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Abstract—In the automotive domain, customer demands
and market constraints are progressively realized by elec-
tric/electronic components and corresponding software. Variant
traceability in SPL is crucial in the context of different tasks,
like change impact analysis, especially in complex global software
projects. In addition, traceability concepts must be extended by
partly automated variant configuration mechanisms to handle
restrictions and dependencies between variants. Such variant
configuration mechanism helps to reduce complexity when con-
figuring a valid variant and to establish an explicit documenta-
tion of dependencies between components. However, integrated
variant management has not been sufficiently addressed so far.
Especially, the increasing number of software variants requires an
examination of traceable and configurable software variants over
the software lifecycle. This paper emphasizes variant traceability
achievements in a large global software engineering project,
elaborates existing challenges, and evaluates an industrial usage
of an integrated variant management based on experiences.
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traceability.

I. INTRODUCTION

In the automotive domain, customer expectations (e.g.,
product individualization, product performance) have led to
a continuously increasing number of product variants. Global
commercialization of products and homologation constraints
(e.g., due to market specific laws) constitute additional factors
introducing product variability. In current practice, this product
variability is usually enabled by electric/electronic components
and corresponding software. Thereby, software product lines
(SPL) are characterized by a planned and systematic reuse
of software artifacts in different circumstances (e.g., different
vehicles, and markets). Benefits of a SPL include improved
quality results, reduced costs, and shorter time-to-market in
respect to similar software products [1], [2].

The approach taken in a SPL differs from the traditional
development of a standalone software product [1]. To handle
common as well as variant specific software parts across a SPL
constitutes a challenge in global software engineering projects.
While common parts are included in every product (e.g., every
vehicle has an engine), variability describes different features
of products (e.g., standard, sportive, classic).

To understand variability in a SPL, we analyzed a de-
velopment process for an engine control unit and its em-
bedded software system by Daimler Trucks. This process
involves development phases like e.g., requirements engineer-
ing, specification, design, implementation, integration, testing,

and calibration. Further, the development process comprises a
number of abstraction layers (e.g., system and sub-system), and
different artifact types (e.g., requirements, function models,
test specifications, and regression tests or calibration parame-
ters). In particular, this process is crucial for all core markets
(Europe, NAFTA, Japan) to be able to react on respective
market needs. This paper reports on experiences we gathered
when extending the existing development process by Daimler
Trucks with an integrated feature model. In turn, this inte-
grated feature model considers the above mentioned phases,
abstraction layers, and development artifacts. It further enables
traceability and configuration of software variants and links,
for example, all artifacts related to an emerging requirement
through existing development phases for one specific software
variant. Furthermore, an integrated feature model must handle
the rising complexity introduced by software variants (e.g.,
conflicts resulting from the combination of excluding artifact).

The development process we analyzed allows for a detailed
analysis as well as traceability of emerging requirements
(e.g., planning, realization, costs). However, restrictions and
dependencies between software artifacts as well as the creation
of software variants constitute tacit knowledge. Through an ex-
tension of our existing development process, in this context we
expect a quality improvement in the software build process by
a semi-automated variation point configuration in the artifacts.
Further, the interaction of the existing development process and
the integrated feature model becomes essential. Major chal-
lenges include the realization of an integrated feature model,
the handling of its impact on the present development process,
and the evolution of variability over time in combination with
the existing development process. Emerging requirements lead
to evolutionary changes and result in new artifact versions
and software releases. Especially, the relationship of software
releases and software variability will be evaluated.

Based on the experiences we gathered in global soft-
ware engineering projects (cf. Section II) this paper discusses
achievements and industrial challenges with respect to an
integrated variant management of a global powertrain SPL at
Daimler Trucks (cf. Sections III and IV). An evaluation of
the extended development process is described in Section V.
Related work is discussed in Section VI. The paper concludes
with a summary in Section VII.

