
Universität Ulm | 89069 Ulm | Germany Fakultät für
Ingenieurwissenschaften
und Informatik
Institut für Datenbanken und Infor-
mationssysteme

Document Maintenance With Multiple
Access Strategy
Bachelorarbeit an der Universität Ulm

Vorgelegt von:
Leo Hnatek
leo.hnatek@uni-ulm.de

Gutachter:
Prof. Dr. Manfred Reichert

Betreuer:
Rüdiger Pryss

2013

„Document Maintenance With Multiple Access Strategy“
Fassung vom 20. Mai 2013

Bei der Erstellung dieser Bachelorabeit wurde zur Erstellung der Grafiken die Software Balsamiq
Mockups verwendet. Die Lizenz dazu wurde vom Institut für Datenbanken und Informationssysteme
bereitgestellt.

Satz: PDF-LATEX 2ε
Druck: Kommunikations- und Informationszentrum kiz | Medien

c© 2013 Leo Hnatek

Dieses Werk ist unter der Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Germany
License lizensiert: http://creativecommons.org/licenses/by-nc-sa/3.0/de/

http://creativecommons.org/licenses/by-nc-sa/3.0/de/

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Structure . 2

2 Concept 3

2.1 Exemplary Usage . 3

2.2 Definitions . 4

2.3 Existing Document Distribution Systems . 5

2.4 Parties Involved . 5

3 Requirements 7

3.1 Data-Oriented . 7

3.2 User-Oriented . 8

3.3 Infrastructure-Oriented . 8

3.4 Overview . 9

4 Design 11

4.1 Requirement Analysis . 11

4.2 Mock Ups . 14

4.2.1 End User Interface . 15

4.2.2 Handler Interface . 15

4.2.3 Administrator Interface . 17

5 Architecture 19

5.1 Technologies . 19

5.1.1 JSON . 19

5.1.2 File Structure . 21

5.1.3 Meta Data Creation . 23

5.1.4 Email . 24

iii

Contents

5.1.5 Lightweight Director Access Protocol 24

5.1.6 Common Unix Printing System . 25

5.1.7 Google Web Toolkit . 26

5.1.8 SmartGWT . 26

5.2 Component Diagram . 26

5.3 Web Interface . 28

5.3.1 Walkthrough . 28

5.3.2 Client-Server Model . 33

5.3.3 Client Structure . 33

5.3.4 Server Structure . 35

5.3.5 Server Components . 36

5.3.6 StartUp And Timed . 39

5.3.7 Configuration . 40

5.3.8 Target System . 41

5.4 Console . 42

5.4.1 Walkthrough . 42

5.4.2 Function . 44

5.5 File Browser . 44

5.6 Backup . 44

6 Conclusion 47

6.1 Requirement Alignment . 47

6.2 Outlook . 49

6.3 Discussion . 50

Bibliography 51

iv

1 Introduction

This chapter will introduce the thesis, illustrate its motivation and present the outline of the

following chapters.

1.1 Motivation

This thesis should yield a system that is capable of providing access to documents. Such

documents and the file access thereto are of central importance. The access to these doc-

uments should not be limited by a single interface or access manner.

Databases and database management systems (DBMS) using the Structured Query Lan-

guage (SQL)[11] and following the ACID paradigm1 are commonly used to manage data.

Such databases are robust and performant but minimize flexibility regarding the data struc-

ture, as it has to be determined at the creation of a system and should not be changed over

time. Additionally, the data can only be accessed by the database management system

(DBMS). Hence, the data cannot be accessed if the database management system is not

running, because in major systems like MySQL, PostgreSQL or DB2 the data is stored in a

binary manner to increase performance.

As this thesis aims to provide a system wherein access is independent of single compo-

nents, especially of the database server such traditional SQL servers cannot be used.

Moreover, single data attributes can not be inserted, in performance-oriented SQL servers,

even if the DBMS was not running as it would require knowledge over the internal database

structure, as well as complex insertion and modification methods, whereas the focus should

lie on the documents, their consistency, rather than on the meta information.

In consideration of these goals, the implementation of a system with multiple access strat-

egy and easy modification will be discussed in the following chapters of this thesis.

1ACID is short for: Atomicity, Consistency, Isolation, Durability. These are properties a relational database
generally possesses.

1

1 Introduction

1.2 Structure

Figure 1.2 shows a summary of the thesis, its chapters as well as its sections, and subsec-

tions. The different chapters are grouped by color.

Figure 1.1: A structured overview of the thesis.

2

2 Concept

This chapter will discuss the practical purpose of document maintenance systems, and the

context within which they are used, as well as introduce existing implementations for such

a system.

2.1 Exemplary Usage

The aim of this thesis is to create a document management system that provides its func-

tionality via multiple access. As an practical implementation, a system was developed that

provides the possibility for students to gain access to past examinations and other forms of

documents.

For most students taking examinations is one of the most challenging situations in the

course of their studies while oral examinations in particular are less predictable compared

to written ones, therefore students often ask fellow students who already passed the up-

coming examination for advice on how to handle the stress and what the lecturer might

ask. This procedure is very inefficient and unfair because only students with connections

can get help. So to help students manage the stressful situation of an examination and to

help them prepare properly, many student associations gather intelligence on how to pre-

pare for oral as well as written examinations. In order to distribute this knowledge, students

may write a detailed report of an oral exam and submit it to the student association. Many

lecturers agree with these principle of transparency and also provide past written examina-

tions to the associations. To have a certain amount of control over the distribution of these

documents, both student associations and lecturers came th the agreement that it would

be best if the documents were provided in printed form only.

3

2 Concept

2.2 Definitions

In this section roles for users interacting with the system will be introduced, and the docu-

ments these users utilize with will be defined.

Administrator

An administrator is a person who manages and maintains the system as described

in chapter 5, thus maintaining and organizing documents and importing them into the

system. They have more rights than the end user. A student member of a student

association is planned to hold the role of the administrator.

End User

An end user is a student who accesses the system by searching for documents. They

might perform the searching directly with the system, or require the help of a handler,

as described below. In any case, the final goal of an end user is that the sought

document is provided to them.

Handler

A handler is a student assigned to hold opening hours and explicitly interact with the

system to search and print documents.

Provider

Any person who provides a document to an administrator is defined as a provider.

Document

The minutes of examinations, i.e. the records of past examinations which people cre-

ated for the purpose of better preparation for future examinations will be, in short,

called documents. In general, documents can be any kind of document, as in the

commonly used sense, that is provided to the administrator and consensually im-

ported by them.

Collection

The aggregated documents as requested by an end user, either put together by the

end users themselves or by handlers, is defined as a collection.

4

2.3 Existing Document Distribution Systems

2.3 Existing Document Distribution Systems

Some associations keep the documents in written form, i.e. in filing cabinets. When stu-

dents request to get a copy of a document, they have to find a copy machine and make

a paper copy. This procedure is very inefficient. Especially if many students concurrently

want to access the same document at once, as they have to wait until it is available.

Other associations do have their documents, such as examinations, digitalized. To access

those documents, files are selected separately, opened with a file browser and printed one

by one. Alternatively one can use a shell script to do the work in an automatized way. In

order to import the documents, an administrator has to scan them, copy them and move

them to the right destination in a folder for which the person also has write permissions.

Few associations have a front end for users to search for the documents. The distribution

of documents requires a long time; because importation of new documents usually does

not happen, neither in an atomized manner nor digitally, the amount of available documents

is often low and increases only slowly. Above all, different associations have different ways

of organizing documents, meaning that a student has to know them all to gain access to the

wanted documents. The adaptation to thesis processes is unnecessary for providers and

end users. Additionally, an non-unified process of importation requires lecturers to know

about them, too. This can decrease the amount of documents which are willingly provided.

