Datenbank Spektrum
DOI 10.1007/s13222-013-0135-9

SCHWERPUNKTBEITRAG

On the Integration of Electrical/Electronic Product Data

in the Automotive Domain

Challenges, Requirements, Solutions

Julian Tiedeken - Manfred Reichert - Joachim Herbst

Received: 10 June 2013 / Accepted: 24 August 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract The recent innovation of modern cars has mainly
been driven by the development of new as well as the con-
tinuous improvement of existing electrical and electronic
(E/E) components, including sensors, actuators, and elec-
tronic control units. This trend has been accompanied by
an increasing complexity of E/E components and their nu-
merous interdependencies. In addition, external impact fac-
tors (e.g., changes of regulations, product innovations) de-
mand for more sophisticated E/E product data management
(E/E-PDM). Since E/E product data is usually scattered over
a large number of distributed, heterogeneous IT systems,
application-spanning use cases are difficult to realize (e.g.,
ensuring the consistency of artifacts corresponding to differ-
ent development phases, plausibility of logical connections
between electronic control units). To tackle this challenge,
the partial integration of E/E product data as well as corre-
sponding schemas becomes necessary. This paper presents
the properties of a typical IT system landscape related to
E/E-PDM, reveals challenges emerging in this context, and
elicits requirements for E/E-PDM. Based on this, insights

This is an extended version of the paper Managing Complex Data for
Electrical/Electronic Components: Challenges and Requirements
selected for the special DASP issue Best Workshop Papers of BTW
2013.

J. Tiedeken () - M. Reichert

Institute of Databases and Information Systems, Ulm University,
Ulm, Germany

e-mail: julian.tiedeken @uni-ulm.de

M. Reichert
e-mail: manfred.reichert @uni-ulm.de

J. Herbst

ITM Group Research & Product Development MBC,
Daimler AG, Boblingen, Germany

e-mail: joachim.j.herbst@daimler.com

Published online: 12 September 2013

into our framework, which targets at the partial integration
of E/E product data, are given. Such an integration will fos-
ter E/E product data integration and hence contribute to an
improved E/E product quality.

Keywords Product data integration - Common integration
ontology

1 Introduction

A modern car consists of up to 100 electronic control units
(ECUgs) [25, 26]. Continuous product innovations and grow-
ing customer requirements are further increasing the com-
plexity as well as the number of electrical/electronic (E/E)
products in cars. Due to country-, market-, and customer-
specific requirements, in addition, a large number of vari-
ants of E/E product data and corresponding engineering pro-
cesses must be maintained [17, 18]. In this context, simulta-
neous engineering, manufacturer-supplier-relationships, and
development processes show complex interdependencies
(cf. Fig. 1). In particular, E/E product data refers to numer-
ous digital development artifacts, like requirement specifica-
tions, circuit diagrams, wiring diagrams, bootloader, flash-
ware, and software. In turn, these artifacts are created and
managed by autonomous, distributed, and heterogeneous in-
formation systems serving a variety of user requirements. In
this context, numerous environmental regulations (ROHS,l
WEEE,? EuP?) as well as legal requirements (e.g., product
liability, ISO 26262 [19]) demand for an integrated trace-
ability of all E/E product development steps. Accordingly,

IRestriction of Hazardous Substances Directive.
2Waste Electrical and Electronic Equipment Directive.

3Energy-using Products Directive.

@ Springer

mailto:julian.tiedeken@uni-ulm.de
mailto:manfred.reichert@uni-ulm.de
mailto:joachim.j.herbst@daimler.com

Datenbank Spektrum

Standards, Regulations
(AUTOSAR, ISO 10303, ISO 26262, WEEE, RoHS , EuP)

U

E/E product 8
engineering
(W model) USERS

SUPPLIERS
QUALITY CHANGE BEST TEST
% GATES @ MANAGEMENT ﬂ PRACTICES MWM’

Fig.1 Complexity of E/E product data

any change of E/E product data must be documented. For
this purpose, E/E product data management (E/E-PDM) sys-
tems maintain configurations that bundle interrelated E/E
products.

Each E/E product has a life cycle that comprises the steps
required to create and distribute it, e.g., planning, develop-
ment, production, and after sales [6, 25]. In particular, prod-
uct development constitutes an integral part of the product
life cycle. In this context, emerging market trends (i.e., e-
mobility), increasing product liability, environmental regu-
lations, tighter integration of suppliers, and shorter devel-
opment cycles necessitate high data quality as well as inte-
grated E/E product development processes. In particular, an
IT landscape must adequately cope with product changes in
the given context.

An application is based on a conceptual schema (hence-
forth referred to application schema), which describes its se-
mantics based on concepts and their relationships. In current
practice, a multitude of heterogeneous applications are used
for accomplishing the different E/E product development
tasks. In turn, this results in numerous artifacts with par-
tially overlapping information. In particular, ensuring data
consistency and data quality (e.g., accuracy and actuality)
constitutes a challenging task in such an environment. Es-
pecially, use cases requiring data from different sources are
difficult to handle due to missing mappings between inter-
related artifacts. To realize these use cases, in turn, the par-
tial integration of heterogeneous, distributed schemas from
different IT applications become necessary. Usually, these
schemas rely on different concepts for versioning, variabil-
ity support, and aggregation of E/E product data. For ex-
ample, certain applications have predefined release dates for
new E/E product data versions, whereas other applications
create new E/E product data versions for every performed

@ Springer

change. To integrate E/E product data versions from differ-
ent applications, manual mappings between these artifacts
must be maintained, which is a cuambersome and error-prone
task. Furthermore, semantic dependencies among the arti-
facts corresponding to different applications are usually not
documented.

