
University of Ulm | 89069 Ulm | Germany Faculty of
Engineering and
Computer Science
Department of Databases
and Information Systems

Hand Gesture-based Process Modeling
for Updatable Processes
Bachelor Thesis at the University of Ulm

Submitted by:
Hayato Hess
hayato.hess@uni-ulm.de

Reviewer:
Prof. Dr. Manfred Reichert

Supervisor:
Jens Kolb

2013

Version July 30, 2013

c© 2013 Hayato Hess

This work is licensed under the Creative Commons. Attribution-NonCommercial-ShareAlike 3.0
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/
or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.
Satz: PDF-LATEX 2ε

Abstract

The increasing popularity of process models leads to the need of alternative interaction

methods to view and manipulate process models. One big research field are the gesture-

based manipulation methods. Although there are already works in this research area

[KRR12, Dap12], they utilize only two dimensions for gesture recognition. The objective

of this work is to introduce a system that manipulates process models using a three

dimensional hand gesture input interface utilizing the RGB-D camera of the Microsoft

Kinect . With this, an input interface can be created that is more natural and, thus, is

easier to learn and use than its two dimensional counterpart.

This work therefore discusses how gestures are recognized as well as technical imple-

mentation aspects (e.g., how process models are painted, accessed and manipulated).

Furthermore, it explains the problems arising from the use of the Kinect as a hand

tracking system and shows which steps have been taken to solve these problems.

iii

Acknowledgement

First and foremost, I thank my supervisor Jens Kolb for his invaluable guidance. Second,

I thank my parents and my friends for the patience and the constant support. Third, I

want to thank Prof. Dr. Manfred Reichert who showed great interest in this work and

agreed to be the reviewer for this thesis. Forth, I thank the department of Database and

Information Systems for providing the hardware and support for this work. Last, I thank

Nintendo who’s games delighted me in the darkest hours of writing.

v

Contents

1 Introduction 1

2 Background 3

2.1 Process Model . 4

2.1.1 Central Process Model . 5

2.1.2 Process View . 5

2.2 The proView Framework . 6

2.3 Dynamic Time Warping . 7

3 REST Library 9

3.1 Interface . 9

3.2 Communication Protocol . 10

3.2.1 Communication Example . 11

3.2.2 Acquire List of Process Models . 11

3.2.3 Request a Change on a Process View or CPM 14

3.2.4 The Reply to a Change View or CPM -Request 17

3.3 Receiving Process Model Changes . 21

3.4 Parse Graph Changes . 21

3.5 Using the REST Library . 23

4 Processing Process Models 25

4.1 Creation of Process Model Blocks . 26

4.2 Calculation of Node Positions . 30

4.3 Collision Detection . 31

vii

Contents

5 Kinect Library 33

5.1 Structure . 34

5.2 Microsoft Kinect . 35

5.3 Candescent NUI . 36

5.4 Hand Tracking . 37

5.4.1 Finger Count . 37

5.4.2 Finger Pointing . 40

5.4.3 Finger Position . 41

5.5 Gesture Recognition . 42

5.5.1 Gesture Format Definition . 43

6 ProViewKinect 45

6.1 ProViewKinect Architecture . 46

6.2 ProViewKinect Prototype . 47

6.3 Validation of the Prototype . 48

7 Conclusion 51

8 Summary and Outlook 53

viii

1
Introduction

The idea of creating gesture-based user input is not new. The movie Minority Report

(2002) is still well remembered because of the alternative input methods for information

systems. There are already various types of gesture-based input systems available.

Therefore, creating a gesture-based information system one has to ask whether similar

systems already exists and if the usability is appropriate for the specific application

domain. Gesture recognition to manipulate process models based on multi-touch tablets

already exist [KRR12]. However, this system utilizes only two dimensions. Systems

utilizing the third dimension for gesture-based process models manipulation do not exist

yet. Therefore, the decision was made to create a system capable of gesture-based

process model manipulation utilizing all axis of the three dimensional space.

The usability perspective may be discussed controversially. On the one hand, a user

that uses a computer with the default input is presumably faster than one that has to

1

1 Introduction

rely on gestures. On the other hand, however, there are cases where a traditional input

method proved to be inefficient. For example, when the user needs one of his hands

for another activities like holding the steering wheel or has a handicap and is thereby

unable to use a mouse or a keyboard. Another point is, that more space is required for

traditional input methods. A computer with a mouse and a keyboard requires more space

than a camera that can be mounted almost everywhere. Furthermore, the input with

three dimensional gestures can be made very intuitive. This is important for people who

have troubles working with computers or understanding a process work flow. With the

three dimensional gesture-based system, they can interact with easy to learn gestures.

Therefore the vocational adjustment time would be lower for them than with traditional

input methods where they might get lost. It is also more natural to interact by using the

hands as an input method. Humans tend to use their hands in a conversation. Why not

tell a system our needs in the same way?

This work is divided into five sections. First, Section 2, covers the basics for further

sections. Second, Section 3, introducing a library with its components to communicate

with a remote server to obtain process models. Third, Section 4, explaining an algorithm

used to paint process models on the screen. Forth, Section 5, introducing the gesture

recognition algorithm and explaining problems and their solutions when working with a

Kinect as gesture recorder. Last, Section 6, showcases a three dimensional gesture-

based process model manipulation prototype.

2

2
Background

This section covers theoretical concepts that serve as basis for the next sections. In

Section 2.1, process models are covered. Section 2.2 explains a framework used to

access and manipulate Process Models. Section 2.3 covers an algorithm used for

gesture recognition.

3

2 Background

2.1 Process Model

A process model is a directed graph that consists of a set of nodes N and edges E

(cf. Figure 2.1).

As described in [KKR12b, KR13a], the nodes N can be divided into:

• StartFlow, EndFlow ; Thereby, the StartFlow node represents the start of the

process and EndFlow its end.

• Activity nodes having exactly one incoming and one outgoing edge and represent-

ing tasks in a process model.

• Gateway nodes, like ANDsplit, ANDjoin, XORsplit, XORjoin, LOOPsplit, and

LOOPjoin, have multiple incoming and outgoing edges and may conditionally

control the process flow. ANDsplit and Andjoin split the current path into two

parallel executed paths. XORsplit and XORjoin do the same however with the

restriction that only one of the two paths is executed conditionally. LOOPsplit and

LOOPjoin gateways are used to conditionally repeat the paths between them.

• Data Elements represent data storages (e.g., variables or an external database).

They are accessed or written by activity nodes.

The edges E can be divided into [KKR12b, KR13a]:

• ET_Control edges, used to show the execution order of activities and gateway

nodes.

• ET_SoftSync edges, used for synchronization of parallel executed paths.

• ET_Loop edges, used to repeat the paths between the LOOPjoin and the LOOP-

split node.

• ET_DataFlow edges connect data elements and activities. The direction of the

edge shows whether the data element is accessed to read or write.

Definition 1 (Relative Component Operator). Let P = (N, E) and P ′ = (N ′, E′) be

process models with the nodes N, N ′ and edges E, E′. Then P\P ′ = ({n ∈ N |n /∈

N ′}, {e ∈ E|e /∈ E′}).

4

2.1 Process Model

Activity Activity

Activity

Activity Activity Activity

Activity

StartFlow

EndFlowLOOPjoin LOOPsplit ANDsplit ANDfjoin

DatafElement

ET_DataFlow

(w
rite

)

ET_DataFlow
(read)

ET_Loop

ET_SoftS
yn

c

ET_Control

Figure 2.1: Example of a Process Model

Definition 2 (Single Entry Single Exit Blocks). The process model P = (N, E) consists

of subgraphs. These subgraphs S = (N ′, E′) with N ′ ⊂ N, E′ ⊂ E are called SESE

(Single Entry Single Exit) blocks, iff there is exactly one incoming and one outgoing

ET_Control edge that connects S with P\S [KR13a].

2.1.1 Central Process Model

A Central Process Model (CPM) is a process model as defined in Section 2.1. It

represents the information of the corresponding business process and serves as a basis

to create respective process views. Furthermore, a CPM may contain program logic

required to execute it within a process-aware information system.

2.1.2 Process View

A process view is an abstraction of a specific CPM for specific needs and is created by

applying a sequence of view create operations 〈Op1 . . . Opn〉 with Opi ∈ {aggregation,

reduction} to a CPM. Aggregation merges several nodes to one abstracted node and

requires a SESE block to work on. The reduction is used to remove a set of nodes from

the process view (cf. Section 2.1) [KR13a].

Note that all view create operations Opi used to create a process view do not affect the

underlying CPM.

5

2 Background

Modifying the process view and CPM, so-called update operations may be applied.

Update operations are operations that insert or delete nodes or edges in the process

view and its respective CPM.

aggregationActivityU1

StartFlow

EndFlowANDsplit ANDUjoin

AGGREGATE
ActivityU2

ActivityU3 ActivityU4 ActivityU5 StartFlow

EndFlow

newActivityU1

reduction
StartFlow

EndFlowANDsplit ANDUjoin

REDUCE

ActivityU1

ActivityU2

ActivityU3 ActivityU4 ActivityU5 StartFlow

EndFlow

ActivityU1

Figure 2.2: Reduction and Aggregation Operation

2.2 The proView Framework

The proView framework is based on the client-server model and, therefore, consists

of a client and a server component. The proViewClient is responsible for visualizing

the process models and handling user input. The proViewServer is responsible for

monitoring and performing changes to the stored process models. Furthermore, it

provides a Representational State Transfer (REST)1 interface that enables the client to

retrieve, modify, add, and delete stored models.

The proView framework already has an implementation as described in [KKR12a,

KKR12b, KR13b]. The proViewServer, written in JAVA, is reused. The proViewClient,

written in Vaadin2, is replaced by a newly created client, written in C# (cf. Section 6.1).

This new client interacts with the already implemented proViewServer and handles

process graph visualization and Kinect-based user input.

1Representational State Transfer – a software architecture that can be used for distributed systems in the
world wide web.

2Vaadin – a web-framework for building modern web applications.

6

2.3 Dynamic Time Warping

2.3 Dynamic Time Warping

Dynamic Time Warping (DTW) is a dynamic programming algorithm used for speech

recognition [MR81], because of its ability to cope with different speaking speeds and

pauses. Requirements for gesture recognition are similar since different users perform

the same gesture with different speeds. Therefore, DTW is able to match two input ges-

ture data streams (e.g., of a camera) that may have different lengths and calculate their

similarity; the so-called DTW distance [LWZ+09]. As a distance function, the Euclidean

distance is applied in an one dimensional space (cf. Figure 2.3). More precisely, the

function calculates the local distance between two points of the input data streams. The

DTW distance is the minimum of the sum of all local distances of each possible path.

