
′
= N \ Na ∪ {nnew}

E
′
= updateControlF lowEdges(E,Na)

Da = getAssociatedDataElements(CPM,Na)
forall (d in Da)
if(isReadAccess(d,Na))
enew = (d, nnew)

E
′
= E

′
∪ {enew}

if(accessedByAllTraces(d,Na))
DET (enew) := always

else
DET (enew) := optional

elseif(isWriteAccess(d,Na))
//analogous for write access

E
′
= removeDataEdges(E

′
, d,Na)

Table 2: View Create Operation: AggrSESE

AggrSESE(V1,{B,C})

A B C

d1 d2

d1

V1: V2:

CPM:

A B C

d1d2

AggrDataElements

(V2,{d1,d2})

A BC

Figure 4: Process View Creation: Aggregation

data elements to one abstract data element (see view V2 in
Fig. 4). For example, a set of data elements related to a
patient treatment process may be combined to one abstract
patient data element. Hence, operation AggrDataElements
removes all data elements of set Da and inserts an abstract
data element in process view V . Additionally, corresponding
data edges are updated by replacing old ones connecting el-
ements of Da with activities connecting the abstracted data
element with corresponding activities (cf. Table 3). The
newly added data edge type must be the same as in the
CPM. E.g., aggregating an optional as well as always writ-
ten data element results in an always written abstract one.

4. VIEW UPDATE OPERATIONS
Process views are not only required for enabling person-

alized process visualization through abstracting the under-
lying CPM. They shall also provide the basis for changing
large process models based on respective abstractions. Sec-
tion 4.1 describes how such updates of a process view can be

Algorithm 3: AggrDataElement(V,Da)

D
′
= D \ Da ∪ {dnew}

E
′
= E

forall (e = (es, ee) in E)
if(es ∈ Da)
enew = (es, dnew)
if(DET ((es, dnew)) == never)
DET ((es, dnew)) := DET (es, ee)

elseif((DET ((es, dnew)) == always)
||(DET (es, ee) == always))

DET ((es, dnew)) := always
elseif(ee ∈ Da)
//analogous for read access

E
′
= E

′
∪ {enew, ee} \ {e}

Table 3: View Create Operation: AggrDataElement

accomplished and then propagated to the underlying CPM.
Section 4.2 then presents migration rules for updating all
other process views also associated with the changed CPM.
Note that this paper focuses on operations directly modi-
fying the data flow. In turn, an example of control flow
updates is depicted in Figure 5. View update operations re-
lating to the control flow perspective are outside the scope
of this paper and are described in [8].

A B C D E

F

X X

EARLY LATE

X

OpV1={

RedActivity(V1,B),

RedActivity(V1,E),

RedActivity(V1,F)}

View V1:
View V2:

CPM:

AB C DE

A C D OpV2={

RedActivity(V2,F),

AggrSESE(V2,{D,E}),

AggrSESE(V2,{A,B}),

AggrDataElement(V2,{d1,d2})}

Propagate Change

InsertSerial

(V1,A,C,X)

1

a) Initial Situation

2 Determining Insert

Position in CPM

(depends on Parameter

InsertSerialMode)

3 Migrating Views

Results b)+c)

InsertSerialMode=

EARLY

AXB C DE

b) Migrated View V2

AggrComplMode=AGGR AggrComplMode=SHOW

c) Migrated View V2

d2 d3d1

d3

d1d2

C DEA BX

d1d2d1d2

Figure 5: Example of a Process View

4.1 View Update Operations
When allowing users to change a business process model

based on a personalized process view, it must be ensured
that this change can be automatically propagated to the
underlying CPM without causing syntactical or semantical
errors. Hence, well-defined view update operations are re-
quired that guarantee for a proper propagation of the respec-
tive view changes to the CPM. Table 4 gives an overview of
view update operations related to data flow.

Propagating view changes to the corresponding CPM is
not straightforward. In certain cases, there might be am-
biguities regarding the propagation of the view change to
the underlying CPM. For example, it might not be possi-
ble to determine a unique position for inserting an activity
or data edge in the CPM due to the abstractions applied
when creating the view. Consider the example from Fig.
6. Inserting the read data edge (d1,BC) in view V1 allows
for several insert positions in the related CPM. More pre-
cisely, there are ambiguities in how to transform the view
change into a corresponding CPM change, i.e., data element

InsertDataElement(V,d)
Inserts data element d in view V without any data edges.

