
Controllability of Time-Aware Processes
at Run Time

Andreas Lanz1, Roberto Posenato2, Carlo Combi2, Manfred Reichert1

1 Institute of Databases and Information Systems, University of Ulm (Germany)
2 Department of Computer Science, University of Verona (Italy)

Abstract. Companies increasingly adopt process-aware information sys-
tems (PAISs) to analyze, coordinate, and monitor their business processes.
Although the proper handling of temporal constraints (e.g., deadlines,
minimum time lags between activities) is crucial for many applications,
contemporary PAISs lack a sophisticated support of the temporal perspec-
tive of business processes. In previous work, we introduced Conditional
Simple Temporal Networks with Uncertainty (CSTNU) for checking con-
trollability of time constraint networks with decision points. In particular,
controllability refers to the ability of executing a time constraint network
independent of the actual duration of its activities, while satisfying all
temporal constraints. In this paper, we demonstrate how CSTNUs can
be applied to time-aware business processes in order verify their control-
lability at design as well as at run time. In particular, we present an
algorithm for ensuring the controllability of time-aware process instances
during run time. Overall, proper run-time support of time-aware business
processes will broaden the use of PAIS significantly.

Keywords: Process-aware Information System, Temporal Perspective,
Temporal Constraints, Process Execution, Controllability

1 Introduction

To stay competitive in their market, companies strive for improved life cycle
support of their business processes. In this context, sophisticated IT support
for analyzing, modeling, executing, and monitoring business processes becomes
crucial [17]. Process-aware information systems (PAISs) offer promising perspec-
tives regarding such a process automation. In particular, a PAIS allows defining
a business process in terms of an explicit process schema, based on which process
instances may be created and executed in a controlled and efficient manner [17].

As it has been shown in [12], contemporary PAISs lack a more sophisticated
support of the temporal perspective of business processes. However, properly
integrating temporal constraints with the design- and run-time components of
a PAIS is indispensable to be able to support a greater variety of business
processes [3]. Furthermore, in many application domains (e.g., flight planning,
patient treatment, and automotive engineering), the proper handling of temporal
constraints is crucial for the proper execution and completion of a process [9,4].



instruct
procedure

make
appointment

inform
patient

prepare
patient

perform
treatment

prepare
treatment

Duration
maximum 1h

Fixed Date Element
appointment

Time Lag betw. Activities
maximum 2 h

Time Lag betw. Activities
minimum 1 h

date

Fig. 1: Illustrating process example with temporal constraints

A fundamental concept related to temporal constraints of process schemas
is controllability [6]. Controllability is the ability of executing a process schema
for all allowed durations of activities and satisfying all temporal constraints. In
particular, this ensures that it is possible to execute a process schema without
ever having to restrict the duration of an activity to satisfy one of its temporal
constraints. Note that this is of paramount importance since activity durations
are usually contingent. Indeed, it is possible to set up a duration range for
any activity, but the PAIS is aware of the effective duration only after activity
completion. Checking controllability is especially important at the presence of
alternative execution paths (e.g., exclusive choice and loops) as each execution
path may lead to different temporal properties of the remaining process.

Checking controllability of a process schema solely at design time, however,
is not sufficient. In particular, during the execution of corresponding process
instances, temporal constraints need to be continuously updated according to
the actual durations of already completed activities as well as the decisions made
during run time. Further, note that temporal constraints might not be always
known at design time. For example, an appointment with a third party (i.e., the
date of a respective activity) is usually made during run time (e.g., in the context
of a preceding activity) and is specific for each process instance. As example
take the patient treatment process depicted in Fig. 1.3 When considering the
temporal perspective of this simplified process, a number of temporal constraints
can be observed. In particular, the date for executing activity perform treatment
is set by preceding activity make appointment and needs to be monitored during
run time. In turn, this affects the scheduling of preceding activities due to the
other temporal constraints defined, e.g., the patient needs to be prepared at most
2 hours before the actual treatment takes place. Hence, activity prepare patient
needs to be scheduled in accordance with the appointment of the treatment.

Obviously, the temporal constraints of this process schema are not very strict,
i.e., the temporal perspective of the schema is not over-constrained. Nevertheless,
when not meeting these constraints, severe consequences might result. For ex-
ample, if the patient is not informed about the treatment at least 1 hour before
performing the treatment, the latter must not take place as scheduled for legal
reasons and the process has to be aborted. We denote processes obeying a set of
defined temporal constraints as time-aware, i.e., the execution of a time-aware

3 Note that we use an extension of BPMN to visualize temporal constraints in processes
(cf. Sect. 3 for details).



Category I: Durations and Time Lags
TP1 Time Lags between two Activities
TP2 Durations
TP3 Time Lags between Events

Category II: Restricting Execution
Times
TP4 Fixed Date Elements
TP5 Schedule Restricted Elements
TP6 Time-based Restrictions
TP7 Validity Period

Category III: Variability
TP8 Time-dependent Variability

Category IV: Recurrent Process
Elements
TP9 Cyclic Elements
TP10 Periodicity

Table 1: Process Time Patterns [12]

process is driven by a set of temporal constraints. In particular, for a time-
aware process it is necessary to continuously monitor and update its temporal
constraints during run time and hence to re-check controllability of the respec-
tive process instance. Accordingly, the contribution of this paper is threefold.
First, we discuss fundamental requirements for modeling time-aware processes.
In particular, we provide a basic set of modeling elements required for specifying
time-aware processes, as well as for executing corresponding instances during run
time. Second, we present a mapping of time-aware process schemas to Conditional
Simple Temporal Networks with Uncertainty (CSTNU) [5], which allows checking
their controllability at build time. Third, we present a sophisticated algorithm
that enables flexible controllability checking of time-aware processes during run
time as well.

