
University of Ulm | 89069 Ulm | Germany Faculty of
Engineering and
Computer Science
Institute of Databases and Informa-
tion Systems

Wi-Fi based indoor navigation in the
context of mobile services
Master Thesis at the University of Ulm

Author:
B. Sc. Alexander Bachmeier
alexander.bachmeier@uni-ulm.de

Supervisor:
Prof. Dr. Manfred Reichert
Dr. Stephan Buchwald

Advisor:
Dipl. Inf. Rüdiger Pryss

2013

“Wi-Fi based indoor navigation in the context of mobile services”
Typeset August 15, 2013

THANK YOU TO: My advisor Rüdiger Pryss, who helped me throughout the implementation of the
application and the writing of this thesis. His ideas provided the initial spark of this project and
helped make this implementation possible. I would also like to thank my girl friend Ann-Kathrin
Rüger, who helped and supported me, even when the going was tough and at times frustrating. Her
help and support during all times of day contributed in no small part that the work could be
completed in time. I would also like to thank the Department V of the University of Ulm, that
supplied the material without which the work would not have been possible. Especially I would like
to thank Mr. Raubold for numbers and information related to the campus and Mr. Hausbeck for the
architectural drawings of building O27. Another big thank you goes to everyone that has made the
past years at this university such a pleasant experience. Last but not least I would like to thank my
parents, Peter and Manuela, who made my choice of major possible and stood by my side each and
every semester.

c© 2013 B. Sc. Alexander Bachmeier

This thesis is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0
Germany License http://creativecommons.org/licenses/by-nc-sa/3.0/de/
Typeset: PDF-LATEX 2ε

http://creativecommons.org/licenses/by-nc-sa/3.0/de/

Contents

1 Motivation 1

1.1 Comparable systems . 3

1.2 University of Ulm . 3

2 Fundamentals 5

2.1 Geographic Information Systems . 5

2.1.1 PostGIS . 5

2.2 Cartography . 7

2.2.1 The OpenStreetMap project . 8

2.2.2 OSM concepts . 11

Data elements . 11

Tags . 13

2.2.3 Editing . 13

Java OpenStreetMap Editor . 14

2.3 Routing . 14

2.3.1 Routing algorithms: Shortest path problem 18

2.4 Positioning system . 21

2.4.1 Overview of positioning systems 22

Manual positioning . 22

Global Positioning System . 22

2.5 Indoor positioning systems . 23

2.5.1 Positioning principles . 23

2.5.2 Wi-Fi indoor positioning system . 26

2.5.3 Euclidean distance based algorithm 28

3 Cartography on the University of Ulm Campus 33

3.1 Requirements . 33

iii

Contents

3.2 Campus structures and naming . 34

3.3 Creating a map . 34

3.3.1 Positioning elements . 37

3.3.2 Errors . 40

3.4 Tagging . 40

3.4.1 Tag usage . 41

3.4.2 Level definitions . 41

3.4.3 Rooms . 42

3.4.4 Auditorium . 44

3.4.5 Laboratory . 44

3.4.6 Doors . 45

3.4.7 Corridors . 46

3.4.8 Stairways . 47

3.4.9 Elevators . 48

3.4.10 Amenities . 49

3.5 Map rendering . 49

3.5.1 Creating a database . 51

3.5.2 osm2pgsql . 51

3.5.3 Mapnik . 53

3.5.4 Rendering Schema . 53

4 Implementation 61

4.1 Overview . 62

4.2 Design choices . 63

4.3 Web service . 63

4.4 Positioning system . 64

4.4.1 Data storage . 66

4.4.2 Positioning algorithm . 69

4.4.3 Accuracy . 71

4.5 Routing . 72

4.5.1 Implementation of a Dijkstra algorithm 72

4.5.2 Getting a route . 73

4.5.3 Routing from the users current location 75

iv

Contents

4.6 Android application . 75

4.6.1 Choosing a platform . 75

4.6.2 Android implementation . 76

4.6.3 Libraries . 76

4.6.4 Android implementation details . 77

4.6.5 Application views . 78

Map . 80

WiFi Map . 88

AP List . 89

Preferences . 94

Wi-Fi service . 96

Network tasks . 96

5 Outlook 99

5.1 Challenges . 100

5.2 Future work . 101

5.3 Conclusion . 103

Bibliography 105

A Figures 111

A.1 Levels of Building O27 . 111

A.2 Examples of building features . 117

A.3 Building O27 rendered using the specified maps 122

B Test series 127

C Guides 129

C.1 Installation guide . 129

C.1.1 Geocoding . 129

C.1.2 Compiling JOSM in Eclipse . 129

C.1.3 Database . 131

Upgrade PostGIS database to version 2.0 132

D Sources 135

D.1 Renderd & mod_tile . 138

D.2 Web service code . 141

v

Contents

D.3 OsmConverter . 160

vi

1 Motivation

With the increased prevalence of smartphones and online mapping solutions like Google