Insert

Delete

x1

x2

Match

local distances

Figure 2.3: DTW Match of x1 and x2.

7

2 Background

1 double dtw(x1 [1..n], x2 [1..m]) {
2 // initialize Table
3 Table := [0..n, 0..m]
4 Table[0, 0] := 0
5

6 for i := 1 to n
7 Table[i, 0] := infinity
8 for i := 1 to m
9 Table[0, i] := infinity

10

11 // calculate DTW using the table
12 for i := 1 to n
13 for j := 1 to m
14 cost:= distance(x1[i], x2[j])
15 Table[i, j] := cost + minimum(
16 Table[i-1, j], // insert rule
17 Table[i , j-1], // delete rule
18 Table[i-1, j-1] // match rule
19)
20 return Table[n, m]
21 }

Listing 2.1: DTW Algorithm

The DTW calculation is done as follows (cf. Listing 2.1): It first initiates a table with the

dimensions of the lengths of the input data streams (lines 3-4) and then calculates the

DTW distance by using a distance, a minimum function, and three rules. First of all, the

insert rule (line 16) that matches multiple points in the data stream x1 to one point in x2.

Second, counterpart to insert, the delete rule (line 17) used to match multiple points in

x2 to one in x1. Finally, match rule (line 18) matches one point of x1 to one of x2. After

calculating all values in the table, the DTW distance is determined by the entry in the last

row and column (line 20). The paths leading to the optimal distance, the DTW distance,

may be calculated via backtracking, if required. These paths represent the points that

were matched and, therefore, contain the information about the similarities of the two

data series.

In the use case of the gesture recognition, a gesture can be recognized by comparing it

to a recorded gesture and calculating the DTW distance. If the gestures are very similar,

the DTW distance has a low value via versa. A gesture is therefore recognized, when

the DTW distance falls below a threshold.

8

3
REST Library

This section covers the basic structure of the «REST Library» and sheds light on how the

communication with the proViewServer is done. Section 3.2 explains the communication

protocol. Section 3.2 deals with getting process model updates from the proViewServer.

Section 3.4 explains how process model changes are handled. Section 3.5 showcases

a communication example between «REST Library» and proViewServer.

3.1 Interface

The intention of the «REST Library» is to encapsules the communication with the

proViewServer and provide the user a list of Central Process Models (CPM), which is

represented through a CPM class (cf. Figure 3.1). Remember, each CPM represents

a whole business process and is the basis to create personalized process views. For

9

3 REST Library

that reason CPM classes reference process view classes. Both, the CPM and the

View classes extends the model class. The model class contains elements required

to represent a process model. The View classes provides all operations (e.g., Aggre-

gateNodes, ReduceNodes, DeleteNodes, InsertSerialNode, InsertParallelNode, and

InsertSyncEdge) to manipulate the View and their underlying CPM. Generally, users of

the «REST Library» can handle processes as if they are stored locally; although they

are stored remotely on the proViewServer.

RESTObjects::Node RESTObjects::Edge

RESTObjects::ProcessModel

RESTObjects::View

HAggregateNodes2n:Node[]vname:StringC
HAggregateNodesAsync2n:Node[]vname:StringC
HReduceNodes2nIds:Int[]C
HReduceNodesAsync2nIds:Int[]C
HDeleteNodes2nIds:Int[]C
HDeleteNodesAsync2nIds:Integer[]C
HInsertParallelNode2name:StringvnId1:IntvnId2:IntC
HInsertParallelNodeAsync2name:StringvnId1:IntvnId2:IntC
HInsertSerialNode2name:StringvnId1:IntvnId2:IntC
HInsertSerialNodeAsync2name:StringvnId1:IntvnId2:IntC
HInsertSyncEdge2n1:Intvn2:IntC
HInsertSyncEdgeAsync2n1:Intvn2:IntC

RESTObjects::CPM

HAddView,2name:StringC
HHasView,2viewId:StringC:Boolean
HRemoveView2viewId:StringC
HRemoveView2view:ViewC

 1

1

 1

1

... ...

Figure 3.1: «REST Library» Components.

3.2 Communication Protocol

In the following, the communication with the proViewServer using REST messages is

explained. At first the communication is illustrated by an example then the different types

of requests and replies are explained.

10

3.2 Communication Protocol

3.2.1 Communication Example

The UML sequence diagram in Figure 3.2 visualizes a communication sequence between

the proViewServer and the «REST Library». At first, the «REST Library» needs to get a

process view or CPM to display. Therefore, it requests the process list (cf. Section 3.2.2)

from the proViewServer. The proViewServer replies with an XML file containing a list of

CPMs and their process views (cf. Section 3.2.2). Then the «REST Library» selects a

specific process view by its ID and sends a GET request containing the respective ID

(cf. Section 3.2.3). The proViewServer replies to the request with the requested process

model (cf. Section 3.2.4).

The process model may be used to be displayed to the user. In our example, the

user deletes activity GetDocument with the ID "5". Therefore, the «REST Library»

sends an UPDATE activity request (cf. Section 3.2.3) providing the ID of the activity. In

Figure 3.2, this request is successful and the server returns an XML that states this

fact (cf. Section 3.2.4). Due to the successful delete request, the process view and the

respective CPM are modified. Therefore, the «REST Library» sends GET requests to

obtain the updated versions of the process models (cf. Section 3.2.3). The resulting

process models are parsed by the «REST Library» and its observers are notified about

the change.

Note that the requests in this example are all synchronous. The «REST Library» supports

asynchronous requests as well (cf. Figure 3.1).

3.2.2 Acquire List of Process Models

To get a list of available process models, one may simply invoke the address <ip of

the proview server>:8182/process?list of the proViewServer using a HTTP

GET request. The address varies depending on the configuration in the ProView.

properties settings file of the proViewServer.

The sequence diagram in Figure 3.3 demonstrates how the list is retrieved by using a

synchronous request.

11

3 REST Library

RESTWLibrary ProViewServer

Uprocess?list

XMLWwithWCPM3View

XMLWGETWVIEWIDWnQn_fOAnd7NOQd_Oc_d7N(nd:Oee(nfQ7d7NW

XMLWwithWProcessmodel

XMLWUPDATEWVIEWINNERWREQUEST{WDELETE_NODEWIDWOW

DeleteWactivityWGetDocument

XMLWstatingWSUCCESS

XMLWGETWVIEWIDWnQn_fOAnd7NOQd_Oc_d7N(nd:Oee(nfQ7d7NW

XMLWwithWProcessmodel

XMLWGETWCPMIDWQ:Aa:O7:dNefcd_OQbd7bNNdQng7dQ_bObaO

XMLWwithWProcessmodel

DeleteNodes-{O}8

Figure 3.2: Sample Communication.

12

3.2 Communication Protocol

REST Library ProViewServer

/process?list

XML with CPM,View

Figure 3.3: Acquire List of Process Models.

Response The proViewServer replies to the HTTP GET request with an XML file

(cf. Listing 3.1) containing all available process models (i.e., CPMs and process views).

Therefore, the XML root element <models> contains a set of CPM. Each CPM has an

ID (lines 3,7), name (lines 4,8), and version number (lines 5,9). Furthermore a CPM

model may comprise multiple process view models (lines 10-13). Each process view

has its own ID, name, and version (lines 10-12).

1 <?xml version="1.0" ?>
2 <models>
3 <cpm cpmID="0bf59cff-801f-4249-896b-4b9f8c50ac9a"
4 cpmName="CreditApplication"
5 cpmVersion="1"
6 />

. . .
7 <cpm cpmID="17d84280-adb3-4083-bb63-9bd9b525a94c"
8 cpmName="Complex Process"
9 cpmVersion="10">

10 <view viewID="3d548cc0-5413-41a5-928b-54b0f292d405"
11 viewName="first view"
12 viewVersion="15"/>

. . .
13 </cpm>

. . .
14 </models>

Listing 3.1: Response Containing CPM and Process Views

13

3 REST Library

3.2.3 Request a Change on a Process View or CPM

Requesting a process model based change on the list of CPM and corresponding process

view, a HTTP POST request has to be sent to <ip of the proview server>:

8182/view/request (cf. Figure 3.4). Thereby, the XML payload describes the type of

request and what has to be changed. The XML payload is divided into two parts.

Part 1: As shown in Listing 3.2, the first part (lines 2-6) describes what operation is

requested (line 3) and which type of resource (i.e., which CPM or VIEW) is addressed

(line 6).

1 <?xml version="1.0" ?>
2 <Request>
3 <requestOperation>CREATE|DELETE|GET|UPDATE</requestOperation>
4 <resourceID>ID</resourceID>
5 <payloadFormat>XML</payloadFormat>
6 <resourceType>(CPM|VIEW)</resourceType>
7 [<query> (viewName=name)|(Inner Request) </query>]
8 </Request>

Listing 3.2: Update and Create Process View Requests

GET request operations is sent to the proViewServer to get the content of a process

view or CPM (i.e., the actual process model). Therefore, the resourceID of the respective

process model has to be given.

CREATE and DELETE request operations are applied to add and remove process

views from the proViewServer. Both the CREATE and DELETE operation require a

resourceID (line 4). The resourceID in the DELETE operation is used to identify the

specific process view that shall be removed. In the CREATE operation, however, it is

used to define the CPM that shall serve as basis for the new process view. In addition to

the resourceID, the CREATE requires a viewName (line 7) that provides the name of

the process view.

14

3.2 Communication Protocol

REST:Library ProViewServer

XML:response

alt XML:UPDATE:VIEWINNER:REQUEST::DELETE_NODE

[View/DeleteNodes]

[View/InsertSerialNode] XML:UPDATE:VIEWINNER:REQUEST::INSERT_SERIAL

[View/InsertParallelNode] XML:UPDATE:VIEWINNER:REQUEST::INSERT_PARALLEL

[View/InsertSyncEdge] XML:UPDATE:VIEWINNER:REQUEST::INSERT_SYNC_EDGE

[View/AggregateNodes] XML:UPDATE:VIEWINNER:REQUEST::AGGREGATE_SESE

[View/ReduceNodes] XML:UPDATE:VIEWINNER:REQUEST::REDUCE_ACTIVITY

[CPM/AddView] XML:CREATE:VIEWviewName

[CPM/RemoveView] XML:DELETE:VIEW

[Access:View:or:CPM] XML:GET:VIEWfCPM

alt
[Successfull]

[else] alt

[InternalServerError]

[else]

HTTP:5HH

XML:StackTrace

Figure 3.4: Synchronous Method Invocations.