1.1 Problem Statement

The need for integrating E/E product data has been recog-
nized as a major challenge for large companies that maintain
a multitude of autonomous and heterogeneous data sources
[16, 22]. The key principle of the approaches existing in
this context is to create a unified view (i.e., global schema),
which integrates data from local schemas. As an exam-
ple consider Federated Database Systems (FDBSs) [33] and
Data Warehouses (DWHs) [8]. While the former target at the
integration of autonomous and heterogeneous data sources,
the latter focus on intelligent decision support with respect
to management decisions. In particular, FDBSs use view-
based techniques for integrating data sources (Local-as-
View, Global-as-View, and Global-and-Local-as-View). In
turn, a DWH provides mechanisms for extracting, trans-
forming, and loading data from different sources as well as
for analysing these data. However, respective integration ap-
proaches focus on the technical level, solely. Still, there is a
lack in respect to schema evolution.

Usually, an IT landscape supporting E/E product devel-
opment has evolved over many years and is based on a
comprehensive engineering expertise. In this context, a par-
ticular application domain involved in E/E product devel-
opment does not fully disclose its application schema to
other domains. In addition, tacit knowledge and schema
workarounds are ubiquitous. Overall, FDBSs and DWHs are
not sufficient for creating a common integration model in
such an environment. Besides integrating data at the techni-
cal level, a comprehensive methodology is needed that ex-
plicitly considers standards fostering the exchange and in-
teroperability of product data. Examples of such standards
include MSR,* AUTOSAR? [3, 4], and ISO 10303 [30].

1.2 Contribution

This paper elaborates on the problems that emerge when
partially integrating heterogeneous application data models,
which contribute to the development of E/E product data.
We identify fundamental requirements any IT support for
E/E product data management must meet in such a setting
and give insights into our integration framework that aims at
satisfying these requirements. In particular, we discuss the

4Manufacturer Supplier Relationship.

5 AUTomotive Open System ARchitecture.

Datenbank Spektrum

limitations of existing matching approaches in the context
of E/E product data and present solutions to overcome these
limitations.

This paper provides a significant extension of the work
we presented in [36]. First, the requirements we elaborated
in [36] are presented in more detail. Second, we present fun-
damental aspects of our framework enabling the partial inte-
gration of E/E product data. Third, we present the results of
a use case from the automotive industry during which we in-
tegrated two application schemas. Finally, we give detailed
insights into our integration framework.

The remainder of this paper is organized as follows:
Sect. 2 discusses the problems and challenges we identified
in the context of a comprehensive system analysis. This in-
cludes a discussion of the requirements existing for an ef-
fective E/E-PDM support. Taking these requirements into
account, in Sect. 3 we present our framework, which targets
at the partial integration of E/E product data. Related work
is discussed in Sect. 4. The paper concludes with a summary
and an outlook in Sect. 5.

2 Findings, Challenges, Requirements

In the automotive domain, we analyzed a variety of applica-
tions involved in E/E development processes. In this con-
text, we further analyzed specific use cases dealing with
application-spanning consistency checks for E/E product
data (e.g., checking the plausibility of logical connections
between electronic control units and networks). This section
summarizes the results of these analyses. It further identifies
fundamental challenges emerging in the context of E/E de-
velopment processes and their IT support and, finally, elicits
requirements for a holistic and effective E/E-PDM. For the
sake of readability, we grouped our results into four main
challenges.

2.1 Challenge 1: Establishing a Common Ontology for E/E
Product Data Integration

Findings A main characteristic of E/E development pro-
cesses is imposed by the underlying manufacturer-supplier
relationships; i.e., nowadays, systems and components (e.g.,
sensors, actuators, and electronic control units) are devel-
oped in close collaboration with suppliers. Thereby, systems
and sub-systems describe parts of a car, which are charac-
terized by the functions provided. Usually, systems aggre-
gate features that can be perceived by the customer, e.g.,
heat, ventilation, or air conditioning. Furthermore, systems
are technically based on interacting components. Due to the
networked enterprises in a supply chain [31], for different
development stages, deadlines need to be set to guarantee

_ : -...F.UJ_*?I'?’.“ S{%E%%

— = ==

MANUFACTURER

£ 1 A" LY
A

~
""t‘di«b‘dﬁéﬁ?'s"}j’: Eﬁ § §
|

| DEPARTMENT

8 Engineer +— Query

i : H
! 2 H o
H i}
u]
i <> caee | [N [oy ik g
@
[Artifact

Fig. 2 Logical structure of E/E product data

product delivery times. To cope with such a scenario, engi-
neers work on development tasks concurrently (simultane-
ous engineering) using a variety of applications (cf. Fig. 2).
In addition, these applications rely on different concepts for
versioning, variability support, and aggregation of product
data. Usually, engineers are working with numerous appli-
cations, hosted and maintained by different departments,
to create and maintain E/E product data, e.g., applications
for software function modeling, requirements engineering,
and computer-aided design. In particular, these applications
have been designed and developed independently from each
other, and their schemas usually reflect the long-term expe-
riences of engineers.