InsertDataEdge(V,de,det)
Inserts a new data edge de and corresponding data edge type
det in view V . The corresponding parameter InsertEdge-
Mode={EARLY,LATE,ALL} describes the propagation be-
haviour in case of ambiguities.

ChangeDEType(V,de,det)
Changes the data edge type of data edge de to the new data
edge type det in process view V .

DeleteDataElement(V,d)
Deletes data element d in process view V as well as all associ-
ated data edges.

DeleteDataEdge(V,de)
Deletes data edge de in process view V .

Table 4: Update Operations for Process Views

Algorithm 4: InsertDataEdge(V,de,det)
if(de = (d, n) ∧ n ∈ N) //reading edge

N
′
= CPMNode(V, n)

switch(InsertEdgeMode) :
EARLY :

DEnew = {(d, first(N
′
))}

DET ((d, first(N
′
))) := det

LATE :

DEnew = {(d, last(N
′
))}

DET ((d, last(N
′
))) := det

ALL :

forall (n
′
in N

′
)

DEnew = DEnew ∪ {(d, n
′
)}

DET ((d, n
′
)) := det

D
′
= D ∪ DEnew

//analogous for writing edge

Table 5: View Create Operation: AggrDataElement

d1 may be read by activity B or activity C. Note that this
ambiguity results from the aggregation of B and C in the
context of the view creation. However, when propagating
view updates to a CPM, users must not be burdened with
resolving such ambiguities. Instead automated propagation
of view updates to a CPM shall be based on parameteriz-
able propagation policies. Hereafter, we introduce parame-
terizable view update operations that may be configured to
automatically propagate view updates to a CPM resolving
ambiguities if required (cf. Table 1). We exemplarily pro-
vide an algorithm for operation InsertDataEdge to indicate
how a view change can be transformed into a corresponding
CPM change, taking such parameterizations into account.

A B C

d1

d1

V1:

CPM‘:

A BC

CPM‘‘:

InsertDataEdge

(V1,(d1,BC),always)

A B C

d1
AggrSESE

(V1,{B,C})

InsertEdgeMode=

EARLY

InsertEdgeMode=

LATE

? ?

Figure 6: Ambiguity when Propagating View
Changes to the CPM

As shown in Figure 6, InsertDataEdge(V,de,det) adds data
edge de to process view V. Data edge de = (n1, n2) indicates
whether a read/write data edge is considered, whereas det
denotes the used data edge type (e.g., optional, always).
Algorithm 4 (cf. Table 5) shows how a view change, as de-
scribed by operation InsertDataEdge, can be transformed
into a schema change of the related CPM. First of all, it
must be determined whether the data edge is a write or read
edge. In case of a read edge, the activity n, which reads the
related data element in view V, is identified. Then, function
CPMNode (cf. Section 2) is applied to obtain the nodes
corresponding to n in CPM. Depending on the value of In-
sertEdgeMode, the data edge is added to the CPM at the

earliest/latest position taking returned node set N
′

of func-
tion CPMNode into account. If InsertEdgeMode=ALL, data

edges are added to all nodes of node set N
′
.

Obviously, inserting a data edge might violate the cor-
rectness of the data flow of the CPM. For example, when

inserting a read data edge at a point from which the data
element will not have been written yet. Table 6 provides an
overview of the properties of each update operation (cf. Ta-
ble 4). Property dependency generating describes whether
the application of a particular operation, generates new data
flow dependencies (e.g., through edges). In such cases, cor-
rectness of the data flow of the underlying CPM must be
checked. Property dependency preserving expresses that all
existing data flow dependencies are preserved when applying
a view update operation. Next, property data flow correct-
ness preserving describes, which operations preserve data
flow correctness and which might violate it. All data-related
update operations preserve control flow correctness.