Sect. 2 considers existing proposals relevant in the context of time-aware
processes. Sect. 3 provides background information on modeling time-aware
processes. In Sect. 4, we show how to check controllability of time-aware processes
at both design and run time. Sect. 5 provides a short discussion and evaluation of
the proposed approach. Finally, Sect. 6 concludes with a summary and outlook.

2 Related Work

In literature, there exists considerable work on temporal constraints for business
processes [10,2,4,13]. However, these approaches focus on design time issues,
i.e., issues related to the modeling and verification of time-aware processes. By
contrast, run-time support for time-aware processes has been neglected by most
approaches so far. The mayor novelty of our work is to explicitly address run-time
issues of time-aware processes and to elicit requirements emerging in this context.

In [12], 10 time patterns (TP) are presented, which represent temporal
constraints relevant for time-aware processes (cf. Table 1). Further, [11] provides
a formal semantics of these time patterns. In particular, time patterns facilitate
the comparison of existing approaches based on a universal set of notions with well-
defined semantics. Moreover, [11,12] elaborate the need for explicitly considering
run-time support for time patterns and time-aware processes, respectively.

Marjanovic et al. [13] define a conceptual model for temporal constraints on
a process schema. When taking the time patterns as benchmark, [13] considers
time lags between activities (TP1), activity and process durations (TP2), and
fixed date elements (TP4). Further, a set of rules for verifying time-aware process
schemas is presented. However, no run-time support is considered.



Eder et al. [10] use Timed Workflow Graphs (TWG) to represent temporal
properties of activities and their control flow relations. [10] considers time lags
between activities (TP1), activity durations (TP2), fixed date elements (TP4),
and schedule restricted elements (TP5). Further, activity durations are assumed
to be deterministic, i.e., be the same for all process instances. In [9], same authors
suggest a basic run-time support for time-aware processes assuming that the
value of a fixed date element is known when creating the process instance, i.e.,
setting the particular date during run time is not considered. Based on this,
“internal deadlines” are calculated for each activity making use of the available
temporal information.

Bettini et al. [2] suggest an approach quite different from the above ones.
As basic formalism Simple Temporal Network (STN) [8] are used. In an STN,
nodes represent time points, while each directed edge a v−→ b between time
points a and b represents a temporal constraint b− a ≤ v, where v is a real value.
Note that if v ≥ 0 holds, the constraint represents the maximum allowed delay
between b and a; if v < 0 holds, it represents the minimum time span elapsed
after a before the occurrence of b. Regarding the approach suggested by [2], each
activity is represented by two nodes in an STN; i.e., its starting and ending
time point. In turn, the edges of the STN represent temporal constraints and
precedence relations between the corresponding nodes. [2] considers time lags
between activities (TP1), activity durations (TP2), and fixed date elements (TP4).
However, run-time support of time-aware processes is not considered.

Combi et al. [4] propose a temporal conceptual model for specifying time-
aware process schemas. In particular, time lags between activities (TP1), activity
durations (TP2), fixed date elements (TP4), schedule restricted elements (TP5),
and periodicity (TP10) are considered. Additionally, [4] discusses how to check
consistency of time-aware processes at design time and argues that different
strategies for ensuring consistency of a process instance during run time may be
applied, depending on the current kind of consistency of a process schema.

The concept of controllability has been mainly investigated in the AI area
in connection with temporal constraint networks: [15] proposes an extension of
the STN [8], the Simple Temporal Network With Uncertainty (STNU), where
the constraints are divided into two classes, the contingent links (not under the
control of the system) and requirement links. In [6], Combi et al. transferred the
concept of controllability to time-aware process schemas. In the latter context,
informally, controllability is the capability of executing a process schema for
all possible durations of all activities and satisfying all temporal constraints.
Recently, [5] extended STNU to Conditional Simple Temporal Network with
Uncertainty (CSTNU) that additionally consider alternative execution paths.

3 Modeling Time-Aware Processes

This section provides basic notions needed for understanding this paper. It further
defines a basic set of elements for modeling time-aware processes, which allow
for a flexible execution of respective process schemas.



3.1 Process Schema

For each business process to be supported, a process schema needs to be defined
(cf. Fig. 2). In this work, a process schema corresponds to a directed graph,
which comprises a set of nodes – representing activities and control connectors
(e.g., Start-/End-nodes, XOR-splits, or AND-joins) – and a set of control edges
linking these nodes and specifying precedence relations between them as well as
loop backward relations. We assume that a process schema is well-structured,
i.e., sequences, branchings (i.e., parallel and exclusive choices), and loops are
specified in terms of blocks with unique start and end nodes of same type. These
blocks—also known as SESE regions [19]—may be arbitrarily nested, but must not
overlap; i.e., their nesting must be regular [16]. Fig. 2 depicts an example of a well-
structured process schema with the grey areas indicating corresponding blocks.
Each process schema contains a unique start and end node and may be composed
of the following control flow patterns [1] (cf. Fig. 2): sequence, parallel split
(AND-split), synchronization (AND-join), exclusive choice (XOR-split), simple
merge (XOR-join), and structured loops. Note that these patterns constitute the
core of any process meta model and allow for the flexible composition of more
complex structures [14]; further, they cover most processes found in practice [14].
We further assume that the start and the end nodes of a structured loop are
distinct from normal XOR-join and XOR-split nodes, i.e., there is an explicit loop
construct in the process meta model (like in ADEPT [7]).4 Finally, to be able to
reason about the temporal properties of a loop and to ensure termination of any
process schema execution, each loop-end node is augmented with a minimum and
maximum number of possible iterations of the respective loop. Note that this
does not pose an actual restriction as it is always possible to find a maximum
number of iterations high enough to cover any possible case.

