
Integrated Modeling of Process- and Data-Centric
Software Systems with PHILharmonicFlows

Carolina Ming Chiao, Vera Künzle, Manfred Reichert
Institute of Databases and Information Systems

Ulm University, Ulm, Germany
{carolina.chiao, vera.kuenzle, manfred.reichert}@uni-ulm.de

Abstract—Process- and data-centric software systems require
a tight integration of processes, functions, data, and users.
Thereby, the behavioral perspective is described by process
models, while the information perspective is captured in a data
model. Eliciting and capturing requirements of such software
systems in a consistent way is a challenging task, demanding
that both process and data model are well aligned and consistent
with each other. While traditional software modeling languages do
not allow for an explicit integration of data and process models,
activity-centric process modeling languages tend to neglect the
role of data as a driver of process execution; i.e., business objects
are usually outside the control of the process, normally stored in
external databases. To overcome this drawback, PHILharmonic-
Flows provides a comprehensive framework for enabling object-
aware process support. In addition, a sound specification of
process- and object-centric software systems becomes possible.
In this paper, we present a requirements modeling approach that
provides methodological guidance for modeling large process-
and data-centric software systems based on PHILharmonicFlows.
Such guidance will foster the introduction of respective software
systems in the large scale.

Keywords—process and data-centric software systems; require-
ments modeling; process modeling;

I. INTRODUCTION

In general, a software system can be considered as useful, if
it meets the requirements of its users and environment [4], [28].
Usually, software modeling techniques are used for capturing
such requirements. In particular, corresponding models allow
stakeholders to provide proper feedback in early phase during
software development.

Process- and data-centric software systems are becoming
increasingly popular in the enterprise computing. They neces-
sitate a tight integration of process, data, users, and application
services [16]. Eliciting and modeling the requirements of such
software systems constitutes a challenging task. Usually, the
behavioral perspective of such a system (i.e., what the system
shall do) is captured by business process models, while the
information perspective (i.e., what the system shall store) is
reflected by a data model [23]. Thus, both kinds of models
are complementary and indispensable in order to describe the
requirements of a corresponding software system. However,
traditional modeling languages like the Unified Modeling Lan-
guage (UML) do not allow for a tight integration of data and
process models, which are usually handled separately from
each other. In particular, the role of data as driver of process
execution is not well understood. To maintain the consistency
and compliance of process and data models therefore consti-

tutes a manual task, which must be accomplished by system
analyst, and which is usually prone to errors.

On one hand, traditional software modeling languages do
not provide well integrated models for capturing the process
and data perspectives of such a system. On the other, process
modeling languages like Business Process Model and Notation
(BPMN) [36], [37] and Event-driven Process Chain (EPC) [34]
lack adequate support for modeling the information perspective
and ignore the role of data as driver for process execution. This
is due to the fact that these process modeling languages have
been mainly designed for modeling activity-centric processes.
Such processes are described in terms of “black-box” activities
and their control-flow defines the order and constraints for
executing these activities [1], [17]. In turn, data is usually
represented in terms of business objects whose attributes may
be written or read by certain activities of the modeled process.
However, details concerning these objects (e.g., attributes,
relationships, and object behavior) are not handled within the
process model. Furthermore, processes instances may interact
with process instances of the same or different type; i.e., the
processing of a particular process instance might require data
from other processes instances. Using traditional modeling
languages, it is not possible to model such interactions in
a proper way (e.g., modeling at which points during the
execution of a process instance, data from other processes
instances is needed). This limitation is caused by a missing
understanding of the role data has as a driver of process
execution [14], [33].

During the recent years, data- and artifact-centric process
support paradigms have emerged, which aim at overcoming
the limitations caused by missing integration of process and
data [1], [2], [26], [27], [30], [35]. However, none of them
fully considers the separation of concerns principle to ensure
low complexity and to allow for the proper visualization of
the models and the respective software requirements; i.e., the
models resulting from the use of these approaches do not foster
an understanding of the application domain or the various
relationships between processes, data, functions, and users
(e.g., data access authorization settings) [23].

Opposed to these approaches, PHILharmonicFlows pro-
vides a comprehensive framework enabling object-aware pro-
cess support. We have already described various aspects of this
framework in previous work [14], [15], [16], [17], [18], [20]. In
turn, the focus of this paper is on the modeling methodology
applied in the context of PHILharmonicFlows. In particular,
PHILharmonicFlows provides a well-defined process- and
data-centric software modeling methodology governing the

object-centric specification of large process-oriented software
systems. Data and process models are still handled separately,
to enable a proper understanding of the software requirements
in respect to the behavior and information perspectives of
the software system. Furthermore, the process models are
derived from the information perspective, which is covered
by the data model (i.e., data objects and their relations).
Additionally, the behavioral perspective of the software system
is represented in two different levels of granularity: micro
and macro process types. A micro process type defines the
behavior of a particular object type; i.e., it defines how the
processing of individual object instances of this type shall
be coordinated among process participants and how valid
attribute settings look like in this context. A macro process
type, in turn, defines how object instances interact with other
objects instances; i.e., how the processing of inter-related
object instances (i.e., of their micro processes) shall be co-
ordinated. Moreover, PHILharmonicFlows allows specifying
which users shall be authorized to access and manage process-
related data at defined points during process execution. In
this paper, we present a requirements modeling approach
that provides methodological guidance for modeling process-
and data-centric software systems using PHILharmonicFlows
framework. In particular, such a methodology is indispensable
for the successful use of such a framework.