Operation d
ep

en
d
en

cy
g
en

er
a
ti

n
g

d
ep

en
d
en

cy
p
re

se
rv

in
g

d
a
ta

fl
ow

co
rr

ec
tn

es
s

p
re

se
rv

in
g

co
n
tr

o
l

fl
ow

st
ru

ct
u
re

p
re

se
rv

in
g

InsertDataElement - + + +
InsertDataEdge + + - +
ChangeDEType - - - +
DeleteDataElement - - + +
DeleteDataEdge - - - +

Table 6: Overview of Operation Properties

4.2 Migrating Process Views to a New CPM
Version

When changing a CPM through updating one of its as-
sociated views, all other views defined on this CPM must
be updated as well. More precisely, it must be guaranteed
that all process views are up-to-date and hence users always
interact with the current version of a process model and re-
lated views respectively. To ensure this, after propagating
a view change to a CPM, the creation sets of all other pro-
cess views must be migrated to the new CPM version (cf.
Definition 3). Note that in certain cases this creation set
will contradict to the CPM (cf. Table 7). Especially when
deleting a data element, which is reduced (i.e., M1) or ag-
gregated (i.e., M2) in a process view, migration rules must
be applied to migrate creation sets.
Applying a change to the CPM and recreating the process
views afterwards allows us to guarantee that all views are up-
to-date. Since the recreation of a process view is expensive,
we developed a number of optimization techniques. First,
instead of recreating all process views, this is only accom-
plished for those views affected by the change. Second, when
changing the creation set, the visualization engine exactly
knows which parts of the process view changed; respective
parts are then recreated.

Migration Rule M1 (after applying DeleteDataElement(V,d):
∃RedDataElement(V, d) = Op1, Op1 ∈ Op

⇒ Op
′
= Op \ Op1

Migration Rule M2 (after applying DeleteDataElement(V,d):
∃AggrDataElement(V,Da) = Op1, Op1 ∈ Op and d ∈ Da

⇒ Op
′
= Op \ Op1

Table 7: Process View Migration Rules

5. EVALUATION
The proView framework presented in this paper has been

implemented as a proof-of-concept prototype in a client-
server application. Further, it enables users to simultane-
ously edit process models based on updatable process views
[14]. Overall, the proView prototype demonstrates the ap-
plicability of our framework (cf. Figure 7).

Figure 7: Proof-of-Concept Prototype

We further applied this prototype in an industry project,
i.e., to the order processing process of a mid-sized company
in Germany. This process consists of 56 activities and in-
volves six different user roles. In the top right, Figure 7
shows this process and on the bottom right an automati-
cally generated view of an involved engineer is displayed.
This view is generated through high-level operation “show
all my activities”. Overall, this study has provided promis-
ing results. In particular, it is easier for process participants
to understand process aspects relevant for them.

6. RELATED WORK
In the context of cross-organizational processes, views have

been applied for creating abstractions of partner processes
hiding private process parts [7, 15, 16, 17]. However, process
views are manually specified by the process designer, but do
not serve as abstractions for changing large process models
as in the proView project.
An approach providing predefined process view types (i.e.,
human tasks, collaboration views) is presented in [5]. As
opposed to proView, it is limited to these pre-specified pro-
cess view types. In particular, the views are not used as
abstractions enabling process change. In turn, [18] applies
graph reduction techniques to verify structural properties
of process schemas. The proView project accomplishes this
by enabling aggregations that use high-level operations. In
[19], SPQR-tree decomposition is applied when abstracting
process models. Opposed to proView, this approach neither
takes other process perspectives (e.g., data flow) nor process
changes into account.
The approach presented in [20] determines the semantic sim-
ilarity between activities by analyzing the schema of a pro-
cess model. The similarity discovered is used to abstract the
process model. However, this approach neither distinguishes
between user perspectives on a process model nor does it
provide concepts for manually creating process views.
An approach for creating aggregated process views is de-

scribed in [21]. It proposes a two-phase procedure for ag-
gregating parts of a process model not to be exposed to the
public. Again, process view updates to evolve or adapt pro-
cesses are not considered.
View models serving monitoring purpose are presented in
[22, 23]. The focus is on the run-time mapping between
process instances and views. Furthermore, views must be
pre-specified manually by the designer.
[24] aligns technical workflows with business processes. It
allows detecting changes through behavioural profiles and
propagating them to change regions of the corresponding
technical model. These regions indicate the schema region
to which the change belongs. Automatic propagation is not
supported. Similarly, [25, 26] describes a mapping model
between a technical workflow and a business process. An
automatic propagation of changes is not supported.
For defining and changing process models, various approaches
exist. [27] presents an overview of frequently used pat-
terns for changing process models; semantics of these pat-
terns is described in [28]. Further, [1] gives a comprehensive
overview on approaches enabling PAIS flexibility. In partic-
ular, [29] presents an approach for adapting well-structured
process models without affecting their correctness proper-
ties. Based on this, [30] discusses concepts for optimizing
process models over time and migrating running processes
to new model versions properly. None of these approaches
takes usability issues into account, i.e., no support for user-
centered changes of business processes is provided.