In addition to the described control flow elements, a process schema contains
process-relevant data objects as well as data edges linking activities with data
objects. More precisely, a data edge either represents a read or write access of
the referenced activity to the referred data object.

Process activities may either be atomic or complex. While an atomic activity
is associated with an application service, a complex activity refers to a sub-process.
In our work, we consider complex activities as self-contained, i.e., there is no
direct relation between a sub-process and the respective parent process. Therefore,
we do not differentiate between atomic and complex activities.

Even though we mostly use the notation defined by BPMN for illustration
purpose, the approach described in the following is not specific to BPMN. To
set a focus we restrict ourselves to a set of basic modeling elements found in
almost every process meta model. Furthermore, to graphically distinguish between
loop-blocks and XOR-blocks we use the exclusive gateway symbol with an “X”
to represent an XOR-split/-join and the symbol without an “X” to represent
loop-start and loop-end nodes.

4 Note that this does not apply to BPMN causing additional complexity when analyzing
processes.



A

B

D

C

E F

I

G

H [3, 8]XORJoin

ANDJoin

Activity

LOOPStart

ControlEdge

LOOPEnd

StartFlow
ANDSplit

XORSplit

EndFlow

Process Schema S

Loop-BlockAND-BlockXOR-Block

Sequence-Block

d
Data Object

Fig. 2: Core Concepts of a Process Meta Model

At run time, process instances are created and executed according to the
defined process schema. In turn, activity instances represent executions of single
process steps (i.e., activities) of such a process instance. If a process schema
contains one or more XOR- or LOOP-blocks, not all process instances perform
exactly the same set of activities. The concept of execution path allows identifying
which activities and control connectors are performed during an execution.

Given a process schema P , an execution path p (exe-path) denotes a
connected maximal subgraph of the process schema containing its Start- and
End-nodes, in which all XOR-split connectors have exactly one branch and each
loop block has a fixed number of repetitions. In particular, each execution path
represents one possible execution of the respective process schema. In turn, the
set of all exe-paths of process schema P is denoted as ExePathsP . An exe-path
p can be also briefly described by a string containing the activity identifiers
of the exe-path sorted w.r.t. their execution order and separated by a dash if
the order is sequential or by a vertical bar if it is parallel [4]. Considering the
schema from Fig. 2, the string A-((B-D)|(E-F-G))-H-I represents an example of
an exe-path, where A is followed by a parallel execution of two sequential paths
(B-D) (i.e., for the XOR-split the upper path is selected) and (E-F-G); then, H and
I are sequentially executed. Note that set ExePathsP may have an exponential
cardinality w.r.t. the number of XOR- or LOOP-blocks in the schema.

3.2 Time-aware Process Schemas

Regarding the time patterns (TP) presented in Sect. 2, to set a focus, this work
specifically considers the ones most relevant in practice [12]; i.e., time lags between
two activities (TP1), durations (TP2) of activities, fixed date elements (TP4) of
activities, and cyclic elements (TP9).

An activity duration (TP2) represents the time span allowed for executing
an activity (or node, in general), i.e., the time span between start and completion
of the activity [12]. We assume that each activity of a process schema has an
assigned duration. Usually, activity durations are described in terms of minimum
and maximum values. Even though these values are known for an activity at
design time, the actual duration of a corresponding activity instance is only known
at run time after its completion (i.e., it is contingent). Consequently, activity
durations must not be restricted when checking controllability at design or run
time to satisfy all temporal constraints specified on a process schema. However,



in reality, in most cases activity durations are either based on the experience of
a domain expert or extracted from process logs. Therefore, activity durations
usually represent worst case estimates, i.e., respective maximum durations often
cover cases with an exceptionally long duration. Further, execution times of
most activities can be shortened if necessary. Accordingly, activity durations may
be restricted to some extend during design time when verifying controllability
or during run time. In particular, an activity has a flexible maximum duration
MaxDF . If necessary this may be restricted up to a contingent minimum and
maximum duration range [MinDC ,MaxDC ], which, in turn, must be at least
available to the agent when executing the activity. Therefore, activity durations
are expressed in terms of restrictable time intervals [[MinDC ,MaxDC ]MaxDF ]G
where 1 ≤MinDC ≤MaxDC ≤MaxDF

5 and G corresponds to the time unit
used (i.e., temporal granularity like minutes, hours,. . . ).6 If a flexible maximum
duration is not applicable for an activity, we write [[MinDC ,MaxDC ]]G for
short. If a process designer does not set a duration for an activity [[1, 1]∞]MinG
is used as default value, where MinG corresponds to the minimum time unit
used by the system. Since control connectors are automatically executed by the
PAIS and solely serve structuring purposes, we assume that they have a fixed
duration defined by the PAIS (e.g., [[1, 1]]MinG) that cannot be modified by the
process designer.

