
Universität Ulm | 89069 Ulm | Germany Faculty for
Engineering and
Computer Science
Institute of Databases and
Information Systems

Collaborative Process Modelling with
Multi-Touch Tables
Diploma Thesis at Ulm University

Submitted by:
Judith Burkhardt
judith.burkhardt@uni-ulm.de

Reviewer:
Prof. Dr. Manfred Reichert
Prof. Dr. Peter Dadam

Supervisor:
Jens Kolb

2013

Version August 1, 2013

c© 2013 Judith Burkhardt

This work is licensed under the Creative Commons. Attribution-NonCommercial-ShareAlike 3.0
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/
or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.
Satz: PDF-LATEX 2ε

Abstract

In business process modelling, as in any application domain, collaborative work gets

more and more important as the complexity of the problem increases. Conventional

computing workspaces, (e.g. desktop PC, laptop) are not suitable for active collaboration

of several contributors on the same device at the same time. In this thesis we develop

collabView, a proof-of-concept implementation, to model business processes on a multi-

touch table such that multiple users can interact at the same time. Our application

connects as a client to the proView business process modelling server application.

collabView encourages all collaborators to work actively together and interact with the

process models in a direct an intuitive way.

Kurzfassung

Wie in jedem anderen Anwendungsbereich wird die persönliche Zusammenarbeiten

beim modellieren von Geschäftsprozessen umso wichtiger, je komplexer das Problem

wird. Herkömmliche Computerarbeitsplätze (z.B. Desktop PC, Laptop) sind nicht für

die aktive und zeitgleiche Zusammenarbeit mehrerer Mitarbeiter am gleichen Gerät

ausgelegt. In dieser Arbeit entwickeln wir collabView, eine prototypische Implemen-

tierung, die nachweist, dass Benutzer auf einem Multi-Touch-Tisch gleichzeitig an einem

Geschäftsprozessmodell interagieren können. Unser Programm verbindet sich als Client

mit dem proView-Server für Geschäftsprozessmodellierung. collabView fördert die aktive

Zusammenarbeit aller Beteiligter und ermöglicht die direkte und intuitive Interaktion mit

dem Prozessmodell.

iii

Contents

1. Introduction 1

1.1. Motivation . 1

1.2. Contribution . 2

1.3. Overview . 2

2. Fundamentals 3

2.1. Process Model . 3

2.2. The proView Project . 7

2.3. Samsung SUR 40 . 11

2.4. Collaborative Work . 12

3. Requirements 13

3.1. Requirements for Multi User Support . 13

3.2. Requirements for Collaborative Work . 15

3.3. Requirements for Main Menus . 16

3.4. Requirements from proView . 17

3.5. Manipulation Operations of Process Views 18

4. User Interaction Design Concept 19

4.1. Main Menu Design Concept . 19

4.1.1. Pie Menu . 20

4.1.2. Sticky Note Menu . 21

4.1.3. Element Menu . 21

4.1.4. Rectangle Menu . 23

v

Contents

4.1.5. Choice of Main Menu Concept . 24

4.2. Presentation of Process Model . 25

4.3. Manipulation Operations of Process Views 27

4.3.1. Manipulating Process Models through Touch Gestures 27

4.3.1.1. Manipulating Edges in Process Models with Touch Ges-

tures . 28

4.3.1.2. Manipulating Nodes with Touch Gestures 29

4.3.2. Manipulating Process Models with Context Menus 30

4.3.2.1. Manipulating Nodes . 30

4.3.2.2. Title as Button . 33

4.4. Insert Menu . 34

4.5. Modal Dialogue . 35

5. Process Model Layout 37

5.1. Abstract Schema of a Process Model Layout 37

5.2. Calculating Width and Height of a Box and a Path 38

5.3. Vertical and Horizontal Position of Process Nodes 40

6. Proof-Of-Concept Implementation 45

6.1. Server communication . 46

6.2. Multi User Support . 46

6.3. Visual Components . 47

6.3.1. Main Menu . 47

6.3.2. Process Area . 50

6.4. Manipulation of Process Area . 53

6.4.1. Touch Gestures to Manipulate the Process Area 54

6.4.2. Buttons to Manipulate the Process Area 58

6.4.3. Modal Dialogues for Entering Text 60

6.5. Live Updates . 61

6.6. Discussion . 61

7. Conclusion 65

vi

Contents

A. Source Code 69

vii

1
Introduction

1.1. Motivation

Process models are a graphical representation of business processes. Business pro-

cesses may get very large the more complex the real world business processes are and

the more users are involved in. In order to face this problem the proView framework

support users through Personalized and Updatable Process Visualizations1. Therefore,

personalised process views for complex process models are provided, which abstract

the underlying process model for the specific need of a user. Generally, modelling

process models involves different domain experts to capture the whole business process.

In particular, domain experts need to discuss about fragments of a process model in

which, e.g., they are involved in. For this, they usually need to come together to discuss

and remodel process fragments.
1www.dbis.info/proView

1

1. Introduction

During this process modelling session domain experts utilise, e.g., paper, whiteboard, or

flip charts to document process changes. Afterwards the modifications can be assigned

to the actual process model. To avoid this intermediate documentation a multi-touch

table to present and change business processes models can be a helpful tool. Hence we

implement a proof-of-concept for modelling business processes with multi-touch tables

called collabView.

1.2. Contribution

• We show that multi-touch tables offer a possibility to provide powerful tooling for

active, real-time collaboration of multiple contributors on one project.

• We show that multi-touch table applications are suitable for integration into dis-

tributed server-client architectures.

• We show how an intelligent colour concept can emphasises the ownership of

screen items and therefore support smooth collaboration of multiple users.

• We show how sophisticated graphical user interface (GUI) concepts can signifi-

cantly contribute to optimal usage of the limited space when multiple users work at

the same time.

1.3. Overview

The remaining of this thesis is structured as follows: Section 2 introduces fundamentals

of process models, the proView and the hardware we use for collabView. Section 3

describes the requirements of collabView needs to meet. Section 4 discusses the user

interaction design. Section 5 depicts how a graph for a process model is drafted to

visualise for the user. Section 6 elaborates how collabView on the multi-touch table is

implemented. Section 7 concludes the thesis.

2

2
Fundamentals

Section 2.1 defines the structure of a process model. Section 2.2 introduces the

framework which is used to get process models. The multi-touch table used as well as

development software is shown in Section 2.3. Section 2.4 explains collaborative work

and why multi-touch tables are beneficial for it.

2.1. Process Model

A process model is a directed graph with different types of nodes. Nodes represent

activities, data elements, or a gateways of the business process. In the following different

types of elements of the process model graph are presented.

ControlEdges connect two nodes in a process model. Each ControlEdge has a specific

start node and a specific end node. It is graphically represented as an arrow, which

3

2. Fundamentals

points from the preceding to the succeeding node. StarEvent and EndEvent mark the

beginning and the end of a process model. These event are mandatory for a process

model. A StartEvent has no incoming ControlEdges and EndEvents no outgoing ones.

An activity is the most common part of each process model. Each activity is depicted

as a square including the name of the action of the real-world process. Activities have

exactly one incoming and one outgoing ControlEdge (cf. Figure 2.1).

Figure 2.1.: Graphical Representation of an Activity with StartEvent, EndEvent and
ControlEdge

ANDSplit and ANDJoin gateways represent an AND branching block (cf. Figure2.2 a),

i.e., activities on the outgoing branches of the ANDSplit may be executed in parallel.

They can only exist as a pair. ANDSplits and ANDJoins are also nodes. ANDSplits can

have annotations. These annotations are called name and are at the right side of the

ANDSplit. ANDSplits have one to n outgoing ControlEdges. The corresponding ANDJoin

has the same amount of incoming ControlEdges.

XORSplit and XORJoin gateways represent an XXOR branching block (cf. Figure 2.2 b),

i.e., activities on the outgoing branches of the XORSplit may be executed conditionally.

They can only exist as a pair. XORSplits and XORJoins are also nodes. XORSplits

can have annotations. These annotations are called name and are at the right side of

the XORSplit. XORSplits have one to n outgoing ControlEdges. The corresponding

XORJoin has the same amount of incoming ControlEdges.

LoopEdges can be added between StartLoop and EndLoop gateways. They look like

gateways of an XOR branching block. StartLoops can have annotations which are

conditions for the LoopEdges (cf. Figure 2.3).

4

2.1. Process Model

(a) (b)

Figure 2.2.: Graphical Representation of an AND Branching Block (a) and an XOR
Branching Block (b)

Figure 2.3.: Graphical Representation of a LoopEdge

SynchronisationEdges may be added between two activities on parallel branches. Syn-

chronisationEdges are represented through dashed lines (cf. Figure 2.4).

Generally, process models need to be well-structured (cf. Figure 2.5) [Rei00], e.g., no

overlapping branching blocks are allowed between different split and join blocks, only

nested ones (cf. Figure 2.6).

All our notations are based on Business Process Model and Notation 2.0 (BPMN)

[OMG11].

5

2. Fundamentals

Figure 2.4.: Graphical Representation of a SynchronisationEdge

Figure 2.5.: Possible Process Model

Figure 2.6.: Impossible Process Model

6

2.2. The proView Project

2.2. The proView Project

proView is a research project aiming to support human-centric business process manage-

ment. Therefore, a framework with server-client architecture was developed to support

end user in understanding and evolving complex process models [KR13a, KR13b].

Generally, proView provides personalised perspectives for different user groups to model

large business processes [KKR12], since process models may get large, e.g., when

many users of different domains are involved in, or if the process model maps a complex

real-world business process. The larger a process model is, the more complex it gets. It

is assumed that not all users need to see all process steps or are not able to understand

them. Manager, for example, require a more abstract view than users with a technical

background.

Therefore, the user can create a personalised process view based on a Central Process

Model (CPM) for their specific needs (cf. Figure 2.7). A CPM captures and represents a

complex business process [KKR12]. Thus, process views reduce the complexity of a

CPM.

To personalise a process view two types of operations may be applied: reduction and

aggregation operations. Reducing or aggregating in a process view does not affect the

CPM.

Reduction of activites means the respective activities are hidden in the process view.

For example, the Reduce(A) operation in Figure 2.7 reduces activity A and its control

edges. New control edges are inserted from the predecessor to the sucessor of activity

A.

Aggregation means that two or more neighbouring activities are assembled to one

abstracted activity. Users may enter a name for the resulting abstract activity. For

example, the Aggregate(B, C) operation in Figure 2.7 combines the activities B and C

and their control edges into a new abstract activity. The resulting activity is inserted

between the predecessor node of activity B and the sucessor node of activity C. New

control edges are inserted to the respective nodes.

7

2. Fundamentals

Furthermore the operation Reduce(G, H, I, J, K) in Figure 2.7 results in an empty branch.

In such cases proView automatically refactors the process view to remove the respective

gateways in order to make the process view more comprehensible [KKR12].

Figure 2.7.: CPM with two Associated Views and Operations

Generally, no changes can be performed directly in the CPMs to evolve the process.