Section II describes a case study and an example we use
for illustrating our modeling methodology. In Section III, we
present the main characteristics of object-aware processes.
The modeling methodology is described in Section IV. In
Section V, we discuss how we validated this methodology
by applying it in different application domains. Further, we
present a prototype as a proof-of-concept. Related work is
discussed in Section VI. Finally, Section VII concludes with
a summary and an outlook.

II. CASE STUDY

Our methodology has been applied in several application
domains (cf. Section V). As illustrating example, we use a
real scenario from a Brazilian university we gathered in one of
our case studies. It comprises the project of a software system
that manages extension course proposals (cf. Fig. 1). Extension
courses are courses for professionals that aim to refresh and
update their knowledge in a certain area of expertise. In order
to propose a new extension course, the course coordinator
must create a project describing it. The latter must then be
approved by the faculty coordinator as well as the extension
course committee.

Illustrating Example (Extension course proposal): The
course coordinator creates an extension course project

using a form. In this context, he must provide details about the
course, like name, start date, duration, and description.
Following this, professors may start creating the lectures

for the extension course. In turn, each lecture must have
detailed study plan items, which describe the topics that will
be covered in the lecture.

After creating the lectures, the coordinator may request
an approval of the extension course project. First, an ap-
proval must be provided by the faculty director. If he

wants to reject the proposal, the extension course must not
take place. Otherwise, the project is sent to the extension

course committee, which will evaluate it. If there are more
rejections than approvals, the extension course project

will be rejected. Otherwise, it will be approved and hence
may take place in future.

III. BACKGROUND

In order to provide a better understanding on how our
software requirements modeling methodology emerged, we
first introduce the main characteristics of object-aware pro-
cesses. An intensive study concerning these characteristics has
shown that existing data-centric approaches do not cover all
phases of the process life cycle of object-aware processes (for
more details see [19], [32]). To overcome this drawback, we
developed the PHILharmonicFlows framework, which aims
at adequately supporting the fundamental characteristics of
object-aware processes. Moreover, the framework provides a
well-defined modeling methodology for large process- and
data-centric software systems, which will be presented in the
second part of this section.

The PHILharmonicFlows framework resulted from an in-
tensive study analyzing various processes from different do-
mains [14], [15], [19]. As result of this study, a set of properties
was gathered, characterizing object- and process-awareness in
information systems. Basically, for object-aware processes data
must be manageable in terms of object types. At runtime, the
different object types then may comprise varying numbers of
object instances, whereby the concrete instance number may
have to be restricted by lower and upper cardinality bounds.
In the example from Fig. 2a, for each lecture, at least one
and at most five study plan items may be initiated.

The modeling and execution of processes must be in accor-
dance with the specified data model. In particular, processes are
specified at two different levels of granularity: object behavior
and object interactions.

A. Object Behavior

To cover the processing of individual object instances, the
first level of process granularity refers to object behavior. More
precisely, for each object type a separate process definition
is provided. In turn, the latter is then used for coordinating
the processing of individual object instances among different
users. In addition, it is possible to determine in which order and
by whom the attributes of a particular object instance must be
(mandatorily) written, and what valid attribute settings (i.e.,
attribute values) are. Consequently, at runtime, the creation
of an object instance is directly coupled with the one of its
corresponding process instance. In this context, it is important
to ensure that mandatory data is provided during process
execution. Therefore, it must be possible to define object
behavior in terms of data conditions rather than based on
black-box activities.

B. Object Interactions

Since related object instances may be created or deleted
at arbitrary points in time, a complex data structure emerges

Extension course project
Creative Writing

01/04/2012
English

40 Hours
This course will focus on the
dynamics of story creation.

Study Plan Item
01/04/2012

Character Description
101

In this class, the
students will be asked
to create the basics of

a character.

Lecture
Lecture

Character Development
10 Hours

John Smith
How to develop a

character in a fictional
story.

Study Plan Item

Faculty

Create
extension

course project
approved faculty

Course Coordinator
Max Meyer

Create lecture

Professor
Maria Müller

Create lecture
Professor

Mark Muster

Faculty
Approve extension

course project Faculty Director
Lola Lee

Extension Course
Committee

Committee Member
Peter Frank

Faculty

Professor
Maria Müller

Create study
plan item

users data structure activities users

Approve extension
course project

Decision
Committe

Decision
Committe

Decision
Committe

Committee Member
Frank Ferdinand

Committee Member
Sonja Sun

Interesting course.