15

3 REST Library

UPDATE request operations are used to perform changes to the schema of a process

view. Therefore, the Inner Request specifies the required update operation on the pro-

cess view (line 7). Since the Inner Request is written in XML, the payloadFormat

has to be set respectively (line 5). Furthermore, resourceID tells the proViewServer

which process view to change.

Part 2: The Inner Request (cf. Listing 3.3), only used by UPDATE queries is part of

the change request and gets XML-escaped before being inserted into the outer request.

1 <?xml version="1.0" ?>
2 <de.uniulm.proView.api.entity.view.operationset.(

ViewUpdateOperation | ViewCreateOperation)>
3 <op class="de.uniulm.proView.api.entity.view.changeset.(

UpdateChangeOperation|CreateChangeOperation)">
4 (INSERT_SERIAL|INSERT_PARALLEL|INSERT_SYNC_EDGE|DELETE_NODE)|
5 (REDUCE_ACTIVITY|AGGREGATE_SESE)
6 </op>
7 [<optionSet>
8 <entry>
9 <string>nodeName</string>

10 <string>name</string>
11 </entry>
12 </optionSet>]
13 <nodeSet>
14 <int>id1</int>

. . .
15 <int>idn</int>
16 </nodeSet>
17 </de.uniulm.proView.api.entity.view.operationset.(

ViewUpdateOperation | ViewCreateOperation)>

Listing 3.3: Inner Request XML Format

Listing 3.3 shows the Inner Request and is categorized into two different types of op-

erations, ViewCreateOperation and ViewUpdateOperation, which are described

below. Both types use nodeSet1 to specify the activities affected by the change (line 13).

1set of Integer IDs that represent a set of activities

16

3.2 Communication Protocol

ViewCreateOperation offers the support for ViewCreateOperation that are

necessary to create a process view from a CPM (cf. Section 2.1.2) and is available by

using the root element de.uniulm.proView.api.entity.view.operationset.

ViewCreateOperation (line 2). The proViewServer expects the operation class de.

uniulm.proView.api.entity.view.changeset.CreateChangeOperation for

this request type (line 3). This operation enables all REDUCE_SESE and AGGRE-

GATE_SESE operations whereas REDUCE_SESE performs a reduction and AGGRE-

GATE_SESE an aggregation on the process view (cf. Section 2.1.2).

ViewUpdateOperation is used to make elementary update operations to a process

view (and possibly changes to the underlying CPM). It can be accessed by using the root

element de.uniulm.proView.api.entity.view.operationset.ViewUpdate

Operation (line 2). The proViewServer expects the operation class de.uniulm.

proView.api.entity.view.changeset.UpdateChangeOperation for this kind

of update request (line 3). Several elementary view update operations are supported:

• INSERT_SERIAL inserts a serial activity between two activities.

• INSERT_PARALLEL inserts an activity in parallel to a set of activities represented

by two activities. To achieve the parallel activity, the INSERT_PARALLEL command

uses an ANDsplit and an ANDjoin gateway.

• INSERT_SYNC_EDGE inserts a synchronization edge between two activities on

parallel branches.

• DELETE_NODE removes a set of activities.

3.2.4 The Reply to a Change View or CPM -Request

After the proViewServer processed the request, it replies with an XML file through a

HTTP POST TCP tunnel that provides additional information depending on the type and

the success of the response. The different reply types are induced by either successful

or unsuccessful CREATE,DELETE, UPDATE, and GET requests.

17

3 REST Library

Successful CREATE, DELETE and UPDATE requests If a CREATE,DELETE, and

UPDATE request succeeds, the proViewServer returns a simple XML file (cf. Listing 3.4)

repeating the request (line 2), and stating that the operation was successful (line 9).

Additionally, it provides the computation time. The result tag is not significant.

1 <de.uniulm.proView.api.entity.rest.Response>
2 <request>
3 <requestOperation>CREATE|DELETE|UPDATE</requestOperation>
4 <resourceID>ID</resourceID>
5 <payloadFormat>XML</payloadFormat>
6 <resourceType>CPM|VIEW</resourceType>
7 <query>. . .</query>
8 </request>
9 <status>SUCCESSFUL</status>

10 <duration>0.0</duration>
11 <result>

. . .
12 </result>
13 </de.uniulm.proView.api.entity.rest.Response>

Listing 3.4: Successfull Response to CREATE,DELETE, and UPDATE operation.

Successful GET Request: Since the GET reply contains more information than the

other replies, the XML file structure for this response is different. It is designed to specify

a process model as described in Section 2.1.

1 <?xml version="1.0"?>
2 <template id="ID" version="16" xmlns:xsi=". . ." xsi:

schemaLocation=". . ." xmlns=". . .">
3 <name>CreditApplication</name>

. . .
4 <nodes>
5 <node id="n1">
6 <name>node name</name><description /><staffAssignmentRule/>
7 <autoStart>false</autoStart>
8 </node>

. . .
9 </nodes>

10

11 <dataElements>
12 <dataElement id="d0">
13 <type>(STRING|INTEGER|USERDEFINED)</type>

18

3.2 Communication Protocol

14 <name>element name</name><description/>
15 <identifierID>string</identifierID>
16 <isPublic>false</isPublic>
17 </dataElement>

. . .
18 </dataElements>
19

20 <edges>
21 <edge sourceNodeID="nb" destinationNodeID="na"
22 edgeType="(ET_CONTROL|ET_SYNC|ET_LOOP)">
23 <edgeType>(ET_CONTROL|ET_SYNC|ET_LOOP)</edgeType>
24 </edge>

. . .
25 </edges>
26

27 <dataEdges>
28 <dataEdge connectorID="0" dataElementID="nn" nodeID="dm"
29 dataEdgeType="(WRITE|READ)">
30 <dataEdgeType>(WRITE|READ)</dataEdgeType>
31 <isOptional>(true|false)</isOptional>
32 </dataEdge>

. . .
33 </dataEdges>
34

35 <startNode>ns</startNode>
36 <endNode>ne</endNode>
37

38 <structuralData>
39 <structuralNodeData nodeID="nm">
40 <type>(NT_NORMAL|NT_XOR_SPLIT|NT_XOR_JOIN|NT_AND_SPLIT
41 |NT_AND_JOIN|NT_STARTFLOW|NT_ENDFLOW|NT_XOR_SPLIT
42 |NT_ENDFLOW|NT_STARTLOOP|NT_ENDLOOP)</type>
43 <topologicalID>top id</topologicalID>
44 <branchID>branch id</branchID>
45 <correspondingBlockNodeID>ni</correspondingBlockNodeID>
46 </structuralNodeData>

. . .
47 </structuralData>
48 </template>

Listing 3.5: Successful Respond to GET Request

Listing 3.5 shows an example of an successful GET Request response. The response

provides a list of nodes (lines 4-9), edges (line 20), dataElements (lines 11-18),

19

3 REST Library

dataEdges (lines 27-33), and structuralData (lines 38-47). The list of nodes de-

scribes how many nodes are in the process model and how they are labeled. The

edges ET_CONTROL and ET_LOOP are used to connect individual nodes of the process

model to build an unidirectional graph. ET_SYNC edges are used between nodes of

parallel branches to provide synchronization. StructuralData elements are used

to further particularize nodes and provide type (line 40) information that specifies the

exact node type. Unlike the process model definition in Section 2.1, the list of nodes

and edges do not contain any data flow information. Instead, it is stored in the lists

of dataElements and dataEdges.

Unsuccessful Request: When a request fails, the proViewServer either returns a

HTTP 500 internal server error or an XML file containing the reason for the error

(cf. Listing 3.6). The latter is parsed by the «REST Library» and a RestException

object is created. Either way, the observers of the «REST Library» are notified of the

exception and get either the unmodified WebException or the RestException.

1 <de.uniulm.proView.api.entity.rest.Response>
2 <request>
3 <requestOperation>(CREATE|DELETE|UPDATE)</requestOperation>
4 <resourceID>ID</resourceID>
5 <payloadFormat>XML</payloadFormat>
6 <resourceType>(CPM|VIEW)</resourceType>
7 <query>

. . .
8 </query>
9 </request>

10 <status>FAILED</status>
11 <duration>0.0</duration>
12 <e class="java proViewServer exception class">
13 <stackTrace>
14 <trace>java stracktrace line</trace>

. . .
15 </stackTrace>
16 </e>
17 </de.uniulm.proView.api.entity.rest.Response>

Listing 3.6: Unsuccessful Request.

20

3.3 Receiving Process Model Changes

The structure of cf. Listing 3.6 has similarities to the one of a successful request

(cf. Section 3.2.4, Listing 3.4). However the status is different (line 10) as well as

an additional tag is included (line 12). The latter encapsules a full Java stack trace.

3.3 Receiving Process Model Changes

Although the used REST communication protocol supports requesting process models

(cf. Section 3.2.3), it does not support server side push notifications. This is essential

when an external change on one of the process models occurs. Therefore, the «REST

Library» has to rely on methods like polling or user initiated manual updates. These

methods acquire the list of process models and compare the version numbers with the

stored ones (cf. Section 3.2.2). The developers of the proViewServer might consider to

add support for a notification via HTTP 1.1 Transfer-Encoding:chunked. With

this, it would be possible to send short update notifications to the connected clients so

that they can update their process models. The ProViewKinect (cf. Section 6) uses the

«REST Library» with a five second update interval to keep its process models up to date.

3.4 Parse Graph Changes

When a change was requested (cf. Section 3.2.3) or received (cf. Section 3.3), the

«REST Library» obtains the new process model from the proViewServer. The idea

behind parsing this process model is to inform the observers of the «REST Library» not

only about that a change occurred but also what has changed. Hence, the observers

need only to update the modified parts of their process model representations.

As described, the changed process model is received by a successful GET request

(cf. Section 3.2.4).

The «REST Library» uses three lists for this purpose. The first list contains the deleted

nodes. The second is used to track the new nodes. The last contains the updated nodes

at the end of the computation.

21

3 REST Library

To fill the lists, the algorithm parses the XML file for the nodes (Listing 3.7). If a node

exists in the list of old nodes, it is removed (line 12). If it was changed, it is copied into

the list of updated nodes (line 19). If not, the algorithm creates a new node and stores it

in the list for new nodes (line 23).

At the end, the first list contains all elements that existed in the old but not in the new

graph, the deleted nodes. The second list contains all new nodes since all new nodes

are added to it on creation. The third list contains all updated nodes since the nodes in

this list were found in the list of old nodes but with different values. These three lists are

then sent to the observers so that they can update their process models.