Hence, having one single system for documents across all student associations and fac-

ulties would provide transparency. Furthermore, having a centralized system would make

maintenance easier and less redundant, as currently two different associations may acci-

dentally have the same document, not knowing about the other’s existence.

2.4 Parties Involved

As Figure 2.1 simply illustrates, documents are expected to be supplied in some way to the

system by either lecturers themselves or examinees. The system then should be able to

distribute documents to future examinees in a printed form. The black-box system designed

here will be introduced in chapter 4 and further discussed in chapter 5 of this thesis.

5

2 Concept

Figure 2.1: Parties involved with the system.

6

3 Requirements

This chapter will illustrate which requirements will have to be met by the implementation of

the document management system. These requirements are based on the present state

of the student associations, normal students and lecturers at the Ulm University, and their

agreements. This status quo may change, wherefore the implemented system should be

as adaptive as possible.

3.1 Data-Oriented

Data Storage The documents that are provided should be stored in a format that is as

platform-independent as possible. The single files will not have to be changed over time,

so a format can be chosen to represent the documents, in a manner that can be displayed

on any device, as accurately as possible in comparison to the printed ones. Furthermore,

it should save disk space and be flexible enough to handle converted pictures, as well as

text and vector graphics.

Data Structure In order to gain flexibility, the files should be stored in a manner whereby

they can be transfered to a new implementation of the system without much effort to-

wards changing them. The structure within which the documents are stored should be

clear and understandable to both handlers and administrators of the system. Furthermore,

this structure must not be dependent on a specific implementation, such as a proprietary

compressed file format, as different access methods will be provided to work in a multiple

access manner. Optionally, this structure should be easy to backup and reproduce.

Document Style Ideally, the documents being provided to users should have a unified

style so that end user can focus on the content of the documents rather than being troubled

by differing layouts or fonts of documents.

7

3 Requirements

3.2 User-Oriented

User Access By having many users from different associations, the system will have

to provide the option for multiple users to access it. Additionally, the administrator might

change over time, even frequently, as the administrator’s role is held voluntarily by students,

whose availability is likely to be limited to only a few terms, as well as limited by a time

constraint during these terms due to their own studies. Therefore, the user management

should be as manageable as possible and the user logins should preferably correlate to

logins used by other university systems, so that no ghost accounts exist and redundancy

can be kept as low as possible.

User Interface It is key to this thesis that not only one interface can be used to interact

with the system and achieve all tasks, but multiple ways can be used to interact with it,

making it user-friendly, efficient and failsafe. This way, advanced administrators can use

methods to import documents efficiently i.e. with batch processes, whereas inexperienced

administrators are provided with an interface that is easy to use and understandable. Fail

safety should be provided by the multiplicity of access, though possibly constraining usabil-

ity or efficiency if the typically used interface fails.

3.3 Infrastructure-Oriented

Printing The system should provide the functionality of printing documents as the docu-

ments will be handed to students in a printed form. It should be possible to print a collection

instead of printing file by file. To save paper, the system should optionally be capable of

post-processing the collections before printing, in order to print both sides of each single

sheet of paper.

Maintenance The administrators should be able to import documents and also to manage

the documents that are archived within the system. These procedures should be as efficient

and intuitive as possible. The system should also be capable of doing this work not only

from one single workstation but instead remotely, and optionally, concurrently.

8

3.4 Overview

3.4 Overview

In this section the requirements to the system, that will be implemented over the course of

this thesis, are summarized and classified.

Classification Description Of The Requirement Type

Data Storage Make use of a platform-independent file format. functional

Save disk space by keeping the files small. functional

Choose a file format that is flexible enough to handle

vector graphics, text, as well as embedded graphics.

functional

Data Structure Data is portable, i.e. it can be transfered to another

system.

functional

Data is stored in a structured manner, thus under-

standable by handlers and administrators.

functional

The data is stored in a manner, independent of pro-

prietary file formats.

functional

Document Style The documents could have a unified document lay-

out.

optional

User Access The system is accessible in more than one way. functional

Existing accounts of existing systems are used, thus

preventing ghost accounts.

functional

Handling accounts is easy. non-functional

User Interface The system has more than one interface for interac-

tion.

functional

At least one interface is user friendly. functional

At least one interface is efficient. functional

The system is in some way failsafe. non-functional

Printing Documents can be printed. functional

Options are provided to save paper. optional

Maintenance Documents can be imported. functional

Documents can be managed. functional

Interaction with the system can happen concurrently. optional

Interaction with the system can happen remotely. functional

9

4 Design

With the requirements discussed in the previous chapter 2 and a given infrastructure,

choices have to be made in regards to the demonstrative implementation; choices, which

should satisfy as many needs as possible. Potential options will be discussed and illustrated

in this chapter.

4.1 Requirement Analysis

In this section the requirements discussed in chapter 3 will be analyzed and possible im-

plementation strategies will be provided.

Data Storage

As described in the Data Storage section 3.1, once the documents are created, they

are not expected to change over time. Therefore, PostScript and the Portable Docu-

ment Format (PDF) are good choices as both store the files in a way that the printed

collection will look exactly like the digital representation, and the files will be consistent

over different operating systems or software used to display them. Finally, the PDF

has the advantage that modern browsers can display the format natively and that text

editing tools as well as modern scanning hardware often support PDF output.

Data Structure

The implementation of the demonstrative system will run on a server belonging to

the official infrastructure of Ulm University. The maximum number of end users will

be less than the total number of students, a number which is below 9.589, as this

was the total number of students in the winter semester of 2012/2013. In fact, it is

very unlikely that all the students access the system, especially not at the same time,

so the number of hits can be expected to remain below 10.000 over the course of a

term. It will more likely even be less than 500 hits at the same time, as less than 100

documents were handed out by the Computer Science student association during

11

4 Design

the winter semester of 2012/2013. The amount of available documents for Computer

Science students are currently below 1000. Accordingly, there is no obvious necessity

for a database in terms of performance. Without a database the documents can be

stored as separate files in a file system. This way, they can be accessed by users

without a running database management system or special interface tools such as

phpMyAdmin. Document meta data should be provided, so an Extensible Markup

Language (XML) or JavaScript Object Notation (JSON) file can be used to store the

necessary data in a structured way; alternatively, simple lists can be used or the

filenames themselves could hold the needed values.

User Access

The system’s expected end user group consists of students, though some students

will also have the role of administrators who add and manage the documents. In fact

any role will be occupied by a student, although student’s field of study may vary. Thus

the user login must be universal and applicable to all students. This can be achieved

by using the account provided by the “Kommunikations und Informationszentrum”[15]

of Ulm University, as every student is assigned such an account. The necessity of au-

thentication is not mandatory for all roles, as for lookups i.e. to see which documents

are obtainable, it is not necessary to authenticate oneself, whereas a login is com-

pulsory for the administrative tasks. To access the KIZ login, the university provides

an LDAP server where one can lookup people and see the groups a person is in.

This lookup can be performed for generic values, such as name and room number for

lecturers, staff members and student fellows by anybody from anywhere. The lookup

for student details needs to be granted first. As well as ask if a username / password

input is correct. In order to perform a certain role, the person can be assigned to

different groups, namely the administrator group and the handler group. This way,

the overhead for user management is minimal. Alternatively separate logins could be

created, meaning that these accounts would not depend on the university’s LDAP. For

a single administrator or root access, this single, independent login is purposeful in

terms of fallback safety but not preferable in general.

User Interface

As some users of current systems only access digital files, doing so with the new

system would on one hand make the change for previous users easier, and on the

other hand provide a good fallback strategy if there is no way of using another graph-

ical user interface. Therefore, the documents should be arranged hierarchically and

12

4.1 Requirement Analysis

named in an informative way. Thus ensuring a comprehensible overview via the file

browser. For handlers and administrators who prefer to use the console, a well work-

ing script with filter functionality can be provided, allowing an experienced administra-

tor to perform maintenance work quickly without a web interface, as well as remotely

by using a secure shell. Finally, the main interface for both end users and adminis-

trators should be a web interface, as it is accessible remotely, platform-independent,

and, if implemented properly, the most intuitive interface of all three.