The proView framework provides a holistic framework
for personalized view creation. Further, it enables users to
change business processes based on their views and guaran-
tees that other views of the process model are adapted ac-
cordingly. None of the existing approaches covers all these
aspects and is based on rigid constraints not taking practical
requirements into account.

7. SUMMARY AND OUTLOOK
We introduced the proView framework and its formal foun-

dation; proView supports the creation of personalized pro-
cess views and the view-based change of business processes,
i.e., process abstractions not only serve visualization pur-
pose, but also lift process changes up to a higher seman-
tical level. A set of update operations enables users to
update their view and to propagate the respective schema
change to the underlying process model representing the
holistic view on the business process. Parameterization of
these operations allows for automatically resolving ambigu-
ities when propagating view changes; i.e., change propaga-
tion behaviour can be customized for each view. Finally,
we provide migration rules to update all other process views
associated with a changed process model. Similar to the
propagation, per view it can be decided how much informa-
tion about the change shall be displayed to the user.

User experiments based on the proof-of-concept demon-
strator are planned to test the hypothesis that view-based
process changes improve the handling and evolution of large
process models. Overall, we believe that view-based pro-
cess model updates offer promising perspectives to better
involve process participants and domain experts in evolving
their business processes.

8. REFERENCES
[1] Reichert, M., Weber, B.: Enabling Flexibility in

Process-aware Information Systems - Challenges,
Methods, Technologies. Springer (2012)

[2] Weber, B., Sadiq, S., Reichert, M.: Beyond Rigidity -
Dynamic Process Lifecycle Support: A Survey on
Dynamic Changes in Process-Aware Information
Systems. Computer Science - Research and
Development 23 (2009) 47–65

[3] Weber, B., Reichert, M., Mendling, J., Reijers, H.A.:
Refactoring Large Process Model Repositories.
Computers in Industry 62 (2011) 467–486

[4] Streit, A., Pham, B., Brown, R.: Visualization
Support for Managing Large Business Process
Specifications. In: Proc 3rd Int’l Conf Business
Process Management (BPM’05). (2005) 205–219

[5] Tran, H.: View-Based and Model-Driven Approach for
Process-Driven, Service-Oriented Architectures. TU
Wien, PhD Thesis (2009)

[6] Bobrik, R., Bauer, T., Reichert, M.: Proviado -
Personalized and Configurable Visualizations of
Business Processes. In: Proc. 7th Int’l Conf.
Electronic Commerce & Web Technology
(EC-WEB’06), Krakow, Poland (2006) 61–71

[7] Chiu, D.K., Cheung, S., Till, S., Karlapalem, K., Li,
Q., Kafeza, E.: Workflow View Driven
Cross-Organizational Interoperability in a Web Service
Environment. Information Technology and
Management 5 (2004) 221–250

[8] Kolb, J., Kammerer, K., Reichert, M.: Updatable
Process Views for User-centered Adaption of Large
Process Models. In: Proc 10th Conf Service Oriented
Computing (ICSOC’12), Shanghai, China (2012)

[9] Kolb, J., Reichert, M.: Using Concurrent Task Trees
for Stakeholder-centered Modeling and Visualization
of Business Processes. In: Proc. S-BPM ONE 2012,
CCIS 284. (2012) 237–251

[10] Kolb, J., Rudner, B., Reichert, M.: Towards
Gesture-based Process Modeling on Multi-Touch
Devices. In: Proc. 1st Int’l Workshop on
Human-Centric Process-Aware Information Systems
(HC-PAIS’12), Gdansk, Poland (2012) 280–293

[11] Kolb, J., Hübner, P., Reichert, M.: Automatically
Generating and Updating User Interface Components
in Process-Aware Information Systems. In: Proc. 10th
Int’l Conf. on Cooperative Information Systems
(CoopIS 2012). (2012) 444–454