A modified version of this algorithm is used to track changes on the edges.

1 // contains all old nodes, at the end only the deleted nodes
2 Dictionary<int, Node> oldNodes = model.NodeDictionary;
3 // empty, will contain all new nodes
4 List<Node> addedNodes = new List<Node>();
5 // empty, will contain all reused nodes
6 List<Node> updatedNodes = new List<Node>();
7

8 foreach (XmlNode n in nodes){
9 if (oldNodes.ContainsKey(id)){

10 // reuse old node
11 node = oldNodes[id];
12 oldNodes.Remove(id);
13

14 // check if the node has changed
15 if (!node.Name.Equals(name) || node.Type != type ||

node.TopologicalId != topologicalId || ...){
16 // update values
17 node.UpdateValues(name, type, topologicalId, ...);
18 // add node to the updated node list
19 updatedNodes.Add(node);
20 }
21 }else{
22 // create new node
23 node = new Node(id, name, type, topologicalId, ...);
24 addedNodes.Add(node);
25 }
26 }

Listing 3.7: Parse node changes

22

3.5 Using the REST Library

3.5 Using the REST Library

Listing 3.8 shows an example on how the «REST Library» may be used.

1 class Program: IObserver<Event>
2 {
3 public Program(){
4 Rest r = Rest.Instance;
5

6 r.Subscribe(this);
7 r.SetUpdateTimer(5000);
8

9 foreach (Cpm cpm in r.CpmList)
10 {
11 Node[] n=cpm.Nodes;
12 foreach (var view in cpm.Views)
13 {
14 n = view.Nodes;
15 if(n.Count()>3)
16 view.DeleteNodesAsync(new[] {n[2], n[3]});
17 }
18 }
19

20 if (r.CpmList.Count() > 0)
21 r.CpmList[0].AddView("my new view");
22 }
23

24 public void OnNext(Event value)
25 {
26 Console.WriteLine("Event " + value);
27 }
28 public void OnError(Exception error)
29 {
30 Console.WriteLine("Exception " + error);
31 }
32

33 public void OnCompleted()
34 {
35 throw new NotImplementedException();
36 }
37 }

Listing 3.8: Example usage of the «REST Library».

23

3 REST Library

To use the library, the user needs to subscribe to it (line 6). Therefore, the subscriber

needs to implement the IObserver<Event> interface. The interface provides the

methods OnNext(Event), onError(Exception), and OnCompleted(), which are

used by the «REST Library» to notify the subscriber about errors and changes on the

process models. The OnCompleted() is not used and may be ignored although it has

to be implemented as part of the C# observer pattern.

The SetUpdateTimer call (line 7) sets the «REST Library» to poll the server. This is

necessary to receive any external modifications to the process models stored in the

proViewServer (cf. Section 3.3).

Lines 9-18 iterate through all CPMs and their process views and tries to delete the

second and third node from the process views. If the operation succeeds, the OnNext

method (line 24) gets called with a GraphChangedEvent holding the information on

how the graph has been changed. If not, then the OnError method (line 28) gets called

containing the description why the operation has failed. There are two types of errors. A

failed request where the proViewServer returns an XML file explaining the error or an

unforeseen error (e.g., 500 internal server error). When the first case applies, OnError

is called with a RestException. Otherwise, if an unforeseen error occurred, it is

called with an ExceptionCapsule exception. The ExceptionCapsule exception

encapsules the exception of the error and contains additional information.

Note that the invocation of DeleteNodesAsync can be replaced by DeleteNodes, if a

synchronous (blocking) call is required. If the synchronous variant is used, it is important

not to execute it from the GUI thread or the application may freeze for 10 seconds.

The «REST Library» supports the deletion and creation of process views. As example,

line 21 adds a new process view to the first CPM in the CPM list. If the operation suc-

ceeds, OnNext is called with a ModelChangeEvent and EventType set to Created.

On fail, the OnError method is called as described above.

24

4
Processing Process Models

After a process model is obtained by the «REST Library», it has to be processed before

it can be displayed or interacted with. Therefore a displayable process model computed

from a list of nodes and edges is required. For that reason, an algorithm is required

that calculates the position and sizes of the process model elements (i.e., nodes and

edges). This algorithm is divided into two parts. The first part, described in Section 4.1,

separates the graph into boxes. The second part, described in Section 4.2, calculates

the actual positions for painting the process model. Section 4.3 deals with mapping the

user input onto the process model.

25

4 Processing Process Models

4.1 Creation of Process Model Blocks

The CalculateBlocks algorithm is the first step to achieve a displayable and intractable

process models.

The basic idea of the algorithm, used in the «Kinect Process Modeling» component

(cf. Section 6.1), is to divide the graph into several cascading boxes called process

blocks. Each time a path in the process splits into multiple other paths, a new block for

each path is created which is closed when its path joins with another path. The result is

shown in Figure 4.1.

The algorithm is a based on [Bür12], which also uses blocks to layout, but supports two

different types of blocks as well as multiple methods to evaluate the different block types.

Activity

StartFlow EndFlow

Activity Activity

Activity

Activity

Activity Activity

block
7

6

5 4

1

3

2

Figure 4.1: Result of Graph Parsing Algorithm

The algorithm that creates the cascaded process blocks is recursive. Figure 4.1 demon-

strates the order (1-7) in which the blocks are calculated. Note that all inner blocks have

to be calculated before their respective outer block. The blocks (2) and (3), for example,

needs to be calculated before (4),(5), and (7) because their width and height is decisive

for them.

Additionally to the blocks, the algorithm calculates the horizontal offset of every node in

the process model relative to its parent block.

26

4.1 Creation of Process Model Blocks

1 private Block CalculateBlocks(Node currentNode,Block parent,
int hBlockOffset){

2 int hUnitOffset = 0; //offset relative to the block horizontal
offset

3 Block block = new Block(hBlockOffset, parent);
4 List<Block> allInnerBlocks = new List<Block>();
5

6 while (currentNode.Type != NodeTypes.join){
7 // create graph element and add it to the current block
8 GraphElement graphElement = NodeToGraphElement(currentNode,

hUnitOffset);
9 block.addGraphElement(graphElement);

10 hUnitOffset += graphElement.UnitsWidth + Block.hUnitSpace;
11

12 List<Edge> edges = currentNode.ControlEdges;
13

14 if (edges.Count() == 0) break;
15 if (edges.Count() == 1){
16 currentNode = edges[0].To;
17 }else{
18 // recursively parse inner blocks
19 List<Block> innerBlocks = (from edge in edges select

CalculateBlocks(edge.To, hUnitOffset + hBlockOffset,
block)).ToList();

20

21 // add innerBlocks to the list of all inner blocks
22 allInnerBlocks = allInnerBlocks.Concat(innerBlocks).

ToList();
23

24 // add inner blocks sizes to the block
25 int totalUnitWidth = block.AddSizes(innerBlocks);
26 // add max inner block width to the horizontal offset
27 hUnitOffset += totalUnitWidth;
28

29 List<Edge> lastEdges = innerBlocks[0].LastNode.
ControlEdges;

30

31 // get the node after the end of the inner block
32 currentNode = lastEdges[0].To;
33 }
34 }
35 block.InnerBlocks = allInnerBlocks;
36 return block;
37 }

Listing 4.1: Caclulation of Process Model Blocks.

27

4 Processing Process Models

First the CalculateBlocks algorithm initializes its variables (cf. Listing 4.1). Variable

hUnitOffsets is used to track the horizontal progress inside of a block in order to tell

the individual nodes (line 8) and inner blocks (line 19) where they are located horizontally.

This offset begins at zero (line 2), because there are no nodes or inner blocks at the

beginning. Then, the block object is created with the hBlockOffset parameter (line 3).

This parameter, used to set the absolute horizontal offset of the block, is later required

for the position calculation (cf. Section 4.2). Next, currentNode parameter (line 1) that

has to be set to the block’s start node, i.e., the first node of the block.

After initialization, the calculation starts in line 6 with a while loop, running until reaching

the next join node since join nodes mark the end of a block. Inside of the loop, a

GraphElement is created for the current node and added to the actual block (line 9).

Such a GraphElement encapsules the node as well as additional variables like hori-

zontal offset, width, height, and location of the node. Then, hUnitOffset is increased,

because the next node needs to be positioned further to the right (line 10).

Further, the algorithm proceeds to the next process node. Three cases might occur:

First, the node has no outgoing edges. Then, the block is terminated (line 14). Second,

exactly one outgoing edge exists and, therefore, one subsequent node. The node is

then taken as the new currentNode and is added to the block in the next loop iteration.

Third, currentNode has multiple outgoing edges. Then, a new block is created for

each path, i.e., the method is recursively called (line 19). The parameter of the call

includes the edge of one path, the new hBlockOffset calculated from the old, the

current hUnitOffset and the current block which serves as parent for the nested

blocks. After the calculation of the inner blocks, they are gathered to a list (line 22). This

list is held by the actual block to track nested blocks. Then, the algorithm adds the sum of

the inner block heights and widths to the block by invoking AddSizes method (line 25).

This ensures that the block has enough space to hold the inner blocks. The AddSizes

method additionally returns the maximum of the inner block widths, which is required to

increase the local hUnitOffset (i.e., the following nodes are not placed inside of one

of the inner blocks, but after).

28

4.1 Creation of Process Model Blocks

Last, the new currentNode is calculated, which represents the node that follows

directly after a join node (i.e., the node after a block is the node after the last node of the

block (line 32)).

Runtime Analysis: It is important that the algorithm (cf. Listing 4.1) is efficient to

handle huge process models in an acceptable amount of time. Therefore we take a look

at the complexity of the algorithm.

Definition 3 (Nodes and Blocks). Let N be the nodes and B ⊆ N a block and S the set

of all blocks then rule ∀n ∈ N∃!B ∈ S : n ∈ B applies.

Note that Definition 3 ignores that it is possible that for B1 ∈ S, B2 ∈ S,|B1| < |B2|

and B1 ∈ B2 thus n ∈ N, n ∈ B1 ⇒ n ∈ B2 (i.e., a node in cascading blocks is part

of all parent blocks) because it has no effect on the computation compexity of the

CalculateBlocks algorithm.

Definition 4 (Parallel Paths). Let ni, n′j ∈ N and p, p′ be two paths with p = n1, n2, . . .