Changes in the CPM may be an error-prone task for users. In order to evolve a process

users need to change their process view. A change may be inserting, deleting, or

renaming process fragments.

8

2.2. The proView Project

In Figure 2.8 a CPM with its associated views can be seen. If change operations are

performed in a process view (cf. Figure 2.8 b), the corresponding CPM is updated.

Afterwards all other associated process views are updated to the new version.

Figure 2.8.: CPM with its Dependent Process Views (a), Change Operation on Process
View 2, Update of the Associated CPM, and Update of the Dependent
Process Views

If a process view is personalised to the users needs, it might not be possible to insert

an activity on a unique position of the corresponding CPM. [KKR12] use a policy which

supports parametric propagations. These operations with possible parameters are

shown in Table 2.1. The bold types are the default parameters.

9

2. Fundamentals

Operation Parameter &Value Description
InsertSerial(V, n1, n2, nnew) InsertSerialMode =

{EARLY,
LATE,
PARALLEL}

Insert activity nnew between n1
and n2 in view V . The param-
eter describes the propagation
behaviour of this insertion.

InsertParallel(V, n1, n2, nnew)
InsertCond(V, n1, n2, nnew, c)
InsertLoop(V, n1, n2, nnew, c)

InsertBlockMode =
{EARLY_EARLY,
LATE_LATE,
LATE_EARLY,
EARLY _LATE}

Insert activity nnew as well as an
AND/XOR/Loop block surround-
ing the Single Entry Single Exit
block defined by n1 and n2 in
view V . the first (last) part of the
parameter value before (after)
the underline specifies the propa-
gation behaviour of the split (join)
gateway.

InsertBranch(V, g1, g2, c) InsertBranchMode =
{EARLY,
LATE}

Insert an empty branch between
split gateway g1 and join gateway
g2 in view V . In case of condi-
tional branchings or loops, a con-
dition c is required.

InsertSyncEdge(V, n1, n2) - Insert a sync edge from n1 to n2
in View V , where n1 and n2 be-
longing to a different branch of a
parallel branching.

DeleteActivity(V, n1) DeleteActivityMode =
{LOCAL,
GLOBAL}

Deletes activity n1 in view V . The
parameter decides whether the
activity is deleted locally (i.e., re-
duced in the view) or removed
from the CPM (i.e, global).

DeleteBranch(V, g1, g2) - Deletes an empty branch be-
tween gateways g1 and join gate-
way g2 in view V .

DeleteSyncEdge(V, n1, n2) - Deletes a sync edge between ac-
tivities n1 to n2 in View V .

DeleteBlock(V, g1, g2) DeleteBranchMode =
{INLINE, DELETE}

Deletes and AND/XOR/Loop
block enclosed by gateways g1
and g2 in view V . The parame-
ter describes whether elements
remeining in the block shall be
inlined or deleted.

Table 2.1.: Update Operations for Process Views with Parameters [KKR12]

10

2.3. Samsung SUR 40

2.3. Samsung SUR 40

The Samsung SUR 40 with Microsoft PixelSense technology is a multi-touch table. Its

measurements are 27.8" in width, 43.1" in height and 4" in depth and can recognise up

to 50 simultaneous inputs. In our setup it is used as a table, but it may also mounted on

a wall. The screen has 40" in diagonal screen size and a 1920x1080 px, i.e., FullHD,

resolution [Sam13].

Microsoft PixelSense is a technology where infrared light is used in pixels to recognise

fingers, hands, and objects. PixelSense works with four layers. The first is protection

glass. Below the protection glass a LCD glass panel with integrated sensors comes.

Then an optical sheet comes where the PixelSense processing is done. The lowest

layer is a backlight with visible and infra-red LEDs (cf. Figure 2.9 [Mic13c]).

Figure 2.9.: Architecture of the PixelSense Technology

The backlight with visible and infra-red LEDs reflect light throughout the overlaying layers.

If a finger is placed on the protection glass it reflects the infra-red light from the backlight.

The integrated sensors in the second layer see the reflected light and convert it into

electrical signals. The signals from all sensors are reported to the optical sheet. There

11

2. Fundamentals

the whole picture is analysed with image processing technology. The output is send to

the embedded PC [Mic13c].

To develop for PixelSense Microsoft Surface 2.0 SDK is used. This SDK has two

development layers. We use the Presentation Layer. The Presentation Layer uses

Microsoft Windows Presentation Foundation (WPF). WPF supports custom controls as

well as custom graphics and touch enabled standard controls. It combines XAML with

C# respectively Expression Blend 4 with Visual Studio 2010 [Mic13a].

2.4. Collaborative Work

The term “collaborative” is derived from the latin word “collaborare”, i.e., to work together.

We use collaborative in the meaning of working together by two or more people solving

a problem at one place.

Collaborative work is a consequent step from the other applications of proView which are

developed for single user workspaces. Different setups are possible to work collaborative.

A study identifies four different setups to model business processes in a collaborative

way and evaluated the advantages and disadvantages in user studies [Wit12]:

S1: Vertical touch-screen with an optional keyboard and mouse

S2: Multi-touch table

S3: Laptop and a video projector

S4: Whiteboard without technical support

Further, in sessions utilising a multi-touch table users are more aware of what they are

doing and are more communicative. In comparison so setup S2, in setup S1, S3, and

S4 not all users actively modified the process model. This lack of activeness may lead

to reduced concentration and a wrong or incomplete process model. Avoiding this and

involving all users a multi-touch table can be a useful tool to work actively together.

12

3
Requirements

In the following the requirements are laid out. In particular requirements to support multi-

ple users especially for collabView are presented in Section 3.1. Section 3.2 introduces

requirements for successful collaborative work on multi-touch tables. Requirements for

the main entry point in collabView, the main menu, are presented in Section 3.3. In

Section 3.4 the requirements from proView are presented. Further, Section 3.5 describes

requirements for the manipulation operations of process views.

3.1. Requirements for Multi User Support

Complex process models require the collaboration of several domain experts to cover

the whole real-world process, since a single domain expert, usually, does not have the

whole knowledge of an application domain. Moreover, various domain experts may have

13

3. Requirements

a different perspective on the respective business process. Therefore, it is necessary to

meet and discuss the details of the business process.

[MKG02] shows that the success and efficiency of collaborative work on complex prob-

lems strongly depends on the availability of a clear and understandable representation.

This leads to the following requirements:

MUR1 (Avoid Distracting User Interface (UI) Elements): Distracting UI elements

would lead the focus away from the actual task that needs to be performed.

MUR2 (Limit Desktop-style Menus): Desktop-style menus should only be used

where strictly necessary, since they need a lot of space. This space cannot

be used for the graphical representation of the actual process model. Space

is especially limited on a multi-touch table when multiple users are working

together. Therefore, desktop menus need to be avoided or limited.

MUR3 (Minimalistic Process Model Representation): The representation of a process

model should be reduced to as few as necessary graphical or geometrical

elements. The representation of these elements should be consistent within

each other and clearly communicate their function.

MUR4 (Fixed Process Model Layout): It might be argued that freely movable graph

elements give the user more freedom in adapting their process views. How-

ever, a fixed layout leads to a clear and ordered representation of the process

model. Furthermore, fixed layouts of a process model require less UI interac-

tion. Therefore, the user needs to remember less gestures, which reduces

the cognitive load.

MUR5 (Hide Unnecessary UI Widgets): UI widgets should be hidden as long as they

are not specifically called through a gesture. To not disturb the minimalistic

representation of a process model, UI widgets required for manipulations of

the process model should be hidden as long as they are not needed.

14

3.2. Requirements for Collaborative Work

3.2. Requirements for Collaborative Work

Several requirements have to be taken into account when users need to work collabora-

tively on multi-touch tables. In [SGM03] eight guidelines are introduced for multi-touch

tables which should be guaranteed for co-located and collaborative work:

CWR1 (Interpersonal Interaction): Communication among users should be encour-

aged. Gesturing, deictic referencing, and meeting coordination activities

support collaborations. Pointing to objects helps understanding the point of

interest.

CWR2 (Transitions between Activities): Different manipulations should be possible to

perform with one input device for example a finger.

CWR3 (Personal and Collaboation Work space): Distinguish between personal and

collaboration work. Personal activities should not change the whole table and

disturb collaboration work. Best transitions between personal and collabora-

tion work space has to be determined.

CWR4 (Multi-Touch Table Collaboration and External Work): The work done on the

multi-touch table needs to be accessible on different workspaces. Also work

done on other workspaces need to be accessible on the multi-touch table.

CWR5 (Physical and Digital Objects): Task-related and non-task-related objects

should be recognised and supported by the multi-touch table. So, users can

apply their experience from collaborating on conventional workspaces like

tables and whiteboards.

CWR6 (Shared Access to Physical and Digital Objects): To facilitate pointing on

objects and facilitate awareness within collaborative tasks should take place

on a single object. Orientation of text can be an issue as users are located

around the multi-touch table and may have different view angles.

15

3. Requirements

CWR7 (Appropriate Arrangements of Users): User interactions should be possible

from all positions around the multi-touch table, as a table stands free in the

room and users can walk around and change their position. Therefore all

interaction elements should be reachable from every position of the table. For

this reason interaction elements should be free movable and not attached to

the margins. Automatic presented information should appear in an appropriate

orientation and should be rotatable. Especially menus should not be attached

to the margins.

CWR8 (Simultaneous User Actions): Concurrent interactions on the multi-touch table

should be possible. Interacting with multiple software components should be

possible at the same time.

3.3. Requirements for Main Menus

Due to the novelty of multi-touch tables, no generally accepted conventions, how a main

menu should look like to be good and efficient exist so far. Main menus in a conventional

UI are commonly located at the top borders. For multi-touch tables this is not appropriate

as we argue in the following [Mic11]:

MMR1 (Ownership of Main Menu): In order to give all users equal interaction possi-

bilities and to enable concurrent work on process models each user gets their

own personalised main menu.

MMR2 (Fast Capturing of Content): The main menu is not the main interaction point

in the multi-touch application. Therefore, the main menu should be small (cf.

MUR1 (Avoid Distracting UI Elements)). Further, it should not bind the users

attention. The user should be able to capture its functionality and content

within one glance.

MMR3 (Variable Amount of Entries in Submenus): The content of all submenu

entries is not known on design time. Further, while working with collabView

the amount of entries may vary. Therefore the main menu needs to be flexible

in size.

16

3.4. Requirements from proView

MMR4 (Personalised Registration): Personalised registration for users should be

supported. This registration could be done with a business mobil phone or a

company card. The registration possibilities are called ID token.

3.4. Requirements from proView

The proView framework itself has requirements that collabView has to meet [KR13a,

KR13b]:

PVR1 (Presentation of Process Model): collabView needs to present process models

to the user as a graphical or textual representation, the user understands

easily (cf. Section 2.1).

PVR2 (Generation of Process Views): The speciality of proView is the generation

of process views out of CPMs. Therefore, collabView needs a possibility to

generate a process view out of a CPM.