Time lags between two activities (TP1) restrict the time span allowed
between the starting/ending instants of two activities [12]. Such a time lag may
not only be defined between directly succeeding activities, but between any
two activities that may be conjointly executed in the context of a particular
process instance, i.e., the activities must not belong to exclusive branches. A time
lag is visualized by a dashed edge with a clock between the source and target
activity (cf. Fig. 3). The label of the edge specifies the constraint according to
the following template: 〈IS〉 [MinD,MaxD]G 〈IT 〉; thereby, 〈IS〉 ∈ {S,E} and
〈IT 〉 ∈ {S,E} mark the instant (i.e., starting/ending) of the source and target
activity the time lag applies to; e.g., 〈IS〉 = S marks the starting instant of
the source activity and 〈IT 〉 = E the ending instant of the target activity. In
turn, the interval [MinD,MaxD]G represents the range allowed for the time
span between instants 〈IS〉 and 〈IT 〉 using time unit G. Further, we assume
that −∞ ≤ MinD ≤ MaxD ≤ ∞ holds. In particular, time lags may be used
to specify minimum delays and maximum waiting times between succeeding
activities. As example consider the time lag E[5, 60]minS between E and F in
Fig. 3. It expresses that there is an end-start time lag (〈IS〉 = E, 〈IT 〉 = S) of
[5, 60]min between the two activities; i.e., the delay between the end of C and
the start of F must be at least 5minutes, while the waiting time between the
two must be at most 60minutes. Finally, it is noteworthy that there exists an

5 0 as minimum value for a duration is disallowed since it is not possible to execute an
activity/control connector without consuming time.

6 For the sake of clarity, we assume that all temporal values are expressed using the
same granularity; if different granularities are used, it is required to convert them to
a common one before executing the process [4].



implicit E[1,∞]MinGS constraint between any couple of directly succeeding
activities, i.e., the second activity may only be started after completing the first.

In extension to time lags between activities, cyclic elements (TP9) allow
process designers to restrict the time span between activity instances belonging
to different iterations of a loop structure [12]. This may either be instances of a
specific activity or two different activities of the same loop structure. Like time
lags, a cyclic element is visualized as dashed edge (with a clock) between the
two activities. To differentiate between the two, the label of a cyclic element is
extended by a “∗” next to the allowed range: 〈IS〉 [MinD,MaxD]G∗ 〈IT 〉. For
the sake of simplicity, we only consider cyclic elements between two directly
succeeding iterations. However, this is no restriction of the presented algorithms
and may be easily extended if necessary.

Finally, fixed-date elements (TP4) for activities allow restricting the execu-
tion of an activity in relation to a particular date [12],7 e.g., a fixed-date element
may define that the activity must not be started before or must be completed
by a particular date. Generally, the value of a fixed-date element is specific to
a process instance, i.e., it is not known before creating the process instance or
even becomes known only during run time. Therefore, the particular date of a
fixed-date element is part of process-relevant data, i.e., it is stored in a data object
during run time. When evaluating the fixed-date element, the respective data
object is accessed and its current value is retrieved [11]. Graphically, a fixed-date
element is visualized by a clock symbol attached to the respective activity (cf.
Fig. 3). The label 〈D〉 ∈ {ES , LS , EE , LE} attached to this clock corresponds to
the activity’s earliest start date (ES), latest start date (LS), earliest completion
date (EE), or latest completion date (LE), respectively.

As an example, Fig. 3 shows a process schema exhibiting several temporal
constraints. Though some of the symbols used for visualizing the temporal
constraints resemble timer events from BPMN, their semantics is quite different
and should not be mixed up. Activities A, E, F, and H have an activity duration
attached. The one of A, for example, expresses that A has a flexible maximum
duration of 25min. This may be further restricted to a contingent minimum
duration of 5min and a maximum duration of 20min if necessary. In turn, the
activity duration of H expresses that H has a contingent minimum duration
of 60min and a maximum duration of 120min, which must not be restricted
any further. Between B and G there is a time lag described by S[30, 120]minS.
Additionally, there is a time lag between E and F. Note that, in case a time lag
restricts the time span between two directly succeeding activities, for the sake of
readability, we attach the clock directly to the control edge and omit the dashed
edge of the time lag. However, this is only a graphical simplification and does
not change semantics. Next, there is a cyclic element S[0, 120]min∗ S between
B and F. It describes that between the start of any instance of B and the start
of an instance of F in the succeeding iteration, there is a time span of at most
120min. Finally, G has a fixed-date element attached to it, whereby label LE
7 Fixed-date elements are often referred to as “deadlines”. However, this does not
completely meet the intended semantics.



A

B

D

C

E

H

F

G [3, 8][3, 8]

[[5, 20] 25]min

[[5, 35] 40]min [[10, 20] 25]min

[[60, 120]]min

LE
S [0, 120]min* S

S [30, 120]min S

d

E [5, 60]min S
Cyclic Element

Process Schema S

Fixed Date Element

Activity Duration

Date value for
Fixed Date Element G

Time Lag between two Activities

Time Lag between two Activities

Fig. 3: Process with Temporal Constraints

indicates that the latest end date of the activity is restricted by the temporal
constraint. In turn, the date of the fixed-date element is provided by activity D
through data object d. Particularly, for each iteration of the loop, a new value
for the fixed-date element of G is provided by D.

4 Executing Time-Aware Processes

This section introduces and discusses the concept of controllability of a time-aware
process schema. Controllability guarantees that a process schema can be correctly
executed considering all temporal constraints. More specifically, we first introduce
the concept of controllability and the controllability check problem. Then, we
show how to deal with the execution of a controllable time-aware process schema.

4.1 Controllability of Time-Aware Process Schemas

In general, controllability corresponds to the capability of a PAIS to execute a
process schema for all possible contingent durations of all activities while still
satisfying all temporal constraints; i.e., controllability ensures that it is possible to
execute a process schema without ever having to restrict the contingent duration
of an activity to satisfy one of the other temporal constraints.

In particular, an exe-path (cf. Sect. 3.1) is executed by performing activities
and control connectors, thereby observing any structural and temporal constraints
of the process schema. We denote a process schema as controllable if it is possible
to perform any exe-path satisfying all temporal constraints without restricting
contingent activity durations involved in the exe-path. If there are no time
lags (TP1), or fixed date elements (TP4) the schema is controllable. Otherwise,
it is necessary to verify and, possibly, adjust time lags in order to guarantee
controllability of the process schema.