, ny−1, ny and p′ = n′1, n′2, . . . , n′z−1, n′z. Then p is parallel to p′ when n1 and n′1 are the

same split gateways, ny and n′z the same join gateways and the therm ∀u ∈ {2, . . . , y−1}

∀v ∈ {2, . . . , z − 1} : nu 6= n′v applies. Let PP then be the set of all parallel paths in a

process model.

The algorithm consists of just one loop. However it contains recursive calls that increases

the complexity. To measure the complexity we, therefore, look at the nodes accessed

since every loop iteration accesses exactly one node. Since every node is in one block

(cf. Definition 3), the wrong conclusion, that computation complexity is O(|N |), can be

made. However, the loops inspect the join nodes at the end of a block for each path. The

amount of additional inspections is equal to the amount of parallel paths (cf. Definition 4)

in a block. The complexity of the algorithm is therefore the amount of loop iterations

added to the amount of additional inspections, O(|N |+ |PP |).

29

4 Processing Process Models

4.2 Calculation of Node Positions

CalculatePositions (cf. Listing 4.2) is the second step to achieve a displayable and

intractable process model.

The algorithm calculates x- and y-positions of the nodes. Therefore, it iterates through

every block and assigns node positions based on the unitsToPixel variable that is

used to scale the resulting graph of a process model.

1 private void CalculatePositions(Block block, double
unitsToPixel)

2 {
3 // set bounds and position of block
4 block.X = (int)(block.AbsoluteHUnitOffse * unitsToPixel);
5 block.Y = (int)(block.AbsoluteVUnitOffset * unitsToPixel);
6 block.Width = (int)(block.UnitWidth * unitsToPixel);
7 block.Height = (int)(block.UnitHeight * unitsToPixel);
8

9 int yUnitMiddle = block.YUnitStart;
10 int xUnitStart = block.AbsoluteHUnitOffset;
11

12 foreach (GraphElement graphElement in block.Elements)
13 {
14 // sets position of the graph element
15 graphElement.SetPos((int)((xUnitStart + graphElement.

HUnitOffset) * unitsToPixel),
16 (int)((yUnitMiddle - graphElement.

UnitsHeight / 2) * unitsToPixel));
17

18 // calculate size
19 graphElement.SetSize((int)(graphElement.UnitsWidth *

unitsToPixel), (int)(graphElement.UnitsHeight *
unitsToPixel));

20 }
21

22 // recursively calculate positions of inner blocks
23 foreach (Block b in block.InnerBlocks)
24 {
25 CalculatePositions(b, unitsToPixel);
26 }
27 }

Listing 4.2: Calculation of Node Positions in a Process Model.

30

4.3 Collision Detection

The Algorithm has two input parameters (line 1). First, parameter "block" tells the

algorithm which block to work with and is set to the inner blocks when called recursively.

Second, parameter "unitsToPixel" which is used to scale the graph.

The algorithm starts with the calculation of constants representing the actual pixel

position and size of the blocks (lines 4-7). These constants are later required to map

user inputs onto the nodes (cf. Section 4.3).

Next, the vertical center (line 9) and horizontal start point (line 10) of the block are

calculated. The following node positions are based on these values ensuring that the

nodes are positioned vertically centered in their respective blocks.

The loop, starting in line 12, iterates through all nodes of the block and sets their positions

(line 16) as well as their sizes (line 19). The position calculated is based on the start

position of a block and the nodes offset. The nodes sizes are based on the unit size of

the nodes converted to pixels.

Finally, the algorithm recursively calls itself to calculate the positions of all inner blocks

(lines 23-26).

Runtime Analysis: To handle huge process models, the runtime complexity of the

algorithm is essential. The algorithm CalculatePositions has similarities to the one

presented in Section 4.1. The main difference is that it does not have the additional

requirement to take care of the join nodes and, thus, the runtime is O(|N|).

4.3 Collision Detection

The algorithms in Section 4.1 and 4.2 enables us to paint the process models on the

GUI but they do not support handling user interaction. Therefore another algorithm is

required that maps user input onto the displayed process model.

The CollisionDetection algorithm uses the x- and y-coordinate of the user input

(e.g., mouse click, gesture input) and calculates the node on which the input is performed.

The naive way to get the node would be to cycle through all nodes of the process model

31

4 Processing Process Models

and check if the coordinate is within a node. However, worst-case complexity with

this method is O(|N|), where |N | is the set of all nodes (cf. Definition 3). This is not

acceptable for large business models.

1 private GraphElement CollisionDetection(int x, int y, Block
block){

2 foreach (Block innerBlock in block.InnerBlocks)
3 if (innerBlock.ContainsPoint(x, y, UnitsToPixel))
4 {
5 return CollisionDetection(x, y, innerBlock);
6 }
7 foreach (GraphElement graphElement in block.Elements)
8 if (graphElement.ContainsPoint(x, y))
9 {

10 return graphElement;
11 }
12 return null;
13 }

Listing 4.3: The C# algorithm checks if the x and y parameter are on a graph element.

Algorithm CollisionDetection presented in Listing 4.3 iterates through all blocks

and recursively looks if it contains the searched node. If the node was not found in one

of the inner blocks, it is searched in the block itself.

The algorithm starts with the root block, i.e., the block that has no parent block. It first

tests the inner blocks whether they contain the respective coordinate (lines 2-6). If yes,

the algorithm recursively calls itself with the block containing this coordinate. Otherwise,

it checks the nodes of the actual block (lines 7-11) and returns the node that contains

the coordinate. If no node is found, it is assumed that there is no node that matches the

coordinate (line 12).

Generally the algorithm uses the advantage that nodes and blocks are aligned as a tree,

in which nodes are leafs and blocks are inner nodes. The algorithm uses a Depth-first

search to find a path from the root to one leaf. If no fitting node exists, the search gets

stuck at one inner node where it can not find a fitting leaf.

Worst-case complexity of the algorithm is O(|B|) where B is the set of all blocks. Since

|B| is usually smaller than |N | in process models, the recursive algorithm is to be

preferred over the naive algorithm.

32

5
Kinect Library

The «Kinect Library» is the third component of the architecture. It abstracts the commu-

nication with the Kinect SDK and offers a user interface to enable gesture-based user

input. To achieve this, it relies on the Candescent NUI (cf. Section 5.3) library that offers

hand and finger recognition [Ste13] and uses algorithms like DTW (cf. Section 2.3) to

parse gestures from finger data.

Section 5.1 explains the structure of the «Kinect Library». Section 5.3 explains a library

that is used to detect the users hand and its fingers. Section 5.4 describes how the

detected fingers are processed to reduce fuzziness of the input. Section 5.4.2 describes

how the finger data is processed in order to use the users fingers as a pointing device.

Section 5.5 describes how finger data is processed in order to calculate gestures for

process model manipulation.

33

5 Kinect Library

5.1 Structure

The Kinect Package consists of three components (cf. Figure 5.1). First, Kinect SDK

[Win13b], providing a depth data stream and status information of the Kinect hardware.

Second, Candescent NUI library [Ste13], offering hand and finger position information.

Third, the observable «Kinect Library», providing gesture recognition and a three dimen-

sional finger-based input system.

KinectGSDK

<<GinterfaceG>>
IKinectLibObserver

1KinectConnectedwF;
1KinectInitializingwF;
1KinectDisconnectedwF;

<<GinterfaceG>>
IHandGestureObserver

1PointingGesturewPointGpercentalTarget*GintGidF;
1GestureRecognizedwGestureGgesture*GdoubleGavgCostF;
1NewFingerDatawDictionary<int*Gint>Gfingers*GintGageF;

Observer

U U

y

event

event

notifies

KinectGLibrary

1NewHandDataAvailablewHandCollectionGdataF
1KinectSensorOnStatusChangedwObjectGsender*
GGGGGGGGGGGStatusChangedEventArgsGeF

...
CandecentGNUi

DepthFrameReadywObjectGsender*G
GGGGGGGGGDepthImageFrameReadyEventArgsGeF

...

...

U

U

U

event

KinectGPackage

Figure 5.1: «Kinect Library» Components

Kinect SDK is used to get the Kinect sensor’s status information. On change, the

Kinect SDK sends an event to the «Kinect Library» which notifies its observers by

calling the corresponding method (i.e., KinectConnected, KinectInitializing or Kinect

Disconnected). Further, Kinect SDK calls the Candescent NUI’s DepthFrameReady

method and informs it about new depth information from sensors of the Kinect. The

Candescent NUI library then calculates the hand information (i.e., hand and finger

position and vectors) and supplies it to the «Kinect Library». The «Kinect Library»

calculates the gestures and finger information from the consecutive hand information

and informs the observers of the «Kinect Library» about the recognized gestures, the

amount of fingers on each hand, and where the user is pointing with his finger.

34

5.2 Microsoft Kinect

5.2 Microsoft Kinect

The Kinect was developed as a toy by Microsoft and was released in 2010. The Kinect

has a depth sensor consisting of an infrared projector and an active infra red sensor

obtaining depth information regardless of the ambient lighting. Additionally, it has a

RGB camera and an array of microphones. The combination of the RGB and the depth

camera is called RGB-D camera. The resolution of it is limited to 640x480 with a field

of view (FOV) of 43◦ vertical and 57◦ horizontal. Technically a resolution of 1280x960

with the same FOV is possible but at the cost of frame rate [Win13a]. There are two

versions of the Kinect. First, Kinect for Xbox, mainly used for gaming. Second, Kinect for

Windows, used for development and supporting near mode. Near mode is a setting for

the depth sensors to focus on tracking closer objects enabling a detection between 0.4

and 0.8m (cf. Figure 5.3) [Cra13]. The area covered in this range is about 90x85x50cm

small.

In our use case the Kinect is mounted upside down at a height of about 1 meter so that

its cameras point downwards (cf. Figure 5.2). This was done so that the user can brace

his elbows on the working surface.

Figure 5.2: Kinect Mounted Upside Down.

35

5 Kinect Library

5.3 Candescent NUI

The Candescent NUI (CCT NUI) library is used to calculate the 3D hand information

from a raw Kinect depth footage obtained from the Microsoft Kinect SDK [Ste13, Win13b].

Since hand detection requires a high resolution [MPC12] and the library uses the limited

resolution of 640x480 pixel, fingers can only be tracked at a range up to 1m. Therefore,

Kinect hardware must support the near mode (c.f. Section 5.2, Figure 5.3).

Near ModeDefault

0.4

0.8
1

3

4

di
st

an
ce

(m
et

er
s)

regular
detection

regular
detection

Kinect for Windows

Hand
Detection

Figure 5.3: Default vs. Near Mode Hand Detection

To calculate the hand information the CCT NUI library applies a clustering algorithm

generating clusters in the depth image. A limited depth range is used preventing cluster

detections outside of the working area. After the clustering is done, CCT NUI searches

hand and finger patterns in the cluster matrix. Using this method, CCT NUI can not

36

5.4 Hand Tracking

distinguish between a hand and any hand-like objects and, therefore, false positives are

possible.