PVR3 (Personalised Process Views): Process views are personalised in proView,

that is why collabView needs to support these personalisation creation func-

tionalities, too.

PVR4 (Deleting of Process Views): A process views should be able to be deleted

again by the user, so collabView needs to support such a deletion function.

PVR5 (CPM and Associated Process Views): The CPMs can only be changed

through their associated process view, therefore, CPMs need to have an

association to their process views and vice versa.

PVR6 (Update CPM and Associated Process Views): If a change in process views

is made (cf. PVR5 (CPM and Associated Process Views)) the corresponding

CPM and the associated process views need to be updated.

17

3. Requirements

3.5. Manipulation Operations of Process Views

To manipulate process views and thus CPMs with all its supported functionalities (cf.

PVR5 (CPM and Associated Process Views)) the following requirements have to be met

[KR13b, WPTR13]:

MVR1 (Insert Process Elements): The proView framework knows an activity, an AND

branching block, and an XOR branching block. It should be possible to insert

them into process views.

MVR2 (Delete Process Elements): The process elements in a process view, an

activity, an AND branching block, and an XOR branching block, should be

possible to be deleted.

MVR3 (Aggregate Process Elements): It should be possible to aggregate all activities

to an abstracted activity.

MVR4 (Reduce Process Elements): Activities should be able to be reduced in a

process view.

MVR5 (Rename Process Elements): It should be possible to rename activities.

MVR6 (Change Process Elements): The branching condition of Loop and XOR

branching blocks should be possible to change.

MVR7 (Insert Control Flow Edges): LoopEdges, additional branches in AND branch-

ing blocks as well as in XOR branching blocks, and SynchronisationEdges

should be possible to be inserted.

MVR3 and MVR4 only affect the process view in which the manipulation operation is

performed. All other manipulation operations affect the corresponding CPM and its

associated process views.

18

4
User Interaction Design Concept

In the following the user interaction design concept is introduced based on the defined

requirements. Section 4.1 presents the main menu, four different versions, and discusses

them. In Section 4.2 the presentation of the process model is introduced. Section 4.3

discusses two options of touch manipulations. For each manipulation option of a process

model different possibilities are presented and discussed. Three menus for inserting

new nodes are visualised and discussed in Section 4.4. To insert text, a modal dialogue

is shown in Section 4.5.

4.1. Main Menu Design Concept

Accessing CPMs and process views, a central starting point is needed. This should be

an individual main menu for each user (cf. MMR1 (Ownership of Main Menu)). This

19

4. User Interaction Design Concept

might be done with a unique colour, or the ID token. The content of the main menu

items should be readable (cf. MMR2 (Fast Capturing of Content)). Main menus need

to cope with variable amount of menu items (cf. MMR3(Variable Amount of Entries

in Submenus)). The ID token for personalised registration (cf. MMR4 (Personalised

Registration)) is taken into account during the development of the concepts for the main

menus. The main menu can have a boarder to move it on the multi-touch table or the

ID token may be a tangible part of the main menu for moving (cf. CWR7 (Appropriate

Arrangements of Users)).

Four concepts are considered and discussed in the following. These are a Pie Menu, an

Element Menu, a Sticky Note Menu, and a Rectangle Menu.

4.1.1. Pie Menu

A type of main menu commonly used on multi-touch tables is the pie menu [BWB06,

BLS+09, EBBDL09, HFS09]. In this type of main menu all menu items are arranged in

a circular way around a centre point.

For personalised registration with an ID token (cf. MMR4 (Personalised Registration))

the central point has to be large enough to contain the ID token. The ID token can be

used as tangible part of the main menu. The main menu can be moved on the table by

moving the ID token (cf. CWR7 (Appropriate Arrangements of Users)). It further can

illustrate the ownership of the main menu (cf. MMR1 (Ownership of Main Menu)).

There are various ways how the menu items may be arranged around the central point

and may look like. Two item designs are considered. First, bubbles around the central

point (cf. Figure 4.1 (a)) and second, beagle cutouts around the central point (cf. Figure

4.1 (b)) represent the individual menu items.

The bubble styled menu items are floating round the central point and have no connection

between each other and central point. If an item has sub-items, they appear outside the

bubbles as floating bubbles as well. A connection to the initial item needs to be made.

20

4.1. Main Menu Design Concept

(a) (b)

Figure 4.1.: Pie Menu with (a) Bubble-styled and (b) Beagle Cutout-styled Menu Items

The beagle cutout-styled menu items are directly connected to the central point and are

connected with each other. If a menu item has sub-entries, another round of beagle

cutouts appears at the border of the beagle cutout with the initial item.

4.1.2. Sticky Note Menu

Similar to the pie menu concept, the ID token serves for personal registration (cf. MMR4

(Personalised Registration)) and as a tangible basis (cf. CWR7 (Appropriate Arrange-

ments of Users)). At one side of the ID token sticky notes like rectangular shaped buttons

strike out (cf. Figure4.2 (a)). The titles of the individual menu items are written on the

respective sticky notes.

If the user clicks on one sticky note a new column is opened representing submenu

items (cf. Figure 4.2 (b)). If there are too many items, the submenu gets scrollable (cf.

MMR3(Variable Amount of Entries in Submenus)).

4.1.3. Element Menu

An element menu is the default solution of the Microsoft Surface 2.0 SDK and is a

cascading menu [Mic13d]. The element menu has a start button. It the user taps this

21

4. User Interaction Design Concept

(a) (b)

Figure 4.2.: Sticky Note Menu with (a) Menu Items and (b) Submenu Items

button the user gets further element menus items. If there is another hierarchy of element

menu items, it indicates this with a triangle in the upper right corner (cf. Figure 4.3).

Figure 4.3.: Element Menu

The element menu collapses to its initial start button after some seconds, if the user

does not hold their finger down. To select another cascading menu item they move with

the finger to the next item or tap the next item.

22

4.1. Main Menu Design Concept

4.1.4. Rectangle Menu

To register, the user puts an ID token on the multi-touch table (cf. MMR4 (Personalised

Registration)) and the respective menu appears behind the ID token. This menu needs

to be slightly bigger than the ID token otherwise the user does not see the appearance

of a rectangle menu (cf. Figure 4.4). After registration, the user needs to lift the ID token

to use the rectangle menu.

Figure 4.4.: Rectangle Menu with ID token

The rectangle menu represents menu items as squares. The top of the rectangle menu

is personalised with the user’s name (cf. Figure 4.5 (a) and MMR1 (Ownership of Main

Menu)). When the user clicks one of the menu items the main menu vanishes and the

respective submenu appears. To go back to the main menu the user clicks the user

name. If there are too many entries in the submenu, a scrolling area is used (cf. Figure

4.5 (b) and MMR3 (Variable Amount of Entries in Submenus)).

The rectangle menu has to have a broad border so the user can move it on the table

and reaches it from everywhere (cf. Section 3.2 CWR7 (Appropriate Arrangements of

Users)).

In addition to the personalisation with the name, the menu gets a specific colour. This

colour is reused on windows the user opens from this main menu. So no other efforts

have to be made to identify the ownership of CPMs and process views.

23

4. User Interaction Design Concept

(a)

Figure 4.5.: (a) Rectangle Menu and (b) with Sumenu

4.1.5. Choice of Main Menu Concept

Main menus with an ID token as central point take a lot of space of the multi-touch

table. This space is taken up permanently and may not be available for other windows in

collabView.

If the ID token is taken off the table, empty space without functionality emerges. Therefore

a separate representation of the main menu is needed. To visualise that these two

representation of the main menus belong together we need a graphical transition between

them, e.g. a smooth animation. The ownership of the main menu is clear through a

personal ID token, after such a transition the ownership has to be communicated with,

e.g., a name or a colour like on rectangle menu.

Pie menus using bubbles or beagle cutouts have limited amount of bubbles or beagle

cutouts depending on the size of the central point. Additionally, the size of the bubbles or

beagle cutouts limit the amount, too. The amount of element menu items is limited by its

natural appearance unless it looses its clarity in which hierarchy level the user is in. This

contradicts requirement MMR3 (Variable Amount of Entries in Submenus) in Section 3.3.

The title of the menu items on the beagle cutouts are rounded to fit into the shape.

However, rounded typography is hard to read and not for a fast capturing of the content

which contradicts MMR2 (Fast Capturing of Content).

24

4.2. Presentation of Process Model

As these two columns at the sticky note menu, i.e., main menu and submenu items of

sticky notes are already consuming much space, a button, gesture, or timer has to be

introduced to collapse the submenu column again.

The element menu does not support personal registration as required in MMR4 (Person-

alised Registration). Further, a boarder for moving on the multi-touch table and colours

for personalisation have to be introduced for CWR7 (Appropriate Arrangements of Users)

and MMR1 (Ownership of Main Menu).

Hence we choose the rectangular menu. It has a fixed size. This is because the menu

is not a main item users should concentrate on. So the little possibilities users have

the less time they spend with it. All information of the initial state of the menu is given

on one glance. The information entropy will not increase in a bigger menu. Only if the

user is in a submenu the information entropy could be increased with a bigger menu.

In the submenu information can be reached within seconds of vertical scrolling. One

could argue that the menu takes a lot of space during the time users concentrate on the

process models and therefore it should be possible to minimise it. But the other visual

items can be placed over the main menus. So no main menu is taking no extra space

which cannot be used anymore. The user also has fast access to the main menu if it is

not possible to minimise.

4.2. Presentation of Process Model

After the user chose a CPM or a process view from the main menu we need to present

the process model. This happens in a window-like area, called process area, which

contains the process model. To meet CWR7 (Appropriate Arrangement of Users) we

use a border around the process area.

As each main menu is personalised the process models opened from a main menu are

assigned the same colour as the main menu. Further, we add the title of the process

model to the process area for fast identification.

25

4. User Interaction Design Concept

Additionally, the process model has to be minimalist designed and furthermore arranged

in a fixed grid (cf. MUR3 (Minimalistic Process Model Representation), MUR4 (Fixed

Process Model Layout)).

The UI design of process elements Activities, ANDSplits, ANDJoins, XORSplits, XOR-

Joins, StartEvent, and EndEvent indicates that they are similar to buttons. Therefore,

the elements have the same border and the same colours as, e.g., close buttons. The

second visual indication is the text at some activities. If the text is to long for the activity,

the text ends with three dots. This indicates the user, that they somehow can access

the rest of the text. Most users who use collabView might have worked with one or

more prototypes of proView before. So a third indication for them is, that they know

they can click nodes. The only widgets that are not clickable, but look like buttons are

the StartEvent and the EndEvent. They are mandatory for all process models, so they

cannot be changed. But to keep the UI design consistent they look like all other process

elements.