Maps, the next logical step is the mapping of indoor spaces. Especially in large public

buildings like airports and shopping malls, people can profit from these systems. There

are a large number of mapping solutions available on the market today. Some of the most

popular being Google Maps [32], OpenSteetMap [48], Bing Maps [10] and MapQuest

[41]. Google Maps and Bing Maps have both started offering indoor maps of a number

of publicly accessible buildings, but these solutions are proprietary, and only data that is

approved by these companies is accessible on their services.

The goal of the software and methods developed for this thesis is to provide a framework

upon which an indoor mapping solution with the following properties can be developed:

• Indoor positioning

• Map of the indoor space

• Smartphone application that can access the map data and the position service

• A routing system that can give a user directions between rooms or from the users

position to a room

The next page shows a graphical overview of the thesis as a whole and the topics covered

by each chapter.

1

1
M

otivation

Overview

Wi-Fi based indoor
navigation in the con-

text of mobile services

Motivation Fundamentals
Cartography on
the University

of Ulm Campus
Implementation Outlook

Comparable
systems

University of
Ulm

Geographic
information
systems

Cartography

Routing

Positioning
system

Indoor posi-
tioning sys-
tems

Requirements

Campus struc-
tures and
naming

Creating a
map

Tagging

Map render-
ing

Design
choices

Overview

Web service

Positioning
system

Routing

Android appli-
cation

Future Work

Challenges

2

1.1 Comparable systems

1.1 Comparable systems

Indoor navigation is by no means uncharted territory. Some of the biggest companies in

the online mapping sector feature indoor mapping systems. Google added indoor maps to

its system in 2011 with a focus on public buildings like airports and shopping malls [42].

Google Maps indoor maps also include positioning through Wi-Fi and the possibility to

view different building levels.

1.2 University of Ulm

People who are unfamiliar with the naming and coordinate schema in use for rooms

and buildings on the campus, are usually not able to find their way around without

asking someone for help. New students as well as visitors are the primary target for this

application, but even people already familiar can profit from an easier way to find the

location of a room.

Another factor contributing to the problem of people getting lost is that the campus is

spread out on a relatively large area with three separated parts:

1. Eastern campus

2. Western campus

3. Helmholtz institute

The eastern and western campus are also separated by the university’s clinic, adding to

the already somewhat confusing layout. Figure 1.1 gives an overview of the campus and

separate parts of the campus. With a floor space of 121, 601.28m2 for the eastern campus

alone [1], an electronic aid for navigation provides a helpful tool. The application that

was developed in this thesis has the goal of providing a mobile mapping and positioning

solution for the campus of the University of Ulm. This way, anyone can find their position

on the map inside buildings and get directions to any room on campus. The application is

3

1 Motivation

Figure 1.1: Overview of the University of Ulm campus

a prototypical implementation for this problem, providing a mapping solution for a single

building on campus, which is built to be extendable to the whole campus.

4

2 Fundamentals

2.1 Geographic Information Systems

A geographic information system is defined as a “special-purpose digital database in

which a common spatial coordinate system is the primary means of reference. ” by [18]. A

broader interpretation of the term extends the system to include all systems that work with

geographic information.

To create a mapping solution, the first step is to gather all information about the object to

be mapped. A geographic information system provides specialized features to simplify

working with geographic features. The heart of a geographic information system (GIS)

is the database. A popular system of this kind is the PostgreSQL database extension

PostGIS. The next section will explain the features of a specialized GIS database by the

example of PostGIS.

2.1.1 PostGIS

PostGIS extends the PostgreSQL database by three features [46]:

spatial types Data types that represent geographic information, for example a line or

polygon on the map.

spatial indexes Increase the speed with which the relationship between objects can be

determined. This can include properties like objects within the same bounding box.

spatial functions Functions to query the properties of objects. For example the distance

between two objects can be calculated by the database.