The main advantage of the CCT NUI to other Kinect hand tracking libraries is that the

CCT NUI does not require a coping process (i.e., the user does not have to hold his

fingers in a certain position until they are detected) so that it can be used on-the-fly.

Further more it does not require any additional hardware (e.g., a CUDA ready NVIDIA

graphic card for GPU acceleration) other than the Kinect.

As disadvantage, the library is susceptible to noise and requires a lot of computation

power (up to 3.4 GHz) running the clustering algorithm on every depth frame provided

by the Kinect RGB-D camera.

5.4 Hand Tracking

This section addresses how the hand data offered by the CCT NUI library is processed

in order to obtain viable finger count, position, and direction information.

5.4.1 Finger Count

The CCT NUI library offers finger count information (i.e., how many fingers are visible at

a time). However, this information may be very inaccurate depending on several factors

like the hands angle, sunlight nuisance and speed of the users hand. Even a slight

movement of the tracked hand may result in different amount of fingers detected.

Three steps have been undertaken to improve this detection issue.

Step 1: Fix detection based on the coordinate: Sometimes there are wrong detec-

tions in the area below 15 pixels on the y-axis. In Figure 5.4, four fingers (F1-F4) are

correctly detected, the fifth finger (F5) is a bad detection. These false detections occur

when the user’s arm enters the picture at a certain angle and is partly recognized as a

finger. However, it is possible that a recognition in this area is valid, i.e., the user has his

37

5 Kinect Library

hands in the area between 0 and 50 pixels and there is a finger located below 15 pixels.

To solve this issue, the CCT NUI library has been altered in order to ignore all detections

below 15 pixels, iff, another finger is detected at 50 pixels and above. Obviously, it is

easier to ignore all detections below 15 pixels but this creates a detection "dead zone"

for that area.

<15px
>15px

F5

F1 F2

F3

F4

Hand
center

>50px

Figure 5.4: Bad Finger Detection

Step 2: Fix non-logical Finger Counts: The CCT NUI library may report finger

counts greater than five. When this happens, the «Kinect Library» invokes the method

"CorrectData" that has been added to the CCT NUI library. This greedy method

calculates all possible distances between finger points of the last correct detection and

current non-logical detection. Then, the fingers are ordered by these distances and the

first five fingers of the non-logical detection whose distance is minimal are selected. Put

in another way, the method removes the additional fingers by predicting the ones that

are most likely incorrect.

Step 3: Bad Values: In some cases the CCT NUI library suddenly reports wrong

finger counts. This errors are difficult to pinpoint, because they are dependent on several

factors (cf. Section 5.4.1). The most common error is CCT NUI library suddenly returns

38

5.4 Hand Tracking

that no fingers are found even though the user is still showing his fingers. To decrease

this problem, the «Kinect Library» uses a data structure that is similar to a branch

prediction table (cf. Listing 5.1). It counts how often a finger count was detected in a row

and in case of a change, calculates how likely the new value is right or wrong. The closer

the new value is to the current value, the more likely it is no error (line 12). A zero finger

detection is a special case, because it is more likely an error and, therefore, the algorithm

decreases the likelihood of other fingers only by a low percentage (line 9). If a value

appears again, the likelihood of the reoccurrence increases. The algorithm illustrates this

by doubling the occurrence likelihood factor up to the MaxOccurenceCount boundary

(line 5).

1 for (int finger = 0; finger < _fingerOccurence[id].Count();
finger++)

2 {
3 if (finger == data.FingerCount){
4 // increase finger occurence likelihood
5 fingerOccurence[id][finger] = Math.Max(1,Math.Min(

MaxOccurenceCount, fingerOccurence[id][finger] * 2));
6 }else{
7 if (data.FingerCount == 0){
8 // zero detections are often mistakes
9 fingerOccurence[id][finger] *= 0.95;

10 }else{
11 // reduce the finger occurence likelihood
12 fingerOccurence[id][finger] *= (1 - 0.1 * Math.Abs(finger

- data.FingerCount));
13 }
14 }
15 }

Listing 5.1: change finger possibility

After the algorithm finished calculating the estimated finger count, it calls method

"CorrectData" in the CCT NUI library that was explained in the last paragraph. This

method also handles the case where less fingers are found. In this case, it orders the

fingers again, but selects the ones that are further away, i.e., the fingers that are most

likely missing.

39

5 Kinect Library

5.4.2 Finger Pointing

Finger Pointing system enables users to point with one Finger on a distant projected

surface and the system calculates the respective x- and y-position and, additionally, the

percental distance to the targeted surface (cf. Figure 5.5). The decision to use finger

tracking instead of the more accurate hand tracking was made because it reduces the

fatigue since it reduces the distance the user has to cover for an input. The detection

Activity Activity

Activity

Activity Activity Activity

Activity

StartFlow

EndFlowLOOPjoin LOOPsplit ANDsplit ANDfjoin

DatafElement

ET_DataFlow

3w
rite

-

ET_DataFlow
3read-

ET_Loop

ET_SoftS
yn

c

ET_Control

D
istance

VirtualfSurface

ProjectionfSurface

640px

300-6
00px

48
0p

x

Figure 5.5: Finger Pointing

is written robust enough to work even if two fingers are detected instead of one. In this

situation, it takes the finger that is closer to the distant surface.

The CCT NUI provides, therefore, the finger tip position and a vector representing

the respective pointing direction. Calculating the percental x- and y-coordinate, the

40

5.4 Hand Tracking

«Kinect Library» takes the intersection of the vector (with the position as origin) with the

projection surface and calculates the percental value from the x- and y-coordinate of the

intersection. Receiving the distance, however, more effort is required. First, a virtual

surface is defined that is located at the maximum z-value the finger may have (480 pixel).

When a user is pointing to the projection image, the system additionally calculates the

intersection with this virtual surface. It then takes the intersection point of the virtual and

the real surface and calculates the euclidean distance between them. It then divides the

value by the maximum distance to receive values between 0 and 1 and positions the

cursor to that percental point.

Problems When used in practice, the calculated pointer seemed to jump randomly

over the surface. The reason is that although a 100ms quantization is applied [LWZ+09,

Wik13] (i.e., 100ms of position values are arithmetically averaged) to the position values

to reduce the noise, the percental x- and y-values vary about 20 to 50 percent. The

Kinect SDK resolution seems to be not high enough for the CCT NUI library to determine

an exact direction vector. To improve the accuracy, the quantization time has to be in-

creased to at least one second with the drawback that this influences the user interaction

experience in a negative way since input feels sluggish and, therefore, this type of input

method has been abandoned.

5.4.3 Finger Position

Since the finger tip position data seems to be more accurate than the pointing vector,

it is used to point on the surface (cf. Figure 5.6). The z-value is then calculated from

the z-position of the finger relative to the maximal possible z-value of 480 pixels. The

quantization is set to 600ms to eliminate the noise of the position data. This works well,

but the sluggishness is still notable.

To decrease the delay, a Scaled Radial Dead Zone is introduced [Jos13]. This dead zone

is applied to the percental difference between a new finger position and the previous

position and does two things (cf. Figure 5.7): First, it eliminates all detections below 2%,

since they are most likely noise. Second, it creates a gradient between 2% and 20%,

41

5 Kinect Library

that makes detections close to 2% weaker and detections close to 20% stronger. All

detections above 20% are apparently no noise and can be taken into account directly.

The previously mentioned delay could be reduced to 400ms with the dead zone. This

delay is still noticeable, but is not as annoying as any delay greater than 600ms.

Activity Activity

Activity

Activity Activity Activity

Activity

StartFlow

EndFlowLOOPjoin LOOPsplit ANDsplit ANDfjoin

DatafElement

ET_DataFlow

0w
rite

3

ET_DataFlow
0read3

ET_Loop

ET_SoftS
yn

c

ET_Control

VirtualfBox

ProjectionfSurface

640px

300z6
00px

48
0p

x

xx

zx
yx

xx

yx

Figure 5.6: Finger Position

5%

5%

20%

20%

10%

10%

15%

15%

Figure 5.7: Scaled Radial
Dead Zone

5.5 Gesture Recognition

The gesture1 recognition can not work with fixed position values provided by the «REST

Library» because a gesture consists of movements. The gesture recognition therefore

requires a history that keeps track of the quantized discrete finger positions in order to

calculate the x-,y- and z-movements of fingers. A gesture is then defined as a list of

speed values over the time [PSH97, Rub91, LWZ+09].

DTW is used to compare the speed values of the user input with predefined gestures

(cf. Section 2.3). The algorithm needs two arrays for the computation. The first one

1We use "gestures" to refer to finger movements in the three dimensional space.

42

5.5 Gesture Recognition

is predefined by the gesture. The second one is constantly created from the users

finger movement speeds. Since we have multiple gestures with multiple data, we need

multiple instances of the DTW algorithm. This may result in a high calculation cost.

There are only few gestures in our case but there are cases with more gestures or where

computation power is limited (e.g., on handheld devices or embedded systems). There,

it might be wise to calculate only the DTW distance of gestures that make sense in the

current application context.

When a gesture is recognized the system subtracts the time stamp where the last

gesture was recognized from the current time stamp. If the resulting time difference is

less than one second, it skips the gesture to prevent multiple recognitions at the same

time. Otherwise, it informs the observers of the «Kinect Library» about the newly found

gesture.

The problem with the used method of gesture recognition is that it is difficult to distinguish

between a normal user interaction and gesture since the user can either select a node or

perform a gesture with the same movement pattern. To solve this, a special condition is

integrated which has to be fulfilled before gestures are recognized: A user has to show

five fingers of his hand to the Kinect camera for about one second. This simple gesture

enables the gesture recognition mode for a fixed time period.

5.5.1 Gesture Format Definition

Keeping gesture definition simple, the «Kinect Library» loads all XML files ending with

"_gest.xml" out of a directory. Each XML file defines exactly one gesture, the action to

be triggered, and additional meta data.

Listing 5.2 shows the definition of the nudge action gesture (i.e., the user moves his finger

forth on the x-axis and then back). Though later replaced with a two finger click gesture,

it is a good example on how gestures are defined. It starts with meta data (lines 3-6),

which may be used to show the user the name of the recognized gesture for example.