Some process models are complex and thus large. To not inhibit the whole multi-touch

table with one process area, the initial size is limited. The user may resize the process

area as they want. A process area with a process model may look like Figure 4.6

Figure 4.6.: Process Area with Process Model

26

4.3. Manipulation Operations of Process Views

4.3. Manipulation Operations of Process Views

To change graphs of process models on multi-touch tables there are two main possibil-

ities: The first possibility is tap, the second possibility are touch gestures. By tap the

user is clicking with his finger instead of a mouse. It is called tapping. This technique

is mostly used for buttons. By touch gestures the user draws with their finger on the

surface of the multi-touch table similar to using a pencil.

As computers are widely spread over the years simple buttons are commonly known.

However, some conventions for buttons exist which have to be taken into account. For

example, a cross on a button implies the closing of a window. Buttons on multi-touch

surfaces are not working any different from conventional UIs.

Touch gestures are getting more and more common as smart phones and tablets are

spreading, i.e., users can manipulate content with movements, e.g. single-touch or multi-

touch. As multi-touch technology is only a few years commercially spread, conventions

are still developing. Each application adjusts touch gestures to its own use.

We try to avoid buttons if possible as required in MUR2 (Limit Desktop-style Menus) in

Section 3.1. However, in some cases it is hard to find adequate touch gestures, then we

fall back to buttons. In other cases a solution using buttons requires a lot of additional

redundant menus, then intuitive touch gesture are applied.

As touch gestures highly depend on the purpose of the applications, no common style

guide over all operating systems exists. We designed our interactions mostly based

on two user studies who concern the manipulation of graphs on multi-touch devices

[FHD09, KRR12]. A third study was used which concerns manipulation gestures on

multi-touch tables without a specific context [WMW09].

4.3.1. Manipulating Process Models through Touch Gestures

In the following, possible touch gestures for the given tasks (cf. Section 3.4 and cf.

Section 3.5) are introduced and their suitability for collabView discussed.

27

4. User Interaction Design Concept

4.3.1.1. Manipulating Edges in Process Models with Touch Gestures

To add edges between nodes [FHD09, FHD10] suggest three different ways to create

edges as required in MVR7 (Insert Control Flow Edges).

Also[KRR12] have a core gesture to connect two nodes with a line.

F1
Sequential tapping from one node to another

node.

F2
Drawing a line between nodes with an arrow at

the end.

F3
Drawing a line and holding the source with an-

other finger.

K1

Drawing a line with a finger from one node to

another. The direction of drawing indicates the

direction.

F1 creates a collision with other gestures, therefore it is rejected. F2 needs additional

time to draw the arrow, which might frustrate the user. F3 needs two hands. Users prefer

gestures with one hand [WMW09]. This leads to the conclusion to use gesture K1 in

collabView.

Further a visual feedback is added to complement the touch gesture and aid the user.

As the user draws with their finger, a line will appear in order to guide to which nodes

they connect.

The SynchronisationEdge has another visual representation unlike other edges. It is

dashed compared to the continuous edges of ControlEdges and LoopEdges. [FHD09]

suggest three possible ways to change the type of edges:

28

4.3. Manipulation Operations of Process Views

F4
Short orthogonal lines are drawn over the line that the user

wants to change.

F5
The user scratches with a few fingers over the line. They call it

the “rake” gesture.

F6
The user taps on an edge for a menu and selects the containing

possible edge types.

As SynchronisationEdges are not the most frequent edges we decided, that nothing is

different during the drawing. After drawing the line it would appear as a dashed line.

To delete edges two gestures are suggested [FHD09] :

F7 Wipe over the edges.

F8 Drag the edges of the screen.

F7 creates a collision with other gestures. F8 is not possible in collabView, because any

part of the process model can be moved or dragged. The user does not necessarily

know which edges they can delete. Therefore, no edges can be deleted explicitly on

collabView. Edges are connected with their nodes. They are deleted if one of their nodes

is deleted.

4.3.1.2. Manipulating Nodes with Touch Gestures

One core functionality in proView is the aggregation of nodes to combine nodes in

process views [KKR12]. To achieve this, the user needs to select nodes to aggregate.

For selecting a set of nodes three gestures are suggested [FHD09, WMW09].

29

4. User Interaction Design Concept

F9
The user taps nodes sequen-

tially.

F10
The user encircles nearby

nodes.

W1

The user holds the first node

while tapping the other nodes to

select.

F9 and F10 creates a collision with other gestures, therefore both are rejected. W1 is

very intuitive. To support the user in collabView the tapped nodes get a darker colour so

they see which nodes they have already tapped.

4.3.2. Manipulating Process Models with Context Menus

Not all manipulations can be done by touch gestures since for some manipulations

buttons (e.g., closing a window) are still the faster and more intuitive option and are

commonly known from conventional UIs. However other buttons are less obvious

because they look like normal text or UI widgets. To recognise them, user needs to know

the functionality. Tough these buttons are not that obvious they will be functional. They

do not disturb the organisation of the process model. So the whole attention stays there.

4.3.2.1. Manipulating Nodes

For selecting a single node the following possibilities exist [FHD09, WMW09]:

W2 Single tapping for selecting a single node.

F11 Repeated tapping on the node.

FW1 Encircling the node.

30

4.3. Manipulation Operations of Process Views

F11 is rejected because it is to similar to two single tappings in a row. FW1 interferes

with a touch gesture. Therefore we use W2. It also is very simple.

For deleting nodes following interactions exist [FHD09, KRR12, WMW09].

FKW1 Wiping over the node like one would do with a rubber.

FW2 Drag a node of the screen.

KW1 Draw two crossing lines like an X.

As mentioned before, proView has the concept of reducing nodes. Therefore, we need

to find an option for deleting and an option for reducing elements. We rejected all

suggestions (FKW1, FW2, KW1) and use buttons, because the communication which

touch gesture is for deleting and which for reducing increases the cognitive load.

If users want to see the whole text of an activity with shortened text they tap on the

activity. To go back to the initial state of the activity a touch gesture for accepting or

going back is needed. [WMW09] suggest a touch gesture for accepting something.

W3 Drawing a tick.

This action falls into the same category like the deletion touch gesture. To be consistent,

we reject W3 as well and fall back to a button.

Therefore, if the user taps an element, three buttons appear on top of the element. From

left to right: a tick, a bin and a cross. These three buttons are the same for all elements

except for the StartEvent and the EndEvent as already explained why. If the user taps

the tick, the node goes back to its initial state. The next two buttons tend to be used as

synonyms, but in collabView they will have different meanings. If the user taps the bin,

the node is deleted from the CPM and its associated process views. Whereas if the user

taps the cross the node is reduced from this process view. To complete all functionalities

of a node we further need renaming of a node (cf. MVR5 (Rename Process Elements)).

To indicate this the name of the node is highlighted (cf. Figure 4.7).

31

4. User Interaction Design Concept

Figure 4.7.: Node after Tapping

For renaming elements [KRR12] have a core gesture.

K2 Tapping on the text of process element.

The name of a node can then be edited.

Because we have a different result for tapping on an element, we slightly alter K2. If the

user taps the node not only the three buttons appear, but also the text of the element

changes its appearance. So the user sees they can change the text. They just need to

tap it again.

As required in MVR1(Insert Process Elements), new nodes have to be inserted into the

process model. Therefore, the following possibilities exist [FHD09, KRR12]:

F12 Sequential tapping.

F13 Drawing the outline of a node.

F14
Dragging a new node from an

existing one.

K3
A touch gesture calls a slider

menu to insert.

Using F12 only one type of node could be inserted. We have to support three types of

nodes that can be inserted. F13 creates a collision with the scrolling gesture. F14 is

32

4.3. Manipulation Operations of Process Views

rejected because we have already decided that no elements can be dragged or moved in

collabView. Furthermore, the user could not create a node of a type which is not already

present int the process model. Instead, we decided to use a variant of K3. [FHD09]

suggested to call a menu by clicking on an edge in F6. We adapt this idea and combine it

with K3 such that the menu to insert new nodes is called by tapping the edge (cf. MVR1

(Insert Process Elements)).

4.3.2.2. Title as Button

Users may know from other proView prototypes that it is possible to create process

views. There is no obvious menu for the creation of the process view. If the user taps on

the title of a process model, three buttons with different functionalities, depending if the

process model is a CPM or process view, appear.

If the user taps the title of a CPM, they get three buttons from, left to right, a tick, a cross,

and an eye symbol (cf. Figure 4.8 (a)). If the user taps on the tick, the initial state is

re-established. If the user taps on the cross, this process model is closed. If the user

taps on the eye symbol a new view is created.

(a) (b)

Figure 4.8.: Title of a (a)CPM and (b) Process View with Buttons

If the user taps the title of a process view they get three buttons: a tick, a cross, and

a bin symbol (cf. Figure 4.8 (b)). The first two have the same functionalities like the

buttons of the CPM. If the user taps the trash bin the process view is deleted.

33

4. User Interaction Design Concept

4.4. Insert Menu

To insert new nodes into a process model as required in MVR1 (Insert Process Elements)

a menu is applied. This menu needs to support three different actions: insert an

activity, AND branching block, and XOR branching block. Therefore three concepts are

presented:

The first menu style is similar to [KRR12]. A vertical menu is used, which appears after a

finger tapping on the line (cf. Figure 4.9). All menu items are displayed without scrolling

and contain the outlines of the nodes that may be inserted.

Figure 4.9.: Insert Menu Column

The problem with this occurs with plane process models where, e.g., no AND branching

block is in the process model. The menu could stick out of the process area.

The second menu style is structure horizontally, i.e., items appear in a horizontally order.

The items are the outlines of the node that can be inserted. To connect all the nodes

with the tap point on the edge, they are situated in an area that looks like the top of an

hourglass shape (cf. Figure 4.10).

Note that in this menu style the additional outline for buttons is missing. Therefore, they

are not that obvious than in the first menu style. The hourglass shape contradicts our

clear geometrical design, anticipated for the process model design.

The third menu style combines the buttons with the extra outlines of the first menu style

and the horizontal form of the second menu style. We use a rectangular shape instead

34

4.5. Modal Dialogue

Figure 4.10.: Insert Menu Shaped like an Hourglass

of the hourglass shape (cf. Figure 4.11). The connection to the tap point on the edge is

the middle of the menu.

Figure 4.11.: Insert Menu Horizontal

The ordering in the menu of the buttons is that way, that the button of the activity is in

the middle. The activity is the most common node to be inserted.

4.5. Modal Dialogue

Triggering modifications, to change names for headlines or nodes needs a modal dia-

logue to input text values.

All modal dialogues consist of three parts. The topmost is a heading describing the

adaption to make. Below a text input area is located to insert text using the on-screen

keyboard. Two buttons are below the text input area - a “Cancel” and an “OK” button. A

modal dialogue looks like in Figure 4.12.

35

4. User Interaction Design Concept

Figure 4.12.: A Modal Dialogue

36

5
Process Model Layout

This section introduces the formulas we used to calculate the node positions in the

process model layout. Section 5.1 describes the abstract schema of a process model

layout. In Section 5.2 we present the formulas for calculating the width and height of

components. The formulas used for calculating the actual positions of the nodes are

defined in Section 5.3.

