
Universität Ulm | 89069 Ulm | Germany Faculty of Engineering and
Computer Science

Institute of Databases and
Information Systems

Design and realization of
a middleware for
mobile task coordination
Master Thesis, Ulm University

Submitted by:
Georgy Karpenko
georgy.karpenko@uni-ulm.de

Reviewers:
Prof. Dr. Manfred Reichert
Dr. Ralph Bobrik

Advisor:
Dipl.-Inf. Julian Tiedeken

2012

October 29, 2012

c� 2012 Georgy Karpenko

This work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/3.0/de/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.
Satz: PDF-LATEX 2Á

Abstract

The trend towards interconnection of applications has long been recognized as

a key challenge for information systems design. Following this trend, organi-

zations have developed and introduced many distributed systems with differ-

ent functionalities. Furthermore, computing becomes today increasingly mobile;

performances of mobile devices (i.e. PDAs and smartphones) as well as the

expansion of high-speed mobile networks allows many tasks to be performed

beyond stationary workspaces.

The dramatic growth of stand-alone and partly incompatible applications will

negatively affect the integration, coordination and communication for entire so-

lution. Contemporary solutions focus on stationary systems only; the usage of

mobile devices is limited to simple scenarios (i.e. information access). In order to

support the seamless integration of mobile devices, future distributed solutions

should take services and service meta-information into account (e.g. variation of

network bandwidth, battery power, availability, connectivity, reachability, sensors

data and locations of services and service providers).

In this master thesis we want to analyze how a distributed environment with va-

riety of separated (mobile) service providers - implemented with different tech-

nologies - can be integrated and coordinated. Finding compromises between

performance, comfort and intelligent intercommunication is the main goal of this

thesis. Therefore, it is concentrated on the conceptualization and design of a

central middleware component that provide the coordination and communication

functionalities for stationary and mobile entities. In order to prove some possible

communication scenarios, the thesis provides a middleware-based scenario.

i

ii

Contents

Contents v

List of Figures viii

List of Tables ix

List of Listings xi

List of Abbreviations xv

1 Introduction 1

1.1 Running example . 2

1.2 Thesis structure . 6

2 Basics 9

2.1 Synchronous vs. Asynchronous interactions 9

2.1.1 Synchronous interactions 9

2.1.2 Asynchronous interactions 10

2.2 Middleware . 11

2.2.1 RPC . 12

2.2.2 Object-oriented middleware 12

2.2.3 Message-oriented middleware 13

2.3 RPC vs. Messaging . 13

2.3.1 Messaging model . 14

2.3.2 RPC/RMI model . 15

2.4 SOA and ROA . 17

2.4.1 SOA . 18

2.4.2 ROA . 20

iii

3 Requirements and Design 23

3.1 Common requirements . 23

3.1.1 CR1: Communication . 24

3.1.2 CR2: Cross-parties communication 24

3.1.3 CR3: Central bus . 24

3.1.4 CR4: Routing . 25

3.1.5 CR5: Service transparency 26

3.1.6 CR6: Repository . 26

3.2 Use case requirements . 26

3.2.1 UCR1: Queuing . 28

3.2.2 UCR2: Scheduler . 28

3.2.3 UCR3: Event bus . 28

3.2.4 UCR4: Context handling . 29

3.2.5 UCR5: Logging and statistics 29

3.3 Technical requirements . 29

3.3.1 TR1: Standard protocols 30

3.3.2 TR2: Cross-platform clients 30

3.3.3 TR3: Dealing with communication problems 31

3.3.4 TR4: Context recognition and handling 31

3.3.5 TR5: Location recognition 32

3.4 Subsumtion . 33

3.5 Middleware definition . 34

3.6 Middleware architecture . 37

3.6.1 External components . 38

3.6.2 Core components . 38

3.6.3 Task processing components 40

3.6.4 Context management . 42

3.6.5 Event handling . 45

4 Specification 47

4.1 Message template . 47

4.2 Message structure . 48

4.2.1 Message . 48

4.2.2 Scope . 50

iv

4.2.3 Body . 53

4.3 Communication protocol . 54

4.3.1 HTTP . 54

Long Polling . 55

4.3.2 TCP . 56

WebSocket Protocol . 56

4.4 Implementation aspects . 59

4.4.1 Task processing and service requests 60

4.4.2 Dealing with context information 68

4.4.3 Handling events . 71

5 Middleware usage demonstration 75

5.1 Scenario description . 75

5.2 Implementation . 77

5.2.1 Prerequisites . 77

5.2.2 Establishing of connections 78

5.2.3 Processing service requests 81

5.2.4 Handling big data . 84

5.2.5 Unregistering service providers and closing connections . . 86

6 Summary and outlook 87

A Message XML Schema Definition 93

B Process models 97

B.1 Stationary treatment process (in BPMN 2.0) 97

B.2 Stationary treatment process with appropriate service candidates

(without data objects)(in BPMN 2.0) 98

B.3 Treatment process (collapsed) (in BPMN 2.0) 99

B.4 Demo scenario process model (in BPMN 2.0) 100

Bibliography 101

v

vi

List of Figures

1.1 Stationary treatment process (in BPMN 2.0) (see B.1 for larger view) 3

1.2 Stationary treatment process with appropriate service candidates

(without data objects)(in BPMN 2.0) (see B.2 for larger view) . . . 5

2.1 Synchronous interaction (UML Sequence diagram) [1] 10

2.2 Asynchronous interaction (UML Sequence diagram) [1] 10

2.3 Message queue . 14

2.4 RPC communication pattern . 16

2.5 Roles in a SOA . 19

3.1 Middleware placement . 24

3.2 Middleware as central bus . 25

3.3 Middleware as router . 25

3.4 Treatment process (collapsed) (in BPMN 2.0) (see B.3 for larger

view) . 27

3.5 RDF triple . 32

3.6 Reference architecture of the middleware 38

3.7 A possible RDF graph for device context representation 43

3.8 Pattern-based matching of graphs 44

3.9 Provider ranking . 44

4.1 Message structure . 48

4.2 Sample device RDF graph . 52

4.3 HTTP Long Polling . 56

4.4 The communication protocols correlation 58

4.5 Task processing and service request (in UML Sequence Diagram) 60

4.6 Middleware internal request processing (in UML Sequence diagram) 62

4.7 Request processing states . 63

vii

4.8 Differences between mixed, persistent, and RESTful modes 67

4.9 Dealing with context information (UML Sequence diagram) 68

4.10 Relation between service description, context information, and

device . 69

4.11 Handling events (UML Sequence diagram) 72

5.1 Demo scenario process model (in BPMN 2.0) (see B.4 for larger

view) . 76

5.2 Pushing/pulling of optional data . 85

6.1 Operating system coverage of computing devices 88

viii

List of Tables

3.1 Requirements overview . 34

4.1 Semantic of schedule usage . 49

4.2 Operation specifications overview 73

ix

x

Listings

4.1 Sample pattern definition in RDF/XML 50

4.2 Context definition example in RDF/XML 52

4.3 Client-side handshake request . 57

4.4 Server handshake response . 57

4.5 XML message type definition . 64

4.6 XML message type definition including an identifier 65

4.7 Recovery message . 65

4.8 Service name definition as data item within body part 66

5.1 Check-in message . 78

5.2 Context update message . 79

5.3 Check-in message for persistent connections 80

5.4 Recovery message . 81

5.5 Service request message for the persistent connection 81

5.6 Service request message by provider 82

5.7 Recovery message for the persistent connection 82

5.8 Web service request message . 83

5.9 Response message . 84

5.10 Checkout message for the persistent connection 86

A.1 Message XSD . 93

xi

xii

List of Abbreviations

BPI Business Process Intelligence

BPMS Business Process Management System

CDATA Character Data

COM Component Object Model

CORBA Common Object Rejuest Broker Architecture

CR Common Requirement

CRM Customer Relationship Management

CRUD Create, Read, Update, Delete

DCOM Distributed COM

DOM Database-oriented Middleware

ECG Electrocardiography

EJB Enterprise Java Beans

EOI Event-Of-Interest

ERP Enterprise Resource Planing

FIFO First In - First Out

GPS Global Positioning System

HTTP Hypertext Transfer Protocol

xiii

IIOP Internet Inter-ORB Protocol

J2EE Java 2 Platform, Enterprise Edition

LBS Location Based Services

LTE Long-Term-Evolution

MIME Multipurpose Internet Mail Extensions

MOM Message-oriented Middleware

NFC Near Field Communication

OOM Object-oriented

ORB Object Request Broker

PAS Patient Administration System

PDA Personal Digital Assistant

PPM Process Performance Management

QR Quick Response

RDBMS Relational Database Management System

RDF Resource Description Framework

REST Representational State Transfer

RMI Remote Method Invocation

ROA Resource-oriented Architecture

RPC Remote Procedure Call

SCM Supply-Chain Management

SDK Software Development Kit

xiv

SOA Service-oriented Architecture

SOAP Simple Object Access Protocol

SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language

TCP Transmission Control Protocol

TR Technical Requirement

UCR Use Case Requirement

UML Unified Modeling Language

UML Unified Modeling Language

UMTS Universal Mobile Telecommunications System

URI Unique Resource Locator

USB Universal Serial Bus

W3C World Wide Web Consortium

WCF Windows Communication Foundation

WfMS Workflow Management System

WLAN Wireless LAN

WSDL Web Service Description Language

WWW World Wide Web

XML Extensible Markup Language

xv

xvi

1 Introduction

Mobile devices, such as mobile phones, personal digital assistants (PDAs), and

tablets become more and more popular. These devices will be continuously net-

worked and software development kits (SDKs) are available that can be used

to develop third party applications. Mobile computing is rapidly moving from

the realm of the research to the main stream. Until now, most applications are

"content consuming" (e.g. news or emails readers, games). Nowadays, mobile

devices allow building of "intelligent" applications, which imply the integration of

mobile devices into business processes and enterprise information systems. In-

troducing this kind of devices and enabling new classes of applications presents

a challenging task to application developers and system architects.

Modern mobile devices have sufficient processing power and storage for com-

plex computation and processing, and are equipped with multiple network inter-

faces, including WLAN, UMTS (Universal Mobile Telecommunications System),

and LTE (Long-Term-Evolution). It is now feasible to host services on mobile

devices and participate in a service-oriented environment (SOA) [12]. Applica-

tions running on mobile devices can provide context information, such as their

position or current communication environment. It is also possible to connect

additional sensors and equipment to mobile devices via Bluetooth, NFC (Near

Field Communication) or USB cable. All these allows the building of context-

aware mobile services [11] and the support of flexible (context-aware) process

distribution [20, 25]. By context it refers to any information that can be used to

characterize the situation of an object, where an object can be a mobile device

or mobile service provider. Context can be the device’s current location, a user

profile, the display size, sensor data, or present connection bandwidth. Such

context-aware services can be used in many areas, for example:

1

• Presenting information to mobile users depending on mobile device char-

acteristics - e.g. picture pre-processing dependent on receiver’s screen

size.

• Triggering actions on the occurrence of a set of properties - e.g. advanced

filtering possibilities and fine flow control.

• Execution of process activities on appropriate selected providers (by con-

text) - e.g. tasks that require experienced executor.

• Location-based services (LBS) - selection of providers based on their spa-

tial location.

1.1 Running example

The use case of this thesis depicts the communication process for administra-

tion, treatment and incident management in a clinical context. In the clinical

domain many law regulations have to be considered: documentation and trace-

ability of medications, decisions, treatments, and patient agreements. Therefore,

a doctor must protocol all steps and tasks during examination and treatment

processes. Nowadays, many implementations of patient administration systems

exists [16]. In many cases, the documentation is still made manually with pa-

pers. The typical communication is face to face - doctors give instructions to

nurses. Figure 1.1 illustrates a typical clinic treatment process: if the patient’s

blood needs to be analyzed in a special laboratory, the doctor delegates this task

(
↵⌦� 1) and the nurse ensures that the blood test will be gathered from the patient

(
↵⌦� 2) and examined in a laboratory (

↵⌦� 3). After the examination results are eval-

uated, the nurse picks them from laboratory (
↵⌦� 4), and protocols them(

↵⌦� 5). The

doctor regularly controls the patient’s current health state (
↵⌦� 6) and discusses

with the patient the next steps of the treatment (
↵⌦� 7). All these operations are

time consuming (especially human communication). In many cases, this time

loss is very critical for the patient’s treatment success (i.e. in urgent incidents

where decisions have to be made quickly).

Digitalization of paper documents can be made with concepts like MEDo [16],

which provides a replacement for paper case histories with a tablet computer

2

Figure 1.1: Stationary treatment process (in BPMN 2.0) (see B.1 for larger view)

application. With digitalized case data handling the described treatment process

could be accelerated. Human-based transfer of the case histories or manual

updating are time-consuming. This is comfortable and more responsible in or-

der to improve the quality of patient data collection processes. Concepts like

MEDo can accelerate the capture of information, but process execution and the

automation of communication remain a challenging task. Ideally, all communica-

tion operations and data collection tasks are integrated and coordinated with the

help of mobile devices. The following list presents a possible scenario, where the

process consists only of required steps, and communications are automated:

1. The doctor analyses the patient data and defines next steps of treatment:

analysis of patient’s blood by a laboratory.

2. Laboratory defines the blood collection appointment depending on the lab-

oratory schedule, priority and severity, and informs the patient about it.

3. At the defined time point the patient comes to the laboratory for a blood

collection.

3

4. If the patient cannot come to the laboratory, a free and closest nurse comes

to the patient for the blood collection and brings the sample to the labora-

tory.

5. The doctor will be notified about the task execution and about changes in

patient data (e.g. blood analysis results were added) and can continue the

treatment.

First, the only required manual tasks in this case are: decision by a doctor, blood

collection, and test analysis. All other tasks and operations are made automati-

cally (communication, notification and reporting).

Second, manual scheduling requires a high degree of coordination and can be

error prone. Executing it in an automatic manner (e.g. as shown above) will

accelerate the communication and the treatment process.

Third, automation of notification and event-processing can also drastically in-

crease the reaction time. This is very important, especially for emergencies.

Nowadays, companies (including hospitals and clinics) integrate business pro-

cess management systems (BPMS) in order to define the process flow, to exe-

cute and control the execution of processes and to allow the analysis of process

logs (e.g. with BPI (Business Process Intelligence) and PPM (Process Perfor-

mance Management) concepts). BPMS can be realized with the SOA paradigm,

where services can realize tasks and the BPMS calls the related service when

the task should be executed. BPMS can also handle the data flow by providing

the service required data and saving the service execution result.

From this point of view, the provided stationary process can be mediated by a

process management system by defining appropriate services. By analyzing

the treatment process, it is noticeable that many tasks are constantly repeated.

These tasks could be grouped and served as a service candidate. Figure 1.2

shows the appropriate grouping for possible service candidates:

1. Reception service: A doctor meets a patient and makes an anamnesis,

decides if a treatment is needed, and creates a case history based on

symptoms and then defines a treatment with necessary medication. Addi-

tional tests may be required for a correct treatment decision. In that case,

the doctor can request the "make tests" service.

4

Figure 1.2: Stationary treatment process with appropriate service candidates
(without data objects)(in BPMN 2.0) (see B.2 for larger view)

2. Make tests: A nurse makes defined tests with the patient or gathers re-

quired samples from patient and provides the results to the doctor. Some

samples (e.g. blood, urine) must be analyzed in a laboratory - "sample

analysis" service by a laboratory.

3. Sample analysis: A laboratory receives a sample, makes necessary tests

and reports the results.

4. Medication: A nurse regularly executes scheduled activities for medication:

provides tablets or makes injections.

5. Patient control: A doctor controls the actual state of a patient and makes

updates and changes in the treatment plan. The doctor may also request

new tests.

6. Patient release: After the treatment was successful and accepted by a doc-

tor, a nurse has to prepare the patient for the release: make final documen-

tation and close the treatment process by finalizing required organizational

and bureaucratic tasks.

5

The usage of mobile devices (i.e. smartphones) allows doctors and nurses,

who are constantly moving in the clinic area, to be integrated into an automated

treatment process. Providing services on handheld devices, so called "mobile

service providers", will ensure that doctors and nurses will be updated with nec-

essary patient data and tasks without delay. Execution of any service in the

provided use case on mobile device usually requires user interaction (i.e. doctor

meeting with patient). Therefore, mobile services become stateful. The core

problem of stateful services is that they stay blocked until completion (parallel

execution of the same service instance is not possible).

Another problem of mobile services are possible connection losses; roaming

from one wireless network to another, mobile devices constantly change their

physical service addresses.