Followed by the Action triggered when the gesture is recognized (line 7). Right now

the click action, to select, and all possible operations supported by proViewServer are

43

5 Kinect Library

allowed. The value of Threshold (line 8) is used to determine if the user input matched

the gesture or not. If the average DTW distance calculated from the data sets by the

DTW algorithm is less than the threshold then the gesture is recognized. Note that a

low threshold might improve the recognition rate of the user input but also increases the

probability of false positives.

1 <?xml version="1.0" encoding="utf-8" ?>
2 <Gesture>
3 <Name>Nudge Action</Name>
4 <Description>
5 move finger forth and back on the Z axis
6 </Description>
7 <Action>click</Action>
8 <Threshold>5</Threshold>
9 <Length>10</Length>

10 <Data>
11 <Hand id="1" type="position">
12 <set>
13 <z>-2.0, -1, -0.7, -0.5, 0,2.0, 1.7,1.5, 1.0, 0.5</z>
14 </set>

. . .
15 </Hand>
16 </Data>
17 </Gesture>

Listing 5.2: Gesture Definition Format

Lines 10-16 define data series, which are matched by the DTW algorithm with the user

input and are categorized into different sets. Each set must have at least one data series

on one axis and is used to distinguish different movement patterns that result in the same

gesture. The DTW distance is calculated by calculating the DTW distance of each data

series, getting the average of each set and then calculating the average of them. Values

used in the sets are comma separated. This contradicts with the XML specification, but

keeps the file small and readable for human beings. The Hand element (lines 11-15)

is used to assign the data sets to a hand, i.e., it is possible that the system detects

gestures that are performed with two hands. This feature is not in use, though, because

it showed as unpractical since it is difficult for the user to learn the two hand gestures

and the user has to stay with his hands in the limited camera range of the Kinect during

the gesture.

44

6
ProViewKinect

The usability research of three dimensional gesture recognition software for manipulating

process models is difficult since there are no implementations yet. The vision is to

modify process models without the need of any traditional input methods but only using

gestures and finger pointing in a three dimensional space. Therefore a prototype has

been created to validate the viability of three dimensional process model manipulation.

Section 6.1 explains the architecture of the prototype. Section 6.2 showcases an

implementation of the prototype. Section 6.3 validates the presented prototype.

45

6 ProViewKinect

6.1 ProViewKinect Architecture

The focus when designing ProViewKinect is to build its parts flexible and with clean

interfaces in order to be reuse them in other projects (e.g., the «REST Library» is being

used in other implementations). The Kinect-based process modeling program is split

into three basic components (cf. Figure 6.1) and is based on the Model-View-Presenter -

Design pattern [GHJV94].

Kinect Process Modeling REST Library

Kinect Library

Register Gesture Notification

Register / Get Proces Model

Update Notification

proViewServer

Interact

Communicate

Figure 6.1: The Architecture of the Prototype.

The main component of the architecture is the «Kinect Process Modeling», which

provides the graphical user interface (GUI) as well as the application logic and is further

described in Section 5. It communicates with the «REST Library» and the «Kinect

Library» in order to retrieve the information and updates for the GUI and send requests

to the «Kinect Library» when necessary.

The second component is the «REST Library» (cf. Section 3), which is an interface to

communicate with the proViewServer (cf. Section 2.2). The GUI can request graphs and

change operations with it. Furthermore the «REST Library» can poll the proViewServer

(cf. Section 3.3) and inform the GUI about changes to the graphs.

The third and last component is the «Kinect Library» (cf. Section 5) that informs the GUI

about gestures and whether the user is pointing with his fingers in order to select a

graph element. The «Kinect Library» can be seen as an interface to the official Microsoft

Kinect SDK [Win13b].

46

6.2 ProViewKinect Prototype

6.2 ProViewKinect Prototype

The ProViewKinect prototype, written in C#, includes all components of the architecture

(i.e., «REST Library»,«Kinect Process Modeling», and «Kinect Library») and features

described in the previous sections.

After the prototype is executed, the user is promted to select a display device, on which

ProViewKinect’s main interface is to be displayed. This is convenient and is required to

support beamers that can not be used as main display.

The main interface is divided into three areas (cf. Figure 6.2). In the center, the cur-

rent process model is presented by using Processing Process Models algorithms

(cf. Section 4.1 and 4.2). On the bottom left corner, the result of the CCT NUI’s cluster-

ing algorithm is shown and serves as feedback whether the user’s hands are detected

correctly. On the bottom right corner, an event log, used for error messaging, notifica-

tions, and debug purposes is displayed. As shown in the bottom left corner of Figure 6.2,

the user can use his index finger to move the cursor on the screen. The data for this

interaction provided by the «Kinect Library» (cf. Section 5). When the cursor is moved

over a node of the process graph, the node is highlighted. To select a highlighted node,

the user may show his thumb additionally to the index finger to the Kinect camera. If the

highlighted node, as in the figure, was already selected, it gets deselected via versa.

In oder to manipulate the process graph, the user has to show five fingers to the camera.

The «Kinect Library» notifies the GUI about the changed finger count and that the

graph manipulation mode, requesting a gesture recognition from the «Kinect Library», is

enabled. The user is notified by a sound effect and can start making a gesture using

his index finger. When a gesture is recognized and the associated action is possible

(i.e., the amount of selected nodes is equal to the requirements of the action), the

«REST Library» is invoked with the desired action (cf. Section 3.2.3). Should the request

succeed, the GUI is notified by the «REST Library» and the process model is updated by

adding, removing edges, and moving the nodes to their new positions (cf. Section 3.4).

Otherwise, the «REST Library» reports an error and the event log is appended with an

error message stating the reason (cf. Section 3.2.4 Unsuccessful Request).

47

6 ProViewKinect

When an external change on the process model gets detected (cf. Section 3.3), only the

nodes and edges of the modified part of the graph gets moved. The nodes that are not

affected by the change stay in place and the selections are maintained. This was done

to avoid an interruption in the users workflow.

Clustering result

Selected node

Cursor

Current model

Highlighted node

Event log

Figure 6.2: ProViewKinect Graphical User Interface

6.3 Validation of the Prototype

The main question is whether the prototype is accepted by the users. This goes hand in

hand with the question how natural, intuitive and exhausting the input interface is.

The pointing gestures used to select and deselect nodes feels very natural and intuitive

although it uses the finger position (cf. Section 5.4.3) instead of the pointing vector

(cf. Section 5.4.2) to move the cursor. Though the user can brace his elbow on the

working surface, the interaction is exhausting. This is partly because the user has to

move his fingers in a limited area. Furthermore, it requires some time to get used to

concentrating simultaneously on cursor movement and clustering image (providing the

48

6.3 Validation of the Prototype

detection limits). The fatigue steadily increases the more process nodes the user wants

to select at a time. Therefore, a user using traditional input methods can work longer

and is faster.

The actual selection by highlighting a node with the index finger and stretching the thumb,

to select, is fast and performant. The fatigue is small because the user has only to move

his thumb and feels intuitive after being learned.

To manipulate the graph, actions can be performant on selected nodes. To initiate an

action, the user may perform a finger gesture. This feature could be very fast and

performant, if the system was precise enough to detect the slightest finger movements.

Since it is not, the user has to move his hands to perform a finger gesture. While the

gestures are small and seldom used, hence, not very exhausting, they feel not intuitive

since they are not directly connected with the selected process nodes. It is also difficult

to memorize all possible gestures. Supporting the user, a context sensitive interface

showing possible gestures could help solving this problem. The gesture recognition

system itself is fast enough to keep up with traditional input methods and furthermore

feels more natural.

All in all the system is usable and intuitive but exhausting since the finger pointing system

is used most of the time. Therefore, it is only recommended for small changes on process

models. The gestures are performant but not very intuitive. A user using traditional

input systems has still an advantage over a user using the ProViewKinect’s pointing and

gesture interface but the latter is more natural and easier to learn. The graphical user

interface itself is clean, simple and offers enough feedback to the user.

49

7
Conclusion

The ProViewKinect has been presented utilizing the Kinect to provide a finger gesture

input interface for manipulating process graphs. It has proven the applicability of gesture

based process manipulations and serves as a first step in that direction. This interface is

designed to provide a natural and intuitive input experience. It is clear, though, that more

effort has to be made to guaranty a more fluent workflow to compete with other input

methods. Compared to the traditional input method it is still much slower. Solving the

resolution problem (cf. Section 5.5 and 6) would surely improve the speed of the system

so that it can compete with other input methods and would increase the detection area.

At the moment, the main advantage of ProViewKinect are environments where the use

of traditional input methods is difficult since only a RGB-D camera, that can be mounted

anywhere, is required.

51

8
Summary and Outlook

First, the three components of the ProViewKinect prototype has been introduced.

«REST Library» communicates with the proViewServer to obtain and maintain the

process models (cf. Section 3). «Kinect Library» tracks the users hands using the

modified CCT NUI library (cf. Section 5.3), which utilizes the Kinect’s depth camera

(cf. Section 5.2). Furthermore, it provides finger tracking (cf. Section 5.4) and gesture

recognition (cf. Section 5.5) by analyzing the depth data stream provided by CCT NUI.

«Kinect Process Modeling» serves as GUI for ProViewKinect and comprises algorithms

for process model representation and user interaction (cf. Section 4). Second, the

ProViewKinect is presented utilizing the three components. With it the user can access

and manipulate process graphs using gestures in three dimensions (cf. Section 6).

Several problems have been discussed resulting of the Kinect’s low camera resolution

(cf. Section 5.5,6). Therefore, the next logical step would be the new version of the Kinect

53

8 Summary and Outlook

offering HD resolution cameras [Ter13]. There are other interesting developments, too.

The leap motion, for example, seems to be a precise hand tracking device (developers

speak of a sub-millimeter accuracy [lea13]). This detection is limited to a range of 1

meter though [Joe13]. The benefit of the leap motion compared to the Kinect would be

that it resolves most of the problems arose from the inaccuracy of the detection. The

pointing input method for example (cf. Section 5.4) would most likely be possible with

the additional accuracy thus enabling finger gestures without the need of moving the

hand.

