
Ulm University | 89069 Ulm | Germany Faculty of
Engineering
and Computer Science
Institute of Databases and
Information Systems

Natural Language-based Visualization
and Modeling for Updatable Process
Views
Bachelor Thesis at Ulm University

Submitted by:
Wolfgang Wipp
wolfgang.wipp@uni-ulm.de

Reviewer:
Dr. Manfred Reichert

Supervisor:
Jens Kolb

2013

Edition July 30, 2013

c© 2013 Wolfgang Wipp

This work is licensed under the Creative Commons. Attribution-NonCommercial-ShareAlike 3.0
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/
or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.
Satz: PDF-LATEX 2ε

Abstract

Nowadays, an understanding of its own business processes is crucial for companies, to

ensure an efficient and quick changing work flow.

While several tools exists using graphical annotations, e.g. Business Process Model and

Annotation (BPMN), an untrained staff member may not be able to understand business

processes described in these annotations, resulting in additional investments into staff

member training. Furthermore, some structures used in graphical annotations may not

seem native to untrained users, causing misinterpretations of business process models.

Fostering this issue, natural language-based process descriptions may used. These

descriptions are automatic-generated from process models.

Another problem of modern business process modeling is the communication between

process modelers and domain experts. A thought of a domain expert can be misin-

terpreted by the process modeler. The results are discrepancies in business process

models. Avoiding this problem, modeling mechanics for natural language-based process

descriptions may used.

Therefore, the thesis introduces fundamentals of the proView project as well as the

generation and editing of natural language-based process descriptions. Subsequently,

integration steps of natural language into the proView project, divided into two parts, are

shown. The first part contains integration of a process model to natural language text

converter. The second part discusses problems and solutions of natural language-based

modeling. Afterwards, the second part shows the integration of natural language-based

modeling into the proView project.

Finally, further steps in the future are discussed.

iii

Acknowledgements

First of all, I would like to thank Jens Kolb for his support and important guidance through

all of this thesis. Additionally, I would like to thank Henrik Leopold for his permission to

use parts of his prototype of a process to text converter.

My deepest appreciation goes to Michael, Bernd, Steini, Raphael, and Christoph, my

fellow students, for their moral support and advice.

A very special thanks goes to Stefan Büringer, who helped me with my endless fight

against the Vaadin framework and was never too busy to answer my questions about the

proView project.

Last but not least, my thanks goes to my parents Heinz and Brigitte, who believed in

me the whole time, not only while writing this thesis, but all of my life. Without you, this

thesis would still be a mist in my thoughts.

v

Contents

1. Introduction 1

2. Fundamentals 5

2.1. Fundamentals of proView . 5

2.1.1. Central Process Models and Process Views 6

2.1.2. The proView Project . 9

2.2. Fundamentals on Generating Natural Language Texts from Business

Process Models . 11

2.2.1. Overview: The Process of Generating Natural Language Texts

from Business Process Models . 11

2.2.2. Step 1: Text Planning . 12

2.2.3. Step 2: Sentence Planning . 13

2.2.4. Step 3: Surface Realization . 14

2.2.5. The ProcessToTextTransformer Prototype 14

2.3. Fundamentals of HTML and Java Script 16

2.3.1. HTML . 16

2.3.2. Java script . 17

3. Integration of ProcessToTextTransformer into proView 19

3.1. Design of the User Interface . 20

3.2. Package Level Integration . 21

3.3. Class Level Integration . 22

vii

Contents

3.4. Code Level Integration . 23

3.4.1. Changes in Classes of the proViewClient 24

3.4.2. Changes in Classes of the ProcessToTextTransformer Prototype . 25

3.4.3. The proView Prototype Template to ProcessToTextTransformer

Process Structure Translation Algorithm 28

3.5. Personalization Features . 29

4. Natural Language-based Modeling 33

4.1. Challenges in Natural Language-based Process Modeling 34

4.1.1. C1: Semantics and Syntax . 34

4.1.2. C2: Atomicity . 35

4.1.3. C3: Relevance . 35

4.1.4. C4: Referencing . 36

4.2. Approaches to Natural Language-based Process Modeling 38

4.2.1. A Mouse-based Natural Language Process Modeling Approach in

the proView Project . 38

4.2.2. A Text-based Natural Language Process Modeling Approach in

the proView Project . 40

5. Implementation of Natural Language Process Modeling Approaches in the

proView Prototype 49

5.1. The Natural Language Text Area . 50

5.2. Implementation of the Mouse-based Natural Language Process Modeling

Approach . 55

5.3. Implementation of the Text-based Natural Language Process Modeling

Approach . 57

6. Conclusion and Further Steps 61

A. Source Codes 63

A.1. The Basic DSynT to HTML Algorithm . 63

A.2. The proView Template to PTTT Process Structure Algorithm 65

A.3. Source Code of NLTextAreaWidget . 69

viii

Contents

A.4. Source Codes of TextInvestigator Class Operations 73

ix

1
Introduction

In modern business environments, flexibility and quick reactions to market changes are

requirements with increasing importance, to sustain on the world market. To be flexible

and quick, all business processes of the company have to be documented and possibly

re-engineered.

Documentation of business processes is done with the help of process participants.

These process participants are interviewed by a process modeler, resulting in a user

story. Then, the process modeler creates a first business process model based on these

user stories. Afterwards, each process participant reviews the business process model.

This step of modeling and reviewing iterates until the business process is documented

correctly.

1

1. Introduction

A documentation itself can be done in different annotations. Most of annotations are

graph-based, such as Business Process Model and Notation (BPMN) or Event-driven

Process Chains (EPC).

However, most process participants are not used to graph-based annotations. This

might lead to misinterpretations of annotation-specific structures, that haven’t got native

understanding, resulting in misunderstanding of respective processes. Furthermore,

even simple concepts like the logical ’or’ and ’xor’ are easily misunderstood by non-

technical process participants, interpreting a logical ’or’ as ’xor’. This leads to the fact,

that a company must train their staff members in process modeling, or at least in the

used annotation. However, training their staff costs companies not only money, but time

as well.

This leads to the fact, that a solution with natural language-based and graph-based

business process descriptions has to be found. Having a solution, that uses one central

business process model with different kinds of visualizations i.e., a natural language-

based text and e.g. BPMN, helps both process modelers and process participants. A

process modeler can still model a process graph, while a process participant can read

a textual description of the process. With this, costs, in terms of time and money, for

training process participants in the used annotation are reduced. Furthermore, the

’language barrier’ between the process modeler and the process participant can be

decreased.

However, if a process participant wants to model changes in a business process, she

needs to use graph-based annotations. To create a two-way communication over

business process models, natural language texts should be editable in a way, that affects

not just the text, but the business process model. With this ability, process participants

can read natural language texts and model changes in a business process, without the

need of graph-based business process modeling experience.

Therefore, the thesis is structured as follows: Section 2 introduces fundamentals of

process modeling and proView. Subsequently, Section 3 discusses the integration of

natural language generation in the proView prototype. Section 4 introduces process

2

modeling based on natural language descriptions. Section 5 exposes the implementation

of the natural language-based modeling component of proView.

Finally, Section 6 concludes and discusses further steps in the proView projects natural

language-based modeling functionalities.

3

2
Fundamentals

This section introduces the fundamentals for this bachelor thesis. Section 2.1 shows the

proView project. Section 2.2 describes the process of natural language-based business

process description generation. Finally, Section 2.3 gives a small introduction in the

fundamentals of HTML and Java script.

2.1. Fundamentals of proView

This section introduces the proView project. Section 2.1.1 shows the concept of Central

Process Models and process views. Section 2.1.2 introduces the proView project, along

with the proView framework.

5

2. Fundamentals

2.1.1. Central Process Models and Process Views

A Central Process Model (CPM) is the process model that comprises all information

concerning a respective business process. In particular, it consists of follows elements

[1]:

• start event: A start event is the entry point of a process model. It has only outgoing

control edges.

• end event: An end event is the point of process termination. It has only incoming

control edges.

• activity: Activities are steps in the business process, where each activity repre-

sents a step or multiple steps (sub-process).

• gateway: Gateways split or join the control flow of a process model. Therefore,

different types of gateways can be used with different semantic. For example:

– AND: All following branches are executed. A branch is a control flow from

one splitting gateway to the corresponding joining gateway.

– OR: At least one of the following branches gets activated.

– XOR: Exactly one of the following branches gets activated.

• control edges: Control edges lead the control flow from activity/gateway to another

activity/gateway from the start to the end of the process model.

• data element: A data element holds data of a specific type, such as string, integer,

or personalized data types. Data elements can be read by activities and gateways

as well as wrote by activities.

• data edge: A data edge shows the relation between an activity/gateway and a

data element. It shows which element reads or writes a data element.

However, a CPM may be very large and complex. Unfortunately, the human brain is only

capable of understanding a limited complexity in general [2]. Therefore, it is important to

reduce the complexity of such a CPM to support users in understanding them.

6

2.1. Fundamentals of proView

Figure 2.1.: CPM and Corresponding Process Views

Sub-processes reduce the number of elements and still show everything that is important

for a user. However, the user may need only specific information (e.g. only tasks affecting

her), yet, she is stil confronted with a lot of non-relevant information.

Therefore, a process view offers a customized version of a CPM. To create a process

view, activities might be reduced i.e. respective activities are hidden in the view, but still

existing in the corresponding CPM. Additionally, multiple activities might be aggregated

to one abstract activity. These operations are called view create operations [3], shown

in Table 2.2.

Through the possibility of creating multiple process views based on a CPM, customized

and personalized process views for each process participant can be created. An example

CPM and process views are shown in Figure 2.1. In View 1, activities ’A’, ’C’, and ’D’

are reduced. In View 2, all activities and gateways except for activity ’B’ are reduced. In

View 3, activities ’A’ and ’B’ are aggregated to an abstract activity ’AB’.

Additionally to view create operations, update operations to modify corresponding CPMs,

called view update operations shown in Table 2.1 are supported [3].

7

2. Fundamentals

Operation Action
Delete Element Delete Selected Element
Add Activity Add New Activity
Update Activity Rename Activitylabel
Add Gateway Add New Gateway
Add Data Ele-
ment

Add New Data Element

Write Data Ele-
ment

Selected Activity writes Selected Data Element

Read Data Ele-
ment

Selected Activity reads Selected Data Element

Update Data Ele-
ment

Change Properties like Type or Name of Data Element

Table 2.1.: View Update Operations

Operation Action
Reduce Activity(-
ies)

Hide Activity in Process View

Aggregate Ac-
tivites

Combine Selected Activites to one Abstract Activity

Create View From
Selection

Create a New Process View With Selected Elements in it

Show Subpro-
cess

Show Process which is in an Abstract Activity or Subprocess

Reduce Data Ele-
ment(s)

Hide Data Element in Process View

Aggregate Data
Element(s)

Combine Selected Data Elements to one Abstract Data Element

Table 2.2.: View Create Operations

8

2.1. Fundamentals of proView

Figure 2.2.: The proViewClient

To ensure a consistent CPM/process view relation, each process view has a creation

set, which consists of the required view create operations to rebuild the respective view

from the corresponding CPM [3].

2.1.2. The proView Project

The proView project is a research project, which develops the proView framework and

has a proof-of-concept implementation - the proView prototype.

The proView project makes use of CPMs and process views, to ensure understandability

of large business processes.