In general, there exist fundamental use cases not covered
by the schemas of these applications at all. For example, a
car usually has ECUs to control the functions of installed
seats (e.g., position, heat, and ventilation). If these ECUs
do not differ in their functions, they are represented by a
single object, which may cause problems when integrating
this data model with other application data models. To sup-
port these use cases, a number of workarounds are applied
in practice, which are based on tacit knowledge of the en-
gineers and hence are usually not documented. Other use
cases, which require data from heterogeneous data sources
(e.g., checking plausibility of references between ECU pins
and logical signals) are realized manually by responsible ac-
tors, i.e., the latter collect and aggregate development arti-
facts from different departments. In particular, this consti-
tutes a cumbersome and time-consuming task. Moreover, it
might happen that some of the relevant artifacts have to be
replaced by new versions during this data collection process.
Challenges Usually, development tasks are separated into
system- and component-specific parts. Both terms are am-
biguously defined and used in application schemas. For ex-
ample, while a component in a wiring diagram refers to a

@ Springer

Datenbank Spektrum

variant of an E/E component at a specific geometric posi-
tion, in the context of a requirements document, the same
term describes all variants of an E/E product in general. Due
to the large amount of application schemas involved in E/E
development processes, a full integration into one system,
meeting the various user requirements, is neither possible
nor feasible from a practical point of view. In fact, a partial
integration of application schema concepts, which can be
used to support application-spanning use cases, is needed.

Requirements For use cases that require read access to
E/E data stored in different applications, a common integra-
tion ontology is needed (Requirement I). Such an ontology
constitutes the core of applications involved in E/E devel-
opment processes. It aggregates semantically related arti-
facts and, therefore, provides a unified view on E/E product
data. To integrate E/E product data, application-specific con-
cepts for versioning, variability support, and aggregation of
E/E product data as well as documentation methods must
be considered (Requirement 2). Moreover, integrating the
various development artifacts may be accomplished semi-
automatically, which contributes to save time and to avoid
errors as common in the context of manual integration. To
prevent ambiguities, however, an integration ontology must
allow modeling the semantics of application schema con-
cepts (Requirement 3). Finally, business users should be able
to query data of the common integration ontology (Require-
ment 4).

2.2 Challenge 2: Consistency of E/E Product Data

Findings EJ/E product data are created, maintained, and
used in all stages of the automotive life cycle (i.e., de-
velopment, production, and after sales). Usually, different
stakeholders (e.g., E/E architects, system and component
management, and engineers) participate in these life cycle
phases using different applications [25]. In turn, this results
in redundant artifacts and models (e.g., wiring harness, log-
ical connection). Many of these are created in a particular
life cycle phase and required in subsequent development
phases. We denote such interdependent applications as tool
chains. Generally, development artifacts are reused along
such tool chains to reduce development times. For example,
when developing a new car model, artifacts of the previous
model series might serve as basis for product improvements.
To coordinate the various development steps, E/E systems
and E/E components are often developed using the V-Model
[13]. The latter defines necessary steps and responsibilities
of all involved parties considering the distributed develop-
ment and testing of artifacts. To control and test required
functionality of an entire system, integration tests for the
used components become necessary. For this purpose, qual-
ity gates are introduced as integral parts of any development

@ Springer

process [9]. In particular, they describe fixed development
stages with predefined quality requirements to be fulfilled at
specific points in time. Generally, development processes in-
volve different stakeholders, departments, and applications.
Although certain overviews of the global process are pro-
vided, these have not been realized based on workflow tech-
nology [32]. Also, note that changes of E/E products often
become necessary and might impact other E/E products. For
example, when changing the software interface of an ECU,
logically connected ECUs must be identified and analyzed.
For this purpose, global change management processes are
required that coordinate and log the activities in the context
of such change requests.

Challenges Although development of E/E products is ac-
complished simultaneously, artifacts from heterogeneous
data sources must be integrated at specific points during de-
velopment (e.g., design review or prototype analysis). In this
context, complex transformations between heterogeneous
application schemas must be defined and maintained. In
particular, explicit mappings between artifacts from differ-
ent application schemas become necessary. Currently, these
mappings are defined manually. Hence, frequent communi-
cation between the different stakeholders and development
departments is required, which is an error-prone and time-
consuming task. Overall, ensuring the consistency of re-
lated artifacts from heterogeneous, distributed application
schemas constitutes a costly task. As another problem, there
is a lack of technical processes implementations for support-
ing E/E development. Consequently, the monitoring of E/E
product data changes constitute a challenging and tedious
task; i.e., requests by different stakeholders and departments
must be handled manually in current practice.

Requirements The tight integration of manufacturer and
suppliers necessitates data of high quality as well as stan-
dardized data collection processes (Requirement 5). For ex-
ample, during the development of an ECU, functional mod-
els and communication information (software ports, frames,
and signals) are concurrently created and maintained by
different applications. Furthermore, ECU development pro-
cesses are separated into manufacturer- and vendor-specific
parts, i.e., vendors realize software for ECUs based on inter-
faces provided by the manufacturer. Hence, the consistency
of the various artifacts must be guaranteed. Note that any
error of a signal, frame, or bit might lead to a malfunction-
ing product. Consequently, it is crucial to be able to identify
inconsistent E/E product data (Requirement 6).

2.3 Challenge 3: Schema Evolution

Findings In general, changes of application schemas are
performed autonomously based on domain-specific sched-

Datenbank Spektrum

ules. Although these schedules are distributed across the de-
partments involved in E/E development, the coordination of
application schema changes remains a challenging task.

Challenges When evolving an application schema, other
application schemas might be affected. To identify such de-
pendent schemas is a difficult task, because the dependen-
cies that exist between the artifacts from different schemas
are not explicitly documented. In turn, if a change is imple-
mented without notifying affected applications in advance,
existing tool chains might become corrupted. In summary,
before changing an application schema, dependent schemas
of other applications must be determined and analyzed.