Document Style

In order to provide a unified reading experience for students reading the minutes

of examinations, a template could be developed for students creating them. These

templates should be found in the document system or at least be provided on the

student associations’ websites. Optionally an additional system interface could allow

students to create a document online. The text input would be processed by the same

template that the students could download to create the minutes offline, which ideally

would be a LaTeX template with which the document submitted online can easily be

transformed into a PDF, and then handed to an administrator for further processing.

Another template format could be a standard format such as the Open Document

Format or one compatible with Microsoft’s office suit.

Printing

In order to hand the documents over to the end users, they have to be printed, thus

requiring a print job to be created. This print job should contain the files to be printed

and maybe an additional cover page. To save money, the documents can be joined

and printed double sided. A collection can be created by a handler and then printed,

which is, in essence, the way most student associations handle it today. Alternatively,

one could submit a collection by selecting the wanted documents online, creating a

collection with the files involved. Now a handler would have to approve or disapprove

the print of that job. An email ticket system would also be possible to create collections

that are directly printed. One or several printers should be available, giving the system

the option to selectively print on different printers. The configuration of this behavior

should be modifiable via configuration files.

Backups

As all documents are in fact single files, they can be backed up by using traditional

strategies such as incremental backup with the Grandfather-Father-Son strategy, or

13

4 Design

via snapshots. The backup method is not significant for this thesis and thus will not be

discussed further. It will instead be handled by the server and the backup strategies

applying thereto.

Maintenance

The easiest way for students to submit a document is to write it on the computer.

From there it can be either printed and handed over or sent to an email address.

Therefore the simplest work flow would consist of the following: a student creates

a report on an examination, exports a PDF and sends it to a student association.

Existing minutes can be scanned, thus digitalized and then sent to the same email

address. Later the PDF file has to be extracted and imported into the working system,

along with all the necessary meta information. After importing the file, it should still

be possible to modify the meta data, as an error may have occurred while importing

it. Having an email account should not be the only way to import files, as a failure

of the email server would otherwise hinder the import of new documents. By using

files and a structured file system, files can simply be copied into the file hierarchy and

thus imported into the system. In this case, the proper meta information has to be

provided in some other way. An application or script could also do the same thing,

namely moving the file to a certain location in the file system. However, that way the

import process would be more controlled compared to if the administrator did it by

hand. All these processes should ideally be doable remotely. The mentioned web

application would be accessible remotely, but remote logins, remote desktops, or a

remote shell could also make the script or file browser interface more practicable.

4.2 Mock Ups

Given that the web as a platform is usable with different devices and operating systems and

because most users will use this interface to interact with the system, the highest emphasis

was put on building the web interface. Nevertheless, the shell script is expected to be used

by advanced administrators and was implemented keeping that in mind.

In this section, the idea for the web interface’s design as the main interface will be dis-

cussed.

14

4.2 Mock Ups

4.2.1 End User Interface

As end users would appreciate if they could search for documents themselves to check

whether the ones they are searching for are available, an interface should provided op-

tions enabling them to do so. Figure 4.1 shows an interface which allows for searches via

Figure 4.1: The search interface to be provided to the end user.

the course name or the lecturer, as well as by type, e.g. a document containing details

regarding an oral or written past examination. The system can be designed to provide

orders from the end users; users then should be able to select the documents they want

to have. Afterwards the end user will see an overview of the collection and can create a

print request. Otherwise the search interface will just allow an end user to view available

documents, whereas the print request can only be issued by handlers. As the focus of the

thesis lies more on the aspect of providing access to the documents rather than supporting

maximum functionality of each role, the creation of collections by end users is regarded

with lower priority, an thus was not implemented, yet.

4.2.2 Handler Interface

The role of the handler is to provide documents to the students by printing them out and

handing them to the students asking for them. To be able to do so, for one, they should

15

4 Design

have access to the search interface just as the end users do, allowing them to search for

documents and create a collection of documents to be printed.

If the system is implemented in a way that end users preselect the documents they want

and then send a print request, the handler will be able to evaluate it. This request consists

of a collection i.e. a list of documents that can be displayed to the handler in the form

of a summary, as shown in Figure 4.3. Another interface lists end users’ requests, along

Figure 4.2: The Overview Interface shows a list of collections ordered by end users.

with an identifier and a time stamp (see Figure 4.2). This way an end user approaching

a handler can identify that collection via the Customer ID and the Request Date. To print

this collection or view more details, the end user’s request can be opened, which leads to

the aforementioned interface seen in Figure 4.3. This summary, again, shows the identifier

provided by the end user, the date of the request as well as the collection’s documents.

For the sake of preventing abusive behavior against the system, it might be an option to

charge a small fee for each document printed. This fee can then also cover the costs for

running the system and the printing costs. This fee should then appear in the summary, so

that it can be charged before printing the collection.

Finally, the handler can selectively modify the collection by deleting single documents or

entire requests, or print the displayed collection.

16

4.2 Mock Ups

Figure 4.3: The Summary Interface lets a handler print the documents within in a collection,
as well as view and modify its details.

4.2.3 Administrator Interface

In order to search for documents, create collections and finally print them, the administra-

tor first has to import these documents into the system. They also have to be maintained

i.e. if meta data has changed or was found to be wrong, the administrator must be able

to alter these values. It might also be necessary to remove the document from the system

completely which is to be done by an administrator as well. An interface that allows the ad-

ministrator to do so is to be created. Figure 4.4 showing how a document can be imported.

On the left an email inbox is displayed; the corresponding attached files are displayed on

the right. After reviewing the file and determining the necessary meta data, the file can be

imported.

To modify the meta data, a separate interface should be provided, allowing each attribute to

be edited. Changes can be applied by editing entries in a list, as seen on the right hand side

in Figure 4.5. Applying the changes will save the whole set and update the representing

data set of the meta data.

17

4 Design

Figure 4.4: The Import Interface lets the administrator import documents to the system.

Figure 4.5: The Edit Interface lets the administrator modify a documents meta data.

18

5 Architecture

In this chapter, the technologies used to implement the system will be discussed and

shown. Furthermore, the system’s detailed structure and capability is going to be illus-

trated. The different interfaces will be shown in action and their interconnection discussed,

as well as the roles of the human counterparts.

5.1 Technologies

In this section, the utilized technologies will be introduced, as well as their usage within the

system’s implementation.

5.1.1 JSON

As pointed out by Adam Lith and Jakob Mattsson, Carlo Strozzi first used the term NoSQL[16]

in 1998 for his relational database that did not offer an SQL interface. Such databases do

not primarily use tables to store their data, but rather via loosely-structured collections of

data. They are more flexible as their fields are loosely defined.

For the purpose of the implemented system such flexibility is most useful. CouchDB[8]

is a representative of the NoSQL family. While not a typical Database Management Sys-

tem such as MySQL[6], DB2[4] and so on, it still provides an ACID semantic[10] by using

a Multi-Version Concurrency Control[2]. Data is eventually consistent [3] and can be pro-

cessed using map/reduce operations.

In this thesis, CouchDB can be used to store the document’s meta data. In the system’s

implementation it has not been used, as the requirements for a server running the system

should be kept as low as possible, while also maintaining the concept of information stor-

age by loosely defined structures - the meta data is therefore stored in single JSON files.