II. GLOBAL SOFTWARE ENGINEERING PROJECT

This section describes background information about the
SPL we analyzed. Thereby, developing the powertrain of a



truck is becoming more and more an international project.
Especially in the automotive industry, the requirements re-
alized by different markets are not identical, hence market-
specific solutions become necessary. To match these local
requirements with different markets, Daimler Trucks is present
with different brands, including Mercedes-Benz, Freightliner,
Western Star, and Mitsubishi FUSO. To develop these market-
specific solutions, local development sites are crucial. Daimler
Trucks established such development sites in Germany, the
US, Japan, and Brazil. Nevertheless, Daimler Trucks establish
a globally developed SPL to reuse common parts for all
markets and brands. Overall, several teams from different
sites collaborate within the same project to develop a SPL
and realize different variants of an engine control unit. This
SPL provides the basis for a number of software variants
used in different markets for different trucks with different
start of production schedules. Thereby, a harmonization and
integration of diverse stakeholders must be realized regarding
a coordinated cooperation among intercultural development
teams. Therefore, Daimler Trucks established a common and
globally approved development process for the engine control
unit SPL. All requirements and emerging changes are realized
by this common development process. In particular, traceable
development and release planning are essential in such global
software engineering projects. Through the rising complexity,
relations and restrictions between software parts must be
documented in an explicit manner.

III. ACHIEVEMENTS

Establishing an international development project consti-
tutes a challenging task. As a prerequisite, a common de-
velopment process must be introduced. In the automotive
industry, usually, an iterative approach using multiple V-cycles
is established. Based on such a common development process,
all teams are able to plan and track the approval, realization,
testing, and release of new requirements as well as the fixing
of bugs. In particular, we have not only established this
development process in respect to common software parts, but
also for variant-specific parts. Thus, it is possible to manage
the development of the common software parts in parallel
with any market-specific variants. To ensure maintainability,
bug fixing, and requirement traceability of such long-running
global software projects, all requirements must pass a certified
engineering process and be documented ( [3] for details).

Another challenge is to introduce a common configuration
and revision control (like an application lifecycle management)
in combination with the existing tool chain (e.g., MKS In-
tegrity, Doors, Matlab/Simulink, TargetLink, INCA). This is
used to manage the SPL as well as all related files. In this
context, we can reuse commonly known variability techniques
(e.g., model construction time, precompile time, compile time,
post build [4]) to derive software variants. Different variability
techniques are needed to meet variant-specific requirements
(e.g., memory consumption, customization, development ef-
fort) and implies different binding times. A further character-
istic of the analyzed powertrain SPL is post build calibration.
By using different calibration parameters, it becomes possible
to adapt the software to different vehicles post build. The major
variability part in our project is bound in the calibration.

Overall, the worldwide distributed teams are able to de-

velop a common SPL. Different software variants can be
derived and used for different markets. Nevertheless, com-
plexity will be growing tremendously, when the number of
variants increases. To tackle this challenge, we decide to extend
our development process through an integrated feature model
within a prototype. Also, we assume that manual variability
configuration effort will further increase. We consider to
substitute a manual variability configuration through a semi
automated build process in combination with feature models.

IV. INDUSTRIAL CHALLENGES

Integrated traceability is well-known for improving the
maintenance of a software product, and many techniques exists
in the context of traditional product development [5], [6] and
SPL engineering [7]–[9]. The industrial challenges described
in the following result from expert and engineer interviews
at Daimler Trucks and are based on the experiences they
gathered with product variants. The challenges emerged during
a extension of the existing development process through an
integrated feature model.

One challenge in our global software engineering project is
the partly implicit variant configuration mechanism to handle
restrictions and dependencies between variants. The documen-
tation of restrictions and dependencies within different artifacts
will be insufficient if the number of software product variants
increases in future. As an illustrating example consider the
following scenario. “If a new requirement emerges, a new
function must be implemented for a special variant. Still, there
exists several tracing information, e.g., requirement, relevant
variant, design artifacts, code artifacts, test artifacts. Informa-
tion concerning restrictions and dependencies like, e.g., func-
tion A requires hardware platform B, test case D only usable in
a specific market, are still documented, but not in an integrated
and explicit form.” Especially increasing software complexity
due to potentially rising number of software variants as well as
associated restrictions and dependencies of software artifacts
lead to a difficult configuration task of one software variant. We
categorize the industrial challenges into two major challenges:

A. Challenge 1: Integrated Variant Configuration Based on
Integrated Feature Model

Integrated Feature Modeling
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A common method to handle restrictions and relations
between product characteristics is feature modeling [1]. Thus,
feature modeling is a useful method to document tacit knowl-
edge in an explicit manner. It helps to reduce the complexity to
configure a valid variant and to establish an explicit documen-
tation of dependencies between components. As mentioned in
the introduction, an integrated variant management through an
integrated feature model must consider several development
phases, abstraction layers, and artifacts. Fig.1 illustrates a
schematic representation of the existing development process
(upper part) and the extension through an integrated feature
model (lower part). Fig.1 is an abstract illustration, taking
account to different development processes and variability
techniques.

1) C1-I1 (Documentation of different binding times).
The time at which a configuration choice is made and
a specific characteristic is selected, is called binding
time. Fig.1 I illustrates common binding times in an
embedded SPL. An integrated variant configuration
has to treat different binding times as well as related
artifact types. Different artifact types lead to different
variance mechanisms (e.g., requirements annotation
in contrast to preprocessor statements). As a result,
integrated variant management has to be aware of
different variance mechanisms and manage tool in-
terfaces [4], [10].

2) C1-I2 (Integrated configuration of the build pro-
cess). Documentation of all binding times is essential,
but has to be supplemented by variation point config-
uration. Thereby, a special software characteristic is
selected, and variability can be controlled indepen-
dently of the used mechanisms. Accordingly, inte-
grated variant management needs to support different
variance mechanisms. Thus, integrated configuration
of an existing build process with all relevant tools is
a further issue.

3) C1-I3 (External/Internal variability). Literature as-
sumed commonly that variability is introduced only
in the requirements artifacts. Therefore, feature mod-
els are derived from requirements and linked with
relevant artifacts in the development process. How-
ever, additional variability may arise, typically from
technical reasons, and has to be documented in the
feature model. Pohl et al. and Rosenmüller describe
this fact as “external and internal variability” [4],
[11]. External variability comprises the context or
configuration of a component and is normally a part
of requirement definition. In contrast, internal vari-
ability typically arises from technical reasons (e.g.,
different hardware platforms), and is documented im-
plicitly in corresponding artifacts. The documentation
of internal variability is a further issue.

4) C1-I4 (Differencing views). An integrated feature
model in a large global embedded engineering project
can easily become too complex [12]. Furthermore,
not all features and associated artifacts are relevant
for an individual engineer. As an example Fig.1 II
illustrates two different views of an integrated feature
model. As an additional issue, a view concept has to
be realized.

5) C1-I5 (Artifact dependencies): In a global software

engineering project, dependencies between software
artifacts have to be handled. In industrial projects, de-
pendencies between artifacts are usually tacit knowl-
edge or documented in an implicit form (e.g., code
comments, environment variables, scripts). Feature
models provide a technique to describe these depen-
dencies in an explicit and standardized manner. Nev-
ertheless, dependencies have to be known. Experts
have to be incentivized to document tacit knowledge
in feature models.

B. Challenge 2: Unify Change Management and Variant Con-
figuration

Further development implies permanent changes in various
development artifacts. In our projects, a predefined devel-
opment process is used to structure emerging requirements.
Release planning and understandable artifact evolution over
time are important tasks. In case of a bug, for example,
dependencies between releases can be reconstructed and fixed
with improved quality. Fig.2 illustrates three development
dimensions of a long-running SPL. Time is the first dimension
(X-axis in Fig.2), and considers the evolution of a SPL (e.g.,
revision control with versions and releases). Artifact is a further
dimension (Y-axis in Fig.2), and includes all artifacts in the
existing development project (e.g., process and repository).
Especially in a SPL variability (Z-axis in Fig.2) is an addi-
tional dimension, and considers differences between software
products (e.g., feature modeling).

Artifact, Time & Variability Space

Artifact

Variability
Time

Fig. 2. Artifact, Time & Variability Space.

Techniques to handle each dimension are available. How-
ever, techniques are available to conjunct two dimensions.
Change management, for example, combines the artifact and
time dimensions. Furthermore, feature modeling in combi-
nation with associated artifacts conjuncts the artifact and
variability dimensions. In the following, we describe issues
in case of a conjunction of all three dimensions.