In [5], authors proposed Conditional Simple Temporal Network with Uncer-
tainty (CSTNU) to represent and analyze a network of temporal constraints,
where some constraints hold according to specific run-time-evaluated data condi-
tions. Furthermore, they presented a sound algorithm that allows checking the
controllability of a CSTNU (possibly adjusting non-contingent constraints) in
exponential time w.r.t. the number of conditions in the worst (theoretical) case.



Moreover, they provided an implementation of the algorithm showing that it is
possible to manage the conditions in an appropriate way in order to avoid the
worst case and obtain a practical fast convergence of the algorithm. In this paper,
we propose to use the CSTNU checking algorithm to verify the controllability of a
process schema extended with the temporal aspects (as discussed in Sect. 3.2). We
propose to use CSTNU for two reasons: 1) it is preferable to exploit checking and
execution algorithms for a well founded model of extended temporal constraint
representation instead of developing new native algorithms, and 2) all other
models for temporal constraint representation in literature (e.g., [15,18]) do not
allow an effective representation and management of conditional executions with
uncertainties.

We now show how to use CSTNU to check the controllability of the considered
time-aware process schema (cf. Sect. 3) at design time as well as run time. In
particular, a CSTNU is an STN extended with the following constructs:

– observation nodes: each observation node is associated with a specific proposi-
tion (cf. node E associated with proposition P in Fig. 5-b). The truth-value
of the proposition is determined when the node is executed. Informally, an ob-
servation node represents the time point at which a relevant information (i.e.,
proposition) for the execution of the CSTNU is acquired, i.e., it represents
the time point a decision is made.

– labeled nodes and edges: nodes and edges are characterized by a label con-
sisting of propositions. Such nodes and labels are considered only when the
corresponding propositions hold (cf. edge labels β, Pβ and ¬Pβ in Fig. 5-b).
Informally, during an execution, the system maintains the truth values of
propositions as the execution scenario. Then, it considers only nodes and
edges having a label consistent with the scenario.

– contingent links: a contingent link represents an uncontrollable-but-bounded
temporal interval. Each contingent link is described by the range [x, y],
0 < x < y <∞, between two time-point variables (nodes), A and C, where
C is the so called contingent time point. Once A is executed, C is guaranteed
to execute such that C −A ∈ [x, y]. However, the particular time at which C
executes is uncontrollable.

In the CSTNU model, each edge has a labeled value describing the meaning of
the corresponding constraint. A labeled value is a triple 〈PLabel, ALabel, Num〉
where:

– PLabel is a propositional label representing a conjunction of propositions.
Usually, α, β, . . . are used for representing conjunctions of propositions. �
represents an empty label.

– ALabel is an alphabetic label, and either is:
• an upper-case letter, C, specifying the upper bound of a contingent link;
• a lower-case letter, c, specifying the lower bound of a contingent link; or
• �, representing no alphabetic label, representing an ordinary STN edge.

– Num is a real number, representing the value of the constraint.



A

[[xC , yC ]yF ]

(a)
AS AC AE

〈β, �,∞〉

〈β, �,−1〉

〈β, �,∞〉

〈β, �,−1〉

〈β, ac, xC〉

〈β,AC ,−yC〉

〈β,�, yF−xC〉

〈β, �, yF 〉

〈β, �, 0〉

(b)

Fig. 4: (a) An activity with a duration. (b) CSTNU translation.

A possible technique to translate a process schema into an equivalent CSTNU
consists of mapping each process construct into an equivalent (with respect to
the temporal constraints) CSTNU fragment.

More formally,

Theorem 1. Given a time-aware process schema PS , there exists a correspond-
ing CSTNU N such that all temporal features of PS are represented in N .

Proof. The proof is given by construction. In the following, we will provide the
mapping for the time-aware process constructs, discussing the most important
mappings from the point of view of the temporal behaviour.

First the Start-/End-nodes of the process schema are mapped to two nodes,
Z and W , respectively. In turn, an activity and its incoming/outgoing edges
are mapped to CSTNU as shown in Fig. 4. In particular, each activity A with
duration [[xC , yC ]yF ] corresponds to three nodes AS , AC , and AE , which represent
the starting time-point, contingent ending time-point, and ending time-point,
respectively, linked by appropriate edges representing the give duration. The
contingent ending time-point AC is the uncontrollable ending point bounded
by the contingent range [xC , yC ] with respect to the starting time-point AS .
The ending time-point AE is the controllable ending point that allows the run-
time algorithm to consider the flexible maximum duration yF , represented by
a upper-bound constraint between AS and AE with Plabel 〈β, �, yF 〉. Edges
between AS and AC represent contingent links in CSTNU; edges between AC
and AE represent ordinary constraints; finally, any incoming (outgoing) edge of
the activity is translated as a pair of edges representing the implicit temporal
constraint [1,∞] between the ending (starting) node of the predecessor (successor)
activity and the starting (ending) node of the considered activity.

The next construct to be considered is the XOR-split. Fig. 5 depicts the
translation of an XOR-split evaluating a proposition P . The connector corre-
sponds to two nodes, S and E , representing its starting and ending instants,
respectively. These nodes are connected by two edges representing the implicit
duration range [1, 1]. E is the observation node for proposition P . All edges and
nodes corresponding to activities, connectors and control edges in the XOR-block
are suitably labeled with P or ¬P depending on the branch they belong to. The
corresponding XOR-Join is translated in a similar way, but the outgoing edge
then corresponds to two edges in which propositions P/¬P are not present (cf.
Fig. 6).



P?

true

false

(a)

S E

P ?