Part of the proView prototype is implemented by Stefan Büringer during his bachelor

thesis [1]. It consists of the proViewClient, a Vaadin-based web application [1], shown

9

2. Fundamentals

Figure 2.3.: The proView Framework [5]

in Figure 2.2. Furthermore, there are other clients, e.g. an iPad/iPhone application for

multi-touch gesture modeling [4].

The proViewClient communicates over a REST interface with the proViewServer. The

proViewServer handles the business process models, which means that it stores the

business process models and performs operations on them [5]. An overview over the

implemented proView framework is shown in Figure 2.3.

A possible operation on a process view is executed as follows [5]:

• Step 1: After a user updates a process view, the change engine is triggered.

• Step 2:Then, the process view change is used on the corresponding CPM.

• Step 3:Afterwards, the CPM gets simplified, e.g. no more needed elements are

removed.

• Step 4:The update is used on all corresponding process views creation sets.

• Step 5-7: All process views are recreated.

Afterwards, the updated process views can be visualized in the proViewClient.

The representation of CPMs and process views in the proView prototype is done by

the class Template. It consists of Nodes(i.e., activities, gateways, and data elements)

and StructuredEdges(i.e. control edges and data edges). Furthermore, if the template

represents a process view, it holds the ViewCreateOperations which create the process

10

2.2. Fundamentals on Generating Natural Language Texts from Business Process Models

view out of the respective CPM. A Node has an type attribute that shows what type of a

process model it is. StructuredEdges have an attribute to decide if they are a control

edge, a data edge or an edge for a loop structure. Furhtermore, the StructuredEdges

hold the ids of the respective elements they connect.

2.2. Fundamentals on Generating Natural Language Texts

from Business Process Models

This section introduces the fundamentals of generating natural language texts from

business process models. The principles described are from the Ph.D. thesis of Henrik

Leopold [6].

Section 2.2.1 gives an overview over the act of transformation. Section 2.2.2 shows the

first of three steps, the text planning. Section 2.2.3 shows the second step, the sentence

planning. Section 2.2.4 shows the third and last step, the surface realization. Finally,

Section 2.2.5 introduces the implemented prototype.

2.2.1. Overview: The Process of Generating Natural Language Texts from

Business Process Models

This section gives an overview over the act of generating a natural language text from

a business process model and discusses the given challenges in each step of the

generation process.

The task of process model to natural language text is split into three main steps, i.e.,

Text Planning, Sentence Planning, and Surface Realization [7].

The first two steps are split up into sub steps as shown in Figure 2.4. The first step plans

the structure of the text, using previously extracted informations, i.e., business process

model structure, from the business process model [7]. Step two plans the sentences to

be made and refines sentence structures [7]. Finally, step three generates the planned

sentences [7].

11

2. Fundamentals

Figure 2.4.: Natural Language Generation Process [7]

2.2.2. Step 1: Text Planning

A given process model is analyzed by its activity labels and its structure. First, it uses

WordNet and the Stanford Parser for activity label analysis [7]. Then, a Refined Process

Structure Tree (RPST) [8], by applying a modified RPST generation algorithm [7], of the

business process model is generated.

The combination of WordNet and the Stanford Parser allows to detect different labeling

styles and extract the action and object of an activity label as well as modifiers [7].

WordNet is a large lexical database of English nouns, verbs, adjectives, and adverbs [9].

WordNet provides semantical relations between words, e.g., ’dog’ is related to ’animal

or ’waiter’ is related to ’human’ [9]. WordNet consist of so called Syn-sets, where each

Syn-set is a combination of multiple synonyms, having somehow a relation with each

other [9]. For example: a dog, a cat, and a mouse would be in the Syn-set ’animal’ for

being animals.

The Stanford Parser is a natural language parser, capable of analyzing sentence struc-

tures. The parser can mark words according to their syntactical types in sentences [10].

The marks of basic word types are as follows [11]:

• NN: Noun, singular or mass

• VB: Verb, base form

12

2.2. Fundamentals on Generating Natural Language Texts from Business Process Models

• JJ: Adjective

• RB: Adverb

The whole set of tags is shown in the context of building the Penn Treebank [11].

To increase readability, the generation approach makes use of bullet points and para-

graphs. For this, special parameters have to be set in this step, determining if a bullet

point has to be set or how long a paragraph should be [7]. A bullet point, for example, is

used when the control flow of a business process is split into multiple branches, where

each branch is represented by a bullet point [7]. Furthermore, nested splits of a control

flow are saved in the parameters as well, using a level attribute [7].

2.2.3. Step 2: Sentence Planning

A Deep Syntactic Tree (DSynT) is a tree-based dependency representation introduced

in the context of the Meaning Text Theory [12]. A DSynTs node carries a semantically full

lexeme, i.e., a semantic composition of words, ignoring their inflection [7]. Each lexeme

carries grammatical meta information as for verbs, the tense or number, or for nouns,

the definiteness, called grammemes [7]. Therefore, DSynTs are perfect for powerful,

but manageable, sentence representations. An example DSynT of the sentence ’The

room-service manager takes down the order.’ is shown in Figure 2.5.

Figure 2.5.: A simple DSynT [7]

13

2. Fundamentals

In this step, a DSynT for each activity in the business process model is generated out of

the extracted information from the activity label and the given business process model.

The generated DSynTs are ordered in a list with the help of information given by the

previously generated RPST [7].

Additionally, this step adds translations from process structures into natural language-

based text parts. For example: An AND-gateway split is represented in the text with a

phrase like: ’The process is split into [number of branches] branches’ [7].

Finally, phrase aggregations, referring expressions, and discourse markers are inte-

grated in the text to improve textual quality [7]. Their meaning is as follows [7]:

• Phrase Aggregation: A phrase aggregation means the combination of two sen-

tences to create a new sentence that holds the same information.

• Adding of Referring Expressions: Pronouns, i.e., she, he, or it, are set in the

text, replacing repetitive occurrences of nouns.

• Insertion of Discourse Markers: Conjunctions, such as afterwards or subse-

quently are added to the beginning of sentences for better readability.

2.2.4. Step 3: Surface Realization

In this last step, grammatically correct sentences are produced. This requires to find a

suitable word order, a correct inflection of verbs, punctuation and capitalization as well

as introduction of function words [7].

As result of the whole generation process, a natural language text, describing the input

business process model, is generated.

2.2.5. The ProcessToTextTransformer Prototype

The ProcessToTextTransformation (PTTT) prototype, a Java application, is created by

Henrik Leopold and Sergey Smirnov. It translates BPMN process models into natural

14

2.2. Fundamentals on Generating Natural Language Texts from Business Process Models

Figure 2.6.: PTTT Process Structure

language text, using RPSTs and DSynTs. Furthermore, it makes use of WordNet and

the Stanford parser. The execution of translation is as described in the previous sections.

The PTTT component uses Java class-based data structures to represent business

process models. An overview over the classes used for business process representation

is shown in 2.6.

A ProcessModel holds the Events, Arcs (control flow edges), Activities, and Gateways

of the business process model. Furthermore, it can have multiple process parts from

type ProcessModel. This is required because of the possibility of disrupted control flow

by events.

Events, Activities, and Gateways inherit the class Element, which holds the Lane and

Pool the Element is in. An Activity can hold multiple Annotations, actions and business

objects descriptions, of the Activity. Activities, Gateways and Events have according

Type classes. An Arc holds a source and target Element.

15

2. Fundamentals

The three steps are represented by three classes with the respective steps name, e.g.,

the surface realization step is done by the class SurfaceRealizer.

For the step of surface realization, the publicly available realizer named RealPro from

CoGenTex is used, that allows to generate grammatically correct sentences out of XML-

based DSynTs [13]. Therefore, the problems mentioned in Section 2.2.4 are solved. The

result is a string, using tabs and line-breaks for structuring [7].

2.3. Fundamentals of HTML and Java Script

This section gives a small introduction of HTML and Java script, since both langauges

are used to create a custom component, described in Section 5.1. Therefore, Section

2.3.1 describes the principles of HTML. Finally, Section 2.3.2 describes the principles of

Java script.

2.3.1. HTML

HTML is a mark-up language for internet websites. The newest version, HTML5, is a

cooperation between the World Wide Web Consortium and the Web Hypertext Applica-

tion Technology Working Group [14]. To create a new website, a programmer writes a

new HTML document that consists of the structural parts of the website, e.g., headlines,

navigation area, footer, and header. Therefore, several elements exist with different

structural semantic. In this thesis, the used elements are:

• <p>: This is a paragraph.

• : This is a section.

• : This is an unordered list.

• : This is an item in an unordered list.

• <div>: This is also a section in a document.

Such elements are called tags. Each tag consists of two types: an opening (e.g., <p>)

and a closing (e.g., </p>) tag. Furthermore, tags can be nested. So the nesting ’<p>

16

2.3. Fundamentals of HTML and Java Script

 </p>’ is allowed. However, an opened nested tag must close before the

tag in that its nested. Therefore, ’<p> </p> ’ is not allowed.

Every tag has attributes. The used attributes in this thesis are:

• id: This is an attribute that holds an unique identifier string.

• onclick: This attribute can link to Java script functions, when the element is clicked

with the left mouse button.

• oncontextmenu:This attribute can link to Java script functions, when the element

is clicked with the right mouse button.

• contentEditable: This attribute shows, if the content of an element is allowed to

be edited. It is of type boolean.

For example, a div element with the attribute contentEditable set ’true’ looks as follows:

’<div contentEditable="true"> ... </div>’

For further features of HTML, please visit the website of W3C that introduces HTML [14].

2.3.2. Java script

Java script is a light weight scripting language. It can be inserted into HTML pages and

executed by all modern web browsers [15]. Java script can manipulate HTML documents

at runtime. For this, there are several functions (functions are the equivalent to methods

in Java). An example for Java script is shown in Section A.3. Functions are created as

follows (source code line 11): ’getId = function(){return id;};’

’getId’ is the name of the function, then the word ’function’ indicates that we want a new

function. In the brackets after function, one can say what parameters this function shall

have. Important: Java script has no strict type system. For example, in a variable can

first hold an integer and afterwards a string. In the swung brackets is the code to be

executed after function call. In this case, the value of an id variable is returned.

With the function ’getElementsByTagName(tagName)’, an array of all elements in the

HTML document with the specific tag name is returned. Line 34 shows an call of this

17

2. Fundamentals

function for a div element and then gets the first one by pointing of first element of the

array with ’[0]’.

If an element is hold in a variable, one can directly access the elements attributes by the

point operator. An example is given in line 37, where the div elements attribute ’onclick’

is set to a string with one blank. For further Java script feature, please visit the website

of W3C’s JavaScript tutorial [15]

18

3
Integration of ProcessToTextTransformer

into proView

In the following the generation of natural language process descriptions, described in

Section 2.2, through the integration of parts of the PTTT prototype, described in Section

2.2.5, in the proView prototype, is addressed.

At the end of this section, it shall be possible to generate a natural language process

description out of CPMs or process views in the proViewClient, view them in a new made

Appearance, and export the natural language process description as a PDF file.

Therefore, Section 3.1 introduces the graphical user interface for the natural language

process description. Section 3.2 describes the new packages added to the proViewClient.

Section 3.3 shows the class level integration step. Section 3.4 describes the changes

made on code level in both the proViewClient as well as the PTTT prototype. Finally,

19

3. Integration of ProcessToTextTransformer into proView

Section 3.5 introduces personalization features of the PTTT prototype combined with

the proViewClient.