These common problems cannot be resolved locally by extending systems and

mobile applications with a service wrapper. To support heterogeneous systems

and provide a single system, distributed systems can be extended with a special

layer [22]. The name of this layer is called "middleware". The main focus lies

on communication between application components [13] and will be discussed

in the following thesis.

1.2 Thesis structure

Developing of systems, which are based on context-aware mobile services, is

a complex and time-consuming task. So, the main goal of this thesis is to

find how a distributed environment with variety of separated (mobile) service

providers, implemented with different technologies, can be integrated and coor-

dinated. Therefore, the conceptualization and design of a central middleware

component, that provides the coordination and communication functionalities for

stationary and mobile entities, will be described.

The main part of this master thesis will be the analysis for appropriate technolo-

gies, concepts, design and architecture decisions of the middleware for mobile

services. Chapter 2 examines different middleware types and also covers avail-

able technologies that can be used for interoperable communication and trans-

6

mission of data. Usage scenarios, requirements and the derivate middleware

architecture are illustrated in Chapter 3. Here, the conceptual design of the

middleware based on requirements and defined required technologies will be

shown. Chapter 4 provides the detailed definition of the message template, pro-

cessing logic, interface specifications, and communication processes. To sum

up the work, Chapter 5 provides a middleware usage demonstration. Achieved

goals and an outlook of possible further developments is discussed in Chapter 6.

7

8

2 Basics

In this chapter, the term middleware will be defined. Additionally, this chapter

discusses concepts, architectures, and standards for distribution of systems.

2.1 Synchronous vs. Asynchronous interactions

The main characteristic of a software communication is either synchronous (block-

ing calls [1]) or asynchronous (non-blocking [1]). So, if the code on the client side

blocks until a result arrives, it is a synchronous interaction. If, instead of block-

ing, a client performs other tasks after sending a request, it is an asynchronous

interaction. In the following, details about both scenarios will be explained in

detail.

2.1.1 Synchronous interactions

In synchronous interaction, a thread of execution calling another thread must

wait until the response comes back before it can proceed (cf. Figure 2.1). It is

easier an application programmer to understand this interaction scenario as it

follows naturally from the organization of procedure or method calls in any pro-

gram. As a result, synchronous calls are used in many types of middleware.

The fact that the calling thread must wait can be seen as a disadvantage, espe-

cially, if the call takes a long time to complete. Waiting is a particular source of

concern from the performance point of view [1]. Similarly, since every call opens

a new connection, there is a danger of running out of connections, if there are

too many waiting calls. Finally, a tight integration between distributed compo-

nents is needed: a system should “understand” the information that is coming

9

Figure 2.1: Synchronous interaction (UML Sequence diagram) [1]

from the communication partner, and both systems should support the same

communication protocol. This can be impossible in highly distributed, hetero-

geneous environments. The best use cases for synchronous interactions are

closely cooperating systems with short procedures calls [13].

2.1.2 Asynchronous interactions

The alternative to synchronous interaction is asynchronous communication. In

a wide range of application scenarios it is not at all necessary to work syn-

chronously. Distributed systems can be built using a similar approach: instead

of making a call and waiting for the response to arrive, a message is sent and,

some time later, the program checks whether an answer has arrived. This allows

the program to perform other tasks and eliminates the need for any coordination

between both ends of the interaction (cf. Figure 2.2). Synchronization and asyn-

Figure 2.2: Asynchronous interaction (UML Sequence diagram) [1]

chronization describe the process (thread) point of view to a remote procedure

call. Technically, the necessary interaction can be achieved by extending the

10

code with programming language techniques: making a synchronous call in a

separated thread (process) for asynchronization or blocking the process and

wait until receiving a response for synchronization.

2.2 Middleware

The term "middleware" is, like many others in scientific discussions, not uniformly

defined. A broad definition can be summarized as follows: The middleware is ba-

sically any type of software that facilitates communication between two or more

software systems [22, 13]. This definition can identify the main features of a

middleware: First, middleware is a software-based approach. Another aspect of

the definition is that middleware is used to enable communication. In terms of

software systems, communication means the exchange of data and information.

This can be either between two, or more software systems. One problem for

integration of multiple software systems is heterogeneity. The heterogeneity of

software systems can relate to many areas of software systems, such as the

programming language, platform and content. Hiding the heterogeneity of un-

derlying networks, hardware, operating systems, communication patterns, and

programming languages is the central goal of the middleware [13]. The name

"middleware" is given due to the fact that the offered services are performed be-

tween the operating system layer and application layer.

Middleware can be classified differently depending on the purpose. A com-

mon classification divides middleware by examining their software systems, and

the information exchanged into Remote Procedure Calls (RPC), Object-oriented

Middleware (OOM), Database-oriented Middleware (DOM), and Message-oriented

Middleware (MOM). RPC and OOM work with synchronous communication mech-

anisms, whereas MOM uses an asynchronous mechanism. These three types

of middleware will be described in more detail below.

11

2.2.1 RPC

The Remote Procedure Call (RPC) enables communication between applica-

tions running on heterogeneous platforms. RPC is based on procedural con-

cepts and supports remote procedure calls. RPC hides the details of commu-

nication and low-level network communication to application programmers. The

central concern of RPC is to make a local program function remotely. For the

local program a remote function call behaves like a local call. An RPC is trans-

parent for the local program. This type of transparency requires that the calling

application blocks and waits for the response.

2.2.2 Object-oriented middleware

Object-oriented middleware (OOM) supports communication between distributed

objects and components. OOM is usually implemented using an Object Request

Broker (ORB). It allows local objects or components, methods of remote objects

or components to be used by interfaces. In principle, OOM is an additional

layer on top of RPC. OOM is a middleware that uses synchronous communi-

cation mechanism and hides details of the communication. The manufacturer

of ORB decides about the design of interfaces to support interchange between

heterogeneous and distributed system component implementations in terms of

programming languages and programming platforms. The three most important

standards for OOM are CORBA (Common Object Request Broker Architecture)

from OMG1, JAVA RMI2, as well as COM / DCOM / COM+ 3. Nevertheless, a

connection between these technologies is possible. Many products are available

with the ORB specifications, and only several implementations are compatible

with each other: RMI-IIOP-based implementations. In particular, the support of

RMI-IIOP is important, because it uses the same communication protocol such

as CORBA and IIOP (Internet Inter-ORB Protocol). Distributed objects are the

foundation of Enterprise Java Beans (EJB), and accordingly, the central means

of RMI or RMI-IIOP communication carried out part of the overall J2EE platform4.
1http://www.corba.org/, viewed 14.10.2012
2RMI - Remote Method Invocation
3http://technet.microsoft.com/en-us/library/cc722925.aspx, viewed 14.10.2012
4http://docs.oracle.com/javase/1.4.2/docs/guide/rmi-iiop/tutorial.html, viewed 14.10.2012

12

2.2.3 Message-oriented middleware

RPC and OOM are examples of synchronous communication based middleware.

Message-oriented Middleware (MOM) allows asynchronous communication via

messages. They are not sent directly from a transmitter-receiver application to

an application, but go through an intermediary to their destination. This seals

the MOM and the technical realization, which is called the Message Server or

Message Broker. Through the usage of messages and an intermediary with a

high level of interoperability, the communication between heterogeneous soft-

ware systems is possible. Though, the communicating applications get decou-

pled. The sender application sends the message to the mediator and continues

to work immediately. The message server is responsible for forwarding the mes-

sage to the recipient application. If it is temporarily unavailable, the message

server keeps the message until the application is listening. Since the commu-

nication takes place via messages, the application does not need to know any

details about processing.

The usage of a message server and the associated central architecture allows

easy implementation of not only point-to-point, but also many-to-many communi-

cation scenario. The applications communicate directly with the message server.

Thus, the entire architecture is flexible, because changes are easily to perform.

A message server is responsible for the transmission of messages. Often, it

provides additional services, such as load balancing and transactions support.

A central server, however, can have a big disadvantage, because the whole ar-

chitecture is server-dependent. If the server goes offline (e.g. due to technical

problems), the whole underlined system will be unavailable.

2.3 RPC vs. Messaging

More important is the fact how and which data will be passed to a remote pro-

cedure during the call. At this point, it is necessary to distinguish between

RPC/RMI and the Messaging model.

13

2.3.1 Messaging model

The well-known example for messaging (message-passing, message queuing)

is the email: a sender writes a message and defines a receiver (receivers) by

setting a receiver email address(-es); the receiver becomes the message and

reads it [1]; the receiver can answer the message with a new message or forward

it to a new receiver for additional processing. There is not necessarily a one-to-

one correspondence between messages sent and received (request-reply/two-

way messages), and indeed, a response way may not even be required (one-

way messages). Data and calls are packaged in the form of messages and

transmitted. The message format is specified by the respective communication

parties [13].

The core part of messaging is queuing. The queue is responsible for storing the

messages (until a receiver is online and can get associated messages) and for

distribution of messages between multiple receivers (cf. Figure 2.3). Queues

for sending and receiving of messages will be commonly separated from each

other.

Figure 2.3: Message queue

Using the central queue component allows many communication scenarios:

• Ono-To-One. In the one-to-one communication scenario a sender defines

exactly one receiver. As in the email example above, the one-to-one sce-

14

nario can be represented as “private” message for a concrete (and only

one) receiver.

• One-To-Many. In a one-to-many scenario a message will be sent to a

group of receivers.

Messaging mechanism is used mainly in scenarios where information dissemi-

nation is required but the actual usage of information (reaction) is not known: like

publish-subscribe or event distribution. These are systems in which interaction

between components does not occur through explicit calls or explicit exchange

of messages, but through the publication of event or signals (tasks) that inform

those interested that a particular system state has been reached. This will be

ensured through publish-subscribe patterns, where components continuously

make information available by publishing it to the system, while other compo-

nents indicate their interest on parts of the published information by subscription

to it. The middleware is then responsible for matching published information to

subscriptions and delivering the information to the subscribers [1]. This activ-

ity requires an intermediate component where the messages (publications) are

stored until they are received by a receiver. Following this idea, many queu-

ing systems that were used in the past simply to forward messages between

components are now being used as message brokers. These brokers can filter

and control the message flow, implement complex distribution strategies, or ma-

nipulate the format or even content of messages as they transmit through the

brokers.

2.3.2 RPC/RMI model

The messaging model requires that both sides are responsible for the creation

of messages in a format, which is understood by both sides. However, most

standalone applications do not make use of message-passing techniques due

to additional efforts for the definition of a messaging format and implementations

of communication standards. Generally, the preferred mechanism is the remote

function (or method or procedure) call, which is commonly supported by many

programming platforms (e.g. RMI in Java, WCF5 in .Net). In this style, a program
5WCF - Windows Communication Foundation

15

will call a function with a list of parameters, and after completion receives a set of

return values. These values may be the function value, or addresses. RPC com-

bines synchronous communication with the procedural programming paradigm.

And RMI combines synchronous communication with the object-oriented pro-

gramming paradigm.

Figure 2.4: RPC communication pattern

The remote procedure call (cf. Figure 2.4) is an attempt to bring this style of pro-

gramming into the network world. The client calls a procedure that seems to be

local (
↵⌦� 1). The client-side will package parameters into a network message (

↵⌦� 2)

and transfers it to the receiver (
↵⌦� 3). The receiver will unpack this (

↵⌦� 4) and turn

it back into a procedure call on the receiver side (
↵⌦� 5). The results of this call will

be packaged up for return to the sender (
↵⌦� 6 -
↵⌦ � 10). There is a strong correlation

between the code that makes the call and the code that deals with the response.

Logically, it is easier to understand what happens in a RPC-styled communica-

tion since the different components are strongly tied to each other in each inter-

action, which greatly simplifies debugging and performance analysis. As a re-

sult, RPC has dominated almost all forms of middleware [1]. For systems where

the presentation layer was moved to the client, this was generally done through

RPC. Similarly, when the application logic and the resource management layer

16

were separated, most systems used RPC for communication between two lay-

ers. The strong binding between components results in close coupling and in

an impossibility to call a function by many providers in parallel: only one-to-one

communications are possible. That means that the requestor-component and

the response-component communicate with each other with permanent connec-

tion and should both be online during communication and remain operational

for the entire duration of the call. The tied integration between the components

imposed by RPC may be impossible to maintain in highly distributed, hetero-

geneous environments, and, also, very complicated when there are many tiers

involved. This has obvious implications because of the reduced fault tolerance

and the more complex maintenance procedures. These problems become more

important when the number of components increases.

2.4 SOA and ROA

Systems that are based on technologies discussed above are commonly having

been rather successful in focusing on special problems by distribution of sys-

tems. In special cases, companies have developed own formats to exchange

data and own standards for communication. Mostly, these formats are propri-

etary and the system is designed for (company) internal use only. In cases where

several internal systems should be integrated in cross-company environment

scenarios (i.e. procurement, SCM (Supply-Chain Management), or CRM (Cus-

tomer Relationship Management), proprietary data formats, proprietary com-

munication protocols, and different programming platforms are main stumbling

blocks. Again, the automation of business processes across autonomous and

heterogeneous systems is a big challenge.

The usage of standard technologies, by contrast, reduces heterogeneity of in-

ternal systems. This standardization can be achieved through the use of Web

services. Web services are the way to expose the functionality of an information

system and make it available through standard Web technologies [1]: “Web ser-

vices are self-contained, modular business applications that have open, Internet-

oriented, standards-based interfaces. Web services communicate directly with

other Web services via standards-based technologies. These standards-based

17

communications allow Web services to be accessed by customers, suppliers,

and partners independently of hardware, operating system, or even program-

ming environment” [6].

Web services are an evolution of approaches for building distributed systems.

The term ”Service-oriented architecture (SOA)” was first described by Gartner

in 1996 [21, 19]. Since then, there were numerous different definitions for SOA.

In general, SOA represents an approach for separating operations. It allows to

solve, construct, carry out and manage logic of a large problem through dividing

the problem into many smaller, related pieces. Each of these smaller pieces,

within SOA is known as a service, should be concentrated on a specific part of

a problem and can be distributed over the network. The HTTP (Hypertext Trans-

fer Protocol) transfer protocol and XML (Extensible Markup Language)-based

communication improve interoperability, platform and vendor-independence. It

should be noted that SOA in not a standard to build distributed system, but rather

an architectural paradigm which describes the possible roles and principles how

SOA can be designed.

2.4.1 SOA

Within SOA there are three types of roles (cf. Figure 2.5): a service provider

(service), a service consumer (client) and a service registry (also known as a

service repository or service broker). However, in some models the service

repository is not provided.

The service consumer is an application, a software module or another service

that requires a service. It initiates enquiry of the service in a registry, binds to

the service over a transport protocol and executes the service functions [7].

The service provider is a network-addressable unit that accepts and executes

requests from consumers. It publishes its’ services and interface contracts to

the service registry so, that the service consumer can discover and access the

service [7].

A service registry is an enabler for service discovery. It contains a list of avail-

able services and allows the lookup of service interfaces to interested service

18

Figure 2.5: Roles in a SOA

consumers [7]. A SOA model without the service repository is called well-defined

[8]. Based on this approach, service providers must be unique, static, and de-

fined with constant addresses, so there is no need for a service repository.

To ensure the relationship between all units inside a SOA, each item (service,

client, or repository) must implement corresponding role-based operations de-

fined by the basic SOA model [7, 2]:

• Publish: To be accessible, a service description must be published by the

service registry so that it can be discovered and requested by a service

consumer.

• Find: A service consumer localizes a service by querying the service reg-

istry for a service that meets the requestors’ criteria.

• Invoke: After retrieving the service description and the service address,

the service consumer requests the service accordingly to the information

in the service description.

The SOA approach is not a specification to build applications, which share own

functionalities over the network. SOA is a paradigm how to design applications,

which provide and consume the distributed operations (services) of each other.

It is commonly accepted [8, 2] that several service-orientation principles have

their roots in the object-oriented design paradigm. Hereafter is a list of specific

service-orientation principles common to all primary SOA platforms [8]:

- Services are reusable: Services needs to be designed to support potential

reuse.

19

- Services share a formal contract : For services to interact, they need to

share a formal contract that describes each service and defines the terms

of information exchange.

- Services are loosely coupled : Services must be designed to interact with-

out the need for cross-service dependencies.

- Service abstracts underlying logic: The only part of a service that is visible

to the outside world is what is defined in the service contract. Implementa-

tion details are invisible to service requestor (consumer).

- Services are composable: Services may request other services.

- Services are autonomous: The logic governed by a service resides within

an explicit boundary.

- Services are stateless: Services are not required to manage state infor-

mation.

- Services are discoverable: Services should allow their descriptions to be

discovered and understood by human and service requestors.