[12] Johnson, R., Pearson, D., Pingali, K.: Finding
Regions Fast: Single Entry Single Exit and Control
Regions in Linear Time. In: Proc. Conf. on
Programming Language Design and Implementation
(ACM SIGPLAN’94). (1993)

[13] Reichert, M., Kolb, J., Bobrik, R., Bauer, T.:
Enabling Personalized Visualization of Large Business
Processes through Parameterizable Views. In: Proc.
26th Symposium On Applied Computing (SAC’12),
Riva del Garda (Trento), Italy (2012)

[14] Kolb, J., Kammerer, K., Reichert, M.: Updatable
Process Views for Adapting Large Process Models:
The proView Demonstrator. In: Proc. of the Business
Process Management 2012 Demonstration Track,
Tallinn, Estonia (2012)

[15] Chebbi, I., Dustdar, S., Tata, S.: The View-based
Approach to Dynamic Inter-Organizational Workflow
Cooperation. Data & Know. Eng. 56 (2006) 139–173

[16] Kafeza, E., Chiu, D.K.W., Kafeza, I.: View-Based
Contracts in an E-Service Cross-Organizational
Workflow Environment. In: Techn. E-Services. (2001)
74–88

[17] Schulz, K.A., Orlowska, M.E.: Facilitating
Cross-Organisational Workflows with a Workflow
View Approach. Data & Knowledge Engineering 51
(2004) 109–147

[18] Sadiq, W., Orlowska, M.E.: Analyzing Process Models
Using Graph Reduction Techniques. Information
systems 25 (2000) 117–134

[19] Polyvyanyy, A., Smirnov, S., Weske, M.: The
Triconnected Abstraction of Process Models. In: Proc.
7th Int’l Conf. on Business Process Management.
(2009)

[20] Smirnov, S., Reijers, H.A., Weske, M.: A Semantic
Approach for Business Process Model Abstraction. In:
Advanced Information Systems Engineering, Springer
Berlin (2011) 497–511

[21] Eshuis, R., Grefen, P.: Constructing Customized
Process Views. Data & Knowledge Engineering 64
(2008)

[22] Shan, Z., Yang, Y., Li, Q., Luo, Y., Peng, Z.: A
Light-Weighted Approach to Workflow View. APWeb
2006 (2006) 1059–1070

[23] Schumm, D., Latuske, G., Leymann, F., Mietzner, R.,
Scheibler, T.: State Propagation for Business Process
Monitoring on Different Levels of Abstraction. In:
Proc. 19th ECIS. Number Ecis, Helsinki, Finland
(2011)

[24] Weidlich, M., Weske, M., Mendling, J.: Change
Propagation in Process Models using Behavioural
Profiles. Proc. 6th IEEE Int’l Conf. Services Comp.
(2009) 33–40

[25] Buchwald, S., Bauer, T., Reichert, M.: Bridging the
Gap Between Business Process Models and Service
Composition Specifications. In: Service Life Cycle
Tools and Technologies: Methods, Trends and
Advances. IGI Global (2011) 124–153

[26] Branco, M.C., Troya, J., Czarnecki, K., Küster, J.,
Völzer, H.: Matching Business Process Workflows
Across Abstraction Levels. In: Proc. MODELS 2012,
Innsbruck, Italy (2012)

[27] Weber, B., Reichert, M., Rinderle-Ma, S.: Change
Patterns and Change Support Features - Enhancing
Flexibility in Process-Aware Information Systems.
Data & Knowledge Engineering 66 (2008) 438–466

[28] Rinderle-Ma, S., Reichert, M., Weber, B.: On the
Formal Semantics of Change Patterns in Process-
aware Information Systems. In: Proc 27th Conf on
Conceptual Modeling (ER’08), Springer (2008)
279–293

[29] Reichert, M., Dadam, P.: ADEPTflex - Supporting
Dynamic Changes of Workflows Without Losing
Control. J of Intelligent Inf. Sys. 10 (1998) 93–129

[30] Rinderle, S., Reichert, M., Dadam, P.: Flexible
Support of Team Processes by Adaptive Workflow
Systems. Distributed and Par. Databases 16 (2004)
91–116