3.1. Design of the User Interface

Since the proView framework allows to use different appearances for the visualization

processes, it is required to create a new appearance for the natural language-based

visualization concept. This appearance is called NLAppearance, where as ’NL’ stands

for Natural Lanugage, shown in Figure 3.1.

Figure 3.1.: NLAppearance GUI

The goal of the user interface is to simulate a paper sheet to present the natural language

process descriptions to the user. Furthermore, the header of this paper sheet would

20

3.2. Package Level Integration

include the logo of the respective company. The header also contains informations like

the name of the process, the name of the view, if a view is visualized, the version of the

process and the current date. Sticky notes attached to the paper sheet are used for user

interaction with the system , e.g., switching between an view and an edit mode or export

the process description as a PDF file, replacing an classical menu structure.

3.2. Package Level Integration

A package for the PTTT component is created, called ’de.unium.proView.wi.utils.processToText’,

to maintain all classes of the PTTT component in the original structure. However, classes

for RPST generation are in a package called ’de.hpi.bpt’. Furthermore, a package for the

natural language appearance is created, called ’de.uniulm.proView.wi.appearances.TEXT’.

An overview of the proView prototype packages, involved in the integration of the PTTT

component in the proViewClient, is shown in Figure 3.2. The new packages are high-

lighted with red squares.

Figure 3.2.: The proView Prototype Package Structure

21

3. Integration of ProcessToTextTransformer into proView

3.3. Class Level Integration

With the information from Section 2.2.5 and Section 2.1.1, the need for a process

translation from the proView prototype template to the PTTT process structure orig-

inates. Therefore, a new class is created, called TempToNLModelConverter, in the

PTTT prototype. The translation is described in Section 3.4.3. Furthermore, the class

NLAppearance, the user interface class, described in Section 3.1, is created.

The instantiation of the PTTT prototype, with its main class ProcessToTextConverter, is

done at the start of a new session, due to performance issues on start up. These issues

results of the use of WordNet and the Stanford parser, which instantiation take a lot of

time, reading their respective configuration file.

The class, that instantiates the ProcessToTextConverter class, is called Appearance-

Service. It provides useful operations and values for appearances. Therefore, the

NLAppearance is connected with the AppearanceService. As shown in Figure 3.3,

multiple NLAppearances use one instance of ProcessToTextConverter.

The GUI elements of the NLAppearance are multiple Label objects for the header of the

document, two Embedded objects as representation of the sticky notes and one for a

company logo in the header, and a Java script component called NLTextArea, described

in Section 5.1, that holds the natural language process description. The proViewClient

can automatic recognize appearances. Therefore, it investigates the ’appearances’

package for classes that inherits the abstract class AAppearance. Because of this

recognition system, the NLAppearance inherits from AApearance.

The class ModellingService provides the process operations to appearances. The

classes HTMLParser and PDFExporter are described in Section 3.5. The class Selec-

tionHandler is presented in Section 5.2, the class TextInvestigator in Section 5.3. The

class diagram of NLAppearance is shown in Figure 3.3.

22

3.4. Code Level Integration

Figure 3.3.: NLAppearance Class Diagram

3.4. Code Level Integration

This section describes the changes of classes, both in the PTTT and the proViewClient,

made for the PTTT component integration in the proViewClient.

Section 3.4.1 describes the changes in classes of the proViewClient. Section 3.4.2

shows the changes in the PTTT prototype’s classes. Finally, Section 3.4.3 introduces

the algorithm for proView process model to PTTT process structure.

23

3. Integration of ProcessToTextTransformer into proView

3.4.1. Changes in Classes of the proViewClient

The classes changed for PTTT prototype integration are AppearanceService and ProViewWI,

the entry point class of the proViewClient. In the AppearanceService, a new attribute

is created for the ProcesstoTextConverter class. Additionally, a String type attribute is

created for the agent’s name, logged in this session. A nested class called InitConvert-

erThread, which inherits the class TimerTask, is made in ApearanceService, to call it

in the instantiation process of proViewClient, having a decoupled thread for the PTTT

instantiation.

Because of the need for reading the configuration files of WordNet and Stanford parser,

ProViewWI has a new String attribute, that holds the base directory of the sessions

instance.

The involved classes in ProcessToTextConverter instantiation are as follows:

• VaadinRequest: A generic request to the Server [16].

• ProViewWI: Inherits class UI, entry point of the session [16].

• TimerTask: A task that can be scheduled for one-time or repeat execution [17].

• LoadingInterfaceTask: A nested class in ProViewWI, inherits TimerTask.

• AppearanceService: A class that provides generic operations for appearances,

e.g. getAvailableHeight, a method that returns the available height in the browser

window.

• InitConverterThread: Nested class in AppearanceService, inherits TimerTask.

This task instantiates the ProcesstoTextConverter class.

The instantiation process is shown in Figure 3.4. First, a VaadinRequest comes to the

server, starting a new session of proViewClient, instantiating ProViewWI [16]. Then

ProViewWI starts its init method. First the init method determines the base directory

of the session with the help of VaadinRequest. Then, the init method calls the method

initLogin. In this method, a LoginWindow is instantiated, a window where the user

can log in. Futhermore, at the end of the method, it starts the LoadingInterfaceTask.

24

3.4. Code Level Integration

There, the Method initCtrl from ProViewWI is called. In initCtrl, a new instance of

AppearanceService is made.

Figure 3.4.: Instantiation of ProcesstoTextConverter at Start of proViewClient

In the constructor of AppearanceService, the InitConverterThread is started, creating a

new instance of ProcessToTextConverter, which is returned to AppearanceService.

Because of a implemented appearance registration in the proViewClient, changes for

the new NLAppearance aren’t necessary.

The generation of the natural language process description starts in the NLAppearance,

directly after a process model is updated. The NLAppearance calls the ProcessTo-

TextConverter’s method convertToHTML. From this point, all operations are done in the

PTTT prototype as described in Section 2.2.

3.4.2. Changes in Classes of the ProcessToTextTransformer Prototype

To match every sentence with its respective activity, an id attribute is implemented in the

DSynT class. Because of the sentence aggregation, described in Section 2.2.3, each

25

3. Integration of ProcessToTextTransformer into proView

DSynT can hold up to two ids, a mainId and an optionalId. The ids are given to the

DSyntTs in text planning phase, at their creation.

The process description in the proViewClient shall be represented by a HTML-based

string. Therefore, the class SurfaceRealizer, which realizes the sentences and combined

them to the text, of the PTTT prototype has to be changed, to return a HTML-based

string instead of a simple one. A new algorithm has to be created to transform DSynTs,

as described in Section 2.2.3, into a HTML-based string.

The algorithm goes through a list of DSyntS, already in right order of occurrence. For

each activity, the algorithm creates a paragraph tag, with the respective sentence in it.

Additionally, the tag saves respective activity id in its id attribute. For each gateway, a

new unordered list tag is created, representing the area between the splitting and the

according joining gateway. For each branch within such an area, a list item tag is created,

representing one branch from the splitting to the joining gateway. Furthermore, respective

closing tags shall be created in order to keep an correct structure. To recognize new

gateways, both joining and splitting, the sen_level attribute of DSynT’s are used. A

deeper level than the previous means, that there is a minimum of one new gateway,

splitting the control flow. A lower level than the previous means, that there is a minimum

of one joining gateway. Additionally, a attribute for bullet points is used. It is a boolean

called sen_hasBullet. An simple example of one sentence with a tag and id looks like:

’<p id="0"> The waiter prepares the bill. </p>’.

The basic algorithm for sentence realization to HTML is shown in Section A.1. The level

and lastlevel variables are the sen_Level of the DSynTs. First, with help of the RealPro

realizer, the given XML-based DSynT is transformed into a natural language sentence.

Then, multiple checks for gateways, either joining or splitting, has to be made, using the

level attribute. If the level of the current sentence is 0, this means that it is in no gateway

branch. Therefore, the only thing left is to close possible ’’ and ’’ tags until the

right level is reached. If the level is greater than the last level, a new splitting gateway

is the cause. Therefore, opening according tags has to be performed. A smaller level

than the previous one is caused by one or more joining gateways. As a result, according

tags has to be closed. However, a check for bullet points has to be performed, cause the

26

3.4. Code Level Integration

Figure 3.5.: A Students Morning Routine

current sentence might be the beginning of a new branch. The last case is the same

level of the current and previous sentence. This is caused by either two sentences in the

same branch or a new sentence in a new branch of the same gateway. Therefore, the

sen_hasBullet attribute has to be checked. An example process, shown in Figure 3.5, is

translated into following text:

1 <p>The process begins, when the student wakes up.</p>

2 <p> Then, he goes to the toilet.</p>

3 <p> Afterwards, the process is split into

4 two parallel branches: </p>

5

6 <p> The student takes a shower. </p>

7 <p> The student brushes his teeth.</p>

8

9 <p> Once all two branches were executed, the student

10 eats the cereals. </p>

11 <p> Subsequently, the process is finished. </p>

The missing tags for a valid HTML document are no problem, because the NLTextArea

integrates the natural langauge process description as part of the website.

The given algorithm described in the context of generating natural language texts from

business process models [7] is still used for subprocess generation, where it is not

necessary to have a HTML document as representation of the natural language process

description.

27

3. Integration of ProcessToTextTransformer into proView

3.4.3. The proView Prototype Template to ProcessToTextTransformer

Process Structure Translation Algorithm

Remembering Section 2.1.1 and Section 2.2.5, a solution to the different process model

structures has to be found. As mentioned earlier in Section 3.3, a TempToNLConverter

is created to foster this issue. This section describes the algorithm for proView prototype

template to PTTT process structure translation.

One problem by translating the proView template into the PTTT process structure is the

different solution of agent handling. In the proView prototype, an agent is saved in each

node, while in the PTTT prototype, the agents are saved in classes (Lanes and Pools).

The implementation for this translation is shown in Section A.2. First, it iterates through

all nodes of the proView prototype template, generating according elements of the

PTTT process structure. While creating, the agents of the activities are used for the

generation and assignment of respective Pools and Lanes to the element. If a new

agent occurs, a new lane is created, else the according existing one is used. Then, the

algorithm iterates through all control edges of the proView prototype template, creating

Arc elements with an unique identifier, the control edges label and their respective

source and target elements. All created Elements (Activites, Arcs, and Events) are

added to the ProcessModel.

However, the implementation exists in a different form for subprocesses. The only

changes are, that the start and end event of a subprocess need to be added manually.

This is required because of the missing start and end nodes in the subprocess description

extracted from the proView prototype template.

The PTTT prototype doesn’t know data elements like the proView framework. These

data elements should be holding their respective id, to have a matching between text and

process model. Because the natural language text is represented by a HTML document,

the ’’ tag is chosen for representing data elements. Their id is saved in the id

attribute of the tag.

To foster this issue, a template-based solution is applied in the step of surface realization.

If an activity reads data elements the string ’,reading [respective data elements separated

28

3.5. Personalization Features

with comma]’ is added to the end of the activity corresponding sentence. If an activity

writes a data element, the string ’,writing [respective data elements separated with

comma]’ is added. For the case of an activity reading and writing data elements, first the

string for reading, then the string for writing is, separated with ’ and ’, is applied. The

example in Section 3.4.2 of a HTML sentence, added with a reading of data element

customer orders and a writing of data element bill counter, looks like follows:

’<p id="0"> The waiter prepares the bill, reading customer orders

and writing bill counter. </p>’

3.5. Personalization Features

The ProcessToTextTransformer is able to personalize natural language-based process

descriptions by providing a specific agent at start of the generation process [7]. For this, a

connection between the proView account administration and the created instance of the

PTTT prototype is made. If a logged in user’s role occurs in the natural language-based

process descriptions, it is replaced by ’you’.