Thus, the principles defined by different authors are almost the same. In general,

a service should share a well-defined contract (description) to be accessed, only

input and output types are visible for a consumer, and a service should enclose

unique (reusable) program logic, which could be requested at any time by a con-

sumer or other services.

2.4.2 ROA

Whereas the main part of SOA is concentrated on services as a unit of logic,

ROA (Resource-oriented Architecture) is another approach that, in contrast to

SOA, is focused on resources and resource representation. The term ROA

was born by combining of SOA and utilization of REST (Representational State

Transfer) services. REST principles were first introduced by Roy Thomas Field-

ing in his dissertation in 2000 [10]. The central point of a ROA is a resource that

can be accessed from any client. The client is responsible for the interpretation

20

of the resource and internal processing. Therefore, a REST service provides a

representation, or current state, of a resource (object).

The REST paradigm is based on principles of the World Wide Web (WWW):

each resource on the network has a locator – an URI6; by knowing of this loca-

tor, a client can access the located resource on respective Web server by using

the HTTP protocol. The REST does not require additional protocols for data

transfer as well as additional standards for service description. There are no

protocol conventions need for the communication between clients and servers.

A central role play HTTP methods GET, PUT, POST, and DELETE. Each REST

resource has a generic interface in form of these HTTP methods. Almost all ap-

plications can be covered with these four methods: it can be compared with an

application that uses SQL, and SQL generic commands like SELECT, INSERT,

UPDATE, and DELETE provides necessary handling of objects in a database.

These operations are typically subsumed by the acronym CRUD: Create (IN-

SERT), Read or Retrieve (SELECT), Update (UPDATE) and Delete (DELETE).

The following list describes the meaning of CRUD used by REST:

• GET: GET retrieves the representation of a resource - Read.

• POST: with POST, a client can add something to the resource: for example,

a product can be added to a shopping cart - Update.

• PUT: New resources can be created with PUT. Also, the content of existing

resources can be replaced with PUT - Create.

• DELETE: resources can be deleted with DELETE - Delete.

To sum up, ROA is an architectural model, which describes how the Web should

work. The model serves as a guide and as a reference for future enhancements.

ROA is not a product or standard; ROA describes how web standards can be

used in a Web-friendly manner.

6 URI - Unique Resource Identifier

21

22

3 Requirements and Design

The research goal of this thesis is the design and implementation of a middle-

ware component for mobile task coordination. In Chapter 1, a use case was

introduced. In brief, a middleware should enable tasks distribution for on mobile

devices (handhelds, PDAs, smartphones, tablets) and the whole process should

be controlled by a BPMS. A task is a sequence of assembled activities to be

executed. Also in Chapter 1, it was defined that all tasks are distributed through

all involved parties of the presented scenario. These distributed tasks represent

services (not to be confused with Web services) of entire process participants.

In this chapter, the design of the middleware will be described. First, based on

the use case, possible application scenarios of the middleware usage will be

defined. Second, requirements for the middleware to be designed are observed

from technical and from qualitatively points of view. Finally, the middleware ar-

chitecture will be derived from the found requirements and described in detail.

3.1 Common requirements

In this section, scenarios for the use of a middleware in a clinic environment,

where services (tasks) are distributed through mobile devices, will be researched.

Figure 3.1 illustrates the placement of the middleware in a possible clinic en-

vironment. All possible service executors, such as legacy systems, Workflow

Management Systems (WfMS), patient administration systems (PAS), and ser-

vice clients are represented on the top, above the middleware. All available

services providers are on the bottom: this includes mobile services and Web

services as well. The middleware abstracts the service access by providing a

consistent view of underlined services. The requestor does not differ between a

mobile service call and a Web service call.

23

Figure 3.1: Middleware placement

By analyzing the middleware placement, the following common requirements

(CR) for the middleware usage can be proposed:

3.1.1 CR1: Communication

Communication is the core scenario for any middleware. The middleware should

enable transparent communication between two or more separated and dis-

tributed software components. So, a service requestor does not need any spe-

cial connectors for communicating with different kinds of services (mobile or

non-mobile services). All connectors are replaced by the middleware, and the

middleware provides everything needed for successful communication. By im-

plementing the connector to the middleware, a service requestor will be able to

communicate with all supported services.

3.1.2 CR2: Cross-parties communication

In addition to CR1, the middleware should allow not only requestor-provider com-

munication, but rather all possible communication scenarios. In some cases,

even a service acts as a client (services are composable and reusable (see

Section 2.4.1)). Therefore, the middleware should allow the usage of commu-

nication possibilities from stationary as well as from mobile or Web platforms,

because any component can act as a service requestor (client).

3.1.3 CR3: Central bus

The number of connections needed to ensure fully meshed point-to-point com-

munication (like within RPC) between n endpoints can be calculated with the

24

following simple formula: n(n≠1)
2 . Thus, for 10 points to be fully integrated 45

connections are needed. By integrating a central bus component, any point

will communicate only with the central bus (cf. Figure 3.2). The total amount

of connections required in this case is equal n (or 10 for the example above).

Another problem of point-to-point communication is the need of the knowledge

Figure 3.2: Middleware as central bus

of used communication protocols: without exact information about required pro-

tocols it is impossible to communicate. From CR1 and CR3 follows that the

implementation of a middleware as a central communication bus can improve

the reuse and the substitutability of services. For example, any Web Service

can be re-implemented as a mobile service, and vice versa. As defined in CR1,

this substitute will be completely transparent for requestors, since a standardized

connection to the middleware exists, which is the only possible communication

way for services execution.

3.1.4 CR4: Routing

Since all services are accessible at one place (CR3), a client (or sender of a

message) does not need to know the receiver’s (service provider) address. By

Figure 3.3: Middleware as router

sending a request, the client specifies properties (location, owner role, display

size) of a service provider and sends this information to the middleware. Based

25

on these specified properties, the middleware routs the request to a concrete

service (cf. Figure 3.3). The routing is done by the middleware and does not

require to be considered by the service requestor.

3.1.5 CR5: Service transparency

As described above, the middleware hides all details of a service implementation

and provides a consistent view for all underlined services. Thus, a service re-

questor will not recognize whether the called service is running on mobile device

or not. In addition to CR2 and CR3, the middleware requires a common stan-

dard for service properties description (CR4) by the requestor. Only common de-

scriptions - without the definitions of use technologies for service implementation

(mobile or web services) - ensures the transparency of service implementation.

3.1.6 CR6: Repository

Services, being published in a repository of the middleware, should be discover-

able by a requestor. Since a client does not communicate directly with a service

(CR3), and therefore, does not require the concrete details about service im-

plementations (e.g. WSDL (Web Service Description Language) [5]), listings of

available services can be used only for administrative purposes and also dur-

ing the development. As a result, the repository participates in the middleware

internal request processing, and can be used from outside for administrative

purposes solely.

3.2 Use case requirements

At the next stage, the clinic process will be analyzed. Clinic process is highly im-

portant for scenario and requirements analysis for the researched middleware,

because it builds the usage context, and as a result this usage context prede-

fines concrete use case requirements (UCR) for the middleware. Figure 3.4

shows the treatment process from Chapter 1.

26

Figure 3.4: Treatment process (collapsed) (in BPMN 2.0) (see B.3 for larger
view)

The communication within this process has some critical paths:

First, during patient analysis, a doctor may request a sample gathering which is

executed by a nurse. Finding a free nurse can be a time-consuming activity, and

furthermore all nurses can be busy.

Second, during treatment definition, a doctor defines tasks, which should be

done in the future. The treatment will be stored in the patient treatment history;

a nurse, who will execute treatment activities, needs to regularly look inside the

treatment history of every patient and, therefore, make her daily work plan. In

cases of many patients, this planning activity will be almost impossible and re-

quires big administrative effort.

Third, a similar problem occurs, when a doctor must wait for patient sample

results. Some decisions should be made very quickly (e.g. in case of an emer-

gency) and the doctor does not have much time, routine checkups must be post-

poned. Continuously checking of treatment history updates will distract the doc-

tor from his main tasks.

27

The researched middleware should solve these use case problems and auto-

mate routine activities. Thus, required use case scenarios are listed below:

3.2.1 UCR1: Queuing

The discussed (mobile) services are stateful (see Chapter 1). Consequently,

it can happen that at the point of task processing no services are available.

In such cases, the middleware should save the task and try to process it later,

when an appropriate service is online. Therefore, queuing of services/tasks (e.g.

medication or sample gathering) is needed.

3.2.2 UCR2: Scheduler

It should be possible to schedule the processing of the message (receiving of

the message by a receiver) by setting the time interval of validity and the priority

of the message. So, a doctor, by defining a treatment plan, should have the

possibility to define the exact time point of medication. The scheduler will solve

the problem by creating daily plans for nurses, as described above. A nurse will

be automatically notified about coming tasks. The middleware will process the

scheduled task on the defined time point, and transmit the task to an appropriate

(and free) nurse. As a result of scheduler implementation and integration, the

daily work plans will be generated dynamically by the middleware.

3.2.3 UCR3: Event bus

Some activities within the treatment process are event-driven, for example: a

doctor can finalize the patient analysis only when sample analysis was done

and reported by a nurse. Therefore, the middleware must support events. Like

in CR3, the middleware should build a centralized event bus, which delegates all

incoming events to corresponding subscribers. Hence, the doctor will have the

possibility to subscribe (and be notified) to patient’s case history events: case

28

history updates (changed), sample analysis results ready. In the same way, the

doctor will be notified if the patient reports current health state, and the doctor

participation is urgently needed.

3.2.4 UCR4: Context handling

The execution of many services is depending on the current activity context.

For example, medication should be done by a nurse who is currently free, with

prerequisites that this nurse can perform the required task; the other important

point is that the nurse location should be the closest to the patient. Based on

this information, the most appropriate nurse will be selected by the middleware.

This is why we state that mobile services can be context-aware (see Chapter

1). Therefore, the middleware should gather actual context data of available

services. The gathered context should be handled to support efficient routing

(context-based routing).

3.2.5 UCR5: Logging and statistics

Due to law regulations for traceability of all activities, the middleware should

protocol all communication actions. The provided logs can be used then for

generating statistics, processes analysis and monitoring.

3.3 Technical requirements

Nowadays, many implementation technologies for mobile devices are available.

The same solution can be developed with different technologies and program-

ming platforms. So, for example, a doctor during patient’s analysis and control

can use an application on the desktop computer (e.g. realized with Microsoft

.Net or Java), or by using a web application within intranet (e.g. Adobe Flash,

Microsoft Silverlight, JavaScript), or by using any mobile device like a tablet or

smartphone (Objective-C, Java, .Net). All these solutions have own advantages

and disadvantages. The same user action will result in different formats of data

29

and different communication protocols. Thus, it is required to find a reasonable

“common denominator” or application-independent format that will provide the

same data appearance and is available for any kind of chosen implementation

technology1. In this section, the common criteria for a middleware that can com-

municate with multiple programming (mobile) platforms, legacy systems, BPMS

and patient administration systems will be defined. Accordingly, this section pro-

vides technical requirements (TR) for the researched middleware.

3.3.1 TR1: Standard protocols

Widely used protocols like HTTP or TCP are supported on all kinds of devices

and client platforms. HTTP was an enabler for the Internet and so the most

popular protocol of the world. Each programming platform supports the sending

and receiving of HTTP-requests and of HTTP-responses. However, not each

platform is suitable for running a web server.

3.3.2 TR2: Cross-platform clients

For example, a TCP server can be implemented on the Android platform2, or

for iOS3, except for Windows phone. Web based clients and service calls are

supported by all three platforms. In other words, a doctor can control a patient

treatment and update the medication plan by using a web page within intranet.

Thus, the usage of the middleware for mobile task coordination and execution

should be possible from any platform: cross-platform clients are the key criteria

for an interoperable middleware. That means, a possible client can be imple-

mented for any platform: as Web, mobile or desktop computer solution (see

CR2). Consequently, the data format should allow interoperability, since every

platform uses a different programming language: a message that was sent from

Java code should be understood by C# or by Objective-C code. In Chapter 2,
1Theoretically, all data formats and communication protocols can be available by adding related

extensions. This implies additional development costs, depending on extension supplier,
or performance, stability decrease. So, it will be observed only those standards that allow
development "from scratch" - without adding/installing extensions

2http://developer.android.com/reference/java/net/ServerSocket.html, last visited 23.09.2012
3https://github.com/robbiehanson/CocoaHTTPServer, last visited 23.09.2012

30

the interoperability can be achieved through the Messaging pattern. As a result,

in the rest of this thesis, a message-oriented middleware will be designed.

3.3.3 TR3: Dealing with communication problems

Another advantage of using a message-oriented middleware is the ability to deal

with communication problems during communication with stateful services: if it

is impossible to open a waiting socket, regular connection outages require addi-

tional techniques like “server push” or client polling for non-permanent communi-

cation. Since a MOM is based on queues, messages can be saved if a receiver

is not accessible.

3.3.4 TR4: Context recognition and handling

Since discovered mobile services are context-aware, flexible context recognition

and dynamic context handling on the middleware side is needed. Therefore, a

service should be able to post and update own context data on changes. Intel-

ligent context handling can contribute to better task execution: for example, a

doctor uses a mobile device and a desktop client at the same time. The desktop

computer has a greater display size compared to a mobile device. Also, connec-

tion used by a desktop computer is faster and persistent compared to a mobile

device. If both are available, the better choice would be to transmit the task to a

desktop client.

A flexible context storing format is necessary: a mobile phone can have multiple

sensors, and each sensor can have multiple undefined properties. Even compo-

nents can be divided into subcomponents with further subcomponents. An ex-

act definition of context data structure cannot be defined in advance. Storage of

context structure and data could be realized with a relational database manage-

ment system (RDBMS). Other choices for these purposes are techniques from

the semantic web: RDF (Resource Description Language) and SPARQL proto-

col and RDF query Language (SPARQL). These techniques are more appropri-

ate, because RDF has features that enable data merging even if the underlying

schemas differ, and it specifically supports the runtime evolution of schemas

31

without requiring all the data consumers to be changed [17].

RDF is a W3C4 recommendation. A RDF model consists of so-called triples:

Subject, Predicate and Object (cf. Figure 3.5) [15]. A triple is an expression

where the Object characterizes the Subject, and the Predicate defines the kind

of relation. In a RDF structure, so-called graph, a Subject can be described

Figure 3.5: RDF triple

through variable of characteristics (Objects). Again, each Object can be charac-

terized through own relations (Predicates): from an Object it obtains a Subject.

3.3.5 TR5: Location recognition

Location of service providers helps to select the most suitable task executor: for

example, the most suitable nurse for the medication task is the nurse who is clos-

est to the patient (least distance to the patient). Other nurses do not need to go

to the patient, if one nurse is already there. This function of the middleware will

save time and makes the task processing more efficient. The common location

determination method could be realized via the global positioning system (GPS).

The GPS receives from a satellite global coordinates (Latitude and Longitude) of

the current position of the sensor. The main problem the GPS positioning is that

GPS requires direct visual contact with satellites. For location determination in

buildings, these methods are not applicable. The current position of a person (in

this case of a nurse or of a doctor) can be made through the definition of accord-

ing departments, or sectors (areas). Another possibility is to define architectural

plans of a building (clinic) and rooms in which the person is. The distance could

be calculated with special algorithms. If it is not necessary to have high accu-

racy in distance calculating, the best way is the manual definition of the current

position (definition of department). The manual input can be automated through

the usage of NFC modules, or scanning of QR (Quick Response) codes. The

4W3C - World Wide Web Consortium

32

location recognition methods are not part of this thesis. In the rest of this thesis

manual positioning will be assumed.

3.4 Subsumtion

To gain an overview of all defined requirements, scenarios and qualitatively cri-

teria, the following table sums ups all discussed points:

CR1(Communication):

The middleware should

enable communication

between two or more

separated and distributed

software components.

UCR1(Queuing): The

middleware saves tasks

until an appropriate ser-

vice provider will be avail-

able.

TR1(Standard proto-

cols): Used communi-

cation protocols should

be available on every

platform.

CR2(Cross-parties

communication): Com-

munication possibilities

are the same for provider

as well as for requestor.

UCR2(Scheduler): The

service requestor can de-

fine the time point of task

processing.

TR2(Cross-platform

clients): Required mid-

dleware connectors can

be implemented for any

platform.

CR3(Central bus): Any

client will communicate

only with the middleware

– the middleware hides

all additional communica-

tion protocols.

UCR3(Event bus):

Events have to be gath-

ered and processed.

The middleware builds

a centralized event bus,

which delegates all

incoming events to event

subscribers.