5.1. Abstract Schema of a Process Model Layout

To simplify the definition of the geometric positions of the nodes of a process model, we

use an abstraction of the process model introduced in Section 2.1.

We assume that process models are build of two types of nested regions which we call

boxes and paths (cf. Figure 5.1). A box comprises either one split node, its corresponding

37

5. Process Model Layout

Figure 5.1.: Schematic Representation of Boxes, Paths, PathElements and Activities in
a Process Model

Figure 5.2.: Schematic Definitions of Box, Path, and Path Element

join node, and all nodes and edges in between. A path consists of zero to n consecutive

path elements and their connecting edges. The sequence of path elements may be

empty in order to represent empty edges. A path element is either a box or an atom

which is an activity (cf. Figure 5.2) .

5.2. Calculating Width and Height of a Box and a Path

The following global parameters are used in the formulas: wAtom, hAtom represent the

width, height of an atom. wSplit, hSplit represent the width, height of a split node. wJoin,

38

5.2. Calculating Width and Height of a Box and a Path

hJoin represent the width, height of a join node. Furthermore we use the parameter d,

called default distance.

The following variable names are used in the formulas: a stands for an activity. e stands

for a path element. p stands for a path. b is a box. We use the function name w() for

width and h() for height for the respective parameter.

In the following, we assume that there are no empty paths and hAtom >= hSplit. Should

empty paths occur, our definitions can be extended in the obvious manner.

The width of any activity wa is defined as the value of the global parameter wAtom.

w(a) = wAtom

The height of any activity ha is defined as the value of the global parameter hAtom.

h(a) = hAtom

We assume that path p consists of the path elements e1, ..., en. We add the sum of the

widths of its paths w(ei) and one default distance d between each neighbouring pair of

path elements to get the width of a path w(p) .

w(p) =
n∑

i=1
w(ei) + (n− 1)d

We assume that path p consists of the path elements e1, ..., en. The height of a path h(p)

is defined as the maximum height of its path elements h(ei).

h(p) = nmax
i=1

(h(ei))

39

5. Process Model Layout

We assume that box b consists of the paths p1, ..., pn. The width of a box w(b) is defined

as the sum of the width of a split node wSplit and the maximum width of its paths w(pi)

and the width of a join node wJoin and one default distance d between each neighbouring

pair of paths.

w(b) = wSplit + d + nmax
i=1

(w(pi)) + d + wJoin

We assume that box b consists of the paths p1, ..., pn. We add the sum of the heights of

all paths h(pi) and one default distance d between each neighbouring pair of paths to

get the height of a box h(b).

h(b) =
n∑

i=1
h(pi) + (n− 1)d

In abuse of the definition of StartEvent and EndEvent in Section 2.1, we assume that

EndEvents are instances of split nodes and join nodes, respectively. Therefore, a process

can be viewed as an instance of a box. Now we can calculate the width and height of

each box and path in the process model and then the width and height of the whole

process model.

5.3. Vertical and Horizontal Position of Process Nodes

To each element and region of a process model, we assign a so-called anchor point. By

anchor point we mean a fixed point on an element or region which we use to specify the

position of that element or region with respect to a coordinate system. For example, we

might say that “node N is positioned at point (140,50)”. That is: node N is positioned

such that its anchor point coincides with point (140,50) on the coordinate system of

reference (cf. Figure 5.3). In the following, we assume that the anchor point of every

node is positioned vertically centred on the left border of its respective area.

To position process nodes, we give each box and each path their own coordinate system.

Each element of a box and of a path is placed regarding this coordinate system. The

40

5.3. Vertical and Horizontal Position of Process Nodes

Figure 5.3.: Relative Origin of the Internal Coordinate System

coordinate system of a box is chosen such that the anchor point of the split node

coincides with the origin of the coordinate system. This implies that the split node is

bisected by the x-axis and touches the y-axis. The coordinate system of a non-empty

path is chosen such that the anchor point of the leftmost path element coincides with the

origin of the coordinate system. This implies that the leftmost path element is bisected

by the x-axis and touches the y-axis.

The anchor point of every box and path are chosen to coincide with the origin of the

internal coordinate system of the region.

In the following the global parameters and variable names of Section 5.2 are assumed.

Further, we use the function x() for x-coordinate values and y() for y-coordinate values.

Anchor points in a path: The anchor point of the first path element e1is positioned at

the origin of the coordinate system of the path.

x(e1) = 0, y(e1) = 0

The anchor point of the second path element e2, the x-coordinate is defined as the sum

of the width of the first path element w(e1) and one default distance d. We obtain the

y-coordinate by zero.

x(e2) = w(e1) + d, y(e2) = 0

41

5. Process Model Layout

The anchor point of the nth path element en, we obtain the x-coordinate by adding the

sum of the widths of the preceding elements w(ei) and one default distance d between

each neighbouring pair of path elements. We obtain the y-coordinate by zero.

x(en) =
n−1∑
i=1

(w(ei)) + (n− 1)d), y(en) = 0

Anchor points in a box: The anchor point of the split node in a box is positioned at

the origin of the coordinate system of the box.

x(s) = 0, y(s) = 0

For the anchor point of the first path p1, the x-coordinate is defined as the sum of the

width of the split node wSplit and one default distance d. We obtain the y-coordinate by

the half height of the first path h(p1).

x(p1) = wSplit + d, y(p1) = h(p1)/2

For the anchor point of the second path p2, the x-coordinate is defined as the sum of

the width of the split node wSplit and one default distance d. We obtain the y-coordinate

by the height of the first path h(p1) and one default distance d and half the height of the

second path h(p2).

x(p2) = wSplit + d, y(p2) = h(p1) + d + h(p2)/2

For the anchor point of the nth path pn, the x-coordinate is defined as the sum of the

width of the split node wSplit and one default distance d. We obtain the y-coordinate by

the sum of n minus one of the heights of each path h(pi) and half the height of the nth

path h(pn) and one default distance d between each neighbouring pair of paths.

x(pn) = wSplit + d, y(pn) =
n−1∑
i=1

(h(pi)) + (n− 1)d + h(pn)/2

42

5.3. Vertical and Horizontal Position of Process Nodes

For the anchor point of the join node in a box the x-coordinate is defined as the sum of

the width of the split node wSplit an the maximum width of the paths w(pi) in the box and

two default distances d. We obtain the y-coordinate by zero.

x(j) = wSplit + nmax
i=1

(w(pi)) + 2d, y(j) = 0

Our formulas give us the relative position of every node and region within its surrounding

region. In order to render the nodes, however, we need their absolute position, i.e., their

position within the coordinate system of the overall process model. The absolute position

of a node is calculated simply as the sum of its own relative position and the relative

positions of all regions in which the node is contained (cf. Figure 5.4).

Figure 5.4.: Example how to Calculate Absolute Position

43

6
Proof-Of-Concept Implementation

This chapter presents the proof-of-concept implementation of collabView. In Section 6.1

the communication with the proViewServer is clarified. Section 6.2 shows how multiple

users are supported working with collabView. Section 6.3 address with the implementa-

tion of the individual visual components, as well as its appearance and functionalities.

The implemented manipulations which may be performed in the process area are shown

in Section 6.4. A discussion about live updates of process models after modifications is

presented in Section 6.5. Section 6.5 gives a discussion which requirements collabView

meets.

45

6. Proof-Of-Concept Implementation

6.1. Server communication

To get the information of CPMs and process views we need to communicate with the

proViewServer. This is done with an existing RESTLibrary [Hes13]. This library handles

all HTTP requests and responses between the proViewServer and collabView.

The methods for modifying a process model which are not fully implemented on the

server yet are also not implemented in the RestLibrary. We added these methods to

the RESTLibrary to get the error messages from the server. For example, to insert an

XOR branching block (cf. MVR1 (Insert Process Elements)) or to insert a LoopEdge (cf.

MVR7 (Insert Control Flow Edges)).

6.2. Multi User Support

In the proof-of-concept implementation collabView, the PixelSense SUR40 is used (cf.

Section 2.3). Through its limited screen size of 40" it is limited to about four to six users.

It would have to be shown if too many users reverse the benefits of collaborative work.

In collabView, each user requires their own main menu to meet MMR2 (cf. Figure 6.1).

Based on this the user may access all CPMs and process views they want to. Each user

is assigned a unique colour. This colour is reflected in the user’s personal menu. Every

CPM, or process view that a user opens is also shown in their assigned colour. This is

way the owner of each menu, CPM or process view may identified easily.

As soon as the proViewServer registers a modification of a process model, all CPMs

and their associated process views are informed and updated. Hence, all users can

work on an up-to-date version.

46

6.3. Visual Components

Figure 6.1.: Start Screen

6.3. Visual Components

collabView exists of two major visual components. These are main menus and process

areas. All visual parts can be moved and rotated on the multi-touch table (cf. CWR7

(Appropriate Arrangements of Users))

All texts in these components are typeset in the Segoe360 font. Segoe360 is specially

designed for better reading from various angles [Mic11]. The implementation and the

appearance of the visual components is explained in the following.

6.3.1. Main Menu

The main menu has a specific colour. The menu consists of an outer darker area called

play field and an inner brighter one called content field (cf. Figure 6.2). The play field

is needed because of CWR7 (Appropriate Arrangements of Users) to move and rotate

the main menu on the multi-touch table . The content field shows the name of the user

47

6. Proof-Of-Concept Implementation

in the title. Thus, it is personalised for the particular user after the registration to meet

MMR1 (Ownership of Main Menu).

Figure 6.2.: Main Menu with Play Field and Content Field

Each main menu has four entries:

1. Process Survey: to access CPMs and process views

2. Mail: to view mails

3. ToDo: to view a list of things that need to be done

4. Add Process: to create a new CPM

Only the process survey functionality is implemented yet. The others are place holders

with suggestions for further functionalities that could be added to collabView.

The transition between the different levels of the menu is done with a storyboard anima-

tion which is exemplarily shown in Figure 6.3.

Tapping on process survey opens a list of CPMs and process views (cf. Figure 6.4).

Further, a scrollable list is visualised through the first or last entry which is not fully

visible, because the list of processes may be to long (cf. MMR3 (Variable Amount of

Entries in Submenus)). The user can choose the process model they want to expand.

The last tapped item is marked.

Tapping on the user name reverts the main menu to its initial state again.

The play field of the main menu supports two functionalities. The user may move and

rotate the main menu on the multi-touch table.

48

6.3. Visual Components

Figure 6.3.: Main Menu Animation After Tapping on Process Survey

Figure 6.4.: Main Menu showing CPMs an Process Views

49

6. Proof-Of-Concept Implementation

The implementation of the main menu consists of a Grid component which resides in

a ScatterViewItem component. The ScatterViewItem component has function-

alities, like moving and rotating, natively implemented. The outer Grid components

represent the before mentioned play field.