Additionally, an export feature for natural language-based process descriptions is made,

using the iText library [18]. The generated PDF file is shown in a new window. For

this, a new class has to be implemented, called PDFExporter. To have a company

header at each new page, the nested class CompanyHeader inherits the class Pdf-

PageEventHelper. Whenever a new page is generated, a so called NewPageEvent is

fired, triggering the onStartPage() method of PdfPageEventHelper. Therefore, a pro-

grammer can determine what shall happen when a new page is generated by overriding

this method. Luckily, iText provides the XMLWorkerHelper class that automatic gener-

ates PDF documents out of valid HTML documents [18]. Therefore, no further algorithms

are needed for HTML to PDF conversion. An overview over the PDFExporter class is

shown in Figure 3.6.

In Vaadin, opening a resource is done with the method open(resource: Resource,

windowName: String, tryOpenAsPopup: boolean) of class Page [16]. A FileResource,

which inherits Resource is a file or directory on the local filesystem [16]. The window-

29

3. Integration of ProcessToTextTransformer into proView

Figure 3.6.: The PDFExporter Class

Name is the name of the newly opened window. If the parameter tryOpenAsPopup is

set true, it is tried to force the window to open in a new window instead of a new browser

tab. So, to open the PDF file, one has to created a File, write the PDF content in it, wraps

it in a FileResource, and opens this FileResource with the method mentioned before.

To create a valid HTML document, a HTMLParser class is implemented. It can sanitize

HTML documents, i.e., wrapping the content with ’<html>’, ’<body>’ and ’<head>’ tags

correctly. Additionally, it adds the respective doc-type. The strings for this purpose

are hold in static variables called HTML_START and HTML_END. The HTMLParser

can prepare HTML documents for PDF export, i.e. sanitizing the HTML document and

removing all paragraph tags. This is required, because the XMLWorkerHelper integrates

all line breaks of paragraph. For readers unexperienced in HTML: Before and after a

paragraph, a line break performs, just how it should be in a normal texts paragraph.

However, the HTMLParser has two more methods used later on for natural language

modeling. They are called getTextFromNode(n: Node) and getIdFromNode(n: Node).

Both are receiving an ’org.w3c.dom.Node’ and extract the respective value. An overview

over the HTMLParser class is shown in Figure 3.7.

The process of exporting a natural langauge process description is shown in Figure 3.8.

30

3.5. Personalization Features

Figure 3.7.: The HTMLParser Class

Figure 3.8.: The Process of Exporting a Natural Language Process Description as PDF

When the user clicks the PDF Export button, the click() method in NLAppearance is

triggered. Then NLAppearance creates a temporary file in the file system. Afterwards,

NLAppearance calls the prepareForPDF method from the HTMLParser. Subsequently,

the HTMLParser removes all paragraph tags in the HTML-based string and calls its

own sanitizeHTML method to create a valid HTML document string. After the HTML

document is valid, it is returned to the NLAppearance. Then, the NLAppearance calls the

PDFExporter’s method exportToPDF. With the help of a call of the XMLWorkerHelper’s

method parseXHTML, the HTML document is written in the file created by NLAppearance.

31

3. Integration of ProcessToTextTransformer into proView

After this is done, the NLAppearance creates a FileResource with the previous created

file. Then, the NLAppearance calls the Page’s open method. As result of this sequence,

a new window is opened where the generated PDF is shown in the browsers native PDF

viewer.

32

4
Natural Language-based Modeling

This Section discusses the modeling of process models based on changes in a natural

language process description. Section 4.1 introduces challenges of natural language-

based process modeling.

The goal after this section is, that a user can model a process in the proView project

either with her mouse, or write changes directly into the natural language process

descriptions that affect the process model.

Therefore, Section 4.2 introduces two approaches for natural language-based modeling.

33

4. Natural Language-based Modeling

4.1. Challenges in Natural Language-based Process

Modeling

When facing natural language processing in the context of process modeling, four

challenges are important [19]:

• C1: Semantics and Syntax: The difference between semantic and syntactic layer

of a text.

• C2: Atomicity: Which part of a sentence should be integrated in a process model?

• C3: Relevance: Is a sentence relevant for the process model?

• C4: Referencing: How should relative references between word or sentences,

and their content, be resolved?

In the following, the different challenges are described within distinct sections. Section

4.1.1 describes the challenge C1. Section 4.1.2 introduces in challenge C2. Section

4.1.3 shows challenge C3. Finally, Section 4.1.4 describes challenge C4.

4.1.1. C1: Semantics and Syntax

To describe one semantic concept, there are multiple possible syntactic patterns in a lan-

guage [20]. Furthermore, semantic concepts and syntax structures are not necessarily

related to each other. However, to create a process model, it is inevitable to extract the

agent, action and business object, out of sentences. For example: an activity shall be

labeled in an verb/object style. Therefore, the respective resource and action must be

extracted. If one want to create Lanes (in BPMN) or, as in proView, save the agent in

the activity, the agent of the sentence must be extracted as well. As an example see

following two sentences:

• The waiter takes the order.

• The order is taken by the waiter.

34

4.1. Challenges in Natural Language-based Process Modeling

While ’waiter’ is the syntactic and semantical subject, in sentence two, the ’order’ is the

syntactical subject and ’waiter’ is only named in a prepositional phrase. However, the

semantic meaning of these two sentences is still the same.

One of the most difficult problems is the recognition of rhetoric structures [19], since

conditions and orders of activites are important to process modeling. For example: ’The

personal informations of new customers are asked.’

As you can see, the activity of asking for personal informations is only needed in case of

a new customer. In case of a already known customer, this activity can be skipped.

4.1.2. C2: Atomicity

The challenges of Atomicity fosters the problem of which parts of a text shall be mapped

to process model tasks. It is possible, that there is a 1-1 mapping for some sentences.

However, a sentence like [19]: ’The GO or the MPON confirms the invoice with payment

advice to the MPOO or the MSPO, or the GO or the MPON rejects the invoice of the

MPOO or the MSPO.’ The phrase requires four activities to be mapped correctly, i.e.,

(GO: ’confirm invoice’, ’reject invoice’) and (MPON: ’confirm invoice’, ’reject invoice’).

There is also the possibility of having one activity split into several sentences [19]: ’Then

the food is prepared. That is done by the kitchen.’ The reference done with the word ’that’

indicates, that the second sentence adds further information to the first one. Therefore,

a check of whether a combination of two sentences, to create one activity, makes sense.

4.1.3. C3: Relevance

Textual process descriptions, made by a process participant, can consist of examples,

to clarify abstract parts of the business process [19]. However, these examples are not

wanted in a process model, because it should be a generalized, abstract, representation

of the describing business process.

Furthermore, the issue of using meta level descriptions, to describe the process, is

important. Using meta level descriptions means, that an author doesn’t explain the

35

4. Natural Language-based Modeling

process step to be conducted, but the process model. This results in phrases as follows

[19]:

• ’After the Process starts, a Task is performed to [...].’

• ’If the design fails the test, then it is sent back to the first Activity.’

Since the information of these sentences will be explicitly presented in the process

model, these additional meta informations are just an interference, to complicate the

parsing of the text.

With the given examples, the need for an effective filtering technique, where certain

relative sentences, examples and meta informations are identified and ignored, is stated.

4.1.4. C4: Referencing

Referencing can be divided into different categories. These are: anaphoric and textual

[19]. Textual references consist of forward, backward, and jump references.

To produce process models from natural language text, anaphoric references are a

problem. Anaphoras includes pronouns (e.g. ’my’, ’he’, ’who’), determiners (e.g. , ’this’),

or phrases that describe one object with different expressions (e.g., ’Angela Merkel’,

’Federal Chancellor of Germany’) [19]. These Anaphoras has to be resolved for the

generation step, to ensure a correct process model. Furthermore, determiners like ’there’

are a special problem. For example: The sentence ’There are times, when [...]’ refers

to a concept which isn’t linguistically described in the text, but in its context. The word

’it’ takes a special place as well, since it can be used as a pronoun, but also as an

emphasizing word (e.g., ’Sometimes it also happens [...]’[19]).

A forwards reference is used when the author wants to describe an alternative path to

the same goal as in the main control flow. For Example [19]: ’Of course, asking the

customer whether he is generally interested is also important. If this is not the case,

we leave him alone, except if the potential project budget is huge. Then the head of

development personally tries to acquire the customer. If the customer is interested in

the end, the next step is [...]’

36

4.1. Challenges in Natural Language-based Process Modeling

In the first sentence, the customer can be interested or not. Thus, two branches are

generated. The following describes the goal of having getting interested customer. So,

there is one branch, that is executed when having a interested customer, and one, that

describes a way to get an uninterested customer interested. Therefore, if the second

branch can get the customers interest, the control flow can go on as if it was using the

first branch.

A backwards reference is used for loops, whenever a task is done repetitively. Example

sentences could be:

• ’The proposal is checked again.’

• ’The proposal is send back.’

• ’The next proposal is checked’

All these sentence use indicating words for loops, i.e., ’again’, ’back’, and ’next’. There-

fore, an algorithm may use this fact for loop detection.

Jumps are used in processes with different results [19]. In contrary to forward references,

an author follows one branch after a split and then returns to the split position for the

next branches description. For example: ’The customer can pay with credit card or cash.

If the customer pays with credit card, he [...]. If the customer pay cash, he [...].’

All three types of textual references have to be recognized in process model generation.

Problems are whenever meta information is used to describe the reference. In those

cases, the syntactic level can’t resolve the reference, and it has to be done on semantic

level. This requires knowledge of the domain [19]. Implicit conditions are another

problem that’s resolution need domain knowledge, sine implicit conditions don’t exist on

syntactic level.

37

4. Natural Language-based Modeling

4.2. Approaches to Natural Language-based Process

Modeling

This section introduces two approaches in the proView project natural language-based

process modeling. Section 4.2.1 introduces a mouse-based modeling approach. Section

4.2.2 discusses a text-based approach.

4.2.1. A Mouse-based Natural Language Process Modeling Approach in

the proView Project

In the proView prototype, a mouse-based process modeling approach is used for process

modeling. There, a process modeler can select nodes and perform operations proposed

by the proView prototype according to the selection. Figure 4.1 shows a selected node

(1) and the proposed create and update operations (2). The proView prototype now

combines this modeling mechanics with the natural language process description. A

process modeler can select the activities within the text, and on right click, the proView

prototype proposes operations.

Figure 4.2 shows the same process of Figure 4.1 in natural language process description

with two selected sentences (a) and the possible operations (b). Furthermore, the

branch and gateway highlighting mechanism is shown. When the mouse hovers a

branch, the respective branch is highlighted with a dotted square (c). When it hovers an

area between two corresponding gateways, this area is surrounded with an solid square

(d). Furthermore, the highlighting mechanism also highlights selected sentences (a) by

giving it a gray background. What can’t be seen is the highlighting of data elements in

the natural language process description. Whenever a data elements representation is

selected, the background changes to green, when the data element is read, or red, when

the data element is written. Long texts can become confusing to the reader. Therefore,

this mechanism is made for better structural understanding and for increased overview of

the natural language process description. With the same mechanics as in graph-based

process modeling, all the operations of graph-based process modeling in the proView

38

4.2. Approaches to Natural Language-based Process Modeling

Figure 4.1.: Classic Mouse-based Process Modeling in proView

prototype are possible in the natural language text mouse-based approach. The ’add

activity’ operation, as example, is done as follows:

1. Select sentences as shown in Figure 4.2 and click right.

2. When right clicked, a context menu opens with the context item ’insert Node

between’.