Requirements To handle application schema changes in a
more systematic manner, bidirectional mappings between
related artifacts from different schemas should be explic-
itly modeled and maintained (Requirement 7). This includes
artifacts at the schema as well as the instance level. As an
advantage of such a mapping, semantic inconsistencies be-
tween application schemas can be eliminated. Furthermore,
application schemas usually comprise a multitude of arti-
facts, whose manual comparison across different schemas
would be too costly. To reduce this complexity, matching
algorithms based on well-defined criteria (e.g., name, data
type) are needed. Additionally, application schema interde-
pendencies must be analyzed to assess the impact of schema
changes prior to their introduction (Requirement §). In order
to enable a flexible change management, therefore, transfor-
mations between application schemas should be derivable
from the interdependencies maintained (Requirement 9).
Based on this, concomitant adaptations are necessary in the
context of schema change, which allows reducing develop-
ment costs and error rates.

2.4 Challenge 4: Providing a Methodology for E/E Product
Data Documentation

Findings 1In the automotive domain, AUTOSAR consti-
tute an industry standard for developing embedded systems.
In this context, the definition of standardized protocols for
software development allows exchanging software running
on ECUs from different vendors. In addition to the soft-
ware architecture of ECUs, methodologies for describing
and defining reusable and scalable software components are
an integral part of AUTOSAR. Besides standardizing ECU
software, processes for developing safety-related E/E prod-
ucts (e.g., airbag, electronic stability control) constitute an
important component of contemporary E/E-PDM systems.
First, Failure Mode and Effects Analysis (FMEA) [35] is
used for failure prevention and security management. In par-
ticular, FMEA focuses on reducing the costs of changing
artifacts, i.e., late changes and hence implementation costs

shall be reduced. Second, as emerging standard for func-
tional safety in the automotive domain, ISO 26262 needs
to be considered. It defines a security life cycle covering
all aspects of the development process. To classify different
levels of security requirements, so-called Automotive Safety
Integrity Levels (ASILs) must be assigned to safety-relevant
E/E products.

Challenges Even though the methodologies inherent to
AUTOSAR consider both software and hardware, other as-
pects like wiring harness and connectors of E/E product
data are not taken into account. Additionally, tacit knowl-
edge makes the integration of application schemas a difficult
task to accomplish, because semantic inconsistencies of E/E
product data might remain unresolved. Finally, an explicit
monitoring as well as control of existing methodologies and
guidelines for documentation of E/E products are missing.
As a consequence, ambiguities in E/E product data can be
frequently observed.

Requirements A comprehensive methodology for docu-
menting E/E product data is needed, taking existing stan-
dards and methodologies (e.g., AUTOSAR, ISO 26262, Au-
tomotive SPICE [24]) into account (Requirement 10). To
create a common integration ontology, allowing for the in-
tegration of existing application schemas, a comprehensive
modeling methodology is needed. Note that applications
that create and maintain E/E product data have been based
on long-term user experiences. Hence, a modeling method-
ology must support the creation of a common integration
ontology from scratch (top-down) as well as from existing
schemas (bottom-up).

Table 1 summarizes the discussed findings, challenges,
and requirements.

3 Integration Framework

In the following, fundamental concepts of our integration
framework for E/E product data are discussed. First, we
present a use case from the automotive domain for integrat-
ing two characteristic application schemas. Following this,
we discuss the underlying data structure required for the
integration of E/E product data. Finally, we elaborate the
differences between local and common integration ontology
and give insights into our matching approach.

3.1 Use Case

Figure 3 exemplarily depicts two applications from our sys-
tem analysis. In particular, these applications maintain arti-
facts related to the same concepts and store, amongst other
things, networks and related ECUs (indicated by two cor-
respondences). However, the two applications are intended

@ Springer

Datenbank Spektrum

Table 1 Summary of findings, challenges, and requirements for E/E product data management

Findings

Challenges

Requirements

manufacturer-supplier relationships
system and component orientation
simultaneous engineering

different concepts for versioning, vari-
ability support, and aggregation of E/E
product data

numerous applications hosted and
maintained by different departments

ambiguous use of terms system and
component

large application schemas
partial integration of
schema concepts

application

common integration ontology
consideration of existing methodologies
for E/E product data documentation
explicit modeling of artifact semantics
query support for business users

different stakeholders participating in
E/E product life cycle

artifact reuse, redundancies

predefined quality gates, V-Model
frequent changes of E/E product data
changes

continuous integration of E/E product
data

maintenance of complex application
schema transformations

standardized processes ensuring data
collection and provisioning
data consistency management

autonomous
schemas
domain-specific schedules

changes of application

evolution of an application schema tak-
ing its interdependencies with other
schemas into account

explicit documentation and mainte-
nance of artifact interdependencies
a-priori-analysis of application schema
changes

generation of schema transformations

numerous standards for product data
exchange
domain-specific methods for document-

tacit knowledge
monitoring and control of methodolo-
gies for E/E product data documenta-

comprehensive documentation method-
ology (support top-down and bottom-
up integration scenarios)

ing E/E product data tion

a By
known
correspondence
= ScHEMA | | scHEMA =
DATA DATA
Nework [N1] [N2] [N3] ! Network
= |
Signal [| | | correspondences
= unknown
Component o I o
P Instance
o iy S e/

Fig. 3 Excerpt of two application data models

for and used by different stakeholders. The first application
(denoted as Application A) deals with the documentation
and release management of physical E/E components (e.g.,
ECU, sensor, actuator, battery). In turn, the second applica-
tion (denoted as Application B) focuses on logical connec-
tions between ECUs (e.g., signals, frames).