Inside the middle Grid component resides the main menu content based on five so

called SurfaceButtons. If the user taps on process survey a storyboard animation

is started where the four lowest rectangular buttons move outward and an area with a

SurfaceScrollViewer component appears. In this SurfaceScrollViewer com-

ponent reside rectangular Buttons. These buttons contain the names of the CPMs and

process views. These names are called via the RESTLibrary. If the user taps on one of

the CPM or process view buttons the corresponding process area is opened near the

main menu. The rotating angle of the new process area is the same as the main menu

angle to meets CWR7 (Appropriate Arrangements of Users).

6.3.2. Process Area

In the following the process area is introduced.

After choosing a CPM or a process view, a new process area (cf. Figure 6.5) appears.

The process area has a similar composition as the main menu. Furthermore, the colours

are the same as in the main menu to assign it to a particular user.

The initial size of the process area depends on the process model contained. But as

mentioned before, space is a big issue on multi-touch tables. Therefore, the initial

maximum size of a process area is 840x540 Device Independent Pixels (DIP). Then

more process models may be open and do not overlap. DIP is defined as DIP := 1/96inch,

e.g., all objects are scaled properly on all devices without further effort [Mic13b].

Like the main menu, the process area consists of two parts. The play field and content

field. Different colours are hints for different manipulation possibilities (cf. Section 6.4).

The content field distinguishes three different parts: heading, close buttons, and process

model. Heading and close buttons are explained in Section 6.4.2. The structure of the

process model is explained in the following: Each process node in a process model has

50

6.3. Visual Components

Figure 6.5.: Process Area

an evolutionary found size of hBox = 80DIP and wBox = 80DIP . The space between

nodes is d = 40DIP . For most activity names is the therefore resulting space enough,

but some activity names require more than 40DIP , they are shortened (cf. Figure 6.6).

Figure 6.6.: Node with a Shortened Name

The process area has many nested components implemented. To support the touch

functionalities, e. g., moving, rotating, and scaling of Surface 2.0 SDK, process areas

needs to reside in a ScatterViewItem component. However, the component is not

visible to the user. In the ScatterViewItem component resides a Grid component

which consists of three columns and three rows. The outer columns and rows are used

51

6. Proof-Of-Concept Implementation

to move, rotate, or scale the process area. In the middle column and row resides another

Grid component, which has three rows: One for the heading and the right close button,

one for the left close button, and one for the next residing SurfaceScrollViewer

component. This SurfaceScrollViewer component supports horizontal and vertical

scrolling, if the process area is not large enough to show the process model.

Inside this SurfaceScrollViewer component is a Grid component and inside this a

Canvas component. This Canvas component is required to draw the edges between

the nodes. Also manipulation events of the user are captured through this component.

These events will be explained later in this section.

Inside the Canvas component resides a ScatterView component. This ScatterView

component is needed for process nodes. Nodes are residing in ScatterViewItems

component so the ScatterView component is needed to insert them at all. How the

positions of the nodes of the process model are calculated is explained in Section 5.

After PreviewTouchDown is called, it depends on wether the process model is a CPM

or a process view. If it is a CPM only the scrolling on the SurfaceScrollViewer is

activated. If it is a process view it depends on where the user has touched the Canvas.

Four options are possible:

Figure 6.7.: Touch Regions for Insertion Menu (blue region), Manipulation of Nodes
(green regions), Drawing Edges (red regions), and Scrolling (yellow region
without containing regions) in a Process Area

52

6.4. Manipulation of Process Area

1. If the user taps a ControlEdge (cf. Figure 6.7 blue regions) an insertion menu

opens (cf. Figure 6.8).

2. If the user taps a process nodes (cf. Figure 6.7 green regions), the event is

forwarded to the handling of the process node.

3. If the user taps on free space (cf. Figure 6.7 yellow region where no other regions

are) they may scroll.

4. If the user taps on one of the borders of a process node (cf. Figure 6.7 red regions)

and moves their finger PreviewTouchMove is called.

Figure 6.8.: Insert Node with Insertion Menu

The PreviewTouchMove event is called as soon as one of the three values of x, y, or

orientation changes. This event handler (cf. Listing A.1) calls a method to draw a line

from the previous x and y values to the new x and y values (cf. Listing A.2).

The TouchLeave event handler (cf. Listing A.3) vanishes the drawn line and sends the

origin and the destination of the line to a method, which checks if it is possible to insert a

new ControlEdge, LoopEdge, or SynchronisationEdge (cf. Listing A.4) .

6.4. Manipulation of Process Area

In collabView all process nodes are on a fixed position with a grid (MUR4 (Fixed Process

Model Layout) in Section 3.1). Further, ControlEdges are represented in a grid and

53

6. Proof-Of-Concept Implementation

after a SplitNode with more than one outgoing edges, the ControlEdges are straight and

angles are only 90◦ (cf. Figure 6.9)

Figure 6.9.: Example of a Process Model

6.4.1. Touch Gestures to Manipulate the Process Area

As aforementioned process areas consists of a play field and a content field and colour

differences suggest different functionalities possible on the areas.

Generally, the play field has three functionalities:

First, it is for moving the process area around the table. The user taps down and holds

the play field and moves it around (cf. Figure 6.10). If the user stops and takes their

finger up, the process area stays at this position. If the user takes their finger up during

the movement, the process area slides further in the same direction.

The second functionality of the play field is rotating. This is also performed with one

finger. To rotate the process area the user taps down the play field and rotates their

finger as if tuning a screw (cf. Figure 6.11). As with movements, if the user takes their

finger up during rotation, the process area spins further.

54

6.4. Manipulation of Process Area

Figure 6.10.: Moving Process Area

Figure 6.11.: Rotating Process Area

55

6. Proof-Of-Concept Implementation

The third functionality is resizing the process area. This is performed with two fingers.

The user taps down play field with two fingers on two opposite corners (cf. Figure 6.12).

Moving the fingers apart makes the process area larger. Moving them together makes

the process area smaller.

Figure 6.12.: Scalling Process Area

The content field of the process areas is divided in three obvious parts. The top, middle

and bottom region. The top and the bottom will be elaborated in Section 6.4.2. In the

middle region of the process area the actual process model can be seen. Here the

process model can be changed with tapping on buttons and touch gestures. The tapping

on buttons will be explained in Section 6.4.2 and the touch gestures in the following.

Per default the process area is 840x540 DIU large. But most process models require

more space than this. If a user does not want to enlarge the process area, but wants to

see other parts of the process model they may scroll inside the middle part using one or

two fingers (cf. Figure 6.13).

In the following, the different lines that can be inserted are explained, as well as the

possible mistakes that might occur:

Adding a new ControlEdge between an ANDSplit and ANDJoin or an XORSplit and

XORJoin the user needs to tap down at the border of the split nodes and draw a line with

their finger to the corresponding join node (cf. Figure 6.14). Giving a visual feedback a

white line appears behind their finger. If the finger is lifted on an area where there is no

node, the line vanishes and nothing else happens. If the finger is lifted at a corresponding

join node, a modification operation is sent to the proViewServer that the user wants to

56

6.4. Manipulation of Process Area

Figure 6.13.: Scrolling Process Area

add a ControlEdge between these two nodes. Since the proViewServer has this action

not yet implemented, it sends an error back. As soon as the proViewServer implements

the function the corresponding process model is redrawn. If it is not possible to add a

line between the two nodes for logical reasons the line vanishes and nothing further

happens.

Figure 6.14.: Insert new Edge

To add a SynchronisationEdge, the user needs to connect two respective activities.

Aggregating multiple nodes, the user needs to tap on a node with one finger and holds it

down (cf. Listing A.5). Then, the user select the other nodes, they want to aggregate

as well (cf. Figure 6.15). Lifting up the first finger (cf. Listing A.6) aggregates the set of

nodes and a modal dialogue appears to name the aggregation (cf. Section 6.4.3).

57

6. Proof-Of-Concept Implementation

Figure 6.15.: Aggregate Nodes

6.4.2. Buttons to Manipulate the Process Area

Each process area has two close buttons. To avoid closing accidentally, a user needs to

tap both buttons. This can be done with one or two fingers. For the first method the user

taps one close button and within five seconds the second one. Alternatively the user

taps on both close buttons (cf. Figure 6.16).

Figure 6.16.: Closing of Process Area

The manipulation possibility that appears if a node is tapped, looks slightly different for

activities (cf. Figure 6.17 (a)) than for ANDSplit, ANDJoin (cf. Figure 6.17 (b)), XORSplit,

and XORJoin. For activities the name moves to the upper left corner and is coloured

differently to visualise the interaction possibility. For all other nodes, the text only gets

another colour.

58

6.4. Manipulation of Process Area

(a) (b)

Figure 6.17.: (a)Activity and (b) Split with Buttons

For modifications of the text the user just needs to tap on the text and a keyboard

appears to change the text (cf. Figure 6.18). The keyboard limits the collaboration of

users since only one keyboard can be shown at a time [Mic13e]. After changing the text

the user taps the “Tick” on top of the node to confirm.

Figure 6.18.: Renaming an Activity with Keyboard

To insert nodes the user needs to tap on an edge between two existing nodes and an

insertion menu appears (cf. Figure 6.8). This menu shows an AND branching block, an

activity and an XOR branching block. After three seconds, the menu vanishes if the user

does not tap it.

If the user taps the activity button, the modal dialogue appears to enter the name of the

new activity.

59

6. Proof-Of-Concept Implementation

If the user taps the AND or the XOR button, a new AND branching block or XOR

branching block is created. The neighbouring existing activity node is moved into one

branch of the block and a new activity node is created in the parallel branch. Again, the

name of the new activity node is entered, using the modal menu.

6.4.3. Modal Dialogues for Entering Text

On inserting a new node or creating a view a modal dialogue to enter a name of title

appears (cf. Figure 6.19). The dialogue inhibits all functionalities of the process area,

except movement) until some text has been entered and confirmed.

Figure 6.19.: Modal Dialogue for Inserting a New Node

The dialogue consists of a heading, a text field, and two buttons. If the user taps on the

text field a keyboard appears (cf. Figure 6.20). Tapping on the “Ok” button confirms the

entered text. Tapping “Cancel” restores the state before opening the modal dialogue.

60

6.5. Live Updates

Figure 6.20.: Modal Dialogue with Keyboard

6.5. Live Updates

The RESTLibrary informs all registered listeners about changes in their process model.

Therefore, all opened process models are registered (cf. Listing A.7). If the library

registers a change in collabView all associated and opened views and the superior CPM

are informed, therefore two methods have to be implemented (cf. Listing A.8)). If parallel

changes in another client of proView are made, the listeners are not informed by the

RESTLibrary.

6.6. Discussion

We established some requirements in Section 3. In this section we discuss if collabView

meets those requirements.

MUR1 X (Avoid Distract UI Elements): Closing buttons are the only UI widgets that

are permanently visible. They are at the edges of the process field and

do not distract from the actual task.

MUR2 X (Limit Desktop-style Menus): The title menu of a process model can be

seen as a desktop menu. However, the title is needed to distinguish the

different process areas. We therefore gave the title a functionality.

61

6. Proof-Of-Concept Implementation

MUR3 X (Minimalistic Process Model Representation): Only basic geometrical

forms are used to create the process model.