1) C2-I1 (Variability changes). Product characteristics
may change through the evolution over time. Corre-
sponding features are, for example, added, removed,
renamed, split, or merged. This evolution has to be
considered in feature models. Evolution of features



has to be traceable, in particular to enable a high
qualitative bug fixing.

2) C2-I2 (Artifact changes). Through the evolution
over time, artifacts and their related variation points
are added, removed, renamed, split, or merged, for
example. This evolution has to be considered in arti-
fact models and their corresponding variation points.
The evolution of artifacts and corresponding variation
points in the variance dimension has to be regarded
efficiently and traceable.

3) C2-I3 (Restrictions & Relations). Restrictions and
relations may change over time, within artifacts and
features as well as among artifacts and features. As an
example, a feature can be optional in the first release
and become mandatory in a further release, or an
artifact may related with one feature only and get
related with several features over time. A technique
to document this evolution is needed.

V. EVALUATION OF AN INTEGRATED VARIANT
MANAGEMENT IN AN INDUSTRIAL PROJECT

To analyze the industrial usage of an integrated feature
model, we extended the existing SPL. We focused on the
conjunction of the existing development process and an in-
tegrated feature model. For this purpose, we defined a stan-
dardized and extended integrated feature model. Moreover, we
extracted existing variation points from different artifact types
via scripts. In addition, we inserted relations and restrictions
between features, artifacts, and variation points.

With regard to the first challenge (cf. Section IV-A), we
were able to achieve a satisfactory result. To address different
binding times (C1-I1), we realized several artifact-specific
connectors between the feature model and artifact types.
Because of different artifact types, variability techniques, and
different tools, this was a time-consuming challenge. Further,
variability mechanisms had to be identified as well. We solved
this challenge with an explicit characterization of variability
mechanisms in the artifacts and associated connectors. In a
real SPL, this expensive approach is not reasonable. The
connector concept also fulfills C1-I2, and enables configuration
of available variation points. To resolve issues C1-I3 and
C1-I5, implicit expert knowledge was needed. To accelerate
this time-consuming task in future, we decided to extend
the existing development process by additional process steps.
Each variability has to be documented in the feature model,
and each variation point has to be linked with the feature
model. This implies to document not only actual binding
times, but also realized variability with a binding time in
further development (e.g., if a variation point is introduced,
the variability has to be documented even though the final
characteristic is unknown). Further, we realized user-specific
views (C1-I4) by development phase and abstraction specific
feature models within a hierarchical feature model. User-
specific views in feature models are not supported in the used
feature modeling tool yet.

With regard to the second challenge (cf. Section IV-B),
we achieved dissatisfying results. This challenge illustrates
the complexity of variance evolution over time. We derived
two alternative approaches to solve the challenge to combine
change management and variant configuration management.

Initially, we handled the integrated feature model as a normal
artifact in the existing change management tool, and as a
normal subject in revision control. Evolutionary changes in
the integrated feature model were reconstructable only through
version comparison of the integrated feature model. Trac-
ing information about the renaming, splitting, or merging of
features (issue C2-I1) was lost, for example. Additionally, a
huge effort was needed to show the variant evolution of a
specific artifact. If, for example, an individual artifact changes
variability characteristics (issue C2-I2) over time, a complex
comparison technique was needed to visualize variant evolu-
tion. Evolution in restrictions and relations (issue C2-I3) can
be handled in different integrated feature model versions but
were not traceable. Changes in restrictions and relations could
only be reconstructed though version comparison of integrated
feature models.
In the second approach, we realized only one version of an
integrated feature model, and tried to document the evolution
over time within this integrated feature model. To document
variability changes over time (issue C2-I1), we added addi-
tional release features to the integrated feature model, and
added relations and restrictions to the according features. We
were able to document new or deleted features within evolution
over time. Split, renamed, or merged features could not be
traced. To document artifact changes over time (issue C2-I2),
further meta information was added to the artifact models.
Each artifact implied meta data with relevant version infor-
mation (e.g., included versions). In addition, this information
was related to the newly defined release features. We were able
to document relations between artifact versions, releases and
features. As a drawback of our solution, the feature and artifact
models became huge and complex. We have implemented
algorithms to find each artifact in the revision control system.
Each version in the revision control system had to be analysed
concerning available artifacts. We stored this information in so
called 150% artifact models. The name indicates an redundant
information storage. Additionally, all version information had
to be synchronized with existing version control tools. Manual
changes were error-prone and needed to be substituted by
specialized scripts. We were not able to document restrictions
and relations evolution (issue C2-I3) with the existing feature
modeling tool. Further research is required, to resolve this
issue.