As aforementioned, data from different applications must
be integrated at different points in time. To check whether
the data from the two applications are consistent, equiva-
lent artifacts must be identified and their corresponding at-
tributes be analyzed. We denote this as matching problem.
Existing approaches distinguish different types of matching:
schema, instance, and ontology matching. The first type fo-
cuses on finding semantically related artifacts in the schema
or meta model layer, while the second one aims at match-
ing artifacts at the instance level. Since ontologies comprise
schema as well as instance data, both matching types are
relevant here.

@ Springer

Note that there exists a multitude of approaches dealing
with the matching problem [11, 12, 20]. The most preva-
lent techniques applied in this context are based on labels as
well as structural information. In addition, there exist match-
ing frameworks (e.g., AgreementMaker [10], COMA++ [2])
that provide different algorithms for matching schemas, in-
stances, and ontologies.

We applied these existing frameworks to match applica-
tion schema and instance data for the mentioned use case,
but did not obtain satisfactory results. In detail, we analyzed
the similarity between database tables of both applications
(Application A consisted of 138 database tables, whereas
application B comprised 20 tables).

To reduce the complexity of instance matching, we fo-
cused on data of two database tables related to a particular
car model series (table Component with 160 entries and
table Network with 44 entries of Application A; table ECU
Instance with 187 and table Network with 28 entries of
Application B). In particular, we used the labels of the arti-
facts to identify correspondences. While the matching of ar-
tifacts between entries of table Network from Application
A and entries of table Network from Application B worked
very well, only few artifact matchings between entries from
table Component of Application A and table ECU In-
stance of Application B could be found.

As a result from this use case we learned that a system-
atic approach is required to integrate E/E product data from
different applications.

3.2 Fundamentals of our Integration Framework

Figure 4 illustrates our integration framework for E/E prod-
uct data, which meets the presented requirements presented

Datenbank Spektrum

APPLICATION &

PUBLIC

COMMON INTEGRATION
ONTOLOGY

~

APPLICATION B

PUBLIC

PRIVATE

Variability /"™ =
ariability |\2)
Vessioning]

% hC
|

1
1\ T
\ l
1\ N _EI__|
=

LOCAL

ONTOLOGY

Variability

Virsioning

SN
I\ /I
—~
fg \
=

(3)

INT
DATA

Methodology

X

D

INT
DATA

Domain Tacit Integration Knowledge Integration Business Integration Knowledge Tacit Domain
Expert Knowledge Rules Engineer \ Expert User / Rules Engineer Knowledge Expert
Class [T__] individual . maalaa + Mapping ———— Transformation <——> Query

Fig. 4 Integration framework

in Sect. 2. Our main objective is the partial integration of ap-
plication schema concepts from different applications based
on a central ontology (denoted as common integration on-
tology) to support application-spanning use cases. Examples
of the latter include consistency checks and comparisons of
E/E product data. In turn, local ontologies encompass tacit
knowledge as well as application schema concepts that are
made publicly available by the application owner. In par-
ticular, corresponding concepts may be integrated into the
common integration ontology. In the following, we detail
the main aspects of this framework.

3.3 Data Integration Layers

An elaborated analysis of application schemas for E/E prod-
uct development revealed the following common structure
for the resulting product data: application schemas consist
of different concepts of which each comprises a set of ob-
jects. In certain cases, these may be different variants of an
object, which differ in respect to the features provided. Fur-
thermore, each object may consist of different versions.

Figure 5 depicts the basic structure of E/E product data
(®), as well as two corresponding examples ((®) and (©).
While the schema concept Component in () has one ob-
ject (Engine Control Module) with two variants (Gasoline,
Diesel) and corresponding versions, in (¢), objects of the
schema concept Network only distinguish between different
versions. Furthermore, our analysis revealed a few dozen ar-
tifacts at the schema concept level, while there are thousands
of artifacts at the object level and even more at the variant
and version levels.

| Object ‘

Engine control
module

Variant

Version Powertrain

Design
Review

Design
Review

M

Design
Review

Fig. 5 Different layers for integrating data

3.4 Local Ontology

In general, an application schema has resulted from long
term experience and hence provides a high business value.
Therefore, application owners do not want to fully disclose
their application schemas to others. Despite this fact, par-
tial data integration of different applications can be realized
with an additional layer on top of an application schema.
This model, which we denote as local ontology, encom-
passes schema concepts that are made publicly available by
an application owner (Requirements 2 and 3). The local on-
tology allows for a standardized interface for data access and
guarantees independency from the private schemas. Usually,
tacit knowledge related to application schemas is limited to
few domain experts. In turn, this knowledge is important for
integrating application schema concepts with other applica-
tions and should therefore be explicitly documented in the

@ Springer

Datenbank Spektrum

local ontology. As mentioned, essential E/E product data
concepts (e.g., requirement, function, system, and compo-
nent) share a common structure. Each concept comprises at
least a set of objects with respective versions. While cer-
tain objects have different object variants, others only com-
prise a number of object versions. As a result, the artifacts
of a local ontology are structured in the same way. Usually,
local ontologies are created and maintained by knowledge
engineers in cooperation with domain experts. This is ac-
complished through interviews and questionnaires. Domain
experts and knowledge engineers are responsible for estab-
lishing data provisioning processes, which handle the trans-
formation of data from a private schema into the local on-
tology (Requirement 5). As discussed in the context of our
use case, database tables may comprise dozens of attributes,
of which not all might be relevant for integration or queries
of business users. As a result, domain and integration ex-
perts need to decide which artifact properties are relevant
and hence must be transferred into the local ontology. This
additional layer offers one key advantage: if a private appli-
cation schema changes, the structure of the local ontology
will remain stable. Consequently, schema changes are de-
coupled from local ontologies and, therefore, do not affect
the common integration ontology.