MUR4 X (Fixed Process Model Layout): No parts of the process model are movable.

They are all arranged in a fixed grid. The only lines that not fit in a grid

are the SynchronisationEdges.

MUR5 X (Hide unnecessary UI Widgets): Buttons in the title menu and on the

nodes are not visible as long as the user does not tap the items.

CWR1 X (Interpersonal Interaction): Communication and gesturing are not affected.

It is possible for each user to work for himself because they can have their

own process areas. However, space on the multi-touch table is limited.

Therefore they will probably work on one process area.

CWR2 X (Transitions between Activities): Only fingers are possible to use as input

devices.

CWR3 (X) (Personal and Collaboration space): We only support personal workspace.

The group is forced to work on one of the personal workspaces. Therefore,

one person leads the group and is responsible that the task is fulfilled.

CWR4 X (Multi-Touch Table Collaboration and External Work): The created views

and changed process models are also changed on the proViewServer

and therefore on all other implementations of the proView framework.

CWR5 (X) (Physical and Digital Objects): We do not support the use of physical

objects. The process modelling is done only in a digital form.

CWR6 X (Shard Access to Physical and Digital Objects): As orientation and thus

to increase readability we decided to give each user their own main menu

and process area. They can arrange them in the best way so they can

read the texts easily.

CWR7 X (Appropriate Arrangement of Users): Users can arrange themselves

round the table as they want. Newly opened process areas open in the

angle of and near the corresponding main menu. Furthermore, each UI

element is rotatable.

62

6.6. Discussion

CWR8 X (Simultaneous User Action): Users can simultaneously interact with their

process areas and main menus. Only trying to insert nodes at the same

time on the same positions could lead to errors on the proViewServer.

Further, only one keyboard can be used at a time.

MMR1 X (Ownership of Main Menu): Each user has an assigned colour. This

colour is reflected in their own main menu.

MMR2 X (Fast Capturing of Content): The main menu is designed in a reduced

way. Information in the submenu can be reached within seconds of

scrolling.

MMR3 X (Variable Amount of Entries in Submenus): The submenu can contain a

variable amounts of entries.

MMR4 X (Personalised Registration): We do not support personal registration.

PVR1 X (Presentation of Process Model): Process Models are presented in the

process areas.

PVR2 X (Generation of Process Views): Views can be derived from CPMs by

tapping first on the title and then on the button with the eye.

PVR3 X (Personalised Process Views): Views can be personalised by reducing

nodes and aggregating neighbouring nodes together.

PVR4 X (Deleting of Process Views): Views can be deleted by tapping first on

the title and then on the bin.

PVR5 X (CPM and Associated Process Views): No changes can be made

directly in a CPM, only in their associated process views.

PVR6 (X) (Update CPM and Associated Process Views): If a change is made

the proViewServer informs the CPM and associated process views.

Changes from outside collabView are not updated in real-time.

MVR1 X (Insert Process Elements): Nodes can be insert through an insertion

menu.

MVR2 X (Delete Process Elements): Nodes can be deleted by the button with

the X which is called by tapping on the node.

MVR3 X (Aggregate Process Elements): Nodes can be aggregated by tapping

one node with one finger and selecting other nodes to it with another

finger.

63

6. Proof-Of-Concept Implementation

MVR4 X (Reduce Process Elements): Nodes can be reduced by the button with

the bin which is called by tapping on the node.

MVR5 X (Rename Process Elements): Nodes can be renamed by tapping on the

text which is made editable by first tapping on the node.

MVR6 X (Change Process Elements): Conditions for loops can be changed by

tapping on the text of the condition which is shifted by first tapping on the

node.

MVR7 X (Insert Control Flow Edges): New edges can be inserted by drawing a

line with a finger between the nodes where a new edge is wanted.

MVR1 (Insert Process Elements), MVR5 (Rename Process Elements), MVR6 (Change

Process Elements), and MVR7 (Insert Control Flow Edges) are currently not fully

supported by the proViewServer.

64

7
Conclusion

We have created a concept and a proof-of-concept implementation of a collaborative

process modelling tool on the multi-touch table Samsung SUR40 with PixelSense. This

tool, called collabView, is part of the proView business process framework. collabView

shows that it is possible to create an effective tool on multi-touch tables to work collab-

oratively on process models. The collabView tool offers a more productive and more

communicative way to work together on one process model than on a shared screen on

a conventional computer.

collabView already supports a large segment of the functionalities of the proView frame-

work. The user interface, e.g., scrolling and creating a new node, is strictly designed

with no double meanings of touch gestures. collabView gives real-time visual feedback

for inserting new edges and on aggregating neighbouring nodes. A clear colour-concept

and smart auto-positioning of process areas and menus simplify collaboration of multiple

65

7. Conclusion

users. collabView has an intelligent use of context menus which therefore optimally uses

space with a minimalistic interface design.

In the future some things need to be done on the side of collabView as well as on the

proViewServer side.

On the collabView side a next step would be the implementation of a personalised login.

So the user only sees the CPMs and their personal views in the menu. Further, “Staff

Assignments”, where identifications of the user who is responsible for this node could be

added to the nodes the user inserts.

Another functionality needs to be added, the data elements describing the data flow.

They are not implemented yet on our prototype. If they will be added, new considerations

about using and segmenting space need to be made. Further the design needs to be

considered. How can the data elements fit into the design and suggest the possible or

impossible functionalities they have compared to nodes and in respect of touch gestures.

To distinguish between CPMs and proces views there needs to be thought of a sign or

hint, as well as on the main menu as on the process area. At the moment, the user

needs to know the names of the CPM and the process views. This would reduce the

cognitive load of the users.

Another function that needs to be considered is a scaling or zooming function for the

process model itself. Now the user can scale the process area as a whole and scroll

to the clipping in the process model they want. Maybe it is useful to scale the process

model down to get an overview.

Some functionalities which are essential for modelling all the functionalities in a process

model work on collabView, but are not supported from the proViewServer yet. For

instance, insertion of an XOR branching block, the insertion of a LoopEdge, the insertion

of another ControlEdge between split nodes and the renaming of nodes.

Renaming of CPMs and process views is neither supported in collabView nor on the

proView server yet.

The limitation of a single keyboard provided by the Surface 2.0 SDK could be replaced

with an own design of a keyboard in a productive system. With multiple keyboards more

66

space is needed but that might improve the workflow of the modelling of the process

model.

For the future the prototype needs to be tested by expert users with special focus on

usability and suitability of the gestures and buttons.

67

A
Source Code

Some important code fragments are listed here:

Listing A.1: OnPreviewTouchMove Event Handler

1 OnPreviewTouchMove(){

2 TouchPoint tp = GetTouchPoint(Canvas);

3 AddLineFromTo(canvas, lastPosition, tp);

4 }

Listing A.2: Method to Draw a Line

1 AddLineFromTo(Canvas canvas, Point lastPosition, Point tp){

2 Line l = new Line

3 {

4 X1 = LastPosition.X;

69

A. Source Code

5 Y1 = LastPosition.Y;

6 X2 = tp.X;

7 Y2 = tp.Y;

8 };

9 canvas.Add(l);

10 }

Listing A.3: OnTouchLeave Event Handler

1 OnTouchLeave(){

2 touchUp = GetTouchPoint(Canvas);

3 canvas.Remove();

4 CreateNewEdge(touchUp, canvas)

5 }

Listing A.4: Create a new Edge

1 CreateNewEdge(Point touchUp, Canvas canvas){

2 if(touchUp on node1 & _global.touchDown on node2){

3 Rest.InsertSynchEdge(node1, node2);

4 }

5 else if(touchUp on split & _global.touchDown on join){

6 Rest.InsertControlEdge(split, join);

7 }

8 else if(touchUp on startLoop &

9 _global.touchDown on endLoop){

10 Rest.InsertLoopEdge(startLoop, endLoop);

11 }

12 else

13 canvas.Remove();

14 }

70

Listing A.5: PreviewTouchDown Event Handler of a Node

1 Node_PreiewTouchDown(){

2 if(FirstTouchId == null){

3 FirstTouchId = this.TouchDevice.Id;

4 }

5 touchedObjects.Add(this.TouchDevice.Id, this)

6 }

Listing A.6: PreviewTouchUp Event Handler of a Node

1 Node_PreiewTouchUp(){

2 if(FirstTouchId == this.TouchDevice.Id){

3 String name = NameOfAbstractNode();

4 Rest.AggregateNodes(touchedObjects, name);

5 FirstTouchId = null;

6 touchedObjects.Clear();

7 }

8 else if(touchedObjects.count = 1){

9 FirstTouchId = null;

10 touchedObjects.Remove(this.TouchDevice.Id);

11 ShowEditWidgets();

12 }

13 else if(touchedObjects.count < 1){

14 touchedObjects.Add(this.TouchDevice.Id, this)

15 DarkenColor();

16 }

17 }

71

A. Source Code

Listing A.7: Subscribing as Observer for Events on Initialising Process Area

1 InitProcessArea(){

2 Rest r = Rest.Instance;

3 //subscribe as observer for events

4 r.Subscibe(this);

5 ...

6 }

Listing A.8: Observer Methods Notified from RESTLibrary

1 OnNext(Event value){

2 RebuildProcessModel();

3 }

4

5 OnError(Exception error){

6 _serverNotification.Text = error.ToString();