All in all, we recognized the complexity arising from
variant configuration through an integrated feature model and
evolution over time.

VI. RELATED WORK

In classical product development, the traceability challenge
has already been discussed in several papers. Asuncion et
al. used a central data storage tool, like a database, as an
information provider [6]. Arkley and Riddle established Trace-
able Development Contracts (TDC) to link different artifacts
between the problem and the solution space. They treated sim-
ilar problems in industrial projects, and illustrated the urgent
need for traceability in the product life cycle. These approach
do not consider product variants, but focus predominantly on
requirement traceability. However, in this paper, we intend to
enable traceability of each artifact [5].

A lot of research has been done in the area of SPL. Reiser



introduced the structure of a product subline (subline). He
recognized the need to put different sublines into relation.
To hierarchically organize sublines, he introduced multi-level
feature models. He formalized relations between feature mod-
els, and used them to manage complex products in a huge
automotive company. We used the approach of Reiser as a
basis for our integrated feature model and created an individual
feature model for each development phase, and put them into
a relation [13].

Anquetil et al. describe problems, analyse existing require-
ments traceability tools, and recognize the lack of SPL support.
Also academic approaches are listed but none provides a clear
and comprehensive view of trace links in a SPL. The authors
define four traceability dimensions in SPL, and describe ATF
(AMPLE traceability framework), a model-driven traceability
framework, and its realization. In particular, the four traceabil-
ity dimensions “refinement”, “similarity”, “variability”, and
“versioning” are inspiring for an integrated feature model. In
our evaluation, we addressed “refinement”, “similarity”, and
“variability” with our integrated feature model. Anquetil et al.
describe also increasing complexity aspects considering ver-
sioning requirements. They insert additional tracing links and
develop several algorithms to handle evolution over time. To
handle the versioning dimension, we also realized algorithms
to reduce complexity. [7].

Hallerbach et al. describe Provop, an approach to handle
variability in business processes. Process contexts control the
configuration of a particular process variant. Variability in
business processes differs from product variability, which con-
tributed the scope of this paper. Dependencies between product
variability and process variability have to be investigated in
further research [14].

VII. CONCLUSION

A globally developed SPL realizes benefits like improved
quality, reduced costs, and market-specific adaptions. The ex-
isting development process allows for structured and traceable
evolution over time for common software parts as well as
variant specific parts. Nevertheless, variant specific information
like realization, dependencies, or restrictions between software
artifacts are partly tacit knowledge. Feature modeling is a
technique to document this knowledge in an explicit manner.
Especially in a global SPL, an integrated feature modeling
technique is a further advantage. We implemented a prototypi-
cal realization of an integrated feature model, and observed its
impact on the existing development process. Feature definition,
variation point documentation, and linking, as well as relation
and dependency documentation have to be common tasks in
the existing development process. Currently, an insufficient
tool integration is a major challenge to an integrated fea-
ture model. Different artifact types and involved variability
techniques require specialized connectors between the feature
model and artifacts. In addition, the configuration of different
variability techniques are complex. For integrated industrial
usage, an artifact-independent standardized variability interface
for existing tools is needed. The detection of variable objects in
artifacts is a major challenge. As a result, a quality-improved
build process through feature selection with an explicit doc-
umentation of dependencies and restrictions can be achieved.
Invalid configuration of variants can be successfully avoided.

In particular, evolution over time in combination with com-
mon feature modeling techniques require further investigation.
Tracing of software variability evolution results in complex
feature models or loss of information. This illustrates the
complexity among variability and evolution over time. Further
research has to be done to conjunct product evolution over
time and integrated feature models (variability).
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