3.5 Common Integration Ontology

A common integration ontology constitutes the smallest
common knowledge base of essential E/E product schema
concepts (Requirement 1). It is created by knowledge engi-
neers in cooperation with domain and integration experts.
More precisely, semantically related artifacts of different lo-
cal ontologies are aggregated into new artifacts belonging
to the common integration ontology. Furthermore, their in-
terdependencies are determined (Requirement 7). Artifacts
of this common integration ontology provide the basis for
querying E/E product data, as required in context of consis-
tency checks or summaries (Requirement 4).

Figure 6 illustrates a common integration ontology refer-
ring to the two local ontologies identified in our use case
(cf. Sect. 3.1). For the sake of readability, we restricted our-
selves to schema concepts Component and ECU Instance.
Local ontology A consists of schema concept Component,
which comprises an object Engine Control Module, one
variant Gasoline and two versions ECM Gas VI and ECM
Gas V2. In turn, local ontology B comprises schema con-
cept ECU Instance with object ECM and the three object
versions ECM VI, ECM V2, and ECM V3. To integrate the
local ontologies into a common integration ontology, match-
ings between the artifacts are required. In particular, corre-
spondences at the schema concept, object, variant, and ver-
sion layer are required.

Based on the existing artifacts of the common integra-
tion ontology, different integration scenarios are possible: If

@ Springer

) |

LOCAL ONTOLOGY A COMMON INTEGRATION ONTOLOGY LOCAL ONTOLOGY B

Fig. 6 Common integration ontology

there are no correspondences between the schema concepts
of a local ontology and the ones of the common integration
ontology, the schema concepts as well as their objects, vari-
ants, and versions will be copied into the common integra-
tion ontology. If necessary, artifacts will be labeled to match
naming guidelines.

In turn, if there exist corresponding artifacts in the com-
mon integration ontology, the schema concept ECU Instance
and its subsequent artifacts (ECM, ECM_VI1, ECM_V2,
ECM_V3) must be integrated with them. For example, if lo-
cal ontology A is already integrated with the common in-
tegration ontology and string-based matching algorithms re-
veal that schema concept ECU from the common integration
ontology and ECU Instance of local ontology B are related,
objects, variants, and versions of ECU Instance will have to
be integrated with the corresponding artifacts of the com-
mon integration ontology. In particular, semantically related
objects, variants, and versions must be matched and par-
ticular properties (e.g., relatedSchemaConcept, re-
latedObjectConcept) be created (cf. Fig. 6). Note that
details of the matching between the artifacts of the different
layers (schema concept, object, variant, and version) are out
of the scope of this paper.

Due to the small number of schema concepts, the match-
ing of semantically related schema concepts will be realized
manually by integration experts. Regarding the other arti-
fact layers, however, thousands of objects and even larger
numbers of variants and versions may have to be integrated,
a task that can not be performed manually. Consequently,
the matching process between objects, variants, and versions
must be automated.

So far, we have focused on the integration of single
schema concepts from local ontologies into the common
integration ontology. Generally, local ontologies consist of
many interrelated schema concepts. As a consequence, these
connections between the artifacts must be added to the com-
mon integration ontology as well.

Datenbank Spektrum

Lacal Ontology
owl:Class owl:Class owl:Class owl-Class
hasObject has\ariant
[prefochasName | peefix:hasObctRal |
" string string
S — L] 20t
—]
frn e i
oWl Liass oWl Class
I o DataTyp I
rofs:subClass Ol o type
oWl Ciass
ok FunctionalP
rafype
Metaproperties

Fig.7 Local ontology with matching properties

3.6 Matching Basics

This section presents basics of our matching approach. Our
system analysis revealed that many application schemas
contain cross references to artifacts of other applications.
Usually, these references are string-based identifiers, which
can be exploited to find correspondences between artifacts
from different applications. In most cases, respective refer-
ences are known to domain and integration experts. There-
fore, they should be documented in the corresponding lo-
cal ontologies. Note that the data quality of these cross
references varies significantly. Figure 7 illustrates a local
ontology including properties, which are relevant for the
integration of E/E product data into the common integra-
tion ontology. Technically, local and common integration
ontologies are modeled in OWL2 [23], which is an ontol-
ogy language providing classes, properties, individuals, and
data values. In particular, the latter are stored as Seman-
tic Web documents. The different layer for integrating E/E
product data are represented as owl :Class, e.g., schema
concept layer Component, object layer Component-
Object, variant layer ComponentVariant, and version
layer ComponentVersion. Artifacts of the different lay-
ers represented as individuals of the respective classes. To
annotate an artifact property for matching purpose, it is
associated to meta property cio:MatchingProperty,
which is a subclass of owl :DataTypeProperty. The
data quality of the property values can be documented with
the datatype property cio:DataQuality, which is a
functional datatype property with predefined string values
(‘high’, ‘low’). In order to automate the integration of a
local ontology with the common integration ontology, inte-
gration experts must select matching properties from both
ontologies and define a mapping function. Based on the data
quality of matching properties, the correspondences result-
ing from the automated matching must be evaluated and
adapted, if required.