As CouchDB uses the same format to store its data, using JSON to represent the meta

19

5 Architecture

data makes it possible to adopt to a CouchDB database in the future. Until then, the meta

data file is created by a script which iterates through the file structure in order to output the

necessary information. The structure of the JSON corresponds to the following:

1 [{"file":"BASENAME/TYPE/COURSE/YYYY-MM-DD.LECTURER.S.pdf",

2 "date":"YYYY-MM-DD",

3 "type":"TYPE",

4 "solution":true,

5 "lecturer":["LECTURER1","LECTURER2"],

6 "courses":["COURSE1","COURSE2"]},

7 {...}, ...]

file

Type: String - This element represents the location of the file to be described. The

name of this file follows the structure described in section 5.1.2.

date

Type: String - The date is represented according to the ISO 8601 standard[14], there-

fore consisting of four digits representing the year, and two for both month and day.

Each time unit is separated by a “-”.

type

Type: String - A document can belong to one of several categories; these may depend

on whether it is an examination or lecture note, e.g. for examinations the content of

the type field is either “oral” or “written”. As for now the system also supports the type

“other” but it could be any string.

solution

Type: boolean - If the document also contains solutions, such as solutions to a written

past examination, this entry is to be added and set to true. If there are no solutions,

then the entry is optional.

lecturer

Type: String Array - The lecturer defines who held the lecture corresponding to the

document. In single cases, more than one lecturer can be involved in one course, for

example a course can be taught in a lecture series. The array elements are names;

20

5.1 Technologies

more precisely, last names. This might lead to conflicts but the format is flexible

enough to change the value to “Last Name, First Name” in the future.

courses

Type: String Array - As, for example, an oral examination can include different topics

from different courses at once, the meta data has to support such cases. There all

course names have to be added, which is saved in an array of strings. For the names

of courses, the ones from the course catalog can be used and shortened if too long.

5.1.2 File Structure

It is to be mentioned that for the system, the documents are of the greatest importance.

This is because if there were meta data but no actual documents, the end user could not

get the document they wanted. However, if a document’s meta data is missing, it can still be

found, and can be updated by the administrator over time, eventually allwoing for a flawless

entry. In short: If there is no file, any meta data is useless.

For the current implementation, the information in the JSON file used to provide the docu-

ment’s meta data is created by a script analyzing the file structure.

A well-formed file structure is also important when using the file browser to navigate to a

document, when requiring it to be done in an intuitive way. Figure 5.1 shows the abstract

file hierarchy.

The following guidelines apply to all file and directory names

All file names, no matter whether directory or PDF, must not contain spaces. Instead an

underscore “_” is used.

If a file contains more than one value for an attribute, such as more than one lecturer,

these values are separated by a “,” and will be used to create the array values.

Files containing different attributes should separate these values by a “.”.

The following categories describe the markup seen Figure 5.1

Association

Example: “Fachschaft_Informatik”. The association field allow the system to be used

by different student associations. Each association is assigned a distinct name. The

21

5 Architecture

Figure 5.1: The file structure to be used for the system.

association’s documents are all in one subdirectory. This makes it possible to grant a

group of people file access to the whole directory to i.e. making file access possible

for a person belonging to a group in the LDAP tree, rather than having all documents

in one directory and handling the file attributes for each document independently.

Type

Can be one of the following: “written”, “oral”, “other”. To search explicitly for writ-

ten or oral examinations, one can open the corresponding subdirectory. The “other”

might contain protocols of experiments. If the number of these protocols exceeds a

threshold, they might be put into a separate folder.

22

5.1 Technologies

Course

Type - Example: “COURSE1,COURSE2” - “Algebra_1,Algebra_2”. If a document

consists of two courses’ examinations it has to be mapped with the directory’s name.

This is done by giving it both of those names, sorted by name and separated by

comma. This will then represent an array of the same form.

File

Type - Example: “YYYY-MM-DD.L1,L2.pdf” - “2013-05-09.Goethe.pdf”. Similarly to

the course directory, an examination can respond to more than one lecturer. These

names are also separated by comma; and the filename includes a date. The ISO

8601[14] formated date is used as the first part of the name so that listing all the files

in one directory will present them sorted by date directly.

5.1.3 Meta Data Creation

In section 5.1.2 it was briefly addressed that all meta data can be extracted from the under-

lying file structure. The following example may illustrate this further.

This is the path and name of a file:

.../Computer_Science/written/IT_Security/2013-01-30.Smith,Clark.pdf

From this, all the meta data used in section 5.1.1 can be extracted because the document

was named according to the guidelines discussed in section 5.1.2. This is performed by a

shell script which outputs the correct JSON file. Which is, in this case, the following:

1 { "file":"...",

2 "date":"2013-01-30",

3 "type":"written",

4 "lecturer":["Smith","Clark"],

5 "courses":["IT Security"] }

The JSON file can be created and modified by and for each association individually, mean-

ing that if a person with write permissions to the association’s directory updates information

to a file by altering its filename, that person can call the script to update the meta data

file. To avoid misuse, the steps of altering a path and executing the meta data file should

23

5 Architecture

happen atomically, thus the usage of scripts or programs to follow this procedure is to be

preferred.

5.1.4 Email

Documents can be sent to the associations via email. This is a unified way of receiving

documents as emails can be accessed across platforms and across devices with various

tools. Certain devices (e.g. a multipurpose scanner with network access) are also able to

provide documents in this way. To access the email, an administrator can use an email

program and download the messages or rather use the front-end designed for the exact

purpose of receiving emails, viewing the PDF attachments, extracting them, and moving

the file to the right place in the file hierarchy according to its meta data.

5.1.5 Lightweight Director Access Protocol

As its name implies, this protocol provides access to a directory service. These directory

services are hierarchically structured sets of records and can be used by, for example, for

telephone directories. The protocol is called LDAP because it is a lightweight alternative

to the DAP, which is specified by the X.500 Directory Access Protocol[22]. As the DAP in

its early versions did not support TCP/IP, the IETF released a specification for the LDAP

protocol with the RFC1487[23][1].

Today, DAP is capable of using TCP/IP instead of relying on the OSI protocol stack[22][21],

though in the case of the underlying system, LDAP will be used. Microsoft’s Active Directory[5]

also utilizes LDAP version 2 and 3 to represent its records[12], meaning that LDAP can be

used on different platforms, in the case of Windows even natively.

To understand the hierarchical structure, one can look at the output of a query:

1 dn: uid=Leo Hnatek,ou=people,dc=uni-ulm,dc=de

2 uid: Leo Hnatek

3 cn: Leo Hnatek

4 sn: Hnatek

5 givenName: Leo

24

5.1 Technologies

6 o: Uni

7 objectClass: person

8 objectClass: organizationalPerson

9 objectClass: inetOrgPerson

10 objectClass: uuPerson

11 ou: Abteilung II-3 Internationale Angelegenheiten

12 mail: leo.hnatek@uni-ulm.de

13 roomNumber: Pav. Ehem.Rektoramt

14 telephoneNumber: +49 731 50-10

In this case, a person can be found via the Distinguished Name dn. The person has a rel-

ative distinguished name, belongs to an organization, and an organizational unit, and has

two Domain Components. As one can see above, the distinguished name consists of four

components making it distinct. The record itself also contains the email address, telephone

and room number. LDAP can also provide an authentication method. This and elements

added to a record, such as a group membership can be used to identify a user and deter-

mine a user’s authority. If, for example, a student becomes the administrator of the system

for association A, an attribute saying “userGroup: associationA.Administrator”

can be added to that student’s record. By accessing the LDAP for both a PC login and

checking the group attribute with the web interface, only one single modification to the

student’s account has to be made and no extra account has to be created.

5.1.6 Common Unix Printing System

The Common Unix Printing System (CUPS)[18] is a service that can run on Unix-like oper-

ating systems such as Mac OS, Linux or Solaris. In the case of the implemented system,

the accessibility from remote hosts and the option to print using the command line are es-

pecially useful. By using the command line tool lpr, one can add documents to be printed

on a printer that is set up. Here printers on remote destinations can be added, as CUPS

supports protocols such as the Internet Printing Protocol. Such remote printers can be

selected by adding parameters to the print command.