7 RebuildProcessModel();

8 }

72

List of Figures

2.1. Graphical Representation of an Activity with StartEvent, EndEvent and

ControlEdge . 4

2.2. Graphical Representation of an AND Branching Block (a) and an XOR

Branching Block (b) . 5

2.3. Graphical Representation of a LoopEdge 5

2.4. Graphical Representation of a SynchronisationEdge 6

2.5. Possible Process Model . 6

2.6. Impossible Process Model . 6

2.7. CPM with two Associated Views and Operations 8

2.8. CPM with its Dependent Process Views (a), Change Operation on Process

View 2, Update of the Associated CPM, and Update of the Dependent

Process Views . 9

2.9. Architecture of the PixelSense Technology 11

4.1. Pie Menu with (a) Bubble-styled and (b) Beagle Cutout-styled Menu Items 21

4.2. Sticky Note Menu with (a) Menu Items and (b) Submenu Items 22

4.3. Element Menu . 22

4.4. Rectangle Menu with ID token . 23

4.5. (a) Rectangle Menu and (b) with Sumenu 24

4.6. Process Area with Process Model . 26

4.7. Node after Tapping . 32

4.8. Title of a (a)CPM and (b) Process View with Buttons 33

4.9. Insert Menu Column . 34

73

List of Figures

4.10.Insert Menu Shaped like an Hourglass . 35

4.11.Insert Menu Horizontal . 35

4.12.A Modal Dialogue . 36

5.1. Schematic Representation of Boxes, Paths, PathElements and Activities

in a Process Model . 38

5.2. Schematic Definitions of Box, Path, and Path Element 38

5.3. Relative Origin of the Internal Coordinate System 41

5.4. Example how to Calculate Absolute Position 43

6.1. Start Screen . 47

6.2. Main Menu with Play Field and Content Field 48

6.3. Main Menu Animation After Tapping on Process Survey 49

6.4. Main Menu showing CPMs an Process Views 49

6.5. Process Area . 51

6.6. Node with a Shortened Name . 51

6.7. Touch Regions for Insertion Menu (blue region), Manipulation of Nodes

(green regions), Drawing Edges (red regions), and Scrolling (yellow region

without containing regions) in a Process Area 52

6.8. Insert Node with Insertion Menu . 53

6.9. Example of a Process Model . 54

6.10.Moving Process Area . 55

6.11.Rotating Process Area . 55

6.12.Scalling Process Area . 56

6.13.Scrolling Process Area . 57

6.14.Insert new Edge . 57

6.15.Aggregate Nodes . 58

6.16.Closing of Process Area . 58

6.17.(a)Activity and (b) Split with Buttons . 59

6.18.Renaming an Activity with Keyboard . 59

6.19.Modal Dialogue for Inserting a New Node 60

6.20.Modal Dialogue with Keyboard . 61

74

List of Tables

2.1. Update Operations for Process Views with Parameters [KKR12] 10

75

Listings

A.1. OnPreviewTouchMove Event Handler . 69

A.2. Method to Draw a Line . 69

A.3. OnTouchLeave Event Handler . 70

A.4. Create a new Edge . 70

A.5. PreviewTouchDown Event Handler of a Node 71

A.6. PreviewTouchUp Event Handler of a Node 71

A.7. Subscribing as Observer for Events on Initialising Process Area 72

A.8. Observer Methods Notified from RESTLibrary 72

77

Bibliography

[BLS+09] BRANDL, Peter ; LEITNER, Jakob ; SEIFRIED, Thomas ; HALLER, Michael

; DORAY, Bernard ; TO, Paul: Occlusion-Aware Menu Design for Digital

Tabletops. In: CHI ’09 Extended Abstracts on Human Factors in Computing

Systems. New York, NY, USA : ACM, 2009 (CHI EA ’09), pp. 3223–3228

[BWB06] BENKO, Hrvoje ; WILSON, Andrew D. ; BAUDISCH, Patrick: Precise Selec-

tion Techniques for Multi-Touch Screens. In: Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems. New York, NY, USA

: ACM, 2006 (CHI ’06), pp. 1263–1272

[EBBDL09] ECKER, Ronald ; BROY, Verena ; BUTZ, Andreas ; DE LUCA, Alexander:

pieTouch: a Direct Touch Gesture Interface for Interacting with In-Vehicle

Information Systems. In: Proceedings of the 11th International Conference

on Human-Computer Interaction with Mobile Devices and Services. New

York, NY, USA : ACM, 2009 (MobileHCI ’09), pp. 22:1–22:10

[FHD09] FRISCH, Mathias ; HEYDEKORN, Jens ; DACHSELT, Raimund: Investigating

Multi-Touch and Pen Gestures for Diagram Editing on Interactive Surfaces.

In: Proceedings of the ACM International Conference on Interactive Table-

tops and Surfaces. New York, NY, USA : ACM, 2009 (ITS ’09), pp. 149–156

[FHD10] FRISCH, Mathias ; HEYDEKORN, Jens ; DACHSELT, Raimund: Diagram

Editing on Interactive Displays using Multi-Touch and Pen Gestures. In:

Proceedings of the 6th International Conference on Diagrammatic Repre-

sentation and Inference. Berlin, Heidelberg : Springer-Verlag, 2010 (Dia-

grams’10), pp. 182–196

79

Bibliography

[Hes13] HESS, Hayato: Hand Gesture-based Process Modeling for Updatable Pro-

cesses. 2013. – Bachlor Thesis, Ulm University

[HFS09] HESSELMANN, Tobias ; FLÖRING, Stefan ; SCHMITT, Marwin: Stacked

Half-Pie Menus: Navigating Nested Menus on Interactive Tabletops. In:

Proceedings of the ACM International Conference on Interactive Tabletops

and Surfaces. New York, NY, USA : ACM, 2009 (ITS ’09), pp. 173–180

[KKR12] KOLB, Jens ; KAMMERER, Klaus ; REICHERT, Manfred: Updatable Process

Views for User-Centered Adaption of Large Process Models. In: Proceed-

ings of the 10th International Conference on Service-Oriented Computing.

Berlin, Heidelberg : Springer-Verlag, 2012 (ICSOC’12), pp. 484–498

[KR13a] KOLB, Jens ; REICHERT, Manfred: Data Flow Abstractions and Adaptations

through Updatable Process Views. In: 28th Symposium on Applied Com-

puting (SAC’13), 10th Enterprise Engineering Track (EE’13), ACM Press,

March 2013, pp. 1447–1453

[KR13b] KOLB, Jens ; REICHERT, Manfred: A Flexible Approach for Abstracting

and Personalizing Large Business Process Models. In: Applied Computing

Review 13 (2013), March, No. 1, pp. 6–17

[KRR12] KOLB, Jens ; RUDNER, Benjamin ; REICHERT, Manfred: Towards

Gesture-Based Process Modeling on Multi-Touch Devices. In: 1st Int’l

Workshop on Human-Centric Process-Aware Information Systems (HC-

PAIS’12), Springer, June 2012 (LNBIP 112), pp. 280–293

[Mic11] Microsoft Surface 2.0 Design and Interaction Guide Principles and Guide-

lines for Designing and Developing Surface Applications. 2011

[Mic13a] Developing Presentation Layer Surface Applications. http://msdn.

microsoft.com/en-us/library/ff727733.aspx. Version: 17th

July 2013

[Mic13b] WPF Graphics Rendering Overview. http://msdn.microsoft.com/

en-us/library/ms748373.aspx. Version: 19th July 2013

80

http://msdn.microsoft.com/en-us/library/ff727733.aspx
http://msdn.microsoft.com/en-us/library/ff727733.aspx
http://msdn.microsoft.com/en-us/library/ms748373.aspx
http://msdn.microsoft.com/en-us/library/ms748373.aspx

Bibliography

[Mic13c] The Power of PixelSense. http://www.microsoft.com/en-us/

pixelsense/pixelsense.aspx. Version: 25th July 2013

[Mic13d] ElementMenu Control. http://msdn.microsoft.com/en-us/

library/ff727728.aspx. Version: 26th July 2013

[Mic13e] On-Screen Keyboard and Numeric Keypad. http://msdn.microsoft.

com/en-us/library/ff727766.aspx. Version: 29th July 2013

[MKG02] MARK, G ; KOBSA, A ; GONZALEZ, V: Do Four Eyes See Better than Two?

Collaborative Versus Individual Discovery in Data Visualization Systems.

In: Proceedings. 6th International Conference on Information Visualisation,

2002. , IEEE Comput. Soc, 2002, S. 249–255

[OMG11] Business Process Model and Notation (BPMN) Version 2.0. http://www.

omg.org/spec/BPMN/2.0/. Version: January 2011

[Rei00] REICHERT, Manfred ; DADAM, Peter (Ed.): Dynamische Ablaufänderun-

gen in Workflow-Management-Systemen. July 2000. – PhD Thesis, Ulm

University

[Sam13] Samsung SUR40 with Microsoft PixelSense. http://www.samsung.

com/us/business/displays/digital-signage/LH40SFWTGC/ZA.

Version: 17th July 2013

[SGM03] SCOTT, Stacey D. ; GRANT, Karen D. ; MANDRYK, Regan L.: System

Guidelines for Co-Located, Collaborative Work on a Tabletop Display. In:

Proceedings of the 8th Conference on European Conference on Computer

Supported Cooperative Work. Norwell, MA, USA : Kluwer Academic Pub-

lishers, 2003 (ECSCW’03), pp. 159–178

[Wit12] WITTERN, Hauke: Empirical Study Evaluating Business Process Modeling

on Multi-Touch Devices. In: Proceedings of the 2012 IEEE International

Conference on Software Science, Technology and Engineering. Washing-

ton, DC, USA : IEEE Computer Society, 2012 (SWSTE ’12), pp. 20–29

[WMW09] WOBBROCK, Jacob O. ; MORRIS, Meredith R. ; WILSON, Andrew D.: User-

Defined Gestures for Surface Computing, In: Proceedings of the 27th

81

http://www.microsoft.com/en-us/pixelsense/pixelsense.aspx
http://www.microsoft.com/en-us/pixelsense/pixelsense.aspx
http://msdn.microsoft.com/en-us/library/ff727728.aspx
http://msdn.microsoft.com/en-us/library/ff727728.aspx
http://msdn.microsoft.com/en-us/library/ff727766.aspx
http://msdn.microsoft.com/en-us/library/ff727766.aspx
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
http://www.samsung.com/us/business/displays/digital-signage/LH40SFWTGC/ZA
http://www.samsung.com/us/business/displays/digital-signage/LH40SFWTGC/ZA

Bibliography

International Conference o Human Factor in Computer Systems CHI 09.

ACM Press, 2009 (CHI ’09), pp. 1083–1092

[WPTR13] WEBER, Barbara ; PINGGERA, Jakob ; TORRES, Victoria ; REICHERT, Man-

fred: Change Patterns in Use: A Critical Evaluation. In: Proceedings of

the 14th International Conference of BPMDS 2013, Springer, June 2013

(LNBIP 147), pp. 261–276

82

Name: Judith Burkhardt Matrikelnummer: 623583

Erklärung

Ich erkläre, dass ich die Arbeit selbstständig verfasst und keine anderen als die angegebe-

nen Quellen und Hilfsmittel verwendet habe.

Ulm, den .

Judith Burkhardt

	Introduction
	Motivation
	Contribution
	Overview

	Fundamentals
	Process Model
	The proView Project
	Samsung SUR 40
	Collaborative Work

	Requirements
	Requirements for Multi User Support
	Requirements for Collaborative Work
	Requirements for Main Menus
	Requirements from proView
	Manipulation Operations of Process Views

	User Interaction Design Concept
	Main Menu Design Concept
	Pie Menu
	Sticky Note Menu
	Element Menu
	Rectangle Menu
	Choice of Main Menu Concept

	Presentation of Process Model
	Manipulation Operations of Process Views
	Manipulating Process Models through Touch Gestures
	Manipulating Edges in Process Models with Touch Gestures
	Manipulating Nodes with Touch Gestures

	Manipulating Process Models with Context Menus
	Manipulating Nodes
	Title as Button

	Insert Menu
	Modal Dialogue

	Process Model Layout
	Abstract Schema of a Process Model Layout
	Calculating Width and Height of a Box and a Path
	Vertical and Horizontal Position of Process Nodes

	Proof-Of-Concept Implementation
	Server communication
	Multi User Support
	Visual Components
	Main Menu
	Process Area

	Manipulation of Process Area
	Touch Gestures to Manipulate the Process Area
	Buttons to Manipulate the Process Area
	Modal Dialogues for Entering Text

	Live Updates
	Discussion

	Conclusion
	Source Code