Create study
plan item

Approve extension
course project

Approve extension
course project

activities

Fig. 1. Case Study and Illustrating Example

Object Instances – Data Structure Processes Instances – Process Structure

b c
name

description

study plan item

date
description

study plan item

date
description

lecture

name
description
name

lecture
decision committee

acceptance
comment

decision committee

acceptance
comment

decision committee

acceptance
comment

decision committee

object
behavior

extension course project

name
description

extension course project

name
description

lecture

name
description
name

description

lecture

name
description

1...n

decision committee

acceptance
comment

decision committee

acceptance
comment

decision committee

acceptance
comment

decision committee

acceptance
comment

relation

1...n

study plan item

date
description

study plan item

date
description

study plan item

date
description

1..10

object
instances

extension course project

attributes

dependency
between process

instances

study plan item

Domain Data Model

a

object type

extension course project

name
description

lecture

name
description

1...n

decision committee

acceptance
comment

relation
1...n

study plan item

date
description

1..10 cardinality

attributes

Fig. 2. Example of Data Structure (a and b) and Process Structure (c)

that dynamically evolves during runtime, depending on the
types and number of created object instances (cf. Fig. 2c).
Furthermore, individual object instances of same type may
be in different processing states at a certain point of time.
The second level of process granularity we consider, therefore,
comprises the interactions between related object instances of
same and different types. A mechanism is required that allows
coordinating the execution of concurrently executed process
instances (each one related to a particular object instance).

C. Data-driven Execution

To proceed with the processing of a particular object in-
stance, in a given state, certain attribute values are mandatorily
required. Hence, object attribute values reflect the progress
of the corresponding process instance (i.e., the processing
state of the respective object instance). More precisely, the
setting of certain object attribute values is enforced in order

to progress with the process through the use of mandatory
activities. However, if the required data is already available,
these activities may be automatically skipped when becoming
activated. Furthermore, to enable flexible process execution,
users should be allowed to re-execute a particular activity, even
if all mandatory object attributes have been already set. For this
purpose, data-driven execution must be combined with explicit
user commitments; i.e., users should be allowed to review and
update the values that are set for the attributes of a particular
activity and to confirm the completion of the latter. Finally,
the execution of a mandatory activity may depend on attribute
values of related object instances. Thus, the coordination of
multiple process instances should be supported in a data-driven
manner as well.

D. Variable Activity Granularity

For creating object instances and changing object attribute
values, form-based activities shall be used. Respective user
forms comprise both input fields (e.g., text fields or check-
boxes) for writing and data fields for reading selected attributes
of object instances. However, note that different users may
prefer different work practices. As a consequence, depending
on the work style preferred, an activity may either be related
to one or to multiple process instances; i.e., different working
styles need to be enabled. Regarding instance-specific activi-
ties, for example, all input and data fields refer to attributes of
one particular object instance, whereas the forms of context-
sensitive activities also comprise fields referring to different,
but semantically related object instances (of potentially differ-
ent type). For example, when editing attribute values related to
a particular instance of object lecture, it might be favorable
to also edit attribute values of the corresponding instances
of object study plan item. Finally, batch activities involve
several object instances of the same type; i.e., the values of
different input fields can be assigned to all involved object
instances in one go.

In addition to form-based implementation of activities, it
must be possible to integrate black-box activities as well. The
latter might be required, for example, to enable complex com-
putations as well as the integration of advanced functionalities
(e.g., as provided by web services).

IV. MODELING SOFTWARE REQUIREMENTS WITH
PHILHARMONICFLOWS FRAMEWORK

To support information system engineers in developing
object- and process-centric software systems, this section
presents a well-defined modeling methodology that governs
the object-centric definition of processes at different levels of
granularity. For this purpose, we differentiate between micro
and macro processes capturing both object behavior and object
interactions. In detail, our modeling methodology comprises
three major steps (cf. Fig. 3): stakeholders elicitation and
domain data modeling, behavior and functional requirements
modeling, and rapid prototyping. Each of these steps is divided
into one or more tasks, of which each produces artifacts
covering different aspects of the software system.

During process execution, PHILharmonicFlows automat-
ically generates user forms, taking user authorization and
process state into account; no manual efforts are required in
this context. Hence, with this approach it becomes more simple
for the system analyst to rapidly create prototypes during
software development and to let the stakeholders test them and
give early feedback. The latter can then be used iteratively
to improve and refine the generated artifacts (i.e., software
models) until the captured requirements reflect the needs of
the stakeholders.

A. Stakeholders Elicitation & Domain Modeling

In this first step, the information perspective is modeled.
By creating a data model, domain objects are identified and
modeled through the definition of object types and their
relations (including cardinalities). Using the same model, the
organizational entities are defined based on so-called user
types. Overall, the data model constitutes the core artifact

based on which the processes describing the behavior and
interaction between objects are derived (i.e., micro and macro
process types).

1) Organizational Modeling: The organizational model is
integrated into the data model; i.e., user roles are considered
as object types as well. Each user role type is modeled as a
specific object type that is denoted as user type. The latter
comprises attributes, which can be used to characterize the
user role type, e.g., name, e-mail address, or, as in our case
study, the faculty the user belongs to. In the example from Fig.
4, the user types include course coordinator, professor, and
committee member. To express that the course coordinator and
professors belong to the same faculty, the instances of both user
types must have attribute faculty filled with the same value. In
PHILharmonicFlows, one user may possess more than one role
during process execution. Finally, the relation between user and
user roles is defined during runtime.