TR3(Dealing with com-

munication problems):

Additional techniques for

non-permanent commu-

nication like server push

and client polling are re-

quired.

CR4(Routing): The rout-

ing is implemented in the

middleware and does not

require to be considered

by the service requestor.

UCR4(Context han-

dling): The middleware

gathers actual context

of service providers to

support efficient task

transmission.

TR4(Context recogni-

tion and handling): A

service should be able

to post and update own

context data on changes.

33

CR5(Service trans-

parency): The middle-

ware hides all details of

a service implementation

and provides a consistent

view for all underlined

services – clients do

not differ between mo-

bile and other service

implementations.

UCR5(Logging and

statistics): The mid-

dleware protocols all

communication ac-

tions. Logs are used for

traceability, monitoring,

statistics, and analysis.

TR5(Location recogni-

tion): The middleware

requires explicit location

disposition definitions.

CR6(Repository): List-

ings of available services

can be used for adminis-

trative purposes.

Table 3.1: Requirements overview

3.5 Middleware definition

This section summarizes the scenario and the requirements analysis and de-

fines necessary functionalities and criteria for the middleware to cover require-

ments and scenario goals.

Another question related to standard or individual solutions is which kind of these

can be closer and faster integrated in an existing environment? Standard soft-

ware defines standard processes and supports standard tasks. Some incompat-

ibility during process execution means a re-design of existing processes. Also,

the technology plays an important role. Is this supported in environment’s tech-

nology or platform? If not, it is necessary to re-develop related parts or compo-

nents. If there is a need for many points of re-work, it is important to define the

role of standard solution to be introduced.

The approach studied in this thesis belongs to emerging technologies. The mid-

34

dleware market has no already implemented solutions, which can be named as

de-facto standard. Existing approaches and middleware solutions (for wired ser-

vices) can be adapted to the problem areas defined in this thesis. This is what

can be called as application-oriented middleware. The application-oriented mid-

dleware is concentrated on concrete challenges and problem solving of a given

use case [13]. But, the adaptation process for another use case (usage context)

may require implementing additional communication possibilities or additional

middleware logic. This adaptation will take more effort as specialized research

and realization of approach that was described in this thesis.

To sum up all requirements and usage scenarios, this section describes con-

crete properties of a middleware that will be used for mobile task coordination. It

should allow integration with existing systems like PAS that protocols treatment,

or BPMS that defines a global process and controls the execution.

From one side, the middleware should have the possibility to be integrated within

an existing environment with different systems. Existing systems can be of differ-

ent kind (e.g. BPMS, ERP or administration systems) and can be implemented

with different programming platforms (.Net, Java, C++, Python). Accordingly, the

middleware solution should be interoperable and provide multiple communica-

tion scenarios and be able to act as a provider and as a requestor. For these

purposes, Web services can be used for interactions between a system and

the middleware. By using Web services, the necessary interoperability can be

achieved, and the integration of the middleware can be done simpler. This is be-

cause many systems nowadays have support of Web services, or are developed

based on service orientation approaches. The integration through Web services

can be achieved through the utilization of Web service technology, and every ex-

tension can be made relatively simple and fast (in comparison with hardcoding

of components and manual development of client/server stubs). The challenge

remains to find an appropriate Web service technology. SOAP5 and RESTful

services are two possibilities. To make this decision, we will analyze the ap-

proximate duration of service calls. As described in Chapter 2, REST services

are more applicable for resource-oriented environments compared to SOAP ser-

vices. Within REST, the execution takes not much time, because resources are

5SOAP - Simple Object Access Protocol

35

already available. The time to execute a REST service is equal to the time to find

and serialize a resource. SOAP services are remote functions and therefore can

have a complex logic inside. Thus, the SOAP services are, theoretically, more

suitable for long running processes and, accordingly, for durable communication.

In any case, the communication between legacy systems and the middleware

should be asynchronously, because tasks can take up to several hours or days

to complete the execution. In such cases, even SOAP services cannot wait in

a two-way communication model. This is why the researched middleware must

be message-oriented and asynchronous. To solve this problem, we will observe

it from another point of view: task definition, which is a resource. By creating

a resource (putting a resource to the middleware), the middleware will, by itself,

begin with processing of the message. By definition, the middleware deals only

with communication between components. So, the middleware will begin with

forwarding of the message to a task processor (task executor). This task pro-

cessor should recognize the task and execute it through appropriate services.

The legacy system can request the actual state of the task processing. From

this point of view, using REST, the middleware access interface is more intuitive

and provides fewer problems during implementation (e.g. there is no dealing

with connection’s timeouts compared to SOAP services).

From another side, the middleware will mainly communicate with mobile devices

with limited network access. These mobile devices should receive instructions

(task notifications) from the middleware and answer with reports when the work

(task) is done. Due to the fact that not all mobile platforms can host accessible

services, the notification should be done through server push technology (see

Section 4.3). Also, mobile devices should provide their context information reg-

ularly: who is using the device (nurse or doctor), what is the current location of

the device, and so on.

The interface for using the middleware from mobile devices is more compli-

cated, because some devices can also act as enablers for task execution (e.g.

MARPLE process engine for supporting mobile collaboration [20]). Services

should have the possibility to login and logut to/from the middleware and pe-

riodically provide context information. Also, mobile services should be able to

receive tasks. Some services, which act as service requestors, should be able

36

to execute a service and be notified when this task was done.

The following list defines required functions for mobile service providers:

• Check-In/-Out – Through this interface a mobile device informs the mid-

dleware about its availability: either the device is online (check-in) and can

perform tasks, or the device is offline (check-out).

• Context update – A mobile device notifies the middleware about any con-

text changes: e.g. a mobile device was connected to an ECG device, or

the person who, owned the device, has moved to another location.

• Feedback – Device informs the middleware about the current task pro-

cessing state: the middleware can discover the task processing states and

reassign tasks to other providers (if these were interrupted or not not sup-

ported by a previous receiver).

• Publish – This interface is part of an asynchronous event pattern called

“Publish-Subscribe”. Through calling of the publish-method, an event pro-

vider (service provider) will post data to the middleware (see Section 4.4.3).

• Subscribe – An event subscriber defines “Events-Of-Interest (EOI)” and will

receive event data (see Subscribe-method in Section 4.4.3) if the published

event matches the defined criteria.

3.6 Middleware architecture

In this section, concrete middleware architecture will be introduced. The dis-

cussed middleware architecture implements all defined criteria and requirements

with architecture components.

The reference architecture (cf. Figure 3.6) of the researched middleware can be

divided into five component types, based on their roles: core components, con-

text management, event handling, task processing, and external components.

37

Figure 3.6: Reference architecture of the middleware

3.6.1 External components

The external components represent components that are not part of the middle-

ware implementation but form an integral part of the overall system. An external

system could be a BPMS or Patient Administration System; it can initiate, con-

trol, and log the execution (in case of BPMS); gather and protocol actual patient’s

data (in case of PAS). Service providers are mobile services or Web services.

Service requestors are any kind of clients that initiate a remote execution of tasks

or remote data access.

3.6.2 Core components

Core components of the middleware represent centralized resources that are

used for communication initialization (CR1), message queuing, distributing, and

data delivery (UCR5) through request processing. The name is derived from

38

the common middleware definition provided in Section 2.2: the core function of

a middleware is to ensure the communication between several distributed parts

(CR3). Accordingly, the core components of the researched middleware are re-

sponsible for communication: Communication adapters make the middleware

accessible. The Message manager is responsible for message recognition and

message queuing, the Distribution manager assigns a message receiver based

on its definition, and the Channel Manager handles connections for each dis-

tributed component.

The Communication Adapter consists of many access interfaces for accessing

the middleware from legacy systems as well as from mobile devices (TR2).

These interfaces can be implemented with any suitable (or necessary) tech-

nology to provide good integration between participated systems (distributed

components) (CR2). In the researched middleware, these interfaces are im-

plemented with REST and with appropriate protocols (see Section 4.3) for per-

sistent communications (TR1).

The Message Manager de-serialize messages into an internal representation.

As next, based on entrance interface definition, the message manager recog-

nizes the type of the entry message and, additionally, forwards messages to

respective message processing components (i.e. the Data Manager, the Task

Manager, or the Context Manager). The second role of the Message Manager is

the central message queue (UCR1). All tasks will be persisted within the mes-

sage manager. All additional components (like the Scheduler, the Task Man-

ager) will access and change persisted tasks in the Massage Manager and will

not save tasks separately.

The Distribution Manager is responsible for distribution of tasks to the right task

receivers (CR4). After receiving a message to be distributed; the Distribution

Manager requests a list of appropriate receivers and takes the best candidates.

After that, the Distribution Manager forwards the message with chosen candi-

dates to the Channel Manager, where the messages will be passed to commu-

nication channels accordingly.

The Channel Manager holds all active connections (channels) and their states.

If a connection is broken, the Channel Manager will try to re-establish it, or waits

for new connection request and maps the new connection to the device (TR3).

39

Each external component can have several parallel connections to the middle-

ware (e.g. event subscription and waiting connection for incoming tasks (service

provider)). The Channel Manager handles all these open connections, and is

responsible for the transmission of messages to the receivers. Also, the Chan-

nel Manager is responsible for conversion of the used message formats (CR5):

a service client uses a Web Service (SOAP) interface and, therefore, requires a

SOAP message as a result. If the requested service is a mobile service, which

uses other standards for communication and messaging (see Chapter 4), the

required SOAP answer and the original result are incompatible. So, the Channel

Manager will provide result data in form of a SOAP message to the requestor by

converting the original message.

The whole message processing and message-receiver mapping is handled com-

pletely by the middleware. During distribution within the Distribution Manager, it

observes currently available and active devices (providers) only. Therefore, it is

impossible to inform a receiver about possible incoming tasks in advance (fore-

cast a distribution result).

3.6.3 Task processing components

The task processing components support the intelligent task management and

cover message content and attributes processing. The Message Manager de-

cides about the type of a message (based on the entrance interface) only, Task

processing components, by contrast, are looking for details: priority and schedul-

ing.

The Data Manager deals with message content data. Since mobile devices take

part in communication (TR2) and have limited connection bandwidth, it is neces-

sary to handle massive message content data in an effective way. Thus, the Data

Managers removes unnecessary content data, and, by request, provides these

to a requestor. As a result, the middleware utilizes relatively small messages

and can quicker transfer these messages to a receiver. The possible problem at

this point is how to exclude only optional data and keep required data. Described

differentiation of data items should be done on the message sender side. So,

a sender can define which data items are required and which are of interest for

40

the task receiver. The Task Manger includes content of required data items and

URIs for accessing optional items. By an URI, a receiver of a task can then ask

for an interesting data item by the Data Manager.

The Scheduler provides scheduling possibilities (UCR2). The Scheduler com-

ponent plans the processing of a task - based on his scheduling definition. The

scheduler is, in other words, an enabler for overall task processing: according to

plan, the scheduler pulls tasks, which should be processed at the time point of

pulling, and pushes these to the Task Manager for next processing. Tasks which

should be executed at a later point in time are ignored by the Scheduler until this

time point is reached.

The Task Manager is responsible for assembling of outgoing messages. The

Task Manager will cut receiver definition parts from the message content, in-

clude mandatory data and paste URIs for optional items. The Task Manager

controls the overall state of a message, and will also send an exception if, for

example, the message was not understood by a receiver. Another feature of the

Task Manager is the prioritizations of tasks with manually defined priority and

defined time range of validity. Following rules can be noted:

• Tasks with defined distribution deadlines have higher priority than tasks

without deadlines (if a priority is not defined manually, or priorities of both

tasks are equal).

• If a priority is defined manually, the priority of tasks with defined processing

time will be increased by 5.

• If the priority of a task with a defined deadline is not set, and the priority

of a message without a deadline is defined, then the priority of a task with

the deadline is 10.

The Executor takes care about currently executed tasks (messages): the Execu-

tor will receive all feedback notifications from task executors (service providers),

and, if the execution was interrupted, try to reassign the task to another provider.

The Executor, by receiving a task from the Task Manager, will initiate the pro-

cessing of this task and control the processing until the end. After processing,

the Executor will report the processing state back to the Task Manager. The

processing state can either be “processed” or “broken”. As mentioned before,

41

the Executor will try to reassign interrupted execution automatically to a new

receiver (until the task is still valid, else the state will be “broken”).

3.6.4 Context management

The main purpose of the context management components is the handling of

service descriptions, devices’ (services) context data, and the availability of in-

formation for correct decision making (TR4): context management components

provides required data to the Distribution Manager, which correlates the right

executor to task processing requests. Therefore, the Service Directory provides

all currently available services, the Context Manager holds all relevant context

data, and the Device Manager summarizes all these data to concrete description

of devices, device’s context information and available services on these devices.

The Service Directory stores all available services (CR6). During a check-in, a

service provider defines its provided services. This definition of hosted services

will be saved in the Service Directory. Also, the Service Directory saves manu-

ally added Web Services. It should be noted that the Service Directory will save

only distinct collection of services. That means that every succeeding publica-

tion of the same service will be ignored. A service definition is permanent and

will not be dynamically changed. Therefore, saving of duplicates is not efficient

and, consequently, not required. If a service is provided by multiple providers,

the Context Manager will map this service to service providers. By processing

of a task, the middleware will recognize the required service and selects it from

the Service Directory. The unique identification number (ID) of the service will

be used to select appropriate provider of the service. Thus, the selection of ap-

propriate service providers will be done in the Context Manager.

The Context Manager binds services with providers (devices) and their context

(UCR4). Hence, the main purpose of the Context Manager is to dynamically

handle context changes. The device context structure is variable: some device

can have a camera, some devices have NFC sensors, and some devices do not

have any of them. This context structure is represented as a RDF graph.

As shown in Figure 3.7, the start point of the RDF graph is a device. The de-

vice (Subject in RDF triple) can have many variable properties: hosted services,

42

Figure 3.7: A possible RDF graph for device context representation

broadband, location, display size, owner. Each of these properties can be self

a subject and have a substructure: for example, the display size can be refined

with height and width. Again, each property is a Subject.

The Device Manager will match the context pattern and generate a list of appro-

priate (and available) service providers. This will be done in two phases: selec-

tion of appropriate candidates (Phase I) and prioritization of candidates (Phase

II). In phase I, the Device Manager generates a list of appropriate providers by

selection of providers that match the defined criteria. Inside the task definition,

a requestor defines not rules for searching of appropriate providers, but rather

a pattern of a required provider. The Device Manager tries to find the provided

pattern in all available graphs (cf. Figure 3.8). Additionally, the Device Manager

requires to handle device states: a device can be free or busy with processing

a task (service request). So, only "free" providers are taken into account during

the matching.

During the Phase II, the Device Manager will sort the list of service provider

candidates by provider performance and by level of experience of the provid-

ing device owner (cf. Figure 3.9). At first, the Device Manager will prioritize all

Web Services, because they are running on stationary computers: stationary

computers (servers) are very performant and have less dependencies. As next

come service providers, which owners are experts in their area: for example,

43

Figure 3.8: Pattern-based matching of graphs

a nurse who makes only sample gathering will be prioritized than a nurse who

provides many services. This prioritization is defined for performance issues: a

person that can do some special tasks, should be free and not be distracted by a

(common) task which can be done by other persons. Another task of the Phase

Figure 3.9: Provider ranking

44

II is the determination of concrete characteristics: as example, calculating of the

distance and selecting the closest provider (TR5).

3.6.5 Event handling

The Event handling components provide event support within distributed sys-

tems. Many activities in the discussed use case process are dependent on the

execution state of preceding or sub activities (UCR3). Since the middleware

supports only asynchronous communication, the used event model should be

asynchronous also. Thus, the event handling is realized according to the asyn-

chronous publish-subscribe pattern.

The Publications component stores all incoming events or change publications.

Publications can be manual or automatic. Manual publications are those publi-

cations, which were made explicitly by using the publication interface. Automatic

publications are those publications, which were added by the Executor: events

like start or end of execution will be added by the Executor who controls the ex-

ecution of a task.

The Subscriptions component handles subscriptions. A subscription can de-

fine either an event provider of interest (provider-based) or a content of interest

(content-based). Additionally, an event subscriber can define a time point to fil-

ter publications before the time point: all messages which are “older” then the

defined time point will not be taken into account. If the time point is not defined,

the middleware will transmit all events without considering the age of the events.

This can be helpful for monitoring, logging, and statistics (UCR5).

The Event Manager maps event publications to event subscriptions. Like the

Device Manager, the Event Manager matches the subscription pattern with pub-

lications to select appropriate events. The distribution of events to subscribers

is made by the Distribution Manager.