3. Select the mentioned item. A new window, shown in Figure 4.3 opens, where the

user writes the new activities name.

4. Click ’OK’.

5. The new activity is created, as described in Section 2.1.2.

6. Then, the natural language process description is newly generated as described in

Section 2.2.

7. Finally, the updated process model is shown as natural language process descrip-

tion.

C1, described in Section 4.1, has little importance, since the user doesn’t use full

sentences to create an activity, but labels them like in a graph-based solution. Therefore,

the structural problems occurring with C1 are not possible. C2 doesn’t concern in

this approach as well, since the process modeling mechanism forces a 1-1 mapping of

sentences. However, C3 is important. A user can add new activities to the process model,

so she can add unwanted activities as well. C4 is also of great concern, since referencing

in process models shouldn’t be done. An approach to cut the use of references, in this

context especially Anaphoras, is the spacial differentiation between process text and the

39

4. Natural Language-based Modeling

Figure 4.2.: Natural Language Mouse-based Process Modeling in proView

input interface. Whenever an activity shall be added or updated, a new window opens

where the label for the activity can be written. The user can’t see the natural language

process description and, hopefully, may not be ensnared to use references.

The semantical level still needs to be tackled by the user. However, since the structure

of a process model is solely changed with given operations, the structural problems,

concerning natural language process modeling, are solved with this approach.

Figure 4.3.: Add Activity Window

4.2.2. A Text-based Natural Language Process Modeling Approach in the

proView Project

In contrary to the mouse-based process modeling approach described in Section 4.2.1,

the text-based process modeling approach allows the user to freely write in the generated

40

4.2. Approaches to Natural Language-based Process Modeling

natural language process description. Then, after the user has saved his changes, the

differences between the original text and the user changed one are resolved. The found

differences lead to the use of operations mentioned in Section 2.1.1 until all differences

are integrated in the process model. This approach divides the structural and semantical

level of processes, i.e. the structure is given by the texts structure and the semantic is

given by each sentence. Therefore, all structure changing operations of proView have to

be mapped on text structures, shown in Table 4.1.

Operation Change in Text

Delete Activity Delete corresponding sentence

Add Activity Write new sentence

Add Gateway Indicating sentence and new bullet point

Add Data Element Sentence context (element not used in text until now)

Delete Data Element Sentence context (element not used in text)

Reduce Activity(-ies) Set sentences in brackets

Aggregate Activites Set sentences in brackets and write a replacing sentence in front

Create View From Selection (-)

Show Subprocess When hovering a sentence a tool-tip pops up

Reduce Data Element(s) (-)

Aggregate Data Element(s) (-)

Table 4.1.: View Update Operations

The add and delete operations for activities are straight forward: a new sentence is a

new activity, a missing sentence is deletion of an activity. However, adding a gateway

is a bit more complex. When the writer wants to add a new gateway, she first writes

an introducing sentence, where the type of the gateway must be explained (e.g., ’AND’,

’XOR’, ’LOOP’), this can happen either with meta information, or a sentence, that

semantic is clearly targeting one type. This sentence needs to be ended with a colon,

indicating that a new gateway shall be created. When pressing enter after a colon, a

new bullet point is created. There, the user can write new sentences to fill the branch

41

4. Natural Language-based Modeling

with activities. So, to recognize the textual structures at writing, proView listens to key

input and identifies the input of colons, enter combination.

Data elements are a special treat in this approach. Because data elements are only

represented in the sentences of activities, they can only be modeled by using the

sentence context. Adding a new data element means, that a sentence is writing,

because data has to be written before it can be read, a new data element, unknown

to the process model. Deleting a data element means to delete all occurrences of the

respective data element in every sentence. Therefore, the adding and deleting of data

elements is done in the semantical part.

For the create view operations (’reduce’, ’aggregate’), the writer has to set the sentences

to be reduced or aggregates in brackets. The difference between the respective opera-

tions is, that for aggregation, a sentence that replaces the elements to be aggregated

must be inserted before the brackets. An Example:

• Reduce: (The waiter takes the order. Then, he serves the food.)

• Aggregation: The waiter serves the customer (The waiter takes the order. Then,

he serves the food.).

As one can see, the brackets at the aggregation stand within the replacing sentence.

The new abstract activity would be ’Wait on Customer’.

However, the reduction and aggregation of data elements, because of their multiple

occurrence, is not possible in this approach. Consider the following: The writer reduces

data elements in one sentence, but they occur in another one. There a two possible

outcomes from this action: First, the new abstract data element is only used by this

activity. Second, all activities using these data elements are writing and reading now in

the abstract data element.

Finally, a new view from selected elements cannot be performed, because in this

approach, there is no selection.

On semantical level, an algorithm extracts Agent, Action, and Resource of each sentence.

Furthermore, it recognizes data elements and calls according operations.

In order to have this approach work, some rules for the writer have to be made:

42

4.2. Approaches to Natural Language-based Process Modeling

• One sentence is one activity.

• Don’t reference.

• Don’t writes useless sentences.

With these constraints and the division of structural and semantic level, the challenges

C1-4 are weakened enough to have this approach work. With no references, there

can be no structural information in sentences and there is a 1-1 mapping of sentences

and elements forced. The third constraint is not necessarily needed for this approach,

because this is a general constraint for all process modelers.

So, after the writer writes his changes in Step 1 and saved them, Step 2 is processing.

There, the differences between the old process view and the new process description

are identified. Then, according to the differences, the create and update operations are

called. First, all ids, that are no more in the natural language description are delete

in the process view. Then the process views elements and the process descriptions

sentence are iterated from start to end. In every iteration, the ids of the current sentence

and element are compared. If they match, the semantic information is compared (agent,

action, and resource). If they match, the next iteration step starts, else an update

operation is performed. If the ids don’t match, the sentence is evaluated, whether it is

an activity or gateway. If it is an activity, a new activity is added. If it is an gateway, a

new splitting gateway with the all its branches and their activities, and the corresponding

joining gateway are added.

Because we have made the constraints before, we can easily determine the actors,

actions and resources with the help of the Stanford parser. First, we tag the sentence

with the Stanford parser. Then, we determine the voice(active or passive). This can

be accomplished by searching for the occurrence of a present form of ’be’ and a past

participle verb. If the sentence is in active voice, then all nouns before the first verb are

the agent, the verb is the action and all nouns behind are the resource. In passive voice,

the past participle verb is the action, and the previous nouns are the resource. In passive

voice, we have to further determine if there is a prepositional phrase that describes the

agent. Therefore, we check for prepositional phrase indicators e.g. ’by’. The noun in the

prepositional phrase is used as agent. For example, consider the sentences:

43

4. Natural Language-based Modeling

• The waiter takes the order.

• The order is taken by the waiter.

Their respective tagged sentences are:

• The(DT) waiter(NN) takes(VBZ) the(DT) order(NN).

• The(DT) order(NN) is(VBZ) taken(VBN) by

IN the(DT) waiter(NN).

’(DT)’ stands for a determiner, ’(NN)’ stands for noun (singular or mass), ’(VBZ)’ stands

for verb, third person, singular, present, and ’(VBN)’ stands for verb, past participle. [11]

Because the first sentence is active voice, we take ’waiter’ as agent, ’takes’, in base form,

as action, and ’order’ as resource. Because the second sentence is passive, we take

’order’ as resource and ’taken’, in base form, as action. Furthermore, the preposition

phrase indicator ’by’ appears, so we take ’waiter’ as agent. For both sentences, the new

activity would be labeled ’Take Order’ with the agent ’waiter’.

As example for process modeling, a process view and three changes are shown in

Figures 4.4, 4.5, 4.6, and 4.7. The changes made in the natural language process

description are as follows:

First, the natural language generated text from the start process view:

1 The process starts with a decision. Then, the process is split

2 into two parallel branches:

3 -The Project Manager views the order and schedules the

4 master list. Afterwards, the Project Manager creates the

5 folder structure and converts the order.

6

7 -The Project Manager asks the customer.

8 Subsequently, the process is finished.

In the first step, we recognize that it would be appropriate for the project manager to

evaluate the answers of the customer on his questions. Therefore, we add an according

sentence to the process description:

44

4.2. Approaches to Natural Language-based Process Modeling

1 The process starts with a decision. Then, the process is split

2 into two parallel branches:

3 -The Project Manager views the order and schedules the

4 master list. Afterwards, the Project Manager creates the

5 folder structure and converts the order.

6

7 -The Project Manager asks the customer. Then,

8 the Project Manager evaluates the customer answers.

9 Subsequently, the process is finished.

However, we miss the project managers duty of budget planning. So we add a new bullet

point and sentence to the process description:

1 The process starts with a decision. Then, the process is split

2 into two parallel branches:

3 - The Project Manager views the order and schedules the

4 master list. Afterwards, the Project Manager creates the

5 folder structure and converts the order.

6

7 - The Project Manager asks the customer. Then,

8 the Project Manager evaluates the customer answers.

9

10 - The Project Manager manages the project budget.

11 Subsequently, the process is finished.

Well, after another look on the process view, we decide that we don’t need the trivial

information of asking a customer and then evaluating the answers. Therefore, we want

to combine those two sentences. Because the PTTT prototype uses the word ’and’, as

described in Section 2.2.3. We have to use an more nonnative way to explain what we

want:

1 The process starts with a decision. Then, the process is split

2 into two parallel branches:

45

4. Natural Language-based Modeling

3 - The Project Manager views the order and schedules the

4 master list. Afterwards, the Project Manager creates the

5 folder structure and converts the order.

6

7 - The Project Manager handles the customer(The Project

8 Manager asks the customer. Then, the Project Manager

9 evaluates the customer answers.).

10

11 - The Project Manager manages the project budget.

12 Subsequently, the process is finished.

By bracketing the sentences that shall be combined and setting a new sentence in

front, we tell proView to use the Aggregate(ID1, ID2) operation. Therefore, proView

needs to identify such constructs correctly. Then, it can use the ids saved within the

sentences, remember Section 3.4.2, to aggregate the respective activities. The name for

the abstract activity is extracted from the sentence before the brackets.

Start Process View

Figure 4.4.: Example Process Modeling: Basic

46

4.2. Approaches to Natural Language-based Process Modeling

Add_Activity(’Evaluate Customer Answers’)

Figure 4.5.: Example Process Modeling: Change one

Add_Activity_Parallel(’Manage Project Budget’)

Figure 4.6.: Example Process Modeling: Change two

Aggregate(’Ask Customer’, ’Evaluate Customer Answers’)

Figure 4.7.: Example Process Modeling: Change three

47

5
Implementation of Natural Language

Process Modeling Approaches in the

proView Prototype

This chapter introduces the implementation of the mouse-based and text-based process

modeling approach described in Section 4.2.1 and 4.2.2. Section 5.1 introduces the

NLTextArea component. Section 5.2 shows the implementation of the mouse-based

process modeling approach. Section 5.3 introduces the implementation of the text-based

process modeling approach.

49

5. Implementation of Natural Language Process Modeling Approaches in the proView Prototype

5.1. The Natural Language Text Area

As mentioned in Section 3.4.2, the natural language process description is structured as

a HTML-based text, using ’<p>’ for activities, ’’ for gateways, and ’’ for branches.