5

2 Fundamentals

Geometry

Point Curve Surface

LineString Polygon

Geometry
Collection

Multisurface MultiCurve

MultiPolygon MultiLineString

MultiPoint

Spatial
Reference

System

Figure 2.1: PostGIS Data hierarchy [46]

Data types These spatial features provide specific data types for geographic objects.

Objects are represented using three different data types [46]:

1. points

2. lines

3. polygons

The need for these data types is explained in the PostGIS Documentation:

“An ordinary database has strings, numbers, and dates. A spatial database

adds additional (spatial) types for representing geographic features. These

spatial data types abstract and encapsulate spatial structures such as bound-

ary and dimension. In many respects, spatial data types can be understood

simply as shapes." [46]

The full hierarchy of these shapes is shown in Figure 2.1.

6

2.2 Cartography

Indexes In relational databases an index is used to speed up the access to data in a

specific column [27]. Indexes in a spatial database can be used to perform geographic

queries. Since geographic objects can overlap, a common operation in spatial databases

is to find objects that are contained in a bounding box.

”A bounding box is the smallest rectangle – parallel to the coordinate axes –

capable of containing a given feature.“ [46]

Spatial Functions Another feature offered by spatial databases like PostGIS are func-

tions that can be performed on the geographic objects in the database. The functions can

be grouped into five different categories [46]:

• Conversion: Functions that convert between geometries and external data formats.

• Management: Functions that manage information about spatial tables and PostGIS

administration.

• Retrieval: Functions that retrieve properties and measurements of a geometry.

• Comparison: Functions that compare two geometries with respect to their spatial

relation.

• Generation: Functions that generate new geometries from others.

Using these functions, operations on geographic data can be performed within the data-

base.

2.2 Cartography

Cartography is defined as “the study and practice of making maps”[69]. The topic is one

of the main aspects of this thesis, because the visual representation of the map is the

main interface for a user of the application. The requirements for the map are centered

around a correct visual representation. Different colors allow the user to better discern

7

2 Fundamentals

the features of a building. The mapping scheme is also based on colors in use on other

mapping projects to provide a familiar look and feel of the application as a whole.

This chapter will give an introduction into the area of cartography, centered around the

different map projections. The second part of this chapter focuses on the inner workings

of the OpenStreetMap project and their implications for the work in this thesis.

2.2.1 The OpenStreetMap project

The OpenStreetMap project was founded in 2004 with the initial goal of mapping the

United Kingdom [63]. In April 2006 the OpenStreetMap foundation was established to

“encourage the growth, development and distribution of free geospatial data and provide

this data for anyone to use and share.” [63]. In the beginning, already published data

sets from the UK Government were used to build an open and easily accessible mapping

solution. The concept of OpenStreetMap is similar to the Wikipedia project, where anyone

can edit or add entries. On OpenStreetMap, anyone can edit maps and corrector errors

or insert missing roads. Missing streets can be added by using GPS units and tracking

an existing path or by tracing roads, mountains or other features on satellite imagery

[59]. One of the building principles of the OpenStreetMap project is the free distribution

of this information. As a direct result of which, all data is licensed under the “Open Data

Commons Open Database License” [47] with the following conditions:

“You are free to copy, distribute, transmit and adapt our data, as long as you

credit OpenStreetMap and its contributors. If you alter or build upon our data,

you may distribute the result only under the same licence. The full legal code

explains your rights and responsibilities.” [47]

Keeping with the goal of open data, all tools used in the development of OpenStreetMap

are also licensed under various open source licenses:

“OpenStreetMap is not only open data, but it’s built on open source software.

The web interface software development, mapping engine, API, editors, and

many other components of the slippy map are made possible by the work of

volunteers.” [59]

8

2.2 Cartography

Because anyone can edit map data, OpenStreetMap can leverage the knowledge of

people on location, who can add information about buildings, amenities or bus stops. This

large amount of meta information allows for very detailed maps. Like other crowdsourced

information, the quality and coverage of data can vary greatly. As an example of the

detail of data in OSM, Figure 2.2 and Figure 2.3 show the same map segment from the

University of Ulm Campus in Google Maps and in the online OSM map. The amount of

data that is part of the OpenStreetMap project’s database is 370 Gigabytes as of Jun 7th

2013. The data can be downloaded as the so called planet file.

Figure 2.2: University of Ulm Campus: Google Maps [24]

9

2 Fundamentals

Figure 2.3: University of Ulm Campus: OpenSteetMap

10

2.2 Cartography

2.2.2 OSM concepts

OSM uses a combination of a small number of different elements to represent objects

in the database. Each of these elements can have attributes in the form of a key/value

system.