2) Domain Data Modeling: In the same data model com-
prising the user types, the object types describing the domain-
specific data objects are added. Each object type comprises a
set of attributes and may be related to other object types. At
runtime, these relations allow for a varying number of interre-
lated object instances whose processing must be coordinated.
In particular, the data model is divided into data levels (cf.
Fig. 4 for an example of a data model comprising three such
levels). All object types not referring to any other object type
are placed at the top level (Level #1). Generally, an object type
is assigned to a lower data level as the object types it refers.1
Additionally, cardinality constraints of the data model might
restrict the minimum and maximum number of instances of
an object type that may refer to the same higher-level object
instance. In our example (cf. Fig. 4), object types lecture

and decision committee, for instance, refer to object type
extension course project. Both have cardinalities 1..n. In
turn, an instance of object type lecture may refer to maximum
10 instances of object type study plan item.

B. Behavior & Functional Requirements Modeling

In this second step, the behavioral perspective of the
software system is defined; i.e, what the system shall do
and how this shall be accomplished is modeled in this step.
Particularly, the process models produced in this context
cannot be handled apart from the information perspective (i.e.,
data model). To enable object-aware processes (i.e., to define
business processes in tight integration with business data), their
modeling must consider two levels of granularity (cf. Sect.
III). More precisely, object behavior and object interactions
must be captured in two different kinds of models. To describe
object behavior, we must specify a process definition for each
object type. Such definition is called micro process type. In
turn, the interactions among multiple objects of the same or
different types are captured by a macro process type.

The behavior of a single object (i.e., a micro process)
is expressed by a number of possible states and transitions.
Thereby, the progress of an object instance is driven by
changes of its attributes; i.e., a precise link between data and
process state is established. In particular, whether or not a

1Note that this requires a special treatment of cyclic data objects. We refer
for [16] for a respective discussion

Stakeholders

Elicitation

& Domain Data

Modeling

Behavior

& Functional

Requirements

Modeling

Rapid
Prototyping

Behavior

Modeling

Information

Flow

Modeling

Automatic

Generation of

Forms Organizational

Modeling

Domain Data

Modeling

User and

Role Types

Data Object

and Relations

Macro

Process Type

Authorization

Settings

Forms
Step

Task

Artifact

Micro Process

Types

PHILharmonic

Flows

Fig. 3. Modeling Methodology

Organization and Domain Model (Data Model)

object type

extension course project

name
description

lecture

name
description

1...n

decision committee

acceptance
comment

relation

1...n

study plan item

date
description

1..10cardinality

attributes

Course
Coordinator

name
faculty

OT

OT OT

OT

Professor

name
faculty

Committee
Member

name
committee

UT UT UT

#1

#2

#3data level

user type

Fig. 4. Example of a Data Model

particular state is reached during runtime depends on the values
of object instance attributes. In turn, the interactions among
objects instances become enabled when involved objects reach
certain states. Consequently, object states serve as an abstract
interface between micro and macro processes.

1) Behavior Modeling: When referring to behavior model-
ing, not only the behavior of a single object type is described,
but also the interactions among different objects instances of
the same or different types. Two different artifacts result from
this: micro process types describing the behavior of involved
object types on one hand, and a macro process type describing
the interactions among objects of the same or different types
on the other.

In PHILharmonicFlows, for each object type defined in

the the data model, a specific micro process type must be
defined. At runtime, both object instances of the same and
of different object types may be created at different points
in time. In particular, the creation of a new object instance is
directly coupled with the one of a corresponding micro process
instance. The resulting micro process type then coordinates the
processing of an object among different users and specifies
what valid attribute settings are.

Each micro process type comprises a number of micro
step types, which describe elementary actions for reading and
writing object attribute values. More precisely, each micro
step type is associated with one particular attribute of the
respective object type. In turn, micro step types may be linked
using micro transition types. To coordinate the processing of
individual object instances among different users, micro step

types need to be grouped into state types; i.e., each state
postulates specific attribute values to be set. Such state types
are associated with one or more user roles. During runtime,
each association between a user role and a state type is
represented as a mandatory activity (i.e., a work item in the
work list of the respective user). Such activities are form-based,
where each field of the form corresponds to an attribute (i.e.,
micro step type) associated to the correspondent state type.

At runtime, a micro step may be reached (i.e., completed)
if for the corresponding attribute a value is set. In turn, a
state may be left (i.e., the next state be activated) if values for
all attributes associated with the micro steps of this state are
set. Whether or not the subsequent state in the micro process
is immediately activated, however, then also depends on user
decisions; i.e., process execution may be both data- and user-
driven [32]. To enable user involvement, micro transition types
connecting micro step types of different state types may be
categorized either as implicit or explicit. Using implicit micro
transitions, the target state will be automatically activated as
soon as all attribute values required by the previous state be-
come available. In turn, explicit micro transitions additionally
require a user commitment before activating the next state; i.e.,
users may decide whether or not the subsequent state shall be
activated. This way, users are enabled to still change attribute
values corresponding to a particular state even if all of them
implicitly have been already set.