The mouse-based approach needs to detect click events on activities, for modeling

mechanics. Therefore, the Natural Language Text Area (NLTextArea) is created.

Generally, when integrating a Java script library in Vaadin, there are four components that

represent the whole component. The client-side widget is the Java script library to be

integrated. The connector connects the client-side widget with the server. The server-

side component is a Java class that represents the Java script library on the server.

Finally, the component state is a shared state object between the server and client side

[21]. The server-client communication is done over an UIDL stream, where the values are

serialized in a Json array, sent, and then are deserialized again [1]. The communication

over the UIDL stream can be performed on two ways: For static messages such as

attributes, the respective value can be saved in the component state where each side

has access. For dynamic issues, both sides can use remote procedure calls on Java

script functions to communicate with the respective other side. To call a server-side

function from the client, the respective component needs to register the function first

to the connector, using the AbstractJavaScriptComponent’s addFuntion method. This

method has two parameter: the name of the function and a JavaScriptFunction class.

This JavaScriptFuntion class has a method called call, which gets called when the

respective Java script function is called. When the client-side wants to call a function,

the connector simply calls it by using the point operator: ’connector.theFunction()’. To

call a Java script function of the client-side, the AbstractJavaScriptComponent provides

the method callFunction(name, values). The server-side component calls this method

with the respective Java script functions name and values to transmit. Only functions in

the connector can be called this way.

An overview over the NLTextArea structure is shown in Figure 5.1. The NLTextAreaW-

idget is the client-side library. The NLTextAreaConnector is the connector library. The

NLTextAreaState is the shared state class. The NLTextAreaComponent is the server-

side component.

50

5.1. The Natural Language Text Area

Figure 5.1.: Overview over the NLTextArea

The server-side classes are shown in figure 5.2. Both the component and the state

are inheriting a respective Vaadin class. This is done, so Vaadin can take care of the

fundamentals behind UIDL streaming to the client. Because the component detects clicks

on client side, a clickOption attribute saves whether the click was performed with left or

right mouse button, or if the ctrl key was pressed while clicking. Therefore, static finalized

attributes for each possibility are created. An listener interface for each clicks on activity

and data elements are created. A class that wants to know if a click was performed need

to implement the interface and register itself with the according add method. To receive

the id of the clicked element, the getId method is used. Because the component shall

be able to either detect mouse clicks for the mouse-based process modeling approach

or edit text for the text-based process modeling approach, the setClickEdit function can

be used to switch between these two modes. Furthermore, to permit editing or not, the

AbstractJavaScriptComponent class provides an according setReadOnly function.

The state class holds the HTML-based process description as string and also the id

of the clicked element. Furthermore, it holds the boolean for edit mode decision. It

has according getters and setters for the attributes. The NLTextAreaComponent has

three added Java script functions: onTaskClick, onDataElementClick, and update. The

first two are used for receiving the id of elements that are clicked in the HTML-based

text. Therefore, they save the id and the type of click in the component state and then

51

5. Implementation of Natural Language Process Modeling Approaches in the proView Prototype

inform all registered listeners. The update function is used to get the current text in the

client-side widget in the component state.

The source code for the client-side widget is shown in Section A.3. It consists of following

functions:

• setID/getID: Getter and setter for the id of the clicked element.

• setClickMode: Function for swtiching between click and edit mode.

• getText/setText: Getter and setter for the natural language process description.

• setReadOnly: Function that changes the permission for editing.

• click: Function that is called when an element is clicked.

• colorSelectedTasks/colorSelectedDataElements: Functions for element high-

lighting mechanism.

The click function is implemented in the connector library. It receives a string parameter

that describes if the detected click in the div container was done with the left or right

mouse button, or with the left mouse button while pressed the ctrl key. Then, the

function calls via remote procedure call the Java script functions added to the server-side

component.

The client-side widget has a div container that holds the natural language process

description. Therefore, the setReadOnly function changes the divs attributes onclick,

oncontextmenu, and contentEditable according to the current edit mode and the received

boolean. When in clickEdit mode, a function is set in the onclick and oncontextmenu

attribute, that check if the clicked element was a paragraph or span tag and then calls

the components click function with according parameters.

The functions colorSelectedTasks and colorSelectedDataElements, used for the high-

lighting mechanism described in Section 4.2.1, receive an integer array with the ids of

elements that are to mark. Therefore, the respective function iterates through the list

of elements received with ’getElementsByTags’ and marks the according elements by

setting the style.background attribute. If an id is not in the list to mark, the background is

set null, to remove possible marks from a previous selection.

52

5.1. The Natural Language Text Area

Figure 5.2.: Server-Side Classes of NLTextArea

To explain the client to server communication furthermore, consider following exam-

ple, shown in Figure 5.3: The user left clicks on an activity, therefore, NLTextAreaW-

idgets click("left") function is called. inside this function, the NLtextAreaConnectors

onTaskClick(id, "left") function with the id of the respective activity and the click operation

"left" is called. This causes the call of the method call of the registered JavaScript-

Function with an Json array consistent of the id and "left". This method now sets the id

and clickOption attribute in the shared state object. Afterwards, the method informs all

registered TaskSelectListener by calling the onTaskSelect method. Now that the listener

is informed, it can get the id and clickOption attribute of the shared state, by calling the

respective getter of the component. The component gets the attributes of the state and

53

5. Implementation of Natural Language Process Modeling Approaches in the proView Prototype

Figure 5.3.: Client to Server Communication Example

Figure 5.4.: Server to Client Communication Example

returns them to the listener. The diagram only shows getting the id attribute, but getting

the clickOption works the same way.

The server to client communication is described in the following example: A user clicked

an activity like in the previous example. Then, a listener may want to mark the clicked

activity. The execution is shown in Figure 5.4:

The TaskSelectListener calls the NLTextAreaComponents markSelectedTasks method

with an integer array as parameter. Then, the NLTextAreaComponent makes use of

the AbstractJavaScriptComponents callFunction method by adding the NLTextAreaCon-

nectors function name (’markTasks’) and the integer array. Now, Vaadin automatically

transforms the Java type integer array into a Json integer array and makes the call.

Finally, the NLTextAreaConnector calls the NLTextAreaWidgets function colorSelected-

Tasks.

54

5.2. Implementation of the Mouse-based Natural Language Process Modeling Approach

5.2. Implementation of the Mouse-based Natural Language

Process Modeling Approach

To implement the approach described in Section 4.2.1, the Java script component of

previous section and a new class are used. The new class is called SelectionHandler. It

uses the Context Menu Addon made by Peter Lehto [22]. Therefore, SelectionHandler

implements the ContextMenuItemClickListener interface that triggers on every click on a

ContextMenuItem. ContextMenuItems are gathered within one ContextMenu. To detect

clicks in the NLTextArea, the SelectionHandler is registered as TaskSelectListener and

DataElementSelectListener. It holds the selected ids of activities and data elements in

separated ArrayLists of type Integer. To have access on the process modeling operations

of proView, the SelectionHandler holds the ModellingService. Furthermore, it saves the

instance of the owning NLAppearance, to make use of the PTTT protoype for subprocess

generation. An overview over the SelectionHandler class is shown in Figure 5.5.

Now, whenever the NLTextArea permits editing the natural language process description

and is in clickEdit mode, the id is sent to the SelectionHandler as described in Section

5.1. Then, the SelectionHandler saves the id in the respective ArrayList according to

the sent clickOption and the triggered Listener. If it was a left click, the ArrayList is

emptied and the new id saved. If it was a right click, or a left click while pressing the ctrl

button, the id is added to the respective ArrayList. Furthermore, on right click, the context

menu is generated and opened. On every triggered listener, the NLTextAreaComponents

markSelectedTask or markSelectedDataElements method is called, as described in

Section 5.1. The possible context menu items, and therefore the operations implemented,

are listed in Table 5.1.

Some operations are not yet implemented: insertion of a loop and the creation of a

process view of selected elements as well as all of the data elements operations.

If a context menu item is selected, the implemented ContextMenuItemClickListener

listener is triggered and calls the according operations from the ModellingService.

For example: To add a new activity, the user clicks the context menu item ’Insert

Sentence Between’. The respective operation of ModellingService is: ’modellingSer-

55

5. Implementation of Natural Language Process Modeling Approaches in the proView Prototype

Figure 5.5.: SelectionHandler Class Diagram

Menu Item Operation
Reduce Sen-
tence(s)

Reduce Selected Elements

Rename Sen-
tence

Relabel Selected Activity

Delete Sen-
tence(s)

Delete Selected Elements

Insert After Add Activity after Selected Activity
Aggregate Sen-
tences

Aggregate Selected Activities

Insert Parallel Insert new Activity and AND Gateway, Surrounding Selected Activites
Insert Conditional Insert new Activity and XOR Gateway, Surrounding Selected Activites
Insert Sentence
Between

Insert Activity Between two Selected Activites

Show Subpro-
cess

Show Process Hidden in Abstract Activity or Subprocess

Table 5.1.: Implemented Operations

56

5.3. Implementation of the Text-based Natural Language Process Modeling Approach

vice.insertSerial(viewId, selectednodes);’ where the id of the respective view and a list of

node ids as parameters are given. From this point, all is handled by the ModellingService:

Create a new window to add the new name, send the operation to the server, receive

the new process view and apply it to the respective appearance.

The possible context items for a given selection decides over the number of selected

elements. If one element is selected, the user can decide between: rename, reduce,

delete, insert after, and, if the selected element is a subprocess, show subprocess. If

two elements are selected, the user can: reduce, aggregate, insert parallel, conditional,

and serial. Else, i.e., more than two elements, the user can reduce and aggregate.

5.3. Implementation of the Text-based Natural Language

Process Modeling Approach

For the issue of text-based process modeling, a new class is created in the proView

prototype: the TextInvestigator. It makes use of parts of the PTTT prototype. The class

EnglishLabelHelper provides methods to find the basic forms of words, e.g.. the method

getInfinitiveOfAction(String verb) returns the basic form of a given verb(e.g., ’creates’

returns ’create’). Furthermore, this class can tag sentences with the Stanford parser.

For the text-based process modeling approach, this class is mainly used to recreate

the basic form of verbs from sentences or tag them. The TextInvestigator also uses

the Java library JTidy [23], a HTML syntax checker and DOM parser, that means JTidy

can create a Java-based DOM structure of HTML documents, consistent of nodes. The

HTMLParser provides methods to retrieve ids and texts from nodes created by JTidy.

To be able to call the proView prototype operations, this class also has access to the

ModellingService.

The TextInvestigator has six operations: checkDeletes, checkUpdates, extractAction-

FromTaggedSentence, extractResourceFromTaggedSentence, extractVerbAndNounFrom-

Label, and isPassiveVoice. The first operation checks for deleted sentences by compar-

ing the existent ids in the old process model and the ids in the current natural language

description. The missing ids must have been deleted. The second operation checks

57

5. Implementation of Natural Language Process Modeling Approaches in the proView Prototype

for changes in still existing sentences. Therefore it extracts the action and resource

of the sentence and label, using the respective operations three, four, and five, and

compares them. If the respective resources or actions have changed, a rename is

performed. The last operation determines, if a sentence is in passive or active voice. An

overview over the described classes, with their important operations and attributes for

this approach, is shown in Figure 5.6. The source codes for operations three, four, and

six, with explanatory comments are shown in Section A.4.