〈β, �,∞〉

〈β, �,−1〉

〈β, �, 1〉

〈β, �,−1〉

〈Pβ, �,∞〉

〈Pβ, �,−1〉

〈¬Pβ, �,∞〉

〈¬Pβ, �,−1〉

(b)

Fig. 5: (a) XOR-split with implicit duration [1, 1]. (b) CSTNU translation.

(a)

S E

〈β, �,∞〉

〈β, �,−1〉

〈β, �, 1〉

〈β, �,−1〉

〈Pβ, �,∞〉

〈Pβ, �,−1〉

〈¬Pβ, �,−1〉

〈¬Pβ, �,∞〉

(b)

Fig. 6: (a) XOR-Join with implicit duration [1, 1]. (b) CSTNU translation.

(a)
AE

AS

〈β, �, 1〉〈β, �,−1〉

w1 w2

〈β, �, 0〉 〈β, �, 0〉

〈β, �, t1〉 〈β, �, t2〉

〈β, �,∞〉

〈β, �,−1〉

〈β, �,∞〉

〈β, �,−1〉

〈β, �,∞〉〈β, �,−1〉

(b)

Fig. 7: (a) AND-Join connector. (b) CSTNU translation.

Another construct to be considered is the AND-Join connector (the mapping
of the AND-Split connector is straightforward). Fig. 7-(a) depicts an example
of an AND-Join connector with two incoming flows. The execution of this
connector requires waiting for all incoming flows: after the last incoming flow
has been triggered, the AND-Join is executed before triggering its outgoing
edge. The key aspect of the AND-Join is that its incoming flows may arrive at
different instants. Therefore, each incoming flow is connected to a “wait” node
that, in turn, is connected to AS by two edges, as depicted in Fig. 7-(b). For
example, the constraint 〈β, �, 0〉 corresponding to edge (AS , w1) represents that
AS must be after w1, while the constraint 〈β, �, t1〉 on edge (w1, AS) represents the
possible maximum delay due to the execution of w2; the value t1 is automatically
determined by the controllability check at design time. One can easily show that
if there are more incoming flows in the original AND-Join connector, it is possible
to translate it using a sequence of pairs of “wait” nodes properly connected
before AS .

Since for each loop the maximum number of iterations is known, any process
schema containing loops can be rewritten into a loop-free one. For this, the loop



B

min iteration: 1
max iteration: 3

repeat

exit
[1, 3]

Cyclic Element Time Lag bet. Activities

B B‘ B‘‘
repeatrepeat

exit
exit

1. Iteration 2. Iteration 3. Iteration

E [MinD, MaxD]G* S E [MinD, MaxD]G S E [MinD, MaxD]G S

Fig. 8: Converting a loop to a set of consecutive XORs

A B

S[x, y]S

(a)

AS BS

〈β, �, x〉

〈β, �,−y〉

(b)

Fig. 9: (a) Start-start time lag between activities A and B. (b) CSTNU translation.

block is replaced by a block containing clones of the original loop body, which
are then linearly connected: all Loop-start connectors are removed and each
Loop-end connector becomes an XOR-split connector with one edge connected
to the first node of the following clone and the other connected to an XOR-
join connector inserted after the last clone. The condition of these XOR-split
connectors corresponds to the original condition of the Loop-end connector.
Moreover, cyclic elements (TP9) are transformed to time lags (TP1) between the
clones of respective activities. Fig. 8 shows an example of such an unfolding of a
loop with at maximum three iterations. Consequently, a loop may be translated
to CSTNU the same way as XOR-splits and -joins (cf. Figs. 5 and 6).

Next, a time lag between two activities (TP1) can be translated into a pair of
CSTNU edges between between the starting/ending nodes of the two activities. In
particular, for each time lag 〈IS〉 [x, y]G 〈IT 〉, depending on the value of 〈IS〉/〈IT 〉,
a pair of ordinary constraint edges 〈β, �, x〉 and 〈β, �,−y〉 is added between the
starting/ending node of the source and the starting/ending node of the target
activity. Fig. 9 depicts this transformation exemplarily for a start-start time lag
(i.e., 〈IS〉 = S and 〈IT 〉 = S).

The last major construct we consider for the translation is the fixed date
constraint (TP4). It can be translated into a CSTNU edge between the start
node Z of the process and the node representing the starting/ending node of the
activity once the starting time dZ of the process and the fixed date d〈D〉 value
are known, i.e., the fixed date is represented as the time lag between the start of
the process instance and the respective fixed date. Fig. 10 depicts the details of
the translation of the different fixed date elements according to the constraint
label 〈D〉 ∈ {ES , LS , EE , LE}. This completes the proof. ut

4.2 Run-Time Controllability Check

Controllability of a process schema must be checked both at design and run
time. At design time, such a controllability check allows guaranteeing that the



Z

AS AE

〈β, �, dLS
− dZ〉

Z

AS AE

〈β, �,−(dES
− dZ )〉

Z

AS AE

〈β, �, dLE
− dZ〉

Z

AS AE

〈β, �,−(dEE
− dZ )〉

Fig. 10: Translating possible fixed date constraints on an activity A when date
dZ of the process start and date dES

|dLS
|dEE

|dLE
of the constraint are known.

design phase is sound as any process instance may be executed meeting the given
temporal constraints. At run time, the controllability check updates the temporal
network according to the real durations of already executed activities, to the
possible fixed date constraints, and to the current execution path. In particular,
controllability has to be checked after the completion of each contingent activity.

When creating a process instance, a copy of the CSTNU created at design
time is made. Next, any fixed date constraint known at process creation time is
considered by adding the respective constraint(s) (cf. Sect. 4.1). This CSTNU is
then updated according to the starting time of the process instance by execut-
ing a controllability check. Thus, the time frame for starting the first activity,
determined by the previous check, is fixed and is used by the execution engine.