45

46

4 Specification

This chapter provides specification details of the researched middleware. Also,

this chapter describes communication patterns for concrete use cases from the

scenario analysis (Chapter 1) as well as from the requirements (Chapter 3). The

challenge of this specification is to find a reasonable way for interoperable com-

munication between heterogeneous systems and platforms. The implementa-

tion must cover interoperable data formats as well as interoperable communica-

tions protocols. Main goals of this chapter are the description of an appropriate

message format, as well as the definition of possible communication scenar-

ios. Additionally, a concrete course within a clinical scenario with the researched

middleware will be shown. Finally, technologies and techniques for the imple-

mentation of the middleware will be observed.

4.1 Message template

Main point of any communication is information transmission. In order to support

communication between heterogeneous systems, interoperability is an impor-

tant aspect. Interoperability of data formats means that information, generated

by one component and transmitted to another component, will be understood by

original and will have the same meaning. XML is the most used standard for for-

mat interoperability. It provides data structuring possibilities and is supported by

many programming platforms. Because the goal of the middleware is the inter-

operable communication between different entity implementations, the message

format of the researched middleware is based on XML.

47

4.2 Message structure

In Figure 4.1, the structure for a communication message between the middle-

ware, service requestors and mobile device is proposed.

Figure 4.1: Message structure

4.2.1 Message

Like any XML document, the message structure begins with a root element

(message-Element) and the following attributes:

• The schedule attribute defines the valid time range for a message. A valid

time range describes the time interval (start point and timeout) when a

message is processed (distributed) by the middleware (see UCR2, Sec-

tion 3.2.2). The schedule attribute is optional and should be used when a

specific time interval for message processing is required (e.g. for a medica-

tion that should start at a concrete time point the scheduling (processing)).

The definition consists of two parts: start point and timeout (separated by

a “+” sign). The start point defines a time point when the middleware be-

gins to deliver the message. The timeout defines the end of the time range

48

(deadline) when the message can be delivered to a task executor (ser-

vice provider). In Table 4.1 example properties and their semantics are

described:

Syntax Start Timeout Semantic

Empty (attribute is not de-

fined)

a.s.a.p.1 Not defined Processing of the message will start as soon

as possible and will be processed until the

contained task is successfully done.

14.07.2012+1440 14 Jul 2012 at

00:00:00

1440 minutes Processing of the message will start on 14

July 2012 at 00:00:00 and the middleware

will try to transmit the message until 15 July

2012 00:00:00. If the message will not be

transmitted to the receiver, the message will

be ignored by the middleware.

+1440 a.s.a.p. 1440 minutes Processing of the message will start as soon

as possible (start point will be set to the time

point of message entry), and the message

will be rejected in exactly 24 hours.

14.07.2012 12:00:00 14 Jun 2012 at

12:00:00

Not defined Processing of the message will start on 14

July 2012 at 00:00:00, and will be processed

until the contained task is successfully done.

Table 4.1: Semantic of schedule usage

• The priority attribute defines the priority of a message. In situations, when

there are many messages (tasks) in the message queue (3.6.2), which

should be processed (executed) within one time range, an ordering of the

message processing is required. In such cases, messages can be ordered

by their priority: messages (tasks) with higher priority will be processed

(executed) earlier than messages (tasks) with lower priority. Higher value

of the priority attribute corresponds to higher priority of the message, and

vice versa. As mentioned in Section 3.6.3, the priority of a message is

increased by 5 if the concrete execution time interval is defined. Further-
1a.s.a.p. - as soon as possible

49

more, if the priority is not defined, but a time range definition exists, then

the priority is 10. The priority will be manipulated in these two cases only.

When the priority is not defined, messages are processed in first-in-first-

out (FIFO) order.

• The identifier (id) is required to correlate a response to the request. This

attribute will be set by the middleware, and is used in messages from the

middleware to a service provider (executor).

4.2.2 Scope

The scope part of the message is dedicated for the middleware only. It describes

the task’s execution scope, which should be granted by a potential receiver. This

element will be parsed by the middleware and then will be removed from the

message structure before the message is transmitted to the receiver.

The main purpose of the scope section is the definition of constraints for service

providers. So, the scope is responsible for providing a necessary matching pat-

tern for the Device Manager (see Section 3.6.4), which provides a list of service

providers based on this pattern.

The multi attribute of the scope element is used to define an amount of required

receivers (e.g. two nurses are required to transport a patient to a laboratory for

sample gathering and sample analysis). The default value is one. The Device

Manager will check the amount of available (and appropriate) service providers.

The task will be processed, if there are enough providers available. In another

case, the distribution of the task will be postponed.

The pattern will be defined in RDF notation (RDF/XML [3]). RDF/XML is a XML

format to encode RDF specified by the World Wide Web Consortium (W3C).

...

<rdf:Description>

<rdf:type rdf:resource="http://middlewarehost.de/schemas/

service" />

<service:name>Sample gathering</service:name>

</rdf:Description>

<rdf:Description>

50

<rdf:type rdf:resource="http://middlewarehost.de/schemas/

owner" />

<owner:role>Nurse</owner:role>

</rdf:Description>

...

Listing 4.1: Sample pattern definition in RDF/XML

The XML fragment in Listing 4.1 represents a possible description of a matching

pattern to find an appropriate service provider. This fragment defines a service

with the name “Sample gathering” and an owner in the role “Nurse”. In other

words, this fragment defines a nurse, which provides the “sample gathering”

service. The pattern definition is partial: a client defines only necessary parts of

the service context.

In RDF/XML, there are two types of nodes: resource nodes and property nodes.

Resource nodes are the subjects and objects of statements. Usually, they are

rdf:Description nodes. Resource nodes contain property nodes only. Property

nodes represent single statements: the subject is the outer resource node that

contains an object. The predicates are node names of the object node, if the

statement has a literal value. Else, if the object is a resource, predicates are

wrapper nodes of a represented resource. In the Example in Listing 4.1 there

are two statements: service (subject) name (predicate) is “Sample gathering”

(object), and owner (subject) role (predicate) is nurse(object). The rdf:type node

denotes the resource type (in the example above: service and owner). The

rdf:type is usually be abbreviated by replacing the rdf:Description node (see List-

ing 4.2).

Another task beyond the scope is to provide the service context. Unlike partial

pattern definition, the service provider needs to define the complete graph of the

context and the service description. As soon as the service check-in message is

arrived, it will be processed by the middleware. If the processing is completed,

the service is immediately available for execution. Incomplete service context

information (e.g. without location or owner information) definition will affect the

request distribution, because the distribution is based on the provided context,

and insufficient context may result in service execution low quality or in unex-

51

pected effects. For example, a service is provided by a doctor, who has not

defined the device owner information (or without owner role). The middleware

will recognize them as an appropriate provider for the service if a doctor (role =

doctor) is required. And, when it is a single provider, the task will not be exe-

cuted. To prevent such problems, a context definition must contain a full service

description. Figure 4.2 illustrates the RDF graph from Section 3.6.4.

Figure 4.2: Sample device RDF graph

The context definition has to be defined as follows:

...

<rdf:Device >

<device:has>

<location:department>Surgery</location:department>

</device:has>

<device:provides>

<rdf:Service>

<service:name>Sample gathering</service:name>

</rdf:Service>

<rdf:Service>

<service:name>Medication</service:name>

</rdf:Service>

...

52

</device:provides>

<device:has>

<rdf:Owner>

<owner:name>Who</owner:name>

<owner:role>Doctor</owner:role>

</rdf:Owner>

</device:has>

<device:has>

<device:broadband>3G</device:broadband>

</device:has>

</rdf:Device>

...

Listing 4.2: Context definition example in RDF/XML

4.2.3 Body

The body element of the message contains the data payload. The body can

contain multiple data items. These data items represent concrete values (pa-

rameters) which will be delivered to a receiver. This receiver can be a service

provider, which requires parameters, or a service requestor, which waits for a

result.

Any service call within the observed middleware usage is document styled: a

service client defines a list of data items without connection to a concrete ser-

vice specification. A service provider selects required data items from the list

of provided items (e.g. by name and type) and executes the service implemen-

tation with these parameters. The document styled messages are suitable for

scenarios, where data elements cannot be modeled in advance. For example,

an experienced doctor requires less information than a novice (for manual tasks

or decisions). Automated services (e.g. Web services), in contrast, are less

context-aware than manual services (human tasks). As described in Section

3.1.5, the middleware does not distinguish between mobile services (manual

tasks) and Web services. To ensure this, a developer should provide all data

53

that is required for a Web service call as well as for an execution of manual

tasks (mobile services): a client sends all available data, an executor chooses

which data are relevant and required for the execution.

Data items are defined by using the item element within the body. In other words,

a single data item is represented through a single item element, and has three

mandatory properties:

• The name attribute defines the name of a data item.

• The type attribute defines the type. The type, can be user-defined and is

represented as a string. To provide better interoperability, MIME-Types [4]

should be used.

• The encoding attribute defines how the value is encoded. The supported

encoding can be a plain text (text), XML structure (xml), or Base64-encoded

binary value (base64). Plain text is represented as a CDATA element.

4.3 Communication protocol

Web applications are faced with similar problems compared to the researched

middleware. Communication between the middleware and a client (service pro-

vider, service requestor) can be initiated from the client side only. Connections

can be broken. Therefore, we will survey communication protocols from the Web

area.

4.3.1 HTTP

Hypertext Transfer Protocol (HTTP) is the fundament of World Wide Web (Inter-

net). HTTP is limited to the request-response communication model: a client

sends a request and a HTTP server answers with a response. In the discussed

middleware scenario (see Section 4.4.1), the middleware acts as a server and

notifies a service provider about service requests (task transmitting to an execu-

tor). Due to the fact that the communication can be initiated from client side only,

54

implementation of such scenarios is not trivial. For these purposes, develop-

ers have created many approaches, which belong to the wrapper term ”Server

push”: HTTP persistent connections, Long Polling [24], Reverse Ajax2 (Comet)

[18], BOSH (bidirectional-streams over synchronous HTTP)3 [24].

HTTP allows the definition of persistent connections by setting the ”Connection”

attribute of the HTTP header to ”Keep-Alive”. In this case, the server and the

client will keep the entire connection opened, instead of closing the connection

after receiving a response by the client. Following this, the connection will not

be closed, and the server and the client can continue to transmit data. In the

provided case, a service provider can request a persistent HTTP connection by

registration (check-in), and hold the connection opened until a service request

(task) is received. Also, by responding, the connection is used for receiving the

next request. The main problem of this technique is that server implementa-

tions and browsers have an internal timeout: after expirations of this timeout, the

connection will be broken.

Long Polling

To deal with connection timeouts, the long polling mechanism [24] was devel-

oped: requests will be sent continuously, if the previous request was broken or

a reply was received, the client will send a next request (cf. Figure 4.3). By

continuously sending of requests, the client receives actual data changes and

notifications from the server.

The long polling mechanism is the simplest and most used technique for server

push in Web development4 [24, 18]. The usage for long polling technique for

communication between mobile devices and the middleware can provide the re-

quired cross-platform support by the middleware: a tier can be implemented as

a mobile application, as well as a web application.

2Ajax - Asynchronous JavaScript and XML
3http://xmpp.org/extensions/xep-0124.html, last visited on 12.10.2012
4Even traditional Ajax is based on "polling" technique

55

Figure 4.3: HTTP Long Polling

4.3.2 TCP

Transmission Control Protocol (TCP) is a connection-oriented transport protocol

that allows reliable, persistent connections between two points. After establish-

ing a connection (Three-Way-Handshake), both connection points can transfer,

independently from each other, any data (also streaming) in bidirectional mode.

Theoretically, the usage of TCP is the best choice for implementing communica-

tion between the middleware and service providers/requestors. The main prob-

lem is that TCP communications are not supported by web browsers. Therefore,

the implementation of clients or service providers as web applications is not pos-

sible.

WebSocket Protocol

To enable support of two-way communication for browser-based applications,

the WebSocket Protocol was developed [9]. The WebSocket Protocol provides a

single connection for traffic in both directions: a client can send data to a server,

and the server can send data to the client at any time. The WebSocket Proto-

col allows building of web applications like games, chat messengers, or billing

applications. It is an alternative to HTTP (long) polling for two-way communica-

tion [9]. Conceptually, WebSocket is a layer on top of TCP [9]. It is designed in

such a way that WebSocket servers can share the 80 port with HTTP servers,

by having its handshake be a normal HTTP request (Connection: Upgrade)[9]:

56

”The WebSocket Protocol is an independent TCP-based protocol. It’s only rela-

tionship to HTTP is that its handshake is interpreted by HTTP servers as an Up-

grade request.” It means that, in contrast to common TCP three-way handshake

(SYN-ACK handshake), the based WebSocket connection will be established

by sending a normal HTTP request. The WebSocket Protocol is supported in

WebKit-based browsers (Google Chrome (16), Safari(6)), Opera from version

12.50, Firefox from version 11, Internet Explorer 10. Also, implementations of

the WebSocket Protocol are available in many programming languages: client

libraries as well as server implementations.

The protocol consists of two phases: the handshake and the data transfer.

GET /chat HTTP/1.1

Host: server.example.com

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==

Origin: http://example.com

Sec-WebSocket-Protocol: chat, superchat

Sec-WebSocket-Version: 13

Listing 4.3: Client-side handshake request

Equal to HTTP, the client specifies which resource and which host he wants

to access (see Listing 4.3). The randomly generated ”Sec-WebSocket-Key”

supplies identification and authentication to the server, and is used to check

whether the server actually reads and understands the request. With the ”Sec-

WebSocket-Protocol” field, the client has the opportunity to specify additional

subprotocols (here: chat). Subprotocols are extensions based on the WebSoket

Protocol: for example, message broker subprotocol5, Extensible Messaging and

Presence Protocol (XMPP) subprotocol6, RPC or Publish-Subscribe.

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

5http://tools.ietf.org/html/draft-hapner-hybi-messagebroker-subprotocol-03, viewed 14.10.2012
6http://tools.ietf.org/html/draft-moffitt-xmpp-over-websocket-01, viewed 14.10.2012

57

Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=

Sec-WebSocket-Protocol: chat

Listing 4.4: Server handshake response

The server agrees to protocol change and replies with the HTTP 101 status code

(see Listing 4.4). The returned key in ”Sec-WebSocket-Accept” is the verification

that the server has read the client request.

Figure 4.4: The communication protocols correlation

After the connection was established, the remote points can transmit data. The

connection can be terminated by a normal FIN-ACK three-way handshake [9].

As illustrated in Figure 4.4, the middleware uses RESTful services for all incom-

ing requests (see Section 3.5). The usage of RESTful services allows accessing

the middleware from all possible client implementations: Web applications, desk-

top applications, and mobile applications. The WebSocket protocol is used for

the delivery of requests and notifications to receivers (service provider). This

combination provides simplicity for developing middleware access clients, and

fast, reliable message distribution to task executors. To achieve a high degree

of flexibility, each communication way should provide all functionalities of the

middleware (sending task requests by service clients, receiving requests by ser-

vice providers, events and notifications). So, the developer can choose between

different communication modes: RESTful services, WebSocket protocol, or a

combination of both (mixed).

Often, during programming a concrete solution, a developer has limited range

58

of implementation technologies. The usage of concrete technology is depen-

dent on design decisions and availability of required libraries. Therefore, a def-

inition of possible middleware usages is required. In cases, where a solution

is Web oriented, and the implementation of Web parts is required, it is advis-

able to use only Web conform standards, protocols, and techniques. To ensure

compliance to Web standards, the researched middleware should provide all

necessary interfaces as RESTful services. This operating mode will be called

“RESTful mode” or “Web mode” in the following.

In other cases, where handling of continuous request loops (e.g. Long pool-

ing) seems to be complicated, and the usage of Web conform standard is not

required, the developer could use persistent connections (“Persistent mode”

or “WebSocket mode”). The only technical difference between Persistent and

Web modes is that RESTful services are provided directly by the Communica-

tion Adapter, whereas persistent connections are handled by the Channel Man-

ager. The Channel Manager will forward all messages to the Communication

Adapter and create a mapping between requests and corresponding communi-

cation channels.

The default operating mode is “Mixed mode”, where communication is done

partial in RESTful mode, and partial in persistent mode.

To provide extension possibilities for software solutions, which are based on the

researched middleware and to increase interoperability, the middleware commu-

nication should be based on RESTful services or on WebSocket Protocol. Thus,

a Web oriented solution can be extended with wired tiers that use persistent

connection, and vice versa.

4.4 Implementation aspects

This section describes how the messages will be processed by the middleware.