An example of a micro process type is depicted in Figure
5a. A corresponding micro process instance is initiated in
state under creation, for which values of the attributes name,
start_date, faculty, credits, and description must be
set. Regarding state under approval faculty, for example,
a user decision is modeled, which is related to micro step
type decision_faculty. At runtime, a user associated with the
role faculty director must then decide whether to reject

or approve the extension course project. Finally, the given
micro process type has two end state types: rejected and
approved. Which of these two states becomes activated at
runtime and hence will terminate the processing of the object
instance depends on the decision made in the context of micro
step decision_faculty (i.e., the value of set for attribute
decision_faculty).

In general, whether or not subsequent states may be
reached also depends on the processing states of other micro
process instances. At runtime, for each object instance a cor-
responding micro process instance exists. As a consequence,
a characteristic process scenario may comprise hundreds of
micro process instances. Taking their various interdependen-
cies into account, we obtain a complex and large process
structure. In order to coordinate the interactions between the
different micro process instances of such process structure, a
coordination mechanism is established that allows specifying
the interaction points of the micro processes. More precisely,
the system analyst must specify at which points during process
execution a particular micro process instance needs input from
other micro process instances of same or different type (cf.
Fig. 6a). In turn, these interaction points can be modeled for a
macro process type (cf. Fig.6b). Such a macro process type
refers to parts of the data structure and consists of macro
steps types as well as macro transitions types linking them.
As opposed to traditional process modeling approaches, where

process steps are defined in terms of activities, a macro step
type always refers to an object type and a corresponding state
type.

The macro process type corresponding to our example is
illustrated in Figure 6b. The macro process begins with cre-
ating an instance of object type Extension Course Project.
In turn, this triggers the execution of a corresponding micro
process instance. Following this, a varying number of instances
of micro processes corresponding to instances of object type
Lecture are created. For each instance of object type Lecture,
an arbitrary number of instances of Study Plan Item may be
created as well. When all instances of Study Plan Item reach
state finished, the corresponding instance of Lecture may be
finished as well.

Since the activation of a particular micro process state may
depend on instances of other micro process types, macro input
types are assigned to macro step types. The latter may then
be associated with several macro transitions. To differentiate
between AND and OR semantics in this context, it is further
possible to model more than one macro input for a macro step
type. At runtime, a macro step will become enabled if at least
one of its macro inputs is activated. In turn, a macro input will
be enabled if all incoming macro transitions are triggered.

Information Flow Modeling

Regarding information flows, we must specify how the
object instances shall be coordinated among the system users;
i.e., which users shall be able to read and write which object
attributes at which point during the execution of the respective
instance. The artifact to be created for this purpose documents
the authorization settings for each micro process type.

At the micro process level, the state types, which contain a
number of micro step types referring to object attributes, must
be assigned to user roles. At runtime, the users possessing
the respective roles are responsible for setting values of the
respective attributes.

To ensure that users that may be assigned to a micro
process state have sufficient privileges to write mandatory
attributes associated with this state, a minimal authorization
table is automatically generated for each object type. More
precisely, PHILharmonicFlows grants different permissions for
reading and writing attribute values as well as for creating and
deleting object instances to different user roles. In this context,
the different states are considered as well (i.e., users may have
different permissions in different states). The authorization
to write an attribute may either be mandatory or optional.
When the table is generated, the user role associated to a state
automatically receives a mandatory write authorization to all
attributes related to micro step types of the respective state
type. Optional data permissions, however, may be additionally
assigned to user roles not associated to the state type. This
way, even users usually not involved in process execution
are allowed to access process relevant data. Note that these
authorization settings also provides the basis for the automatic
generation of user forms in the prototyping step.

An example of data authorization settings for the micro
process of object type Extension Course Project is shown
in Figure 5b. The latter illustrates the authorization table
for micro process type Extension Course Project. In this

under creation

name start_date faculty credits description

under approval
faculty

decision_faculty

rejected

rejected

approved under approval extension
course committee approved

Course Coordinator
Faculty Director

state type micro step types

explicit micro
transition type

Micro Process Typea

Authorization Table

P

under creation

CC

MW

Extension Course
Project

name

start_date

faculty

credits

R

MW R

MW R

MW R

MWdescription

decision_faculty

remarks_faculty

R

object type

state type

attribute permissions

b
under approval

faculty

FD

R R

R R

R R

R R

R R

MW

OW

CC

P

FD

CC

Course Coordinator

Faculty Director

Professor

ROLES

ATTRIBUTE
PERMISSIONS

R

MW

OW

Read

Mandatory Write

Optional Write

Automatically Generated User Formsc

Micro process type corresponding to object type Extension Course Project

Fig. 5. Example of a Micro Process Type and Related Components

Fig. 6. Example of a Macro Process Type

example, user course coordinator (CC) must provide val-
ues for attributes name, start_date, faculty, credits, and
description in state under creation; accordingly, these at-
tributes are marked as MW. In the same state, the professor

(P) may read the values of these attributes (marked as R

for the role). In state under approval faculty, in turn, the
faculty director (FD) must fill attribute decision_faculty

(marked as MW). In addition, attribute remarks_faculty may
be optionally written (marked as OW).