25

userGroup: associationA.Administrator
lpr

5 Architecture

5.1.7 Google Web Toolkit

The Google Web Toolkit (GWT)[13], is a toolkit for the development of websites. With the

GWT, a developer can write Java source code and compile it into Java Script which can

be rendered by the browser on the client side. But GWT also supports the server side

where standard Java libraries can be used to implement a server utilizing these libraries

to perform complex operations. Therefore, lots of functionality is already given, such as

libraries to access LDAP or IMAP[19][7]. Asynchronous Remote Procedure Calls (Async.

RPCs) are used to send messages back and forth between client and server. They form

the interface between the Java-based server and Java Script-based client. Such usage of

libraries and RPCs will be discussed later in this chapter.

5.1.8 SmartGWT

On top of GWT, one can use different libraries for both the client and server. Such libraries

offer widgets to create a rich UI. Vaadin[17] and SmartGWT[20] are only two of such li-

braries. They facilitate the creation of the UI by extending the suit of forms and layouts, but

also offer connectivity to data management. For example, one can easily use a database

as a data source for a List Grid by using a wrapper class. Additionally, by only modifying

this data source class one can modify the underlying method of accessing the data. For

instance, the database can easily be exchanged with a JSON file. SmartGWT was used

along with GWT itself for the implementation of the web interface of this thesis’ system.

5.2 Component Diagram

The system as seen in Figure 2.1 does not involve the roles of the administrator or handler,

nor does describe inner processes.

Figure 5.2 shows insights into the system as described with Figure 2.1. However it does

it in more detail. The system expects documents to come into the system from the left.

From there, the administrator takes care of them, by scanning the paper form documents

and sending them to an email address or receiving an email by a provider they can import

them into the working set of documents. They can also modify existing ones as described

before. The inner system handling of the documents and the method of providing them

26

5.2 Component Diagram

Figure 5.2: The system as seen in the Figure 2.1, but with a deeper look into the system.

27

5 Architecture

to end users depends on the interface used. Explanatory information about the different

interfaces can be found later in this chapter. The people involved in this work flow still

keep the same though. The end users either can create a collection containing different

documents themselves or ask the handler to do so. The handler finally prints the documents

and hands them over to the corresponding end user.

5.3 Web Interface

The web interface is the anticipated main interface to be used by students of any role as it

is to be the system’s most intuitive, yet also productive interface.

5.3.1 Walkthrough

The implemented interfaces will be shown in this subsection and explained in further detail.

End User Interface

After browsing to the front page, the screen as shown in Figure 5.3 is displayed. From

there, the end user can filter for the searched value as shown in Figure 5.4. The document

type can be chosen from a list of given options, and the date can be set by choosing from

a calendar. If only documents with solutions are requested then they can be filtered by

clicking the check box and for the remaining fields, the results can be filtered by entering a

substring of the desired result.

If the end user needs a more specific structure of the data, they can sort the results by

columns, such as descending first by lecturer, then by available results and ascending by

date. Figure 5.5 shows such a multi-column sort.

Finally, the end user can select as many documents they want. These will appear in the

list below, and can be removed by clicking on a single column or all at once by clicking the

button labeled remove all. It is possible to configure the system in such a way that only

a maximum number of documents can be selected before printing to prevent misuse. If it

is wanted to enable the end user with a print request, the list of selected documents can

be submitted to a collection for further processing by clicking the print-Button. Figure 5.6

shows a selection of documents.

28

5.3 Web Interface

Figure 5.3: The screen as it appears to the end user after start.

Figure 5.4: The end user interface after filtering for a lecturer.

Handler Interface

The handler interface can be implemented as the means to provide a list of collections as

described in the design chapter 4. This has not yet been implemented as it’s not yet clear

if the system will be used in that way, i.e. it is not clear whether end users will be allowed

to create collections, or whether collections will be created by handlers themselves. These

29

5 Architecture

Figure 5.5: In order to sort by more than one column one can add more sort criteria.

Figure 5.6: The search interface to be provided to the end user.

two options in the workflow are displayed in Figure 5.2. Instead, the handler can use the

interface as described for an end user but with the difference that the print button will show

a print dialog to choose the printer to print to. This means that the end user comes to a

handler during their opening hours and asks for documents.

Administrator Interface

As for the administrator’s tasks the interface has to meet the needs. Before interacting

with the system, an administrator will have to login, by selecting the top right corner’s login

button and inputting their user name and password. The user will then have to choose the

administrator role and click ok. It would also be possible to determine the account type by

the LDAP group the user is in which would make it impossible for a single person to have

30

5.3 Web Interface

Figure 5.7: The administrator’s interface after opening the import function.

more than one role, so the first option is to be preferred. The administrator is tasked with

the editing of the documents in the repository and importing new ones. Figure 5.7 shows

the screen that will appear when an administrator wants to import a document. On the left,

one can see the inbox of an email account configured for the association the administrator

is representing. Alternatively, depending on the amount of messages, a single email ac-

count could be used for all associations together, which would make it easier for a provider

administrators to coordinate document but would weaken security.

After selection of a message, one can see its body on the right as well as whether it con-

tains PDF attachments. If so, those attachments would appear in the list on the lower left

side as seen in Figure 5.8. By selecting a file, it can be viewed in the preview-tab. Meta

data can be added to the document and by clicking the import button, the document will be

added to the document repository. With the import interface, it is also possible to sort the

email, meaning that emails with a file attachment can be found easily. It is also possible to

delete mails after an import to allow for a smooth work flow.

In case the administrator needs to modify meta data because errors occurred while import-

ing, the administrator can use the modification interface as seen in Figure 5.9. There, as

already seen in the end user interface, documents can be filtered to find those matching

a pattern. By clicking a single entry, a whole column can be edited and changes will be

31

5 Architecture

Figure 5.8: After choosing an attached file, the PDF can be previewed and meta data can
be added.

highlighted afterwards. After ensuring the edit process is finished, it can be submitted by

clicking save, whereafter the changes will be transmitted and applied on the server.

Figure 5.9: In order to maintain the documents and change meta data if needed, the ad-
ministrator can use the modification interface.

32

5.3 Web Interface

5.3.2 Client-Server Model

As the web-based interface uses GWT, it was realized in a client-server manner.

Figure 5.10: The user in a certain role interacting with the system’s web interface. The
client interacts with the server via Remote Procedure Calls.

In Figure 5.10 one can see that a person interacting with the system’s client-side uses the

web interface for interaction. The client offers easy access to the system where more com-

plex functions can be performed by the server. For example: a user may want to log into the

system as an administrator to import documents. For this the client-side calls procedures

on the server-side of the system remotely. The server, unlike the client, can access services

such as LDAP for authentication, and emails via IMAP to import documents. Procedures

with parameters and procedure results are transfered back and forth between client and

server offering the needed functionality.

Therefore, requests and results ought to be embedded with a serializable data structure.

Non-primitive structures of this kind are defined as shared classes and are accessible by

both client and server.

5.3.3 Client Structure

The client represents the user’s front end. It needs to be used by all roles, thus needs to

implement different interfaces.

Each interface consists of a representing class, which contains only one object. To the

outside it offers a getInstance() method, therefore implementing the Singleton pattern.

33

getInstance()

5 Architecture

In this manner, it is not necessary to create an instance of that class every time a context

change or rather interface switch happens. Note that the code for the client runs inside a

client’s browser. So unlike the server, the objects created for the client are only readable

from one single machine, that is the user’s browser. Therefore it is not only harmless but

efficient to use the Singleton pattern in this case.

If an interface-class needs to access any form of data, this class has a DataSource class

only for this purpose to improve modularity. Figure 5.11 shows this relation.

A remote procedure call has to be used for each interaction between client and server.

Figure 5.11: Client interface structure.