The researched middleware deals with four types of messages:

• Context description messages: in order to receive requests for context-

aware services a service provider should provide actual context informa-

tion to the middleware. Additionally, service providers should have the pos-

59

sibility to change their context information. Consequently, the middleware

must provide an update interface. In both cases, the service provider sends

context description messages: one during creation of an initial record, and

the second for changing or updating this context record.

• Service requests or task definitions: the main purpose of the middle-

ware is the coordination and distribution of tasks for mobile services. There-

fore, request messages, which define data for service execution and task

definitions, are essential part of the researched middleware.

• Subscriptions: for reacting on events, each middleware client can sub-

scribe for specific changes (e.g. task processing state changes, availability

of service providers, or current state changes).

• Publications: to make changes “visible”, every change provider, or the

middleware itself, publishes the change information with the help of publi-

cations. The provided information within a publication will be transmitted to

the interested subscribers.

These four message types can be grouped into three categories: context infor-

mation, task processing and service requests, and event handling.

4.4.1 Task processing and service requests

The task processing and service request part consists of five steps (cf. Figure

4.5): request creation, request delivery, processing feedback, processing result,

and result delivery.

Figure 4.5: Task processing and service request (in UML Sequence Diagram)

60

First, a service request or a task will be sent to the middleware for further pro-

cessing, coordination and distribution (request creation). Second, the (service

or task) request is transmitted to an appropriate service provider (or task ex-

ecutor) (request delivery). Third, the provider regularly reports about current

processing state (processing feedback). Fourth, the provider sends process-

ing result to the middleware (the provider does not know anything about the

requestor) (processing result). Finally, the result is delivered to the original re-

questor (middleware client) by the middleware (result delivery).

As described in Section 3.5, the interface for sending of tasks and service re-

quests to the middleware will be implemented as RESTful service. The service

address will be in the following form: http://middlewarehost[:port]/requests. To

manage requests, the middleware RESTful service provides CRUD7 operations.

With the HTTP PUT method the client “creates” a new task. The message format

requires, in this case, the service description (“Scope”-block) and related data

(“Body ”-block). First, the message is stored in the Message Manager (cf. Figure

4.6). The Message Manager de-serializes the received message into an internal

representation. Only task definitions and service requests will be stored within

the Message Manager in a central queue8. Second, the Scheduler regularly it-

erates through the queue and checks which messages should be processed. If

the Scheduler finds tasks, which should be processed, it pushes these tasks to

the Task Manager. Third, the Task Manager assembles an outgoing message: it

includes values of mandatory data blocks and reference URIs for optional items.

The next steps are the distribution of a request by the Distribution Manager and

a control of the “execution” by the Executor.

After creating a task or service request, the middleware answers with an iden-

tifier of the newly created resource. This identifier is necessary to attach addi-

tional data items, to check actual processing status, or to delete the resource.

There is no special parameter within the data item specification to mark optional

data: optional data item should be attached separately to the response through

HTTP POST request to http://middlewarehost[:port]/requests/{request identifier}

(or message type “update”). The task executor (or service provider) receives

only mandatory data items. If further information is needed, the provider (or ex-

7CRUD - Create, Read, Update, Delete
8Context handling messages will be processed in time by related components.

61

Figure 4.6: Middleware internal request processing (in UML Sequence diagram)

ecutor) can select and request any available item from the list of optional items

(see Section 5.2.4 for example). Extra attached data are always referenced as

an URI and this data will never be assembled to original message. The “body”-

block of the message with items definition(-s) is required only. The attachments

message is processed by the Data Manager. In fact, data items, which were

provided within the initial response definition, are mandatory, and subsequently,

attached data items are optional. The kind of data items (real data or links) does

not matter.

The Data Manager correlates data items to identified request. All data items

and attachments are stored in the file system. Separate data items are available

through URIs with the following schema: http://middlewarehost[:port]/data/{data

identifier}. Also, this address is used for optional data items. The data access

interface allows read-only (HTTP GET) access. Therefore, there is no possibility

to change, or delete data items. It is necessary to prevent possible data changes

during request execution, which could cause side effects.

Using the HTTP GET method, a client can access the stored task definitions on

the interface address: http://middlewarehost[:port]/requests/{request identifier}.

With the HTTP DELETE method the stored request can be deleted. It should

be noted that a request can be deleted only, if the request is not currently be-

62

ing processed (e.g. to prevent subscriptions to events, which never will occur).

Another way is to make deleting of requests manual only: this can ensure data

consistency (e.g. logging, event’s mapping or during request processing).

Figure 4.7: Request processing states

Figure 4.7 denotes the possible states of a request: Received, Processing, Fin-

ished, Responded, and Rejected. After the request is received by the middle-

ware and stored in the message queue, the state of the message is received. If

the Scheduler decides that the request is already expired, the state is rejected.

This can happen if the Executor has begun with the processing of the request

and waits until an appropriate service provider is available. In this time the re-

quest has expired, and the Scheduler sets the state of the request to rejected.

In such case, the Executor will break the processing of this request.

When the Executor has begun the processing of the request, and the Distribu-

tion Manager has already found an appropriate executor, the state of the request

is to processing. It can happen that an execution fails. In this case, the executor

responds with an error, or the executor provides no feedback9. The Executor

will try to reassign the request to a new service provider. The number of these

attempts should be limited to avoid endless loops.

If the result of an execution is received by the middleware, the request is finished.

The results are stored in a separate queue. The results’ queue allows creation

9The maximum waiting time should be defined manually for concrete middleware usage sce-
nario.

63

and maintenance of stored resources only: results are not processed by the mid-

dleware; only create, read, update, and delete operations are available. To dis-

tinguish between requests and results, the results management interface will be

available by the following URI schema: http://middlewarehost[:port]/results/{re-

quest identifier}. A result can be created by a provider with the HTTP PUT

method, and can be read by a client with the HTTP GET method. The requestor

can continuously check the result arrivals through the REST interface. In per-

sistent communication mode, the Executor will check, additionally, if a pointer

to a persistent connection channel exists, and, if true, forwards result data to

this channel. The state responded is optional and shows that the requestor has

been notified about the arrival of results of the task execution (only in WebSocket

communication mode). In any case, after arrival of the results (finished state) the

requestor can access the results through the REST interface. By accessing the

results through the REST interface, the state of the request will not be changed.

In RESTful communication mode, all messages can be distinguished through

the interface address and applied HTTP method. In persistent communication

mode (using WebSocket protocol), however, this distinction is impossible. Due

to the persistent connection is bound to a sole point, a message requires an

additional message type parameter. For these purposes, the message schema

(see Section 4.2) must be extended with a message type definition (see Listing

4.5). The message type can be defined with an additional attribute “type” within

the message node:

<message type="create" ...

Listing 4.5: XML message type definition

The Communication Adapter will recognize the defined type (see Listing 4.5)

and allocate the message within the Message Manager accordingly. There-

fore, the “type” attribute is mandatory for the persistent communication mode.

The type attribute can have the following values: create, get, update, delete,

subscription, publication, check-in/-out, context-update, feedback, data, and re-

covery. In cases where an identifier is used, this identifier must be defined by

the attribute “id”. Since this attribute is used within the outbound messages,

it will not conflict with the id attribute defined previously (see Section 4.2.1).

64

The XML code fragment in Listing 4.6 is equivalent to the HTTP GET request

http://middlewarehost[:port]/data/123.

<message type="data" id="123" ...

Listing 4.6: XML message type definition including an identifier

Until now, we have observed the request creation and results’ delivery only (cf.

Figure 4.5). So, in RESTful communication mode, the client uses the CRUD pat-

tern on RESTful interface with the address schema http://middlewarehost[:port]/-

requests for request handling, and http://middlewarehost[:port]/results for re-

sults. In persistent mode, the client requires a persistent connection to the mid-

dleware, and can create requests and receive results through this connection.

Interaction steps in this case are identical to the RESTful mode (the middleware

responses with an identifier of newly created requests). Additionally, in persis-

tent communication mode, a recovery mechanism exists: if a connection was

interrupted (a regular scenario for mobile communications (see Chapter 1)), the

client should reconnect to the middleware, and this connection should be allo-

cated to previously created requests. This can be done by connecting to the

middleware and sending of a recovery message:

<message type="request-recovery" id="{request id}"/>

Listing 4.7: Recovery message

The recovery message is a simple message of type “request-recovery” with the

identifier of the created request. Such recovery messages should be sent for

every created request. A scenario where a request is created in RESTful com-

munication mode, and a result is expected in persistent mode, is imaginable.

So, a client does not create the polling loop, but rather awaits results through

persistent connection (asynchronously). It allows efficient utilization of device

resources (in terms of memory use and performance): no separate thread must

be created. For this purpose, after the creation is done, the client opens the

persistent connection to the middleware, and starts the connection recovery.

Now, we will observe required interactions on middleware-provider side: request

delivery, processing feedback, and processing result.

Request delivery takes place when the middleware acts as a server - in order to

65

notify the client (in this case - provider) about request entries and transmit the

request to the provider. In Web mode, a server push mechanism is required on

this place. So, the request delivery in RESTful communication mode is realized

with “Long polling” technique (see Section 4.3.1). Thus, the provider creates

a (long) “poll” to http://middlewarehost[:port]/providers/{provider identifier}. The

Communication Adapter will create a (temporary) communication channel within

the Channel Manager for this poll. The request will be transmitted only when a

channel exists for this poll: appropriate service requests and tasks will not be

saved provider-specific, they will simply be forwarded to an active channel.

By persistent communication mode, the middleware pushes all tasks and ser-

vice requests to the corresponding communication channels of a provider. The

recovery message to reopen this connection is of type “recovery”. Therefore,

the Channel Manager can correlate reopened connection to the specified (by

the identifier) device.

Since a provider can host multiple services, and only one communication chan-

nel per provider is available, a required service name definition is necessary.

This can be done in two ways: first, a provider will receive only the request identi-

fier, and, then request it on the following access interface: http://middlewarehost-

[:port]/results/{provider identifier}. The provider reads the request scope and can

find the service name within the context pattern. This implies that the receiver

can understand the RDF/XML graphs and pattern schema. Second, the Distri-

bution Manager will add a special data item to the task body. The data item is

of type “service/name” and the name attribute represents the name of required

service:

<item type="service/name" name="Sample gathering"/>

Listing 4.8: Service name definition as data item within body part

The second way is preferable, because it requires less interactions and simpler

processing logic.

After the request is delivered, the middleware changes the internal state of the

provider (provider device) to “busy” (cf. Figure 4.7). This device will not be con-

sidered by further distribution until a result (or a fault message) is responded.

The state “free” means that the provider is accessible. Because mobile service

66

providers are stateful (see Chapter 1), an execution of any individual service will

block the whole provider (device).

To ensure task is processing, the Executor requires a regular “ping” from the

provider, which processes the task. The ping should be repeated in a pre-

defined time intervals (timeout). In the middleware context, this ping is called

“Feedback”, because a provider can send current processing state information:

e.g. completeness in percent, or a human readable description. This state infor-

mation will be appended to the request definition within the middleware request

queue. The feedback is not required (optional), if the result arrives before the

timeout expires.

Figure 4.8: Differences between mixed, persistent, and RESTful modes

Figure 4.8 illustrates difference between mixed, persistent, and RESTful com-

munication modes. Main differences are loops for request delivery from the mid-

dleware to a provider: while in RESTful mode this loop is mandatory, in mixed

and persistent modes loops are optional and required if the connection was in-

terrupted only. Also, the recovery mechanism is shown.

67

4.4.2 Dealing with context information

In the scope of this thesis, we differentiate between context information and

context pattern. The context pattern means any definition (or description) of re-

quired (service) context: e.g. sending of task, context pattern defines required

properties of a task executor as a query. The context information means the def-

inition of properties (current state) of this task executor as a record. So, when

the context pattern is a filter within a message, the context information requires

own components on within the middleware (see Section 3.6.4) for handling the

context information, and additional interactions for manipulating the context in-

formation. In this subsection, the term “context” means context information.

Context messages are processed in time and require no storage within the Mes-

sage Manager. If processing of tasks and service requests are transmitted asyn-

chronously, dealing with context data is more a synchronous interaction: it con-

sists of several steps, and each step should wait until previous step is completed

(step-by-step).

Figure 4.9: Dealing with context information (UML Sequence diagram)

As a first step, a provider sends a check-in message (cf. Figure 4.9). Within

the check-in message, the provider specifies supported services and complete

context information. This can be done through the REST interface (http://middle-

warehost[:port]/check-in) or via the persistent connection (WebSocket protocol)

(message type “check-in”, see Subsection 4.4.1). In any case, the message will

be deserialized and handled by the Message Manager. The latter divides the

message into two separated parts: the service description and context informa-

tion. Firstly (1, cf. Figure 4.10), the Message Manager creates a new device

entry within the Device Manager. Because the Device Manager is responsible

68

for device context data, a device identifier is required. Therefore, the Device

Manager generates a new identifier for the created devices. The device identi-

fier is provided as a result of the check-in operation. The provided identifier is

used by the provider to receive incoming requests (tasks) (Section 4.4.1), and

by the recovery mechanism in persistent communication mode (Section 4.4.1).

Figure 4.10: Relation between service description, context information, and
device

As next (2, cf. Figure 4.10), the Message Manager looks for service descrip-

tions in the Service Directory on the basis of provided service descriptions. If

a service (service description) already exists, the Massage Manager takes the

identifier of this service. In the other case, the Message Manager creates a

new service entry, and assigns a new unique identifier. Finally, a RDF graph is

constructed and stored within the Context Manager. All service identifiers are

used as links to corresponding service descriptions (stored within the Service

Directory), and the device identifier is used as the URI (rdf:about-attribute) for

the device node in the graph (the root element for the graph).

Thereafter, the provider updates own (stored) context. This can be done through

69

a REST context update interface (http://middlewarehost[:port]/context-update/-

{provider identifier}) for RESTful mode, or a message of type “context-update”

(and the provider identifier as id attribute) for persistent communication mode. In

both cases, the provider specifies, again, the complete context information within

the context update message. The middleware replaces the existing provider

context data with the newly one. The context update interface works only for

“create” operations. However, a partial context management is possible, e.g.

by providing CRUD pattern on the update interface (corresponding: context-

replace, context-update, context-delete message types by persistent communi-

cation mode):

• Create (context-replace) – provides the replacement of complete context

data, as currently implemented.

• Read – not required. The task executor (or the service provider) knows

own context information and context changes. Thus, the “read” operation

is not meaningful, and not required.

• Update (context-update) – allows addition of context data blocks. For ex-

ample, an original context does not exist a broadband information entry.

The provider generates this entry and sends it to the middleware. The

Context Manager will append newly provided entries to the provider con-

text information.

• Delete (context-delete) – deletes a concrete context data block (entry), pro-

vided by the provider (or executor) as a pattern.

Context handling possibilities are dependent on the middleware usage scenario:

if the middleware is used for scenarios, where all task executors are inside one

building, a basic context handling is sufficient. In scenarios, where task execu-

tors, or service providers, are continuously moving, an advanced context han-

dling is necessary. Therefore, the service provider can minimize data transfer by

sending only changed context data parts, and not replacing the whole context

information, as in basic context handling. For example, the provided clinic sce-

nario, basic context handling is sufficient (see Chapter 5).

The last step (cf. Figure 4.9) is when the provider removes its whole data from

the middleware (check-out operation, not to confuse with “context-delete”). Af-

70

ter this operation the provider will not be longer considered by the distribution

of tasks (or service requests). This will be done through a REST check-out in-

terface (http://middlewarehost[:port]/check-out/{provider identifier}) for RESTful

mode, or a message of type “check-out” (and the provider identifier as id at-

tribute) for persistent communication mode. The Message Manager will delete

all occurrences of the provider (the device) within the Device Manager and the

Context Manager. Therefore, further communication between the middleware

and the provider is not possible.

In cases where the check-out operation was not executed, the amount of not

properly unregistered service providers can affect the middleware negatively:

the Device Manager and the Context Manager will be “wasted” with not existing

providers, and the distribution will be slowed down. A manual (or automated)

clearing of “cached” context information is required. The clearing means that all

devices (and accordingly context information) will be removed, if they have no ac-

tive communication channels in the middleware. Also, the middleware can store

additional parameters, which shows the last access of the middleware by the

provider. Therefore, the cleaning mechanism will remove all outdated providers.

4.4.3 Handling events

Event handling provides event support within distributed systems. The used

event mechanism is based on the publish-subscribe pattern [14, 13]. It consists

of two operations: publish and subscribe (cf. Figure 4.11).