4 Related Work

Federated database systems (FDBSs) [33] address a similar
problem as presented in this paper. Their main goal is to in-
tegrate autonomous, heterogeneous data sources. To the best
of our knowledge, however, there is no work on the docu-
mentation of application schema semantics and tacit knowl-
edge. Furthermore, schema changes in FDBS have not been
addressed in sufficient detail so far. Both aspects are essen-
tial for integrating application schemas in the context of E/E-
PDM.

There exist a multitude of approaches focusing on the
matching problem [11, 12, 20]. We applied some of the ex-
isting matching frameworks [2, 10] to the E/E product data
from our use case, but did not obtain satisfactory matching
results. Due to the large number of artifacts existing at the
different layers of E/E product data (schema concept, object,
variant, version), these generic matching frameworks are not
sufficient for integrating E/E product data.

A common meta model for the integration of different
tools in context of embedded system engineering is pre-
sented in [5]. This approach derives concepts for a common
meta model from the HRC [34] and EAST-ADL?2 [1] meta
models. Although the authors consider concepts like com-
ponent, part, and port, other relevant ones (e.g., requirement,
system) are missing.

ToolNet [14] focuses on tool integration and data consis-
tency. For this purpose, consistency relations between refer-
ence objects are modeled manually. The approach focuses
on requirements specifications, function models and geo-
metric product data. As a major drawback, changes of ap-
plication schemas are not considered.

In [7], a model-based software (re-)engineering approach
is presented. It integrates tools at the meta model level and
proposes two design patterns for data integration. Further-
more, consistency rules and integration constraints are pro-
vided. For this purpose, simple graph grammar rules are
defined restricting a meta model in order to enable inter-
operability. Note that this enables consistency checking as
well. Finally, a triple graph grammar is used to model the
semantic relationships between the different meta models.
Other approaches using a triple graph grammar are pre-
sented in [21].

The evolution of database schemas is compared with the
one of ontologies in [27]. In particular, it highlights the dif-
ferences of both research areas and discusses challenges
for ontology evolution. Different approaches for detecting
changes between OWL ontologies are presented in [15]. Al-
together, the results presented in [15, 27] constitute a start-
ing point for our future work on the evolution of the required
common integration ontology.

Problems concerning interoperability for software sys-
tem are discussed in [28]. Based on identified mismatches

@ Springer

Datenbank Spektrum

in message exchange protocols, mediation patterns are intro-
duced. In [29], different levels of software system interoper-
ability are distinguished (syntactic, semantic, and pragmatic
interoperability). Furthermore, requirements for assessing
respective interoperabilities are elaborated and possible so-
lutions are discussed. In particular, ontologies are used to
represent individuals, classes, properties, result constraints,
and causality constraints.

Overall we conclude that there exists no holistic ap-
proach covering the aforementioned challenges for E/E
product data management in an integrated and comprehen-
sive manner. Although many approaches focus on tool inte-
gration, change management of partly integrated application
schemas has not been adequately considered so far. Besides
this aspect, methodologies for E/E product data manage-
ment are missing.

5 Summary and Outlook

This paper has identified fundamental challenges emerging
in the context of E/E-PDM. Based on a comprehensive anal-
ysis of applications involved in E/E development processes
as well as a characteristic use case for application-spanning
consistency checks, we have elicited requirements for effec-
tive E/E-PDM. In order to enable application-spanning uses
cases, in turn, a common integration ontology is required
allowing for the integration of relevant concepts from ex-
isting application schemas. In this context, ensuring con-
sistency among the distributed artifacts is a challenging
task. Another challenge concerns the evolution of applica-
tion schemas. Note that respective changes of application
schemas are common and hence should be supported. As
a prerequisite, schema interdependencies must be explicitly
documented. Note that the latter is crucial for automatically
deriving schema transformations. Finally, a methodology for
the documentation of E/E product data is needed, which
takes existing applications schemas, technologies, and rel-
evant standards into account. Based on the elicited require-
ments, we have derived the fundamental concepts of an inte-
gration framework for E/E product data. In particular, we in-
troduced the terms local and common integration ontologies
and gave insights into a corresponding matching approach.

In future work, we will focus on consistency management
(Requirement 6) and the evolution of application schemas
(Requirements 8 and 9). In addition, we will detail our doc-
umentation methodology (Requirement 10). Finally, we will
complete our prototype and evaluate its concepts.

Acknowledgements This work has been conducted within the PRO-
CEED?® project funded by Daimler AG.

SPROactive Consistency for EE product Data management.