Figure 5.6.: Classes Used in Text-based Process Modeling Approach Implementation

As said in Section 5.1, the NLTextArea provides the possibility to write freely in the natural

language process description. When the user ends the edit mode of the NLTextArea,

by pressing the ’edit button’ again, NLAppearance calls the checkUpdate method of

TextInvestigator. There, the HTMLParser first sanitizes the string to a valid HTML

document. Afterwards, JTidy parses a Java-based DOM structure. Subsequently, All

paragraph tags in the document are saved in a list. Now, the checkDeletes method

compares the ids in the document with the ids from the old process model. Therefore, it

creates a list of all ids of the old process model and deletes all ids of the document in

this new created list. The ids still in the new list must have been deleted. Therefore, the

58

5.3. Implementation of the Text-based Natural Language Process Modeling Approach

Figure 5.7.: Sample Execution of an Activity Rename

method calls the deleteNode method of ModellingService. Afterwards, the checkUpdate

method iterates through the list of sentences, extract the respective action and resource,

and compares them to the according action and resource of the respective label. If they

match, nothing is done. Else, the method renameNode of ModellingService is called,

changing the label of respective activity. An overview of the communication is given in

Figure 5.7.

At the time this thesis is written, the proView prototype’s text-based natural language

process modeling implementation can only delete elements and rename activities.

59

6
Conclusion and Further Steps

In this thesis, we integrated a natural language component into the proView prototype.

proView now is able to generate natural language process descriptions from its process

models and provide a mouse-based process modeling solution on the generated text.

Furthermore, simple update and delete operations can be performed by freely writing in

the natural language process description.

The next steps are the complete integration of the text-based natural language modeling

approach by further development of the NLTextArea and TextInvestigator. Then, by

refining the natural language processing algorithms, a way to import text descriptions

of processes and automatically generate them can be developed. Having this feature,

applying a voice to process model solution by using a voice to text and then the text to

process model solution is possible. Additionally to further development, the advantages

of natural language process modeling have to be proofed by studies.

61

A
Source Codes

In this appendix, there are several important sources:

A.1. The Basic DSynT to HTML Algorithm

1 /*

2 * sentence is the DSynT to realize into HTML

3 * level is the level of the current DSynT

4 * lastlevel is the level of the previous DSynT

5 * This method is called by another method that iterates

6 * through a list of DSynTs.

7 */

8 realizeSentence(DSynT sentence, int level, int lastlevel){

63

A. Source Codes

9 String output = RealPro.realize(setnence);

10

11 String tags = "";

12 // Check for joining or splitting gateways using

13 // level attribute

14 If(level == 0){ // current sentence is in no gateway branch

15 For lastlevel To level-1{

16 tags += ’’;

17 }

18 }

19 Else If(level > lastlevel){ // new splitting gateway(s)

20 For lastlevel To level-1{

21 tags += ’’;

22 }

23 }

24 Else If(level < lastlevel){ // new joining gateway(s)

25 For level To lastlevel-1{

26 tags += ’’;

27 }

28 If(sentence.hasBullet){

29 tags += ’’;

30 }

31 }

32 Else If(level == lastlevel){

33 If(sentence.sen_hasBullet){

34 tags += ’’;

35 }

36 }

37 If(sentence.optionalId != null){

38 String[] activities = outputsplit(’ and ’);

39 return tags + <p id="’+sentence.mainId+’">’+activites[0]+

64

A.2. The proView Template to PTTT Process Structure Algorithm

40 ’</p><p id="’+sentence.optionalId+’">’

41 +activites[1]+’</p>’;

42 }

43 Else{

44 return tags + <p id="’+sentence.mainId+’">’+output+

45 ’</p>’;

46 }

47 }

A.2. The proView Template to PTTT Process Structure

Algorithm

1

2 public ProcessModel createFromTemplate(Template template){

3 // Save all pools and lanes

4 pools = new ArrayList<Pool>();

5 lanes = new ArrayList<Lane>();

6 // Save all elements in HashMap for Arc creation

7 tasksNgates = new HashMap<Integer,Element>();

8

9 // Get all Nodes of the proView Process Model

10 Set<Node> nodes = template.getNodes();

11 // Get all Edges of the proView Process Model of type

12 // control and loop

13 Set<StructuredEdge> edges = template.getEdgeStructure(

14 EdgeType.ET_CONTROL);

15 edges.addAll(template.getEdgeStructure(EdgeType.ET_LOOP));

16 ProcessModel p;

17 /*

18 * Filling order:

65

A. Source Codes

19 * 1. activites/gateways

20 * 2. arcs

21 */

22 // If Template is CPM, used template ids hashcode

23 // (id is type UUID) and name for ProcessModel

24 // id and name.

25 // new ProcessModel(id, name)

26 if(ADEPTUtils.isCPM(template))

27 p = new ProcessModel(template.getID().hashCode(),

28 template.getName());

29 // Else use process view name and ids hashcode

30 else

31 p = new ProcessModel(

32 ADEPTUtils.getViewId(template).hashCode(),

33 ADEPTUtils.getViewName(template));

34 Element temp = null;

35 // Iterate all nodes of the template

36 for(Iterator<Node> i = nodes.iterator(); i.hasNext();){

37 Node n = i.next();

38 // Get NodeType of respective Node

39 NodeType type = template.getNodeType(n.getID());

40 // Create Elements, ignore lanes and pools.

41 // This is done afterwards

42 switch(type){

43 case NT_NORMAL:

44 // Normal Activity => create new Activity

45 // new ACtivity(id, name, lane, pool, type)

46 temp = new Activity(n.getID(),

47 n.getName(), null, null,

48 ActivityType.NONE);

49 break;

66

A.2. The proView Template to PTTT Process Structure Algorithm

50 case NT_AND_JOIN:

51 // Joining AND Gateway => create Gateway with type AND

52 // new Gateway(id, label, lane, pool, type)

53 temp = new Gateway(n.getID(), "", null,

54 null, GatewayType.AND);

55 break;

56 case NT_AND_SPLIT:

57 // Splitting AND Gateway => create Gateway with type AND

58 temp = new Gateway(n.getID(), "", null,

59 null, GatewayType.AND);

60 break;

61 case NT_XOR_JOIN:

62 // Joining XOR Gateway => create Gateway with type XOR

63 temp = new Gateway(n.getID(), "", null,

64 null, GatewayType.XOR);

65 break;

66 case NT_XOR_SPLIT:

67 // Splitting XOR Gateway => create Gateway with type XOR

68 temp = new Gateway(n.getID(), "", null,

69 null, GatewayType.XOR);

70 break;

71 case NT_STARTLOOP:

72 // Loops are represented as XOR Gateways

73 temp = new Gateway(n.getID(), "", null,

74 null, GatewayType.XOR);

75 break;

76 case NT_ENDLOOP:

77 temp = new Gateway(n.getID(), "", null,

78 null, GatewayType.XOR);

79 break;

80 case NT_STARTFLOW:

67

A. Source Codes

81 // Start event => new Event of type START_EVENT

82 // new Event(id, name, lane, pool, type)

83 temp = new Event(n.getID(), n.getName(), null,

84 null, EventType.START_EVENT);

85 break;

86 case NT_ENDFLOW:

87 // End Event

88 temp = new Event(n.getID(), n.getName(), null,

89 null, EventType.END_EVENT);

90 break;

91 }

92 // Adds respective Lanes and Pools

93 // Searches in the List created for existing

94 // occurrences or creates new Lane/Pool

95 temp = setStaffProperties(temp);

96 // Out Element in HashMap for Arc creation later on

97 tasksNgates.put(temp.getId(), temp);

98 // Add Element to ProcessModel

99 p.addElem(temp);

100 }

101 // Arc creation: Iterate through all edges.

102 for(Iterator<StructuredEdge> i = edges.iterator();

103 i.hasNext();){

104 StructuredEdge edge = i.next();

105 // Create new Arc with source and destination Element.

106 // These elements are received from the previous

107 // created HashMap. As id, take numbers from

108 // Integer.MAX_Value downwards since Nodes are starting

109 // by zero.

110 // new Arc(id, label, source, target)

111 p.addArc(new Arc(id--, "",

68

A.3. Source Code of NLTextAreaWidget

112 tasksNgates.get(edge.getSourceNodeID()),

113 tasksNgates.get(edge.getDestinationNodeID())));

114 }

115 // Return the created ProcessModel

116 return p;

117 }

A.3. Source Code of NLTextAreaWidget

1 // Define the namespace

2 var NLTextAreaWidget = NLTextAreaWidget || {};

3

4 NLTextAreaWidget.NLTextAreaComponent = function (element) {

5 this.element = element;

6 this.element.innerHTML = "<div></div>";

7

8 var id = 0;

9 var isClickMode = true;

10

11 this.getId = function(){

12 return id;

13 };

14

15 this.setId = function(_id){

16 id = _id;

17 };

18

19 this.setClickMode = function(bool){

20 isClickMode = bool;

21 };

69

A. Source Codes

22 // Getter and setter for the value property

23 this.getText = function () {

24 return this.element.

25 getElementsByTagName("div")[0].innerHTML;

26 };

27

28 this.setText = function (value) {

29 this.element.getElementsByTagName("div")[0].innerHTML =

30 value;

31 };

32

33 this.setReadOnly = function(bool){

34 var root = this.element.getElementsByTagName("div")[0];

35 var component = this;

36 if(bool == true){

37 root.onclick="";

38 root.oncontextmenu="";

39 root.contentEditable = false;

40 component.updateText();

41 }

42 else{

43 if(isClickMode){

44 root.onclick = function () {

45 if(event.target.tagName =="P"

46 ||event.target.tagName =="SPAN"){

47 component.setId(event.target.id);

48 if(event.ctrlKey)

49 component.click("ctrl");

50 else

51 component.click("none");

52 }

70

A.3. Source Code of NLTextAreaWidget

53 };

54 root.oncontextmenu = function(){

55 if(event.target.tagName == "P"

56 ||event.target.tagName =="SPAN"){

57 component.setId(event.target.id);

58 component.click("right");

59 }

60 };

61 }

62 else{

63 root.contentEditable = true;

64 }

65 component.updateText();

66 }

67 };

68 // Default implementation of the click handler

69 this.click = function (opt) {

70 alert("Error: Must implement click()");

71 };

72

73 this.updateText = function(){

74 alert("Error: Implement updateText()");

75 };

76

77 this.colorSelectedTasks = function(toColor){

78 var tasks = this.element.getElementsByTagName("P");

79 if(toColor == null){

80 for(var i = 0; i< tasks.length; i++){

81 tasks[i].style.background=null;

82 }

83 }

71

A. Source Codes

84 else{

85 for(var i = 0; i< tasks.length; i++){

86 for(var k = 0; k < toColor.length; k++){

87 if(tasks[i].id == toColor[k]){

88 tasks[i].style.background="#a9a9a9";

89 break;

90 }

91 else{

92 tasks[i].style.background=null;

93 }

94 }

95 }

96 }

97 };

98

99 this.colorSelectedDataElements = function(toColor){

100 var datas = this.element.getElementsByTagName("SPAN");

101 if(toColor == null){

102 for(var i = 0; i< datas.length; i++){

103 datas[i].style.background=null;

104 }

105 }

106 else{

107 for(var i = 0; i< datas.length; i++){

108 for(var k = 0; k < toColor.length; k++){

109 if(datas[i].id == toColor[k]){

110 if(datas[i].className == ’read’){

111 datas[i].style.background="#00FF33";

112 }

113 else{

114 datas[i].style.background="#FF3300";

72

A.4. Source Codes of TextInvestigator Class Operations

115 }

116 break;

117 }

118 else{

119 datas[i].style.background=null;

120 }

121 }

122 }

123 }

124 };

125 };

A.4. Source Codes of TextInvestigator Class Operations

1 // This method returns the resource of a setnence.