By publishing (Figure 4.11), the task executor (or the service provider) stores

some event data within the middleware: e.g. processing state, availability of

service providers. This data is stored within the Publications component queue

(see Section 3.6.5). The events are correlated to the middleware working items:

requests (tasks) and providers (executors). Therefore, an event can describe

only properties of these two items. The definition of an event consists of the

following parts: item type, item identifier, event data or event description, and

time point of publication. The time point of publication will be defined by the

middleware, the rest must be provided by the publisher of the event. Items are

defined as data items within the body part of the message. The item type can

71

Figure 4.11: Handling events (UML Sequence diagram)

be of type requestor or provider (data item of type “event/type” and the name

attribute “base”). The item identifier is an empty data item of type “base/identi-

fier” and the name attribute provides the identifier of a request, or of a service

provider. The event data or the event description are common data items with

user defined types, names and encoding.

A subscriber sends the subscription for events to the middleware. In the scope

part of the subscription message, the subscriber defines a filter for events-of-

interest (EOI). There exist two filters: basic and extended. The basic filter allows

only concrete definitions of event parts: event item type (request or provider),

event item identifier, and the start and the end of a time range to be considered.

These filter properties are read by the Event Manager, which selects all events

which match the defined filter criteria from the publications queue. All selected

events are delivered to the subscriber as a result. The extended filter allows, ad-

ditionally, definition of RDF patterns: e.g. all requests to the “Sample gathering”

service, or all service providers, which are owned by a doctor. In such cases,

the Event Manager will go through the requests’ queue and through the Context

Manager queue. Thereafter, the Event Manager selects all “Sample gathering”

service providers and corresponding events, and, finally, transmits these to the

subscriber.

This event handling mechanism is limited to the request-response method and

does not create a relation between a subscriber and a subscription. In order to

receive events, the subscriber requires a subscription loop, which continuously

“polls” (checks) for new events. In RESTful communication mode, this is realized

72

by continuous (long) polling. For multiple simultaneous subscriptions, the sub-

scriber requires one polling loop per subscription. In persistent communication

mode, a subscription exists as long as the connection is open. But, in this case,

all simultaneous subscriptions are handled over this connection: separate con-

nection for each subscription is not required. If the connection was interrupted –

all subscriptions get lost. There is no connection recovery mechanism available.

This event model is used, also, for logging. By using the filtering a controlling

system can evaluate the log. A manual clearing of the log should be imple-

mented within administration features of the middleware.

The following Table 4.2 provides an overview of required and optional message

parts for a concrete middleware operation:

Operation Schedule Priority Scope Multi Body Address Message type

Request creation o o r o r /requests (PUT) create

Attaching data - - - - r /requests/id (POST) update

Storing data - - - - r /data (PUT) data-create

Reading data - - - - d /data/id (GET) data

Reading request - - - - d /requests/id (GET) get

Request deleting - - - - - /requests/id (DELETE) delete

Request delivery - - - - r /providers/id (GET) (recovery)

Processing feedback - - - - o /feedback/id (POST) feedback

Processing feedback - - - - r /results/id (PUT) result

Result delivery - - - - r /results/id (GET) (request-recovery)

Check-in - - r - - /check-in (POST) check-in

Context update (basic) - - r - - /context-update/id (POST) context-update

Context creation (adv.) - - r - - /context-update (PUT) context-create

Context update (adv.) - - r - - /context-update/id (POST) context-update

Context delete (adv.) - - r - - /context-update/id (DELETE) context-delete

Check-out - - - - - /check-out/id (GET) check-out

Publish - - - - r /publish (PUT) publication

Check-out - - o o - /subscribe (POST) subscription

Table 4.2: Operation specifications overview

73

74

5 Middleware usage demonstration

In Chapters 3 and 4 theoretical consideration of the researched middleware were

provided. This chapter discusses concrete interactions within a (complex) global

process from registering of services, through task definition, service request,

distribution by the middleware, results’ response, and background service con-

text handling. The sample (real-world) scenario is a clinical process that is sup-

ported through mobile devices for mobile task execution. The middleware pro-

vides tasks coordination and distribution. In following, all required steps and

interactions to implement the scenario will be shown.

5.1 Scenario description

The treatment process begins when the patient arrives at the clinic reception

and complains about recurring headache (
↵⌦� 1) (cf. Figure 5.1). A receptionist

calls a general practitioner (
↵⌦� 2) (mobile service named “Analysis”). To make the

analysis, the general practitioner requires a free examination room (
↵⌦� 3), which

can be found via a room booking service (wired Web service with the name

“RoomBookingService”). So, the practitioner makes a service call of the “Room-

BookingService” and reserves a free examination room. The general practitioner

sends the reserved room number to the reception (
↵⌦� 4). The receptionist brings

the patient to the room and the analysis starts. The general practitioner creates

a case history and starts an anamnesis (
↵⌦� 5). Thereafter, the general practi-

tioner assumes the following diagnosis: head injury, high blood pressure, or a

side effect of tablets medication. As next, the general practitioner calls a nurse

to delegate necessary sample tests (
↵⌦� 6). Since this action is supported by the

middleware, the practitioner can create a task for a nurse. The task coordination

and distribution are done by the middleware. To make a sample analysis, the

75

nurse requires concrete definition of actions: blood substance analysis, blood

pressure measuring, basic X-Ray analysis. The general practitioner defines all

these parameters and, additionally, defines the patient’s case history identifier,

as well as the current location. Finally, he sends the task definition via his mobile

device to the middleware.

Figure 5.1: Demo scenario process model (in BPMN 2.0) (see B.4 for larger
view)

After receiving the task definition, the nurse takes necessary equipment (if pos-

sible/required) (
↵⌦� 7) and goes to the mentioned room. Then, the nurse takes a

blood sample and measures the patient’s blood pressure (
↵⌦� 8). The blood sam-

ple analysis and the X-Ray analysis cannot be done in the examination room.

Therefore, the nurse leads the patient to the X-Ray laboratory (
↵⌦� 9), and leaves

the patient to bring the gathered blood sample to the laboratory (
↵⌦ � 10). In the

meantime, an X-Ray image of the patient’s head will be made. After the X-Ray

image was done, the nurse pickups the patient from the X-Ray laboratory, and

returns to the examination room.

The X-Ray laboratory and the blood analysis laboratory services are so called

“blank services”. They require only material input (e.g. patient itself, blood sam-

ple) and no electronic parameters. Therefore, the creation of such service calls

can be automated by scanning special QR codes or NFC chips (which can, for

example, could be placed near the laboratory entrance). The provided request

identifier can be used to mark the input materials. So, after analyzing the blood

76

sample, the laboratory worker will input sample marker data (e.g. a number) and

the result of the analysis. The corresponding application will translate these data

to a service response.

After receiving results from the laboratory, the nurse updates the patient’s case

history with the newly received data and informs the general practitioner about it

by sending a response of nurse’s sample gathering service (
↵⌦ � 11).

After notification, the general practitioner can continue further treatment deci-

sions (
↵⌦ � 12). Accordingly, the general practitioner will access these results in

the updated case history, or directly from the response (results are stored within

the middleware in this case). The general practitioner sees normal analysis val-

ues and decides that the cause of the headache is a migraine, and prescribes

painkillers (
↵⌦ � 13).

5.2 Implementation

This section elaborated how the described demo scenario can be implemented

with the application of the researched middleware. Required interactions and

concrete operations, as well as used messages will be explained.

5.2.1 Prerequisites

We assume that the middleware is running on a host named mw.modernclinic.de.

All corresponding apps are already installed on employee’s mobile devices, and

each participant has a mobile device.

To cover as much as possible different communication scenarios, we assume

that the software in laboratories use wired connections due to their stationary

position. Additionally, we assume that the connection in the X-Ray laboratory

is regularly be interrupted by produced rays. This requires periodic recovery of

the connection. The connection in the reception is also wired, and the reception

software acts as a requestor (client) only.

77

5.2.2 Establishing of connections

At the beginning of the shift, the general practitioner starts the mobile application

on his device. By starting, the application connects to the middleware: first, the

application must checking-in, second, it must create a connection in order to

receive incoming messages (service requests or tasks’ definitions).

Therefore, the application on the device sends the following message to http://-

mw.modernclinic.de/check-in:

<message>

<scope>

<rdf:Device>

<device:has>

<location:department>General Medicine</location:

department>

</device:has>

<device:provides>

<rdf:Service>

<service:name>PatientAnalysis</service:name>

</rdf:Service>

</device:provides>

<device:has>

<rdf:Owner>

<owner:name>Who</owner:name>

<owner:role>Doctor</owner:role>

</rdf:Owner>

</device:has>

<device:has>

<device:broadband>WLAN</device:broadband>

</device:has>

</rdf:Device>

</scope>

</message>

Listing 5.1: Check-in message

78

As a result, the middleware answers with an identifier (here 67). The identifier

will uniquely identify the doctor’s device.

Second, the application creates a loop where it continuously sends requests

(HTTP GET method) to http://mw.modernclinic.de/providers/67. If the applica-

tion receives an empty answer, it makes the next request, until a service request

or a task description is received (long polling).

At the same time, the nurse arrives at work and switches on her mobile device,

and starts a corresponding application. So, the application also sends a check-in

request to the middleware. As a result of the check-in operation, the nurse appli-

cation, also, receives an (provider) identifier assigned (32). The nurse makes an

internship on the clinic. She finds out later that she needs to work in the general

medicine department (before no concrete department was defined in the device

context information). So, she should update her context information. For this

purpose, she selects the new department in the application. The nurse appli-

cation sends then the following message to http://mw.modernclinic.de/context-

update/32:

<message>

<scope>

<rdf:Device >

<device:has>

<location:department>General Medicine</location:

department>

</device:has>

<device:provides>

<rdf:Service>

<service:name>SampleGathering</service:name>

</rdf:Service>

<rdf:Service>

<service:name>Medication</service:name>

</rdf:Service>

</device:provides>

<device:has>

<rdf:Owner>

79

<owner:name>Amy Pond</owner:name>

<owner:role>Nurse</owner:role>

</rdf:Owner>

</device:has>

<device:has>

<device:broadband>WLAN</device:broadband>

</device:has>

</rdf:Device>

</scope>

</message>

Listing 5.2: Context update message

Also, laboratory workers send check-in messages by starting the laboratory soft-

ware. Because this software uses wired connection, the check-in messages look

like following (for blood analysis laboratory):

<message type="check-in">

<scope>

<rdf:Device >

<device:provides>

<rdf:Service>

<service:name>BloodSubstanceAnalysis</service:name>

</rdf:Service>

<rdf:Service>

<service:name>Medication</service:name>

</rdf:Service>

</device:provides>

<device:has>

<rdf:Owner>

<owner:name>Blood analysis</owner:name>

<owner:role>Laboratory</owner:role>

</rdf:Owner>

</device:has>

<device:has>

80

<device:broadband>LAN</device:broadband>

</device:has>

</rdf:Device>

</scope>

</message>

Listing 5.3: Check-in message for persistent connections

To establish a permanent connection in X-Ray laboratory, which can regularly

be interrupted, the software in the X-ray laboratory needs to recover interrupted

connections. The software connects to http://mw.modernclinic.de (WebSocket

Protocol) and sends the recovery message (see Listing 5.4) to assign newly

created (opened) connection to existing provider registration (51 is the provider

identifier). The middleware will map this connection to the existing device record.

All messages will be transmitted through this connection.

<message type="recovery" id="51"/>

Listing 5.4: Recovery message

Now, all connections are established and processing of service requests can be

coordinated by the middleware.

5.2.3 Processing service requests

When a patient comes to the clinic, the receptionist needs to call a doctor. There-

fore, the receptionist selects an appropriate department based on first impres-

sions and medical conditions. The reception software connects to http://mw.mo-

dernclinic.de (over WebSocket Protocol) and sends the service request mes-

sage to the middleware:

<message type="request" priority="10">

<scope multi="1">

<rdf:Service>

81

<service:name>PatientAnalysis</service:name>

</rdf:Service>

<rdf:Owner>

<owner:role>Doctor</owner:role>

</rdf:Owner>

<rdf:Location>

<location:department>General Medicine</location:

department>

</rdf:Location>

</scope>

<body>

<item name="condition description" type="condition"

encoding="text">

<![CDATA[Patient complains standing headache]]>

</item>

<item name="sender" type="sender" encoding="tex">

<![CDATA[Reception]]>

</item>

</body>

</message>

Listing 5.5: Service request message for the persistent connection

The semantic of this message is as follows: the request should be delivered as

soon as possible with priority 10; a provider that provides the “PatientAnalysis”

service is required, the service provider must be a “Doctor”, and belongs to the

“General Medicine” department. The response of this request is the request

identifier (95). The software uses it to recover the connection:

<message type="request-recovery" id="95"/>

Listing 5.6: Service request message by provider

The doctor receives the service request from the middleware as follows:

<message id="95">

<body>

82

<item name="condition description" type="condition"

encoding="text">

<![CDATA[Patient complains standing headache]]>

</item>

<item name="sender" type="sender" encoding="text">

<![CDATA[Reception]]>

</item>

</body>

</message>

Listing 5.7: Recovery message for the persistent connection

After the application on the doctor’s device has received the message (see

Listing 5.7), the task will be presented by a prompt dialog to the doctor: “Pa-

tient complains standing headache. Please come to the Reception.” The doctor

decides to accomplish the anamnesis of the patient in an examination room.

The clinic computing center provides a special Web service called “RoomBook-

ingService” in order to reserve a room. The service requires a room type as an

input parameter (string). The doctor knows about this service and selects the

required room type:

<message>

<scope>

<rdf:Service>

<service:name>PatientAnalysis</service:name>

</rdf:Service>

</scope>

<body>

<item name="roomtype" type="string" encoding="text">

<![CDATA[Examination room]]>

</item>

</body>

</message>

Listing 5.8: Web service request message

83

The middleware replies with a message containing the request identifier “10”.

To receive the result from room booking service, the application on the device

starts a loop to http://mw.modernclinic.de/results/10. Later, the doctor receives

an answer with the room number “ER-456”. Finally, the doctor app generates an

answer to the reception (reception software still waits for a response) by sending

a response message to http://mw.modernclinic.de/results/95:

<message id="95">

<body>

<item name="action" type="action/description" encoding="

text">

<![CDATA[Bring patient to the room ER-456.]]>

</item>

</body>

</message>

Listing 5.9: Response message

The rest of communication processes is handled in the same way.

5.2.4 Handling big data

During the description of the middleware in this thesis, we have used two types

of data items: required data and optional data. The broadband of the connection

between a mobile device and the middleware can be limited. Therefore, it is nec-

essary to minimize message overhead. This can be achieved through optional

attachments: the requestor defines mandatory and optional data items. With the

HTTP POST method the client can attach additional (optional) data items to the

task definition (see Section 4.4.1). For example, after an X-ray examination, a

nurse reports with a textual description and an X-Ray image. The textual de-

scription is defined as mandatory and the X-Ray image as optional. A doctor

will receive, firstly, only the text. In case where the textual description is not

sufficient, the doctor can request the attached X-Ray image. Here, the X-Ray

image can have a very large size, and transmitting of this image will block the

communication for a long time.

84

Additionally, any provider can store any data objects on the middleware. Storing

data items is possible through the HTTP PUT method to http://middlewarehost-

[:port]/data/. In principle, attaching of extra items to a response is the same

operation, except that by the attaching stored data will be correlated to the re-

sponse (as optional items). The limitation of the middleware’s data storage is

that it is impossible to store links (URIs): a provider stores a data item and re-

ceives a link to this item. Additional storage of this link within the middleware

as a separate item is not possible. The attachment of links to a response is al-

lowed.

In this example, the laboratory application sends the textual description in the

initial response, and the X-Ray image will be attached as optional. Because

there is no mechanism available to observe response changes, the client should

re-read the response to become up-to-date (or actual response state).

Figure 5.2: Pushing/pulling of optional data

85

5.2.5 Unregistering service providers and closing

connections

At the end of the shift, the doctor, the nurse and laboratories close their applica-

tions. This requires a valid unregistering from the middleware.

First of all, applications should save all identifiers of opened requests on both

sides (client side and provider side). These identifiers will be used for sending

or receiving of responses. Because the communication with the middleware is

asynchronous, interruption of the request processing is allowed, and will not re-

sult in losing requests.