@ Springer

References

—

ATESST (2008) EAST-ADL2 specification. Tech rep
2. Aumueller D, Do HH, Massmann S, Rahm E (2005) Schema and
ontology matching with COMA++. In: Proc of the 2005 ACM
SIGMOD international conference on management of data. ACM,
New York, pp 906-908
3. AUTOSAR (2011) AUTOSAR methodology. Tech rep version
1.2.2, release 3.2, rev 0001
4. AUTOSAR (2011) Technical overview. Tech rep version 2.2.2, re-
lease 3.2, rev 0001
5. Baumgart A (2010) A common meta-model for the interopera-
tion of tools with heterogeneous data models. In: MDTPI, Paris,
France
6. Bestfleisch U, Herbst J, Reichert M (2005) Requirements for the
workflow-based support of release management processes in the
automotive sector. In: ECEC, pp 130-134
7. Burmester S, Giese H, Niere J, Tichy M, Wadsack J, Wagner R,
Wendehals L, Ziindorf A (2004) Tool integration at the meta-
model level: the Fujaba approach. Softw Tools Technol Transf
6:203-218
8. Chaudhuri S, Dayal U (1997) An overview of data warehousing
and OLAP technology. ACM Sigmod Rec 26(1):65-74
9. Cooper R (1990) Stage-gate systems: a new tool for managing new
products. Bus Horiz 33(3):44-54
10. Cruz IF, Antonelli FP, Stroe C (2009) AgreementMaker: effi-
cient matching for large real-world schemas and ontologies. Proc
VLDB Endow 2(2):1586-1589
11. Ehrig M (2007) Ontology alignment: bridging the semantic gap.
Springer, Berlin
12. Euzenat J, Shvaiko P (2007) Ontology matching. Springer, Hei-
delberg
13. Forsberg K, Mooz H, Cotterman H (2005) Visualizing project
management: models and frameworks for mastering complex sys-
tems. Wiley, New York
14. Freude R, Konigs A (2003) Tool integration with consistency rela-
tions and their visualization. In: Proc workshop on tool-integration
in system development (TIS 2003), pp 6-10
15. Gongalves RS, Parsia B, Sattler U (2011) Analysing multiple ver-
sions of an ontology: a study of the NCI thesaurus. In: Description
logics
16. Halevy A, Rajaraman A, Ordille J (2006) Data integration: the
teenage years. In: VLDB, pp 9-16
17. Hallerbach A, Bauer T, Reichert M (2008) Managing process vari-
ants in the process life cycle. In: ICEIS (3-2), pp 154-161
18. Hallerbach A, Bauer T, Reichert M (2010) Configuration and
management of process variants. In: Rosemann M, von Brocke J
(eds) Handbook on business process management, vol 1. Springer,
Berlin, pp 237-255
19. International Organization for Standardization (2011) ISO/FDIS
ISO 26262-2:2011: road vehicles—functional safety—part 2:
management of functional safety
20. Kalfoglou Y, Schorlemmer M (2003) Ontology mapping: the state
of the art. Knowl Eng Rev 18(1):1-31
21. Konigs A, Schirr A (2006) Tool integration with triple
graph grammars—a survey. Electron Notes Theor Comput Sci
148(1):113-150
22. Lenzerini M (2002) Data integration: a theoretical perspective.
In: Proc of the twenty-first ACM SIGACT-SIGMOD-SIGART
symposium on principles of database systems. ACM, New York,
pp 233-246
23. Motik B, Patel-Schneider PF, Parsia B, Bock C, Fokoue A,
Haase P, Hoekstra R, Horrocks I, Ruttenberg A, Sattler U et al
(2009) OWL 2 web ontology language: structural specification
and functional-style syntax. W3C Recomm 27:17

Datenbank Spektrum

24.

25.

26.

217.

28.

29.

30.

Mueller M, Hoermann K, Dittmann L, Zimmer J (2012) Automo-
tive SPICE in practice: surviving implementation and assessment.
Rocky Nook, Santa Barbara

Miiller D, Herbst J, Hammori M, Reichert M (2006) IT support
for release management processes in the automotive industry. In:
BPM, pp 368-377

Miiller D, Reichert M, Herbst J (2008) A new paradigm for the en-
actment and dynamic adaptation of data-driven process structures.
In: CAISE, pp 48-63

Noy N, Klein M (2004) Ontology evolution: not the same as
schema evolution. Knowl Inf Syst 6(4):428—440

Pokraev S, Reichert M (2006) Mediation patterns for message ex-
change protocols. In: EMOI-INTEROP

Pokraev S, Quartel D, Steen MW, Reichert M (2006) Semantic
service modeling—enabling system interoperability. In: I-ESA
Pratt MJ (2001) Introduction to ISO 10303—the STEP standard
for product data exchange. J Comput Inf Sci Eng 1(1):102-103

31.

32.

33.

34.

35.

36.

Reichert M (2013) Collaboration and interoperability support for
agile enterprises in a networked world: emerging scenarios, re-
search challenges, enabling technologies. In: IWEI pp 4-5
Reichert M, Weber B (2012) Enabling flexibility in process-aware
information systems: challenges, methods, technologies. Springer,
Berlin

Sheth AP, Larson JA (1990) Federated database systems for
managing distributed, heterogeneous, and autonomous databases.
ACM Comput Surv (CSUR) 22(3):183-236

SPEEDS Project (2009) SPEEDS L-1 meta-model: deliverable:
rev 1.0.1. Tech rep, Information Society Technologies

Stamatis D (2003) Failure mode and effect analysis: FMEA from
theory to execution. ASQ Press, Milwaukee

Tiedeken J, Herbst J, Reichert M (2013) Managing complex data
for electrical/electronic components: challenges and requirements.
In: BTW workshops, pp 141-150

@ Springer

	On the Integration of Electrical/Electronic Product Data in the Automotive Domain
	Abstract
	Introduction
	Problem Statement
	Contribution

	Findings, Challenges, Requirements
	Challenge 1: Establishing a Common Ontology for E/E Product Data Integration
	Findings
	Challenges
	Requirements

	Challenge 2: Consistency of E/E Product Data
	Findings
	Challenges
	Requirements

	Challenge 3: Schema Evolution
	Findings
	Challenges
	Requirements

	Challenge 4: Providing a Methodology for E/E Product Data Documentation
	Findings
	Challenges
	Requirements

	Integration Framework
	Use Case
	Fundamentals of our Integration Framework
	Data Integration Layers
	Local Ontology
	Common Integration Ontology
	Matching Basics

	Related Work
	Summary and Outlook
	Acknowledgements
	References