C. Rapid Prototyping

Achieving the rapid prototyping step, the system analyst is
enabled to rapidly create a prototype of the modeled process-
and data-centric software system, which then can be executed
and explored.

1) Automatic Generation of Forms: At runtime, based on
the authorization settings defined, PHILharmonicFlows auto-
matically generates forms. Which input fields are displayed
to a specific user depends on the attribute permissions valid
for the currently activated state. When the user only has the
permission to read an attribute in a particular state, the form
field is disabled and marked as read-only. In turn, a mandatory
or optional attribute is represented through an editable field.
In particular, mandatory fields are highlighted in the form.
In Figure 5c, forms for states under creation and under

approval faculty of micro process type Extension Course

Project are exemplary depicted. Furthermore, the control flow
logic within a form itself is derived from the internal state
transitions defined between the respective micro step types.
According to the micro process type from Fig. 5a, in state
type under creation, micro step type name precedes micro
step type start_date. At runtime, the corresponding form (cf.
Fig. 5c) will only display the input field corresponding to micro
step type start_date as mandatory if a value is set for attribute
name.

V. VALIDATION

In Section IV, we presented a modeling methodology
for data- and process-centric software systems. The latter
comprises three different steps, where different artifacts (i.e.,
models and prototypes) regarding the software system are
generated (cf. Fig. 3). Differently from other modeling method-
ologies, this one permits the modeling of the behavioral
perspective (e.g., process models) in tight integration with
the information one (e.g., data models), without violating
the separation of concerns principle. Such methodology was
evolved from several case studies, during which we modeled
object-aware processes in various domains, including human
resource management [14], [15], [16], [17], healthcare [5], [7],
scientific paper reviewing, and house construction. In these
case studies, we observed that the alignment and consistency
between the information (data) and behavioral (process) per-
spectives can be established at a high level of abstraction
when using the PHILharmonicFlows framework. Note that the
use of this framework ensures that the various models are
treated separately; i.e., the data model is separated from the
process models. Furthermore, the behavioral perspective of the
software system is represented at two levels of granularity, pro-
viding a separate and unique view of object behavior and object
interactions. Opposed to many other data-centric approaches

[1], [2], [26], [27], [30], [35], the artifacts generated based on
our methodology allow for a proper visualization of the mod-
els with respect to software requirements, providing a good
understanding of the application domain. In addition, by auto-
matically generating the user forms, the PHILharmonicFlows
framework allows for the rapid generation of an executable
version of the software system. Such rapid prototyping can
be used for iteratively improving and refining the generated
artifacts until the requirements of the system users are met.
Hence, our methodology allows for a complete modeling of
requirements.

We developed a proof-of-concept prototype, which sup-
ports the modeling and enactment of object-aware processes.
Figures 7 and 8 show examples of screens as provided by
the modeling environment. Figure 7 shows a data model
comprising object and user types. Figure 8 shows a micro
process type: the upper part of the depicted screen presents
the object types and their relations. Further, the selected object
type for which a micro process type is modeled is depicted (see
the bottom of Fig. 8).

Object Type

Data Levels

User Type

Object Relation

Fig. 7. Example of a Screen Showing a Data Model

Data Model

Micro Process Type

Highlighted Object Type

Fig. 8. Example of a Screen Showing of a Micro Process Type

VI. RELATED WORK

Model Driven Architecture (MDA) [29], [3] is a well-
known approach in software engineering, which aims at the
specification of complex and large software systems. It treats
models as proper artifacts during the software development
process. Using different kinds of models, it further allows
creating requirements specifications and translating these mod-
els into platform-specific executable software code. Such a
model-driven approach is usually related to modeling stan-
dards, including Unified Modeling Language (UML), Meta-
Object Facility (MOF), and Common Warehouse Meta-Model
(CWM). Although MDA is very powerful regarding software
specification and code generation, methodological support on
how to define and apply respective models is barely pro-
vided. Furthermore, there exist methodologies in the context
of distributed applications, such as ODAC [11] and MODA-
TEL [10], as well as methodologies dealing with software
development process in general (e.g., MASTER [24]). In [12],
it is discussed how the concepts of MDA may be applied
on process-aware information systems (PAIS) development.
However, the data perspective is not taken into account.
Finally, [13] presents a model-driven approach for generating
form-based activities in the context of activity-centric PAIS.