These RPCs are grouped into functional context classes. The access to mail, for ex-

ample, requires more than just one method, such as fetchMails, deleteMail and

saveAttachment. These methods are grouped in the MailAccessService class and

have an asynchronous counterpart MailAccessServiceAsync, as well as an implemen-

tation of the methods to be run on the server called MailAccessServiceImpl.

There is an EntryPoint class that defines which interface is to be selected. It offers a lo-

gin option which causes the container within the web interface to apply the instance of the

respective role’s interface.

34

fetchMails
deleteMail
saveAttachment
MailAccessService
MailAccessServiceAsync
MailAccessServiceImpl

5.3 Web Interface

5.3.4 Server Structure

The server basically has two main functions. One is to execute calls from clients and to

interact with them by returning procedure calls, and the other is to execute preset functions.

The later is performed repetitively in a loop. The time when a function is to be called can

be defined in a configuration file. Options such as an email account’s user name and

password, as well as commands sent to the operating system for printing can be set in this

file.

In order to synchronize emails, one might want to do this either in the mentioned timed

manner or maybe do it each time a client calls a fetch method. Such an email access

function can then be defined in an access class that can be called from different places

on the server. Note that it might lead to inefficiency on the server side if all the mails are

fetched on the client but can rather be cached and updated periodically or on deletions of

emails.

The server does more than just email access but this was taken as an example. Section

Figure 5.12: The server’s structure with the configuration file, implementations of client ser-
vices, and helper classes.

5.3.5 describes more functional components of the server. Figure 5.12 shows that every

service method on a client has an implementation class on the server. The configuration

file, wrapper class and a StartUp class are also shown. The StartUp class defines tasks

that are executed once upon the system’s start. The helper classes are also shown, as well

35

5 Architecture

as the configuration wrapper class which offers a method to search for attributes with an

internal Properties instance.

5.3.5 Server Components

In this subsection, the components of the server are illustrated, of which there are four, as

described below.

File Access

• Moves and renames files.

• Creates file structures (directory trees).

Mail Access

• Accesses the inbox of email accounts.

• Deletes mails.

• Saves attachments to files.

User Authentication

• Validates username and password.

• Identifies user’s role.

Print

• Interacts with printers.

• Can print given files either by filename or by a given collection containing the

filenames.

Configuration

Gives one the ability to save and load properties of the server.

StartUp

Defines what happens on the start of the server.

Timed

Contains processes that are executed after a specific time interval.1

In Figure 5.13, 5.14, and 5.15, one can view the interaction between the system’s compo-

nents.
1The process’s time interval can be defined in the configuration.

36

Properties

5.3 Web Interface

Figure 5.13: The authentication of a user involves the system’s Authentication class as well
as the LDAP server the login details are being validated against.

First, in Figure 5.13 a user whose role has not been identified yet, wishes to sign in. They

therefore input their login details as well as their anticipated role into the client. The client

runs on the user’s browser which is not considered trustworthy enough to allow the user

take on a role; therefore the given credentials have to be verified by the server. For this

authentication process, the login information is sent to the server using a remote procedure

call. The class used for this is the AuthenticateUserServiceImpl class. It connects to the

LDAP server which has the capability to authenticate the user. The LDAP server also has

the information whether the user belongs to the group they have provided. By verifying the

username / password combination and providing the group information, the system’s server

can certify that the input data is valid and grant access to the restricted area. If the login

was successful, the system’s server returns the right interface to the client which will then

display it; otherwise the client will show a fail message.

After the user has taken on the role of the administrator, they might import documents. For

that they call up the email list. The mail’s attachments will automatically be downloaded in

a temporary import directory. If the file is imported, it will be moved to the right place inside

the file hierarchy using methods from the File Access class. In case the user is logged in as

a handler, they can print documents directly for end users or access collections created by

37

5 Architecture

Figure 5.14: Importing a document from a mail attachment into the system.

Figure 5.15: A list of files or a collection is printed.

38

5.3 Web Interface

end users. To achieve this, the client passes on a list of files to the server. The server then

looks them up, returns with the filenames and processes them by utilizing a system call that

can be set in the configuration file. This is in fact an lpr command first piped through a

ghost script, but this can easily be altered via the configuration file. The server could also

access collection files listing filenames to be printed as created by end users. In any case,

the print class can call print commands to print documents on paper.

5.3.6 StartUp And Timed

To interact with the operating system the document system is running on, it is possible to

use the StartUp and Timed classes. The configuration file contains entries for this purpose;

one of these is used for the startup command and is called startup.command. The value

of this key is called with a system call and therefore runs with the web server’s privileges.

The Timed class implements processes that are going to be executed in repetition, such as

the fetching of new emails. The option to this is set in the configuration file and in general

should have a meaningful structure, namely timed.CLASSREF.SUBFUNCTION.OPTION.

In the case of email fetching this could be: timed.mail.fetch.interval.

Processes on operating system level can be set in the configuration file. For example, the

JSON file containing all the documents’ meta data is executed once after every alternation

of the file structure which implies a change of the meta data, but can also be called re-

peatedly. This is because the system allows an administrator to place a document at the

right position in the file structure. They then have to execute the update script to make the

changes visible to the web interface. If they forget it, this update can be performed by the

Timed class calling the script every n minutes. The respective configuration entry for this

would be: timed.commandA and timed.commandA.interval. As these names imply,

one can add up to 26 commands (commandA to comandZ) that are going to be executed

by the system with system calls after the given interval2.

The JSON file update script example is optional as the administrator should not forget to

execute every necessary step or could be called with the StartUp script every time the

system is started.

2This results in 26 command / interval pairs; each single command can call a shell script executing an arbitrary
amount of other commands to be executed. That said, 26 is the amount of loops / timed intervals that can be
defined.

39

lpr
startup.command
timed.CLASSREF.SUBFUNCTION.OPTION
timed.mail.fetch.interval
timed.commandA
timed.commandA.interval

5 Architecture

Figure 5.16: System’s behavior with timed actions.

In Figure 5.16, one can see the repeated execution of two processes: one is the system

fetching mails to fill the cache with them, and the second is the calling of an updated script

after a preset time to update the documents’ meta data.

5.3.7 Configuration

The configuration file is an XML file that defines key-value pairs; these keys can be ac-

cessed with the Configuration wrapper class and will return the XML file’s values as a

Property class instance.

Such a list of key-value pairs may consist of the following:

<?xml version="1.0" encoding="UTF-8"?>

...

<properties>

...

40

5.3 Web Interface

<entry key="mail.imap.user">user</entry>

<entry key="mail.imap.password">passwd</entry>

<entry key="mail.imap.host">mail.uni-ulm.de</entry>

<entry key="mail.imap.port">143</entry>

<entry key="mail.imap.folder">INBOX</entry>

<entry key="mail.imap.starttls.enable">true</entry>

<entry key="mail.imap.starttls.required">true</entry>

<entry key="mail.filter">.*FIN.*</entry>

...

<entry key="timed.mail.fetch.interval">10</entry>

...

</properties>

Here only options for the mail access are shown. As an example, a username and pass-

word, as well as host address and port number are set in the configuration as access

information to connect to the email server. It is to be noted that the class that is using these

attributes is called MailAccess so the key is mail.SUB1.SUB2.SUB3 where options are

grouped logically, depending on their connection to each other.

5.3.8 Target System

As the web interface is created with the GWT the only requirement to run the interface’s

client is the same for any other GWT project, e.g. Apache Tomcat server[9]. For the web

interface’s server, a Java runtime is needed but that is also a requirement of the Tomcat

server, and therefore covered. A script is run, for meta data updates, written in Ruby[24].

Another script with the same purpose is written as a shell script; so that the system can

be deployed on a Windows server with Ruby and Tomcat or on any Unix-like system that

possesses find, sed, and a shell as well as Tomcat. The anticipated server is a Solaris

system so the only thing needed is an environment to run GWT projects. The necessary

Java libraries the system uses to fetch emails or connect to an LDAP server can be bundled

along with the .war-file.