When all identifiers are saved, applications should check-out from the middle-

ware. This can be done by sending of empty check-out messages to the middle-

ware: for example, the HTTP GET request on http://mw.modernclinic.de/check-

out/67 by the doctor, or following message over the WebProtocol connection for

the X-Ray laboratory:

<message type="check-out" id="51"/>

Listing 5.10: Checkout message for the persistent connection

86

6 Summary and outlook

The purpose of this thesis is to find a way to integrate mobile devices into busi-

ness information systems and enterprise computer environments. Realizing

this kind of new classes of software solutions and process-aware applications

presents a challenging task. Especially, the coordination and communication

within the environment, which consists of stationary and mobile entities, is not

trivial. Furthermore, the thesis is concentrated on the analysis of appropriate

technologies, concepts, design, and architecture decisions for implementing mo-

bile services.

The main goal of this thesis is the conceptualization and design of a middleware,

which allows the coordination and the integration of separated (mobile) service

providers in a distributed environment. In particular, it observes conceptual and

technical requirements for available technologies, communication protocols and

implementation techniques. Additionally, it derives an architecture to provide an

interoperable solution, which can deal with stateful, context-aware mobile ser-

vices and their impermanent connections.

The provided result is a middleware, which provides the integration of mobile

as well as stationary service providers, and supports the implementation of mo-

bile, Web, and desktop client applications. The focus lies on the communication

between client and service provider components, context-based request distri-

bution and, as a result, mobile task coordination.

The introduction of Apple’s iPhone brought programmable mobile devices (smart-

phones) to private users in 2007. Though, mobile devices like PDAs and smart-

phones were available earlier (e.g. Microsoft Windows Mobile since 2002).

However, these devices were mostly used by enterprises and in business area.

Nowadays, 34% of all portable communication devices (mobile phones) in Ger-

87

many are smartphones1.

Also, the popularity of tablet computers increases constantly. The usage of

tablets in the clinical domain is preferable: the display size of a smartphone

is too small to edit documents (e.g. case histories), and PCs does not provide

the required mobility. In the future, notebooks and netbooks could be replaced

by tablets for tasks like browsing and viewing of information, editing small texts,

and checking emails. The usage of computing devices could be grouped as fol-

lows: servers, desktop computers (including notebooks) for office and develop-

ment use, tablets for the rest. It is also imaginable that tablets become equipped

with even more processing power and could replace desktop computers and

notebooks by connecting external periphery devices (e.g. keyboard, mouse and

monitors). If we compare modern operating systems as shown in Figure 6.1, the

described trends can be observed as follows: Apple and Google follow the idea

to support “intelligent” alternatives to normal computers, while Microsoft “mobi-

lizes” them.

Figure 6.1: Operating system coverage of computing devices

The researched middleware within this thesis provides possibilities to use mobile

computing devices like smartphones, PDAs, and tablets to act in an environment

combined with stationary computers. Three ways of combining these two worlds

(mobile and stationary computers) are imaginable: first way is building of mo-

bile oriented servers (“fat” processing tier – “thin” mobile client). Second way is

developing of “intelligent” mobile applications, which can interact with stationary

1http://www.gfm-nachrichten.de/news/aktuelles/article/smartphones-in-deutschland-mit-34-
prozent-marktanteil.html, viewed 14.10.2012

88

computers directly (“thin” processing tier – “fat” mobile client). Third way, which

is discussed in this thesis, is to provide a bridge between mobile and stationary

devices, which acts as a translator and does not require further research and

developing of these.

Furthermore, integration of mobile computing devices into computer environ-

ments opens new ways for programming “next generation” software solutions

and, accordingly, for new business models and processes. Moreover, new mod-

els and business processes can be integrated in many areas: logistics, techni-

cal support, field services, medicine (e.g. as shows the discussed example) or,

even, internal enterprise communication or product testing.

The developed framework of this thesis is concentrated on mobile task coordi-

nation. Multiple research approaches exist in this area. In each of them the

term “task” is defined differently. In [25] and [20] a task can be defined as part

or a fragment of a business process, which is transmitted to a distributed ex-

ecutor. The executor requires in this case a (mobile) process engine to perform

the received task. A central process management system, which defines, config-

ures, fragments, deploys and synchronizes the process parts [20], is responsible

for the choreography and the orchestration. Such approaches are appropriate

in cases where strictly pre-defined processes (process parts) are required and

changing of workflow is not allowed: e.g. on patient’s devices. [23] defines an

activities as mobile agents: a task is, in this case, a block of code (or stand-alone

program). The mobile agent requires an execution environment on task proces-

sor side, which performs the execution during runtime. The orchestration is hard-

coded within the agent’s processing logic, and the choreography is performed on

central server. The task executor has no impact to the entire process (process

part) description. Futhermore, performing changes to parent processes is chal-

lenging and requires re-implementing of program logic. This approach can be

used in cases where durable process definitions are expected: common tasks

and data management. However, all presented approaches are based on static

processes and require a central control entity, which handles distribution and as-

signment of several tasks (activities within the process). The figured approach in

this thesis allows an equal behavior, where a process management system con-

trols process instances and uses the researched middleware for tasks’ delivery

89

only, as well as a stand-alone solution for task coordination. The second usage

scenario is suitable for role-based task assignment in self-organizing (dynamic)

structures. The orchestration is based on the experience and personal deci-

sion of the task executor, and the choreography is provided through administra-

tive, management or law regulations. This approach s suitable for to scenarios,

where a high level of human-based tasks exists and personal experience-based

decisions result in constantly process deviations (e.g. emergencies or incident

management).

Naturally, one research thesis cannot cover all aspects and provide an out-of-

the-box solution. Supposable further research and development should expose

components like automatic context-based formatters and converters; manage-

able distribution and allocation policies; security and rights management.

The architecture of the researched middleware consists of several components,

which provide support for basic scenarios only. Therefore, the architecture can

be called “component-based”. By extending or replacing of components and

subcomponents, any required behavior of the middleware can be achieved.

Thus, components, which are responsible for communication, could be extended

to more communication protocols and techniques (e.g. broadcasting possibili-

ties from a mobile device). Additionally, they can allow the usage of the middle-

ware as an edge-server-system (e.g. to support uniform task coordination and

distribution within several locations). The distribution subcomponent could be

extended with more intelligence to automate activities: e.g. content-based dis-

tribution, which can replace anamnesis and can select appropriate department

by analyzing provided plea data (as message content). Besides, the distribution

can be based on special rules (“distribution policies”), which predefine additional

properties of a receiver, or help to make better decisions for distribution: e.g.

load balancing of service providers or distribution by level of experience (dis-

tinguishing between common and special cases). The data handling within the

middleware can be more efficient by implementing a caching mechanism, which

recognizes same data items and combines them. The extension of the middle-

ware with optional message formatters and data converters increases the effec-

tiveness of data transmission (e.g. image processing dependent on receiver’s

screen resolution and connection bandwidth), and allows integration of variety

90

of service implementations (e.g. message transformation to a remote procedure

call, or transformation to a SOAP, XML-RPC message).

In any case, the thesis provides the fundament for integration of mobile devices

into information systems and business processes. The flexibility of the defined

message structure allows the integration of the middleware in many purposes,

and implementation of mobile, as well as stationary entities. The researched

middleware architecture ensures main aspects of this integration: communica-

tion between distributed entities and coordination of activity requests. Hence,

discussed communication protocols and interaction patterns are useful for fur-

ther projects and findings of “next generation” information systems.

91

92

A Message XML Schema Definition

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-

ns#">

<import namespace="http://www.w3.org/1999/02/22-rdf-syntax

-ns#"

schemaLocation="http://www.w3.org/1999/02/22-rdf-syntax-

ns#" />

<element name="message">

<complexType>

<sequence>

<element name="scope" minOccurs="0" maxOccurs="1">

<complexType>

<complexContent>

<extension base="rdf:RDF">

<attribute name="multi" type="positiveInteger" use="

optional" default="1" />

</extension>

</complexContent>

</complexType>

</element>

<element name="body" minOccurs="0" maxOccurs="1">

<complexType>

<sequence>

<element name="item" minOccurs="1" maxOccurs="

unbounded">

93

<complexType>

<attribute name="name" type="string" use="required"

/>

<attribute name="type" type="string" use="required"

/>

<attribute name="encoding" use="required">

<simpleType>

<restriction base="string">

<enumeration value="text" />

<enumeration value="xml" />

<enumeration value="base64" />

</restriction>

</simpleType>

</attribute>

</complexType>

</element>

</sequence>

</complexType>

</element>

</sequence>

<attribute name="schedule" type="string" use="optional">

<attribute name="priority" type="integer" use="optional"

default="0" />

<attribute name="type" use="optional">

<simpleType>

<restriction base="string">

<enumeration value="create" />

<enumeration value="update" />

<enumeration value="data-create" />

<enumeration value="data" />

<enumeration value="get" />

<enumeration value="delete" />

<enumeration value="recovery" />

94

<enumeration value="feedback" />

<enumeration value="result" />

<enumeration value="request-recovery" />

<enumeration value="check-in" />

<enumeration value="context-update" />

<enumeration value="context-create" />

<enumeration value="context-delete" />

<enumeration value="check-out" />

<enumeration value="publication" />

<enumeration value="subscription" />

</restriction>

</simpleType>

</attribute>

<attribute name="id" type="string" use="optional" />

</complexType>

</element>

</schema>

Listing A.1: Message XSD

95

96

B Process models

B.1 Stationary treatment process (in BPMN 2.0)

97

B.2 Stationary treatment process with appropriate

service candidates (without data objects)(in

BPMN 2.0)

98

B.3 Treatment process (collapsed) (in BPMN 2.0)

99

B.4 Demo scenario process model (in BPMN 2.0)

100

Bibliography

[1] ALONSO, G. ; CASATI, F. ; KUNO, H. ; MACHIRAJU, V.: Web Services:

Concepts, Architectures and Applications. Springer Publishing Company,

Incorporated, 2010

[2] BAHREE, A. ; MULDER, D. ; CICORIA, S. ; PEIRIS, C. ; PATHAK, N.: Pro

WCF: Practical Microsoft SOA implementation. Apress, 2007

[3] BECKETT, D. ; MCBRIDE, B.: RDF/XML syntax specification (revised). In:

W3C recommendation 10 (2004)

[4] BORENSTEIN, N.S. ; FREED, N.: Multipurpose Internet Mail Extensions

(MIME) Part One: Format of Internet Message Bodies. (1996)

[5] CHRISTENSEN, E. ; CURBERA, F. ; MEREDITH, G. ; WEERAWARANA, S. u. a.:

Web services description language (WSDL) 1.1. 2001

[6] CONSORTIUM, UDDI u. a.: UDDI executive white paper. In: OASIS, Novem-

ber (2001)

[7] ENDREI, M. ; ANG, J. ; ARSANJANI, A. ; CHUA, S. ; COMTE, P. ; KROGDAHL,

P. ; LUO, M. ; NEWLING, T.: Patterns: service-oriented architecture and web

services. IBM Corporation, International Technical Support Organization,

2004

[8] ERL, T.: Service-oriented architecture: concepts, technology, and design.

In: New York (2005)

[9] FETTE, I. ; MELNIKOV, A.: The websocket protocol. (2011)

[10] FIELDING, R.T.: Architectural styles and the design of network-based soft-

ware architectures, University of California, Diss., 2000

[11] GU, Tao ; PUNG, Hung K. ; ZHANG, Da Q.: A middleware for building

context-aware mobile services. In: Vehicular Technology Conference, 2004.

101

VTC 2004-Spring. 2004 IEEE 59th Bd. 5, 2004. – ISSN 1550–2252, S.

2656 – 2660 Vol.5

[12] HALTEREN, A. van ; PAWAR, P.: Mobile Service Platform: A Middleware for

Nomadic Mobile Service Provisioning. In: Wireless and Mobile Computing,

Networking and Communications, 2006. (WiMob’2006). IEEE International

Conference on, 2006, S. 292 –299

[13] HAMMERSCHALL, U.: Verteilte Systeme und Anwendungen: Architek-

turkonzepte, Standards und Middleware-Technologien. Pearson Studium,

2005

[14] HUANG, Y. ; GARCIA-MOLINA, H.: Publish/subscribe in a mobile environ-

ment. In: Wireless Networks 10 (2004), Nr. 6, S. 643–652

[15] KLYNE, G. ; CARROLL, J.J. ; MCBRIDE, B.: Resource description framework

(RDF): Concepts and abstract syntax. In: W3C recommendation 10 (2004)

[16] LANGER, David ; REICHERT, M. (Hrsg.) ; HALLERBACH, A. (Hrsg.) ; PRYSS,

R. (Hrsg.): MEDo: Mobile Technik und Prozessmanagement zur Op-

timierung des Aufgabenmanagements im Kontext der klinischen Visite.

http://dbis.eprints.uni-ulm.de/806/. Version: April 2012

[17] LASSILA, O. ; SWICK, R.R. u. a.: Resource description framework (RDF)

model and syntax specification. (1998)

[18] MCCARTHY, P. ; CRANE, D.: Comet and Reverse Ajax: The Next-

Generation Ajax 2.0. Apress, 2008

[19] NATIS, Y.V.: Service-oriented architecture scenario. 2003

[20] PRYSS, R. ; TIEDEKEN, J. ; KREHER, U. ; REICHERT, M.: Towards Flexible

Process Support on Mobile Devices. In: SOFFER, Pnina (Hrsg.) ; PROPER,

Erik (Hrsg.) ; AALST, Wil (Hrsg.) ; MYLOPOULOS, John (Hrsg.) ; ROSEMANN,

Michael (Hrsg.) ; SHAW, Michael J. (Hrsg.) ; SZYPERSKI, Clemens (Hrsg.):

Information Systems Evolution Bd. 72. Springer Berlin Heidelberg, 2011. –

ISBN 978–3–642–17722–4, S. 150–165

[21] SCHULTE, R. ; YEFIM, V.: NATIS: SSA Research Note SPA-401-068,

Service Oriented Architectures / Part. – Forschungsbericht

102

http://dbis.eprints.uni-ulm.de/806/

[22] TANENBAUM, A.S. ; STEEN, M. van: Verteilte Systeme: Grundlagen und

Paradigmen. Pearson Studium, 2008

[23] WAKHOLI, P. ; CHEN, W. ; KLUNGSØYR, J.: Workflow Support for Mobile

Data Collection. In: Enterprise, Business-Process and Information Systems

Modeling (2011), S. 299–313

[24] WILKINS, G. ; SALSANO, S. ; LORETO, S. ; SAINT-ANDRE, P.: Known Issues

and Best Practices for the Use of Long Polling and Streaming in Bidirec-

tional HTTP. (2011)

[25] ZAPLATA, S. ; HAMANN, K. ; KOTTKE, K. ; LAMERSDORF, W.: Flexible execu-

tion of distributed business processes based on process instance migration.

In: Journal of Systems Integration 1 (2010), Nr. 3, S. 3–16

103

104

Name: Georgy Karpenko Matrikelnummer: 536559

Erklärung

Ich erkläre, dass ich die Arbeit selbständig verfasst und keine anderen als die

angegebenen Quellen und Hilfsmittel verwendet habe.

Ulm, den .

Georgy Karpenko

	Contents
	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	Introduction
	Running example
	Thesis structure

	Basics
	Synchronous vs. Asynchronous interactions
	Synchronous interactions
	Asynchronous interactions

	Middleware
	RPC
	Object-oriented middleware
	Message-oriented middleware

	RPC vs. Messaging
	Messaging model
	RPC/RMI model

	SOA and ROA
	SOA
	ROA

	Requirements and Design
	Common requirements
	CR1: Communication
	CR2: Cross-parties communication
	CR3: Central bus
	CR4: Routing
	CR5: Service transparency
	CR6: Repository

	Use case requirements
	UCR1: Queuing
	UCR2: Scheduler
	UCR3: Event bus
	UCR4: Context handling
	UCR5: Logging and statistics

	Technical requirements
	TR1: Standard protocols
	TR2: Cross-platform clients
	TR3: Dealing with communication problems
	TR4: Context recognition and handling
	TR5: Location recognition

	Subsumtion
	Middleware definition
	Middleware architecture
	External components
	Core components
	Task processing components
	Context management
	Event handling

	Specification
	Message template
	Message structure
	Message
	Scope
	Body

	Communication protocol
	HTTP
	Long Polling

	TCP
	WebSocket Protocol

	Implementation aspects
	Task processing and service requests
	Dealing with context information
	Handling events

	Middleware usage demonstration
	Scenario description
	Implementation
	Prerequisites
	Establishing of connections
	Processing service requests
	Handling big data
	Unregistering service providers and closing connections

	Summary and outlook
	Message XML Schema Definition
	Process models
	Stationary treatment process (in BPMN 2.0)
	Stationary treatment process with appropriate service candidates (without data objects)(in BPMN 2.0)
	Treatment process (collapsed) (in BPMN 2.0)
	Demo scenario process model (in BPMN 2.0)

	Bibliography