54

List of Figures

2.1 Example of a Process Model . 5

2.2 Reduction and Aggregation Operation . 6

2.3 DTW Match of x1 and x2. 7

3.1 «REST Library» Components. 10

3.2 Sample Communication. 12

3.3 Acquire List of Process Models. 13

3.4 Synchronous Method Invocations. 15

4.1 Result of Graph Parsing Algorithm . 26

5.1 «Kinect Library» Components . 34

5.2 Kinect Mounted Upside Down. 35

5.3 Default vs. Near Mode Hand Detection . 36

5.4 Bad Finger Detection . 38

5.5 Finger Pointing . 40

5.6 Finger Position . 42

5.7 Scaled Radial Dead Zone . 42

6.1 The Architecture of the Prototype. 46

6.2 ProViewKinect Graphical User Interface 48

55

Listings

2.1 DTW Algorithm . 8

3.1 Response Containing CPM and Process Views 13

3.2 Update and Create Process View Requests 14

3.3 Inner Request XML Format . 16

3.4 Successfull Response to CREATE,DELETE, and UPDATE operation. . . 18

3.5 Successful Respond to GET Request . 18

3.6 Unsuccessful Request. 20

3.7 Parse node changes . 22

3.8 Example usage of the «REST Library». 23

4.1 Caclulation of Process Model Blocks. 27

4.2 Calculation of Node Positions in a Process Model. 30

4.3 The C# algorithm checks if the x and y parameter are on a graph element. 32

5.1 change finger possibility . 39

5.2 Gesture Definition Format . 44

57

Bibliography

[Bür12] BÜRINGER, Stefan: Development of a Business Process Abstraction Com-

ponent based on Process Views. http://dbis.eprints.uni-ulm.de/

838/. Version: 2012. – Bachelor Thesis, Uni University

[Cra13] CRAIG EISLER: Near Mode: What it is (and isn’t). blogs.

msdn.com/b/kinectforwindows/archive/2012/01/20/

near-mode-what-it-is-and-isn-t.aspx, 2013. – [Online; ac-

cessed 11-July-2013]

[Dap12] DAPPER, Matthias: Implementation of a Multi-Touch, Gesture-based Process

Modeling Component for Apple iPad. http://dbis.eprints.uni-ulm.

de/883/. Version: 2012. – Bachelor Thesis, Uni University

[GHJV94] GRAMMA, Erich ; HELM, Richard ; JOHNSON, Ralph ; VLISSIDES, John:

Design patterns-Elements of Reusable Object-Oriented Software. 1994

[Joe13] JOE LIMON: Image Files. https://forums.leapmotion.

com/showthread.php?1005-Technical-specifications&p=

5795&viewfull=1#post5795, 2013. – [Online; accessed 14-July-2013]

[Jos13] JOSH SUTPHIN: Doing Thumbstick Dead Zones

Right. http://www.third-helix.com/2013/04/

doing-thumbstick-dead-zones-right/, 2013. – [Online; accessed

14-July-2013]

[KKR12a] KOLB, Jens ; KAMMERER, Klaus ; REICHERT, Manfred: Updatable Process

Views for Adapting Large Process Models: The proView Demonstrator. In:

59

http://dbis.eprints.uni-ulm.de/838/
http://dbis.eprints.uni-ulm.de/838/
blogs.msdn.com/b/kinectforwindows/archive/2012/01/20/near-mode-what-it-is-and-isn-t.aspx
blogs.msdn.com/b/kinectforwindows/archive/2012/01/20/near-mode-what-it-is-and-isn-t.aspx
blogs.msdn.com/b/kinectforwindows/archive/2012/01/20/near-mode-what-it-is-and-isn-t.aspx
http://dbis.eprints.uni-ulm.de/883/
http://dbis.eprints.uni-ulm.de/883/
https://forums.leapmotion.com/showthread.php?1005-Technical-specifications&p=5795&viewfull=1#post5795
https://forums.leapmotion.com/showthread.php?1005-Technical-specifications&p=5795&viewfull=1#post5795
https://forums.leapmotion.com/showthread.php?1005-Technical-specifications&p=5795&viewfull=1#post5795
http://www.third-helix.com/2013/04/doing-thumbstick-dead-zones-right/
http://www.third-helix.com/2013/04/doing-thumbstick-dead-zones-right/

Bibliography

Demo Track of the 10th Int’l Conf on Business Process Management (BPM’12),

2012 (CEUR Workshop Proceedings 940), 6–11

[KKR12b] KOLB, Jens ; KAMMERER, Klaus ; REICHERT, Manfred: Updatable Process

Views for User-centered Adaption of Large Process Models. In: 10th Int’l

Conference on Service Oriented Computing (ICSOC’12), Springer, October

2012 (LNCS 7636), 484–498

[KR13a] KOLB, Jens ; REICHERT, Manfred: Data Flow Abstractions and Adaptations

through Updatable Process Views. In: 28th Symposium on Applied Computing

(SAC’13), 10th Enterprise Engineering Track (EE’13), ACM Press, March 2013,

1447–1453

[KR13b] KOLB, Jens ; REICHERT, Manfred: Supporting Business and IT through

Updatable Process Views: The proView Demonstrator. In: ICSOC’12, Demo

Track of the 10th Int’l Conference on Service Oriented Computing, Springer,

March 2013 (LNCS 7759), 460–464

[KRR12] KOLB, Jens ; RUDNER, Benjamin ; REICHERT, Manfred: Towards Gesture-

based Process Modeling on Multi-Touch Devices. In: 1st Int’l Workshop on

Human-Centric Process-Aware Information Systems (HC-PAIS’12), Springer,

June 2012 (LNBIP 112), 280–293

[lea13] LEAP MOTION TEAM: Inside Leap Motion: Meet our Hard-

ware Engineers. http://blog.leapmotion.com/post/55366438663/

inside-leap-motion-meet-our-hardware-engineers, 2013. – [On-

line; accessed 14-July-2013]

[LWZ+09] LIU, Jiayang ; WANG, Zhen ; ZHONG, Lin ; WICKRAMASURIYA, J. ; VASUDEVAN,

V.: uWave: Accelerometer-based Personalized Gesture Recognition and Its

Applications. In: Pervasive Computing and Communications, 2009. PerCom

2009. IEEE International Conference on, 2009, S. 1–9

[MPC12] MINSUN PARK, Jaemyun K. Md. Mehedi Hasan H. Md. Mehedi Hasan ;

CHAE, Oksam: Hand Detection and Tracking Using Depth and Color Informa-

60

http://blog.leapmotion.com/post/55366438663/inside-leap-motion-meet-our-hardware-engineers
http://blog.leapmotion.com/post/55366438663/inside-leap-motion-meet-our-hardware-engineers

Bibliography

tion. (2012). http://www.academia.edu/1542615/Hand_Detection_

and_Tracking_Using_Depth_and_Color_Information

[MR81] MYERS, Cory S. ; RABINER, Lawrence R.: Comparative Study of Several

Dynamic Time-Warping Algorithms for Connected-Word Recognition. In: The

Bell System Technical Journal 60 (1981), Nr. 7

[PSH97] PAVLOVIC, V.I. ; SHARMA, R. ; HUANG, T.S.: Visual interpretation of hand

gestures for human-computer interaction: a review. In: Pattern Analysis and

Machine Intelligence, IEEE Transactions on 19 (1997), Nr. 7, S. 677–695.

http://dx.doi.org/10.1109/34.598226. – DOI 10.1109/34.598226. –

ISSN 0162–8828

[Rub91] RUBINE, Dean: Specifying gestures by example. In: SIGGRAPH Comput.

Graph. 25 (1991), Juli, Nr. 4, 329–337. http://dx.doi.org/10.1145/

127719.122753. – DOI 10.1145/127719.122753. – ISSN 0097–8930

[Ste13] STEFAN: Candescent NUI. http://candescentnui.codeplex.com/,

2013. – [Online; accessed 10-July-2013]

[Ter13] TERRENCE O’BRIEN: Microsoft’s New Kinect is Ffficial: Larger Field of

View, HD Camera, Wake with Voice. http://www.engadget.com/2013/

05/21/microsofts-new-kinect-is-official/, 2013. – [Online; ac-

cessed 14-July-2013]

[Wik13] WIKIPEDIA: Quantization (signal processing) — Wikipedia, The

Free Encyclopedia. http://en.wikipedia.org/w/index.php?

title=Quantization_(signal_processing)&oldid=560924135.

Version: 2013. – [Online; accessed 30-July-2013]

[Win13a] WINDOWS TEAM: Kinect for Windows Sensor Components and Speci-

fications. http://msdn.microsoft.com/en-us/library/jj131033.

aspx, 2013. – [Online; accessed 22-July-2013]

[Win13b] WINDOWS TEAM: Microsoft Kinect SDK. http://www.microsoft.com/

en-us/kinectforwindows/develop/developer-downloads.aspx,

2013. – [Online; accessed 15-July-2013]

61

http://www.academia.edu/1542615/Hand_Detection_and_Tracking_Using_Depth_and_Color_Information
http://www.academia.edu/1542615/Hand_Detection_and_Tracking_Using_Depth_and_Color_Information
http://dx.doi.org/10.1109/34.598226
http://dx.doi.org/10.1145/127719.122753
http://dx.doi.org/10.1145/127719.122753
http://candescentnui.codeplex.com/
http://www.engadget.com/2013/05/21/microsofts-new-kinect-is-official/
http://www.engadget.com/2013/05/21/microsofts-new-kinect-is-official/
http://en.wikipedia.org/w/index.php?title=Quantization_(signal_processing)&oldid=560924135
http://en.wikipedia.org/w/index.php?title=Quantization_(signal_processing)&oldid=560924135
http://msdn.microsoft.com/en-us/library/jj131033.aspx
http://msdn.microsoft.com/en-us/library/jj131033.aspx
http://www.microsoft.com/en-us/kinectforwindows/develop/developer-downloads.aspx
http://www.microsoft.com/en-us/kinectforwindows/develop/developer-downloads.aspx

Name: Hayato Hess Matrikelnumber: 698230

Deklaration

I declare that I completed this work on my own and that information which has been

directly or indirectly taken from other sources has been noted as such.

Ulm, the .

Hayato Hess

	Introduction
	Background
	Process Model
	Central Process Model
	Process View

	The proView Framework
	Dynamic Time Warping

	REST Library
	Interface
	Communication Protocol
	Communication Example
	Acquire List of Process Models
	Request a Change on a Process View or CPM
	The Reply to a Change View or CPM -Request

	Receiving Process Model Changes
	Parse Graph Changes
	Using the REST Library

	Processing Process Models
	Creation of Process Model Blocks
	Calculation of Node Positions
	Collision Detection

	Kinect Library
	Structure
	Microsoft Kinect
	Candescent NUI
	Hand Tracking
	Finger Count
	Finger Pointing
	Finger Position

	Gesture Recognition
	Gesture Format Definition

	ProViewKinect
	ProViewKinect Architecture
	ProViewKinect Prototype
	Validation of the Prototype

	Conclusion
	Summary and Outlook