In conclusion, all that is needed to run the web interface is a Tomcat server with write

permissions to create files on a Unix-like system.

41

mail.SUB1.SUB2.SUB3
find
sed

5 Architecture

5.4 Console

The console tools allow handlers and administrators to use the shell for the printing of

documents. This allows for a minimum of processing power and can be used when the

web interface is not running or reachable.

5.4.1 Walkthrough

The two main actions with the console tools are printing and importing. As these tools are

not meant to be used by end users, the user can be expected to be more advanced and

capable of using the program properly. The printing script has the following options:

pprot [OPTIONS] FILTER

OPTIONS

-l, --list Lists filenames instead of printing.

-p, --printer Specifies the printer to be used.

-r, --regex Makes use of regular expressions.

-i, --interactive Lets you choose files interactively.

FILTER

- Any name of lecturer

- Any name of course

- Dates

- Types

- Available solutions

Every filter can match a substring of the searched term, except

if the regular expressions option is used, then the regular

expression needs to explicitly contain wild cards if searching

for substrings.

42

5.4 Console

This help screen shows how documents can be both searched and printed. For a search

query, one might for example enter pprot --list 201 Ana | wc -l which means

that all documents will be listed that apply to the search query, e.g. documents such as

“Analysis I, Analysis II” from the year 2011 onwards would be listed, matching any type.

As the command is executed in a shell, pipes can be used to interact with the output. In

this example, the printed result of the given command would be the amount of documents

matching the criteria mentioned.

An other exemplary usage would be the input of pprot -r -i 20.*-0[34]-.* Smith

into the console. This would let the person using the system print all documents from the

lecturer Smith pertaining to lectures held after the year 2000 but only from March and April

interactively. To input documents another script can be used:

iprot [OPTIONS] FILE

OPTIONS

-a, --association

-t, --type

-c, --course

-d, --date

-l, --lecturer

-s, --solutions

This tool is very straight forward. It takes all the meta data given and moves the given file

to the right position in the file hierarchy. Afterwards, it executes the update script which

updates the web server’s JSON file. Note that if no options are given it will be put to the

root of the document tree. There it can be viewed by the administrator for example when

editing the meta data with the web interface. Because the file is not in any type or lecture

subdirectory, the correlating field will be empty so that the files with missing meta data can

be found easily.

43

pprot --list 201 Ana | wc -l
pprot -r -i 20.*-0[34]-.* Smith

5 Architecture

5.4.2 Function

The console tools are written in Ruby; to make use of them one has to have a Ruby in-

terpreter, allowing the scripts to be used on any operating system the Ruby interpreter is

available for. To use them one has to login onto the machine remotely, e.g. by using ssh,

a secure shell, that requires the user to enter the login details. This login corresponds to

the LDAP username and password that are also checked with the web interface. To access

a script the rights to execute it needs to be granted to the user. If the user is part of the

handler group they will be able to use the pprot command, otherwise they need to be an

administrator to import documents. Therefore, the same user can use the web interface

and the console interface in the same role, having the same rights.

The print script for ones lists all filenames, splits them into strings, filtered by the substrings

given, and outputting the results to the standard output if the list option is given; otherwise

it passes the filenames to an lpr command with possible additional printer information.

The import script matches the given parameters and moves the given file to the right posi-

tion in the file hierarchy.

5.5 File Browser

As it was shown in the File Structure section, the filenames indicate their content, and are

structured such that they can be found by searching for type first, then by course, and finally,

by date and lecturer. To find a specific document using the file browser, one can navigate

to the right directory and there search for a specific file if wanted. To print files one can

open the file with a PDF viewer and print it from there. To import a file, it can be renamed

and put into the right directory.

5.6 Backup

The static part of the system, namely the web server and console tools, might be altered

occasionally during the lifetime of the system, however this is not expected to happen very

often. Not much data have to be saved if one wanted to back them up; there is the .war file

for the web interface and the pprot and iprot tool for the console interface.

44

ssh
lpr

5.6 Backup

The saved documents are all PDF files in a hierarchical structure form. They can be saved

by using backup strategies that have been proved successful for file systems in general.

Principles such as the Grandfather-Father-Son principle can be used to save the docu-

ments, whereby with each increment only new documents need to be added if no old docu-

ment names have been modified, which should be the case if the import was done right or

was corrected before the backup started. This is the expected standard case, so backups

can be done efficiently in regards to memory.

45

6 Conclusion

The conclusion discusses possible features which can be added to the system for optimiza-

tion purposes and put the implemented system into context with the idea and task tackled

in the thesis.

6.1 Requirement Alignment

In this section the requirements from section 3.4 are discussed in regards to their success-

ful realization.

Classification Achieved Method

Data Storage + PDF format has been chosen. By doing so, the format

is flexible enough to handle vector graphics, text, as well

as embedded graphics. It is also platform independent,

meaning that there are PDF reader for almost any device.

If used properly it also saves the data with little overhead.

Data Structure + The file tree can be transfered and copied completely

while the structure is kept.

+ The file tree and the files themselves are named after

the pattern described in section 5.1.2, thus finding sin-

gle documents is comprehensible by administrators and

handlers.

+ As the documents do not rely on a database but are in-

stead accessed on file system level, storage does not re-

quire a proprietary format.

47

6 Conclusion

Classification Achieved Method

Document Style o Some student associations, such as the computer sci-

ence department’s student association of Ulm University

already has document templates for providers, thus new

templates did not need to be created.

User Access + The system can be accessed via ssh, logging into a PC

within the network that has access to the documents,

and the web interface can be used to access the docu-

ments.

o LDAP accounts, that are used within the university net-

work of Ulm University can be used in theory, though the

functionality has not been tested, yet.

- The LDAP accounts cannot be managed from within the

implemented system. Though this is due to the nature of

the global accounts. Ghost accounts can be prevented

by using these global accounts, but their management

has to be done from outside the system.

User Interface + Three interfaces were implemented, which allow interac-

tion with the system.

+ The web interface is user friendly.

o The console interface is efficient when used properly.

iprot has yet to be implemented, as a console import

tool was not demanded by the student associations.

+ The system is failsafe, meaning that if the web server

crashes, an administrator can still use ssh to connect to

the system.

Printing + Documents can be printed using the pprot tool or using

the print function of a PDF viewer.

o In order to save paper, documents can be piped through

command line tools so that documents are printed on

both sides. The other interfaces do not offer this func-

tionality, yet. This could be implemented in the future,

though.

48

6.2 Outlook

Maintenance + Documents can be imported and managed as described in section

5.1.2.

o Documents can always be printed concurrently if the file structure is

not modified. However, if two administrators use the web interface to

manage documents, concurrency might be an issue. As the number

of administrators will be low, modification of documents even rare,

this is not expected to be a problem.

+ The command line tool can be accessed via ssh, the web interface

over the internet and a remote login via Remote Access is also pos-

sible to interact remotely with the system.

6.2 Outlook

The minimum requirements for the implemented system are a server that runs Ruby (if

the console interface is wanted or the server runs Windows), otherwise a server running a

Unix-like operating system with the support for GWT projects, such as TomCat, is needed.

This assumes that the main i.e. web interface is going to be used, though through the

modularity of the system the interfaces can be chosen individually. With that said one can

see that the implementation is fairly portable. Furthermore, while it can be used to provide

the documents from student associations to students, it could also be used to print lecture

notes or exercise sheets.

Future work might focus, for instance, on the creation of collections. End users could create

a collection and get an email ticket for this request which they have to confirm, after which

the documents could be printed directly. This would improve the work flow as handlers

would not have to acknowledge each request, however this might increase abusive behav-

ior towards the system.