When completing an activity, its real duration and possible date value for
fixed date constraints become known. Hence, in order to maintain the right time
frames of unexecuted activities, it is necessary to update and check the CSTNU
after the completion of each activity. In particular, the check may result in an
update of the time frames of the remaining activities. Then, the engine determines
the following activities to execute, taking into account the order given by the
schema and the time frames provided by the updated CSTNU. Note that there are
different possible execution strategies for choosing the exact instant to start an
activity within its time frame. In the following we presume an execution strategy
that allows executing an activity/connector as soon as it becomes enabled. An
activity/connector is enabled when all its previous activities/connectors (w.r.t. the
process schema) have been executed and all constraints involving the considered
activity/connector are met. However, if—due to some delay—an activity is not
started within its time frame or if it takes longer than permitted by the CSTNU,
the process instance (potentially) becomes uncontrollable (i.e., it can no longer
be guaranteed that the process may be completed without violating any time
constraint). In this case, time-specific exception handling (i.e., escalations) should
be triggered [9].

Let us label the CSTNU controllability checking algorithm as CSTNU-CC.
For a process instance, the check of its controllability during run time, which we
call TimeAwareProcessControllabilityCheck, works as follows:

1. Once the starting time of a process instance is set, all fixed date constraints
whose date is also known at process creation time are translated into equivalent
constraints w.r.t. to the starting date of the process instance (cf. Fig. 10) in the
CSTNU instance. The controllability of the CSTNU instance is then checked



to ensure that any fixed date constraint is consistent with the execution time
of the process instances.

2. Each time an activity is completed, the CSTNU instance is updated using
the real duration of the completed activity and re-checked to propagate the
modified constraints.

3. After the completion of any activity producing a date value for a fixed-date
constraint, the CSTNU instance must be updated adding the equivalent
constraint(s) as shown in the previous section (cf. Fig. 10) and then re-
checked. For networks being controllable at design time it is noteworthy that,
besides activity executions not being started within the time frames given by
the CSTNU or not respecting the given activity duration constraint, only
fixed date constraints could make the network uncontrollable at run time.

4. Each time an XOR-split is completed, the CSTNU instance must be updated
by removing all nodes and edges belonging to skipped XOR branches. In
particular, the execution of an XOR-split determines the one of the corre-
sponding observation node. Such observation node determines the truth value
of the associated proposition. Therefore, the execution scenario is updated
and all nodes/edges not consistent with it are removed. Note that, due to
the removal of the skipped XOR branches, the time frames of unexecuted
activities may be potentially relaxed.

Fig. 11 depicts the pseudocode of algorithm TimeAwareProcessControllability-
Check. It checks the controllability of the corresponding CSTNU network during
run time according to the above approach.

Let us consider in a more detailed way how many times TimeAwareProcess-
ControllabilityCheck is executed for a process instance. Let k be the number of
XOR-split connectors and a the number of activities. TimeAwareProcessControl-
labilityCheck is then called k + a times in the worst case (sequential XOR-splits
containing activities in only one branch each). Each TimeAwareProcessControl-
labilityCheck execution corresponds to a single execution of the CSTNU-CC
algorithm. The latter has an exponential-time complexity w.r.t. to the number k′
of unexecuted XOR-splits, where k′ = k, k−1, . . . , 1. Each unexecuted XOR-split
determines at least 2 different outgoing execution paths and, thus, there exist
at least 2k′ different possible execution paths in the process instance. Since k
decreases linearly during the execution (worst case), the complexity of the follow-
ing CSTNU-CC executions—after each XOR-split—decreases exponentially. As
for the CSTNU-CC algorithm [5], the real time complexity of the controllability
check algorithm is much lower than the theoretical worst case. First experiments
we performed have confirmed this.

5 Discussion

Recently, we identified a set of time patterns for evaluating the support of the
temporal perspective in PAIS [12,11]. Empirical evidence we gained in case studies
has confirmed that these time patterns are common in practice and required
for properly modeling the temporal perspective of processes in a variety of



Procedure TimeAwareProcessControllabilityCheck(event)
if (event == “end of activity” Ai) then

di = real duration of Ai;
Update all constraints involving Ai using di;
foreach fixedDateij = fixed date value known after the execution of Ai do

if (fixedDateij 6= null) then
Update all constraints requiring fixedDateij ;

Execute CSTNU-CC on the updated network;
if (network is not controllable) then

Throw an exception;
return Network not controllable

if (event == “end of XOR-split” Xi) then
di = real duration of Xi;
Update all constraints involving Xi using di;
bi = selected branch;
Remove all branches (edges and nodes) 6= bi;
Execute CSTNU-CC on the updated network;

return Network controllable;

Fig. 11: Pseudo code for controllability checking of time-aware processes during
run time

domains [12]. In particular, our case studies revealed the need for a comprehensive
design- and run-time support of time-aware process. This has been confirmed
in a number of discussions, we had with process engineers when validating the
formal semantics of our time patterns [11].

To ensure the soundness of a process schema and hence robust and correct
execution of corresponding process instances, the controllability of their temporal
constraints must be checked. In general, to solely verify time-aware process
schemas at design time is neither sufficient nor completely possible. Recent work
has shown that certain time patterns (i.e., temporal constraints) cannot be
verified at design time, as they are specific for each process instance [12].