2 // The sentence must be tagged by the Stanford parser.

3 private String extractResourceFromTaggedSentence(

4 String sentence){

5 String resource = "";

6 //First,check if sentence is in passive voice

7 if(!this.isPassiveVoice(sentence)){

8 // If sentence is in active voice,

9 // the resource is behind the last verb.

10 String toCheck = sentence.substring(

11 sentence.lastIndexOf("/VB")+4);

12 String[] words = toCheck.split(" ");

13 // Check each word

14 for(String word: words){

15 // If the word is a proper noun, it is a resource

16 if(word.contains("/NNP")){

73

A. Source Codes

17 // Add new resource to the other parts,

18 // separate words with a blank

19 resource += word.replace("/NNP", " ");

20 }

21 // A word tagged as noun is also part of the resource

22 else if(word.contains("/NN")){

23 resource += word.replace("/NN", " ");

24 }

25 }

26 }

27 // Passive voice means, that the resource is in front of

28 // the first verb.

29 else{

30 // Get the part of the sentence in front of the

31 // first verb.

32 String toCheck = sentence.subSequence(

33 0, sentence.indexOf("/VB")).toString();

34 String[] words = toCheck.split(" ");

35 // Check like in other case.

36 for(String word: words){

37 if(word.contains("/NNP")){

38 resource += word.replace("/NNP", " ");

39 }

40 else if(word.contains("/NN")){

41 resource += word.replace("/NN", " ");

42 }

43 }

44 }

45 // Return the resource

46 return resource;

47 }

74

A.4. Source Codes of TextInvestigator Class Operations

48 // This method returns the action of a sentence.

49 // The setnence must be tagged by the Stanford parser.

50 private String extractActionFromTaggedSentence(String sentence){

51 String action = "";

52 // If sentence is in passive voice, then the action is a

53 // past participle verb

54 if(this.isPassiveVoice(sentence)){

55 String[] words = sentence.split(" ");

56 // Check each word of sentence

57 for(String word: words){

58 // ’VBN’ means the word is a verb, past participle

59 if(word.contains("/VBN"))

60 // Add the basic form of the verb to the action.

61 // But first get rid of the tag.

62 action += labelHelper.getInfinitiveOfAction(

63 word.replaceAll("/VBN", ""))+" ";

64 }

65 }

66 // If sentence is in active voice,

67 // then the action is a verb is 3rd. person present

68 // Execution is the same as before, but check for ’VBZ’ tag.

69 else{

70 String[] words = sentence.split(" ");

71 for(String word: words){

72 if(word.contains("/VBZ"))

73 action += labelHelper.getInfinitiveOfAction(

74 word.replaceAll("/VBZ", ""))+" ";

75 }

76 }

77 // Return the action.

78 return action;

75

A. Source Codes

79 }

80 // This method check for passive voice in sentences.

81 // Sentence must be tagged first by Stanford parser.

82 private boolean isPassiveVoice(String taggedSentence){

83 String[] words = taggedSentence.split(" ");

84 for(int i = 0; i < words.length-1; i++){

85 /* If a word is a verb, 3rd person present,

86 * and the following word is a past participle verb

87 * and the current word is an inflection of ’be’

88 * this sentence must be passive voice.

89 */

90 if(words[i].contains("/VBZ") && words[i+1].contains("/VBN")

91 && (words[i].contains("is")|| words[i].contains("are"))){

92 return true;

93 }

94 }

95 return false;

96 }

76

List of Figures

2.1. CPM and Corresponding Process Views 7

2.2. The proViewClient . 9

2.3. The proView Framework [5] . 10

2.4. Natural Language Generation Process [7] 12

2.5. A simple DSynT [7] . 13

2.6. PTTT Process Structure . 15

3.1. NLAppearance GUI . 20

3.2. The proView Prototype Package Structure 21

3.3. NLAppearance Class Diagram . 23

3.4. Instantiation of ProcesstoTextConverter at Start of proViewClient 25

3.5. A Students Morning Routine . 27

3.6. The PDFExporter Class . 30

3.7. The HTMLParser Class . 31

3.8. The Process of Exporting a Natural Language Process Description as PDF 31

4.1. Classic Mouse-based Process Modeling in proView 39

4.2. Natural Language Mouse-based Process Modeling in proView 40

4.3. Add Activity Window . 40

4.4. Example Process Modeling: Basic . 46

4.5. Example Process Modeling: Change one 47

4.6. Example Process Modeling: Change two 47

4.7. Example Process Modeling: Change three 47

77

List of Figures

5.1. Overview over the NLTextArea . 51

5.2. Server-Side Classes of NLTextArea . 53

5.3. Client to Server Communication Example 54

5.4. Server to Client Communication Example 54

5.5. SelectionHandler Class Diagram . 56

5.6. Classes Used in Text-based Process Modeling Approach Implementation 58

5.7. Sample Execution of an Activity Rename 59

78

List of Tables

2.1. View Update Operations . 8

2.2. View Create Operations . 8

4.1. View Update Operations . 41

5.1. Implemented Operations . 56

79

Bibliography

[1] Stefan Büringer. Development of a Business Process Abstraction Component

based on Process Views. 2012.

[2] John Sweller. How the human cognitive system deals with complexity. Handling

complexity in learning environments: Theory and research, pages 13–25, 2006.

[3] Jens Kolb, Klaus Kammerer, and Manfred Reichert. Updatable Process Views

for User-centered Adaption of Large Process Models. In 10th Int’l Conference on

Service Oriented Computing (ICSOC’12), number 7636 in LNCS, pages 484–498.

Springer, October 2012.

[4] Jens Kolb, Benjamin Rudner, and Manfred Reichert. Towards Gesture-based

Process Modeling on Multi-Touch Devices. In 1st Int’l Workshop on Human-Centric

Process-Aware Information Systems (HC-PAIS’12), number 112 in LNBIP, pages

280–293. Springer, June 2012.

[5] Jens Kolb and Manfred Reichert. Supporting Business and IT through Updatable

Process Views: The proView Demonstrator. In ICSOC’12, Demo Track of the 10th

Int’l Conference on Service Oriented Computing, number 7759 in LNCS, pages

460–464. Springer, March 2013.

[6] Leopold, H. (2013): Natural Language in Business Process Models, PhD Thesis,

Humbolt University of Berlin.

[7] Henrik Leopold, Jan Mendling, and Artem Polyvyanyy. Generating natural language

texts from business process models. In Proceedings of the 24th international

81

Bibliography

conference on Advanced Information Systems Engineering, CAiSE’12, pages 64–

79, Berlin, Heidelberg, 2012. Springer-Verlag.

[8] Jussi Vanhatalo, Hagen Völzer, and Jana Koehler. The refined process structure

tree. In Marlon Dumas, Manfred Reichert, and Ming-Chien Shan, editors, Business

Process Management, volume 5240 of Lecture Notes in Computer Science, pages

100–115. Springer Berlin Heidelberg, 2008.

[9] George A. Miller. Wordnet: a lexical database for english. Commun. ACM,

38(11):39–41, November 1995.

[10] Dan Klein and Chris Manning. Fast Exact Inference with a Factored Model for Natu-

ral Language Processing. In Advances in Neural Information Processing Systems

15 (NIPS), 2002.

[11] Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large

annotated corpus of English: the penn treebank. Comput. Linguist., 19(2):313–330,

June 1993.

[12] Igor A. Mel’čuk and Alain Polguère. A formal lexicon in the Meaning-Text Theory:

(or how to do lexica with words). Comput. Linguist., 13(3-4):261–275, July 1987.

[13] Benoit Lavoie and Owen Rambow. A fast and portable realizer for text generation

systems. In Proceedings of the fifth conference on Applied natural language pro-

cessing, ANLC ’97, pages 265–268, Stroudsburg, PA, USA, 1997. Association for

Computational Linguistics.

[14] HTML5 Introduction. http://www.w3schools.com/html/html5_intro.asp. -24.07.2013.

[15] JavaScript Tutorial. http://www.w3schools.com/js/default.asp. -24.07.2013.

[16] Vaadin API. https://vaadin.com/api/. -24.07.2013.

[17] Java SE7 API. http://docs.oracle.com/javase/7/docs/api/. -24.07.2013.

[18] Bruno Lowagie. iText in Action: Creating and Manipulating PDF. Manning Publica-

tions, 1 edition, December 2006.

[19] Fabian Friedrich, Jan Mendling, and Frank Puhlmann. Process Model Generation

from Natural Language Text. In Haralambos Mouratidis and Colette Rolland, editors,

82

Bibliography

Advanced Information Systems Engineering, volume 6741 of Lecture Notes in

Computer Science, pages 482–496. Springer Berlin Heidelberg, 2011.

[20] Camille Ben Achour. Guiding scenario authoring. In 8th European-Japanese Confer-

ence on Information Modelling and Knowledge Bases, pages 152-171. IOS Press,

1998.

[21] Vaadin 7 Loves JavaScript Components. https://vaadin.com/blog/-/blogs/vaadin-7-

loves-javascript-components. -24.07.2013.

[22] Vaadin Context Menu Addon. https://vaadin.com/directory#addon/contextmenu.

-24.07.2013.

[23] JTidy. http://jtidy.sourceforge.net/. -24.07.2013.

83

Name: Wolfgang Wipp Matrikelnummer: 698982

Erklärung

Ich erkläre, dass ich die Arbeit selbstständig verfasst und keine anderen als die angegebe-

nen Quellen und Hilfsmittel verwendet habe.

Ulm, den .

Wolfgang Wipp

	Introduction
	Fundamentals
	Fundamentals of proView
	Central Process Models and Process Views
	The proView Project

	Fundamentals on Generating Natural Language Texts from Business Process Models
	Overview: The Process of Generating Natural Language Texts from Business Process Models
	Step 1: Text Planning
	Step 2: Sentence Planning
	Step 3: Surface Realization
	The ProcessToTextTransformer Prototype

	Fundamentals of HTML and Java Script
	HTML
	Java script

	Integration of ProcessToTextTransformer into proView
	Design of the User Interface
	Package Level Integration
	Class Level Integration
	Code Level Integration
	Changes in Classes of the proViewClient
	Changes in Classes of the ProcessToTextTransformer Prototype
	The proView Prototype Template to ProcessToTextTransformer Process Structure Translation Algorithm

	Personalization Features

	Natural Language-based Modeling
	Challenges in Natural Language-based Process Modeling
	C1: Semantics and Syntax
	C2: Atomicity
	C3: Relevance
	C4: Referencing

	Approaches to Natural Language-based Process Modeling
	A Mouse-based Natural Language Process Modeling Approach in the proView Project
	A Text-based Natural Language Process Modeling Approach in the proView Project

	Implementation of Natural Language Process Modeling Approaches in the proView Prototype
	The Natural Language Text Area
	Implementation of the Mouse-based Natural Language Process Modeling Approach
	Implementation of the Text-based Natural Language Process Modeling Approach

	Conclusion and Further Steps
	Source Codes
	The Basic DSynT to HTML Algorithm
	The proView Template to PTTT Process Structure Algorithm
	Source Code of NLTextAreaWidget
	Source Codes of TextInvestigator Class Operations