To counter abusive behavior, fees could be charged for every sheet printed. This way, end

user could still create collections that would be printed by the handler, but students would

presumably print less unnecessary documents.

Thirdly, the import method of documents could be improved by providing a document cre-

ation page. There, meta data could be input directly by the provider. Additionally the

provider could use a text box on that page to input the document’s content directly. This

content could be used in combination with a LaTeX template to generate a standardized

document in PDF format. By providing a preview function the provider could submit their

49

6 Conclusion

document after they are satisfied with it and submit it to an administrator, thus lowering the

threshold involved in creating a document, and the number of documents imported could

be improved.

6.3 Discussion

The goal was to design a system that can tolerate the failure of different access methods, as

well as to provide an exemplary implementation of such a system that is document oriented.

The implementation has three interfaces, all of which are accessible in different ways, such

as via file browser, ssh and the web interface. So if the web browser fails, one could

still use ssh to connect to the server or access the file system directly in order to access

the documents. Instead of using ssh, one can also use the Remote Desktop software on

Windows servers and execute the shell script from there. The failure of the whole system

making it impossible to operate with it or the failure of the file system was not taken into

account as the server can be viewed as failsafe in regard to this matter as this problem

was not part of the thesis’s problem set. Therefore, the exemplary implementation fulfills

the criteria of the thesis’s requirements and the design of the system realizing the import,

maintenance, printing, deletion, and user login via three ways of accessing the system meet

with the anticipated goals of providing and implementing a document maintenance system

with multiple access strategy.

50

Bibliography

[1] APPLE, C. ; ROSSEN, K.: X.500 Implementations Catalog-96. United States, 1997

[2] BERNSTEIN, Philip A. ; GOODMAN, Nathan: Concurrency Control in Distributed

Database Systems. In: ACM Comput. Surv. 13 (1981), June, Nr. 2, 185–221. http:

//dx.doi.org/10.1145/356842.356846. – DOI 10.1145/356842.356846. –

ISSN 0360–0300

[3] BURCKHARDT, Sebastian ; LEIJEN, Daan ; FÄHNDRICH, Manuel ; SAGIV, Mooly: Even-

tually consistent transactions. In: Proceedings of the 21st European conference on

Programming Languages and Systems. Berlin, Heidelberg : Springer-Verlag, 2012

(ESOP’12). – ISBN 978–3–642–28868–5, 67–86

[4] CORPORATION, International Business M.: IBM Database 2 (Homepage). http:

//www-01.ibm.com/software/data/db2. Version: May 2013

[5] CORPORATION, Microsoft: Active Directory Collection. http://technet.

microsoft.com/en-us/library/cc780036(WS.10).aspx. Version: May 2013

[6] CORPORATION, Oracle: MySQL (Homepage). http://www.mysql.com.

Version: May 2013

[7] CRISPIN, M.: Internet Message Access Protocol (IMAP) - MULTIAPPEND Extension.

United States, 2003

[8] FOUNDATION, Apache S.: Apache CouchDB Project. http://couchdb.apache.

org. Version: May 2013

[9] FOUNDATION, Apache S.: Apache Tomcat (Homepage). http://tomcat.apache.

org. Version: May 2013

[10] GRAY, Jim: Readings in database systems. Version: 1988. http://dl.acm.org/

citation.cfm?id=48751.48761. San Francisco, CA, USA : Morgan Kaufmann

Publishers Inc., 1988. – ISBN 0–934613–65–6, Kapitel The transaction concept:

virtues and limitations, 140–150

51

http://dx.doi.org/10.1145/356842.356846
http://dx.doi.org/10.1145/356842.356846
http://www-01.ibm.com/software/data/db2
http://www-01.ibm.com/software/data/db2
http://technet.microsoft.com/en-us/library/cc780036(WS.10).aspx
http://technet.microsoft.com/en-us/library/cc780036(WS.10).aspx
http://www.mysql.com
http://couchdb.apache.org
http://couchdb.apache.org
http://tomcat.apache.org
http://tomcat.apache.org
http://dl.acm.org/citation.cfm?id=48751.48761
http://dl.acm.org/citation.cfm?id=48751.48761

Bibliography

[11] GROFF, James ; WEINBERG, Paul: SQL The Complete Reference, 3rd Edition. 3.

New York, NY, USA : McGraw-Hill, Inc., 2010. – ISBN 0071592555, 9780071592550

[12] HOWES, Tim A. ; GOOD, Gordon ; SMITH, Mark: Understanding and Deploying LDAP

Directory Services. 1st. Alpel Publishing, 1998. – ISBN 1578700701

[13] INC., Google: Google Web Toolkit (Homepage). https://developers.google.

com/web-toolkit. Version: May 2013

[14] Data elements and interchange formats - Information interchange - Representation of

dates and times. 1988

[15] KIZ, Universität U.: Kommunikations- und Informationszentrums Universität Ulm.

http://www.uni-ulm.de/einrichtungen/kiz.html. Version: May 2013

[16] LITH, Adam ; MATTSSON, Jakob: Investigating storage solutions for large data - A

comparison of well performing and scalable data storage solutions for real time ex-

traction and batch insertion of data, Diplomarbeit, 2010

[17] LTD., Vaadin: Vaadin (Homepage). https://vaadin.com. Version: May 2013

[18] MILLER, Frederic P. ; VANDOME, Agnes F. ; MCBREWSTER, John: CUPS: Printer

(computing), Unix- like, Operating system, Server (computing), Client (computing),

Spooling, Internet Printing Protocol, Command- line interface, Line Printer Daemon

protocol. Alpha Press, 2009. – ISBN 6130225768, 9786130225766

[19] NEWMAN, C.: IMAP URL Scheme. United States, 1997

[20] SOFTWARE, Isomorphic: SmartGWT (Homepage). http://smartgwt.com.

Version: May 2013

[21] Message handling system and service overview. 1999

[22] Information technology – Open Systems Interconnection – The Directory: Overview of

concepts, models and services. 2012

[23] YEONG, W. ; HOWES, T. ; KILLE, S.: X.500 Lightweight Directory Access Protocol.

RFC 1487 (Historic). http://www.ietf.org/rfc/rfc1487.txt. Version: July

1993 (Request for Comments). – Obsoleted by RFCs 1777, 3494

[24] YUKIHIRO MATSUMOTO, et a.: Ruby (Homepage). http://www.ruby-lang.org.

Version: May 2013

52

https://developers.google.com/web-toolkit
https://developers.google.com/web-toolkit
http://www.uni-ulm.de/einrichtungen/kiz.html
https://vaadin.com
http://smartgwt.com
http://www.ietf.org/rfc/rfc1487.txt
http://www.ruby-lang.org

Name: Leo Hnatek Matrikelnummer: 643371

Erklärung

Ich erkläre, dass ich die Arbeit selbständig verfasst und keine anderen als die angegebenen

Quellen und Hilfsmittel verwendet habe.

Ulm, den .

Leo Hnatek

	Introduction
	Motivation
	Structure

	Concept
	Exemplary Usage
	Definitions
	Existing Document Distribution Systems
	Parties Involved

	Requirements
	Data-Oriented
	User-Oriented
	Infrastructure-Oriented
	Overview

	Design
	Requirement Analysis
	Mock Ups
	End User Interface
	Handler Interface
	Administrator Interface

	Architecture
	Technologies
	JSON
	File Structure
	Meta Data Creation
	Email
	Lightweight Director Access Protocol
	Common Unix Printing System
	Google Web Toolkit
	SmartGWT

	Component Diagram
	Web Interface
	Walkthrough
	Client-Server Model
	Client Structure
	Server Structure
	Server Components
	StartUp And Timed
	Configuration
	Target System

	Console
	Walkthrough
	Function

	File Browser
	Backup

	Conclusion
	Requirement Alignment
	Outlook
	Discussion

	Bibliography