In [23], the authors present a requirements engineering
approach that provides guidelines for integrating process and
data models. The approach proposed in [23] is based on
two existing approaches: the Business Process-Based approach
[21], [22] and the Info Cases Approach [9]. However, opposed
to our approach, models are still created separately (i.e., a
semantic verification is not provided in order to check the
compliance and correctness of both process and data model).
Further, information flows are still designed in terms of tex-
tual information. These information flows are described in
terms of BNF grammar, which may not be very clear for
stakeholders. Opposed to this, in our approach, information
flow is described based on micro step types and authorization
settings for the micro process types, which is much more
intuitive for stakeholders. In addition, [23] does not take
into account the rapid prototyping features provided by the
PHILharmonicFlows framework.

Other data-centric approaches like case handling [1],
artifact-centric business processes [2], and product-based
workflows [35] do not consider the separation of concerns; i.e.,
data and process are considered in the same model. Therefore,
fully understanding the requirements of an application domain
is more difficult and the modeling of the data and functional
aspects of the software system is more complex.

VII. SUMMARY & OUTLOOK

This paper introduced an integrated methodology for mod-
eling requirements of process- and data-centric software sys-
tems. In order to precisely capture the elicited requirements,
we use the PHILharmonicFlows framework, which provides
a well-defined process and data-centric software modeling
methodology, governing the object- and user-centric specifi-
cation of processes. This methodology has been already suc-
cessfully applied in various case studies in different application
domains.

Figure 9 illustrates how the artifacts generated by our
methodology cover the different aspects of the software system
to be realized. Further, it can be seen how these aspects are
related to each other. By modeling the object types and their
relations, fundamental insights into information perspective
can be obtained. Additionally, they constitute the basis of the
other artifacts such as micro process types, describing object
behavior, and macro process types, which describe object
interactions. Moreover, by using our framework, it becomes
possible to rapidly generate executable software, without need
for implementing user interfaces; i.e., PHILharmonicFlows
automatically generates user forms. This allows stakeholders to
test the system and to provide early feedback, which improves
the overall quality of the software system to be developed.

Data Objects &
Relations

Macro Process
Type Authorization

Settings

Behavioral Perspective
Information Perspective

Forms

Organizational
Perspective

User and Roles
& Types

Micro Process
Types

Fig. 9. Organizational, Information, and Behavior Perspectives as Generated
by PHILharmonicFlows

In order to further increase the flexibility and adaptability
of object-aware process support, we are developing advanced
concepts and techniques enabling schema evolution in object-
and process-aware software systems. Preliminary work dis-
cussing the challenges to be tackled in this context is presented
in [6]. Other future work will deal with the mining and analysis
of the execution logs of object-aware processes with the goal
to discover data objects and the relations among them. By
analyzing such logs, we can not only discover which data
objects are involved, but also investigate their behavior (i.e.,
who and in which order may attributes be set) as well as their
interactions.

ACKNOWLEDGMENT

The authors would like to acknowledge the financial sup-
port provided by the Ernst Wilken Foundation.

REFERENCES

[1] W. M. P. van der Aalst, M. Weske and D. Grünbauer, Case Handling: A
New Paradigm for Business Process Support, Data & Know. Eng., 53(2),
pp. 129–162, 2005.

[2] K. Bhattacharya, R. Hull and J. Su, A Data-Centric Design Methodology
for Business Processes, Handbook of Research on Business Process
Modeling, pp. 503–531, 2009.

[3] A. W. Brown, Model Driven Architecture: Principles and Practice,
Software and Systems Modeling, 3(4), pp. 314–327, 2004.

[4] B. H. C. Cheng and J. M. Atlee, Research Directions in Requirements
Engineering, Proc. FOSE ’07, pp. 285–303, 2007.

[5] C. M. Chiao, V. Künzle and M. Reichert, Towards Object-aware Process
Support in Healthcare Information Systems, Proc. eTELEMED 2012, pp.
227–236, 2012.

[6] C. M. Chiao, V. Künzle and M. Reichert, Schema Evolution in Object
and Process-Aware Information Systems: Issues and Challenges, Proc.
BPM’12 Workshops, LBNIP 132, pp. 328–340, 2012.

[7] C. M. Chiao, V. Künzle and M. Reichert, Object-aware Process Support
in Healthcare Information Systems: Requirements, Conceptual Frame-
work and Examples, Int’l Journal of Advances in Life Sciences, 5(1 &
2), pp. 11–26, 2013.

[8] D. Cohn and R. Hull, Business Artifacts: A Data-centric Approach to
Modeling Business Operations and Processes, Bulletin of the IEEE
Computer Society Technical Committee on Data Engineering, 32(3), pp.
3–9, 2009.

[9] M. H. Fortuna, C. M. L. Werner and M. R. S. Borges, Info Cases:
Integrating Use Cases and Domain Models, Proc. RE’08, pp. 81–84,
2008.

[10] A. Gavras, M. Belaunde, L. F. Pires and J. P. A. Almeida, Towards an
MDA based Development Methodology, Proc. EWSA 2004, LNCS 3047,
pp. 71–81, 2004.

[11] M.-P. Gervais, Towards an MDA-Oriented Methodology, Proc. COMP-
SAC 2002, pp.265–270, 2002.