The time patterns considered in this paper were selected based on the empirical
evaluation we conducted as part of [12]. In particular, they are the ones most
commonly required in practice. Also, note that the particular patterns provide
a reference time frame for any instance based on respective time-aware process
schemas. To verify and test the practical usability of the proposed transformation
and respective algorithms, we implemented a proof-of-concept prototype as part of
CSTNUEditor [5]. It allows us to create a CSTNU instance based on a process
schema and to check its controllability. First tests have shown that the algorithm
finds the solution in an average number of iterations one order of magnitude
smaller than the theoretical estimated upper bound. As an example, Fig. 12
depicts the CSTNUEditor screenshot of the controllability check of the process
schema of Fig. 1: the left part of the screen shows the CSTNU corresponding to
the process schema (green boxes contain nodes and constraints corresponding



Fig. 12: Time-aware Process controllability check in CSTNUEditor

to original activities), while the right part depicts all the computed temporal
constraints between nodes together with the overall analysis result showing that
the process is controllable. Moreover, we have implemented most of the time
patterns as part of a proof-of-concept prototype based on the AristaFlow BPM
Suite [7]. In this context, we are working on integrating the presented algorithms
for controllability checking at build time and during run time to obtain a time-
and process-aware information system.

6 Summary and Outlook

Time is a fundamental concept regarding the support of business processes. In a
real world environment, where even small delays may cause significant problems,
it will be crucial for any enterprise to be aware of the temporal constraints of its
business processes as well as to control and monitor them during process execution.
Particularly, it must be ensured that no temporal constraint is violated during
run time. This paper considered fundamental requirements for the run-time
support of time-aware processes.

First, we defined a set of basic elements for modeling time-aware process
schemas, which allow for a flexible execution of related processes instances.
Specifically, we considered the need for dynamically adapting process instances
to a specific context, e.g., we consider temporal constraints whose parameters
only become known during process execution. The proposed set of temporal
constraints is independent from a particular process modeling language.

Second, we presented a transformation of time-aware process schemas to Con-
ditional Simple Temporal Networks with Uncertainty for checking controllability
of respective process schemas at design time. We then demonstrated how this
can be also applied for ensuring the controllability of corresponding time-aware
process instances during run time. In particular, we presented an algorithm for
controllability checking during run time and discussed its complexity.

In future work, we will investigate the complexity of the presented controlla-
bility checking algorithm in more detail. In this context, we will examine how



process abstractions and process views as well as predictive knowledge about
XOR decisions may be applied to reduce the complexity of this algorithm. Fur-
thermore, we will fully integrate the presented approach with the AristaFlow
BPM Suite [7]. Finally, we will evaluate the impact, process changes have on
time-aware processes and respective temporal constraints.

References
1. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:

Workflow patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)
2. Bettini, C., Wang, X.S., Jajodia, S.: Temporal reasoning in workflow systems.

Distributed and Parallel Databases 11(3), 269–306 (2002)
3. Combi, C., Gozzi, M., Juarez, J.M., Oliboni, B., Pozzi, G.: Conceptual modeling of

temporal clinical workflows. In: Proc. TIME’07. pp. 70–81. IEEE (2007)
4. Combi, C., Gozzi, M., Posenato, R., Pozzi, G.: Conceptual modeling of flexible

temporal workflows. ACM Trans. Auton. Adapt. Syst. 7(2), 19:1–19:29 (Jul 2012)
5. Combi, C., Hunsberger, L., Posenato, R.: An algorithm for checking the dynamic

controllability of a conditional simple temporal network with uncertainty. In: Proc.
Int. Conf. Agents & Art. Int. (ICAART). vol. 2, pp. 144–156. SciTePress (2013)

6. Combi, C., Posenato, R.: Controllability in temporal conceptual workflow schemata.
In: BPM’09. pp. 64–79. Springer (2009)

7. Dadam, P., Reichert, M.: The ADEPT project: A decade of research and devel-
opment for robust and flexible process support - challenges and achievements.
Computer Science - R&D 22(2), 81–97 (2009)

8. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artif. Intell. 49(1-3),
61–95 (1991)

9. Eder, J., Euthimios, P., Pozewaunig, H., Rabinovich, M.: Time management in
workflow systems. In: Proc. BIS’99. pp. 265–280. Springer (1999)

10. Eder, J., Gruber, W., Panagos, E.: Temporal modeling of workflows with conditional
execution paths. In: Proc. DEXA’00. pp. 243–253. Springer (Sep 2000)

11. Lanz, A., Reichert, M., Weber, B.: A formal semantics of time patterns for process-
aware information systems. Tech. Rep. UIB-2013-02, University of Ulm (2013)

12. Lanz, A., Weber, B., Reichert, M.: Time patterns for process-aware information
systems. Requirements Engineering (2012)

13. Marjanovic, O., Orlowska, M.E.: On modeling and verification of temporal con-
straints in production workflows. Knowl. and Inf. Syst. 1(2), 157–192 (1999)

14. Mendling, J.: Metrics for process models: empirical foundations of verification, error
prediction, and guidelines for correctness. Springer (2009)

15. Morris, P.H., Muscettola, N., Vidal, T.: Dynamic control of plans with temporal
uncertainty. In: IJCAI. pp. 494–502 (2001)

16. Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive process management
with ADEPT2. In: Proc. ICDE’05. pp. 1113–1114. IEEE (2005)

17. Reichert, M., Weber, B.: Enabling Flexibility in Process-aware Information Systems:
Challenges, Methods, Technologies. Springer (2012)

18. Tsamardinos, I., Vidal, T., Pollack, M.E.: CTP: A new constraint-based formalism
for conditional, temporal planning. Constraints 8, 365–388 (2003)

19. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused control-flow analysis
for business process models through SESE decomposition. In: Proc. ICSOC’07. pp.
43–55. Springer (2007)