[12] E. Kindler, Model-based Software Engineering and Process-aware
Information Systems, Transactions on Petri Nets and Other Models of
Concurrency II, pp. 27–45, 2009.

[13] J. Kolb, P. Hübner and M. Reichert, Automatically Generating and
Updating User Interface Components in Process-Aware Information
Systems, Proc. CoopIS’12, LNCS 7565, pp. 444–454, 2012.

[14] V. Künzle and M. Reichert, Towards Object-aware Process Management
Systems: Issues, Challenges, Benefits, Proc. BPMDS’09, LNBIP 29, pp.
197–210, 2009.

[15] V. Künzle and M. Reichert, Integrating Users in Object-aware Process
Management Systems: Issues and Challenges, Proc. BPM’09 Workshops,
LNBIP 43, pp. 29–41, 2009.

[16] V. Künzle and M. Reichert, PHILharmonicFlows: Towards a Frame-
work for Object-aware Process Management, Journal of Software Main-
tenance and Evolution: Research and Practice, 23(4), pp. 205–244, 2011.

[17] V. Künzle, B. Weber and M. Reichert, Object-aware Business Pro-
cesses: Fundamental Requirements and their Support in Existing Ap-
proaches, Int’l Journal of Information Systems Modeling and Design,
2(2), pp. 19–46, 2011.

[18] V. Künzle and M. Reichert, A Modeling Paradigm for Integrating
Processes and Data at the Micro Level, Proc. BPMDS’11, LNBIP 81,
Springer, pp. 201–215, 2011.

[19] V. Künzle and M. Reichert, Striving for Object-aware Process Support:
How Existing Approaches Fit Together, Proc. SIMPDA’11, 2011.

[20] V. Künzle, Object-aware Process Management, Ph.D. Thesis, University
of Ulm, Germany, 2013.

[21] J. L. de la Vara, J. Sànchez and Ò. Pastor, Business Process Modelling
and Purpose Analysis for Requirements Analysis of Information Systems,
Proc. CAiSE’08, pp. 213–227, 2008.

[22] J. L. de la Vara and J. Sànchez, Business Process-Driven Requirements
Analysis through Business Process Modelling: A Participative Approach,
Proc. BIS 2008, pp. 165–176, 2008.

[23] J. L. de la Vara, M. H. Fortuna, J. Sànchez, C. M. L. Werner and
M. R. S. Borges, A Requirements Engineering Approach for Data Mod-
elling of Process-Aware Information Systems, Proc. BIS 2009, LNBIP
21, pp. 133–144, 2009.

[24] X. Larrucea, A. B. G. Diez and J. X. Mansell, Practical Model Driven
Development Process, Computer Science at Kent, 2004.

[25] R. Liu, K. Bhattacharya and F. Y. Wu, Modeling Business Contexture
and Behavior Using Business Artifact, Proc. CAiSE’07 and WES 2007,
LNCS 4495, pp. 324–339, 2007.

[26] D. Müller, M. Reichert and J. Herbst, Data-Driven Modeling and
Coordination of Large Process Structures, Proc. CoopIS’07, LNCS 4803,
pp. 131–149, 2007.

[27] D. Müller, M. Reichert and J. Herbst, A New Paradigm for the
Enactment and Dynamic Adaptation of Data-driven Process Structures,
Proc. CAiSE’08, LNCS 5074, pp. 48–63, 2008.

[28] B. Nuseibeh and S. Eastbrook, Requirements Engineering: A Roadmap,
Proc. FOSE ’00, pp. 35–46, 2000.

[29] Object Management Group, Model Driven Architecture (MDA),
http://www.omg.org/mda/, 2013.

[30] G.M. Redding, M. Dumas, A. H. M. ter Hofstede and A. Iordachescu, A
Flexible, Object-centric Approach for Business Process Modelling, Proc.
SOCA’09, pp. 1–11, 2009.

[31] M. Reichert and P. Dadam, A Framework for Dynamic Changes in
Workflow Management Systems, Proc. DEXA’97, pp. 42–48, 1997.

[32] M. Reichert and B. Weber, Enabling Flexibility in Process-Aware
Information Systems: Challenges, Methods, Technologies, Springer, 2012.

[33] M. Reichert, Process and Data: Two Sides of the Same Coin?, Proc.
CoopIS’12, LNCS 7565, pp. 2–19, 2012.

[34] A. Scheer, O. Thomas and O. Adam, Process Modeling Using Event-
driven Process Chains, Process-Aware Information Systems, pp. 119–
146, 2005.

[35] I. Vanderfeesten, H. A. Reijers and W. M. P. van der Aalst, Product-
Based Workflow Support: Dynamic Workflow Execution, Proc. CAiSE’08,
LNCS 5074, pp. 571–574, 2008.

[36] S. White and D. Miers, BPMN Modeling and Reference Guide, Future
Strategies Inc., 2008.

[37] P. Wohed, W. M. P. van der Aalst, M. Dumas, A. H. M. ter Hofstede and
N. Russell, On the Suitability of BPMN for Business Process Modelling,
Proc. BPM’06, LNCS 4102, pp. 161–176, 2006.