Data elements

Three different data elements make up the geospatial information in the OpenStreetMap

project [62]:

Node The simplest data element, a single data point, defined by a latitude and longitude.

Shown in Figure 2.4.

Way A way “is an ordered list of between 2 and 2000 nodes” [62]. Ways are used to

describe objects like buildings, roads or territorial boundaries.

Open polyline “An open Polyline is an ordered interconnection of between 2 and

2000 nodes describing a linear feature which does not share a first and last

node. Many roads, streams and railway lines are described as open polylines.”

[62] An example of a polyline object is shown in Figure 2.5.

Closed polyline “A closed polyline is a polyline where the last node of the way is

shared with the first node.” [62]

Area An area is built using the same principles as a closed way. An area is not a

data type in itself but defined using a tag or relation. Figure 2.6 is an example

of such an area.

Relation “A relation is one of the core data elements that consists of one or more tags and

also an ordered list of one or more nodes and/or ways as members which is used to

define logical or geographic relationships between other elements. A member of a

relation can optionally have a role which describe the part that a particular feature

plays within a relation.” [52]

11

2 Fundamentals

Node

Figure 2.4: OpenStreetMap data element node

Node 1

Node 2

Node 3

Figure 2.5: OpenStreetMap data element way with open polyline

Node 1

Node 2

Node 3
Node 4

Figure 2.6: OpenStreetMap data element way with a closed polyline as area

12

2.2 Cartography

Tags

Tags in OpenSteetMap are used to assign elements with metadata. The tag system

consists of a key and value pair, which can be assigned to nodes, ways or relations [58].

There is no limit to the amount of tags that can be used. The key and value are both text

fields and are usually used to describe the properties of an element. An example of this

system is a road, which is represented using an open way in OSM. The way is marked

using the pair highway = motorway which can be combined with additional information

like maxspeed = 60. This tagging system is one of the greatest strengths of the project,

since any kind of information can be included. For example, if the opening hours of stores

are included in the tags, a map can be dynamically created showing all stores which are

currently open. To ensure a coherent tagging schema, the OpenSteetMap Wiki provides a

list of currently used tags and their usage [40]. For each item currently in use, an example

of the tag, usually in combination with a picture, is provided. Table 2.1 provides a few

examples of the range of information that can be saved using this system.

Key Value Description
shop beauty “A non-hairdresser beauty shop, spa, nail salon, etc. See

also shop = hairdresser”
barrier lift_gate “A lift gate (boom barrier) is a bar, or pole pivoted in such a

way as to allow the boom to block vehicular access through
a controlled point. Combine with access = ∗ where appropri-
ate.”

Restrictions
emergency yes “Access permission for emergency motor vehicles; e.g., am-

bulance, fire truck, police car”
maxheight height “height limit - units other than metres should be explicit”
forestry yes/no “Access permission for forestry vehicles, e.g. tractors.”

Table 2.1: Example of OSM tags in use [40]

2.2.3 Editing

Since OSM is a project primarily based on cloud sourcing, editing the map is one of the

most important features. OSM has a choice of three different editor environments [60]:

13

2 Fundamentals

Potlatch A flash bashed editor, available as part of the online representation of the

OpenStreetMap. It can be accessed directly from the edit tab of the map view.

JOSM An editor that is more powerful than Potlatch and is preferred by many experienced

contributors but has a higher learning curve.

iD “Is the newest editor available from the edit tab, currently in beta status because it still

has some minor issues. It is realized in html5/javascript (modern browser but no

install required).”

Java OpenStreetMap Editor

The currently most powerful editor for OSM is the “Java OpenStreetMap Editor” (JOSM)

[36]. Like most applications used in the OSM project, JOSM is also licensed under an open

source license, the GNU General Public License [36]. JOSM features an extensive plugin

system [36] which can change the interface or add features for specialized editing tasks,

examples of which are plugins for tagging speed limits (Maspeed tagging), importing

vector graphics (ImportVec), or aligning pictures (PicLayer) [37]

An example of the JOSM interface is shown in Figure 2.7. JOSM can also display imagery

from other sources, for example MapQuest satellite imagery. Since Bing has licensed

their imagery for use with the OSM project, their aerial imagery can be used to trace

features like roads or buildings. This way new data can be imported into the OSM project,

or already existing data can be corrected [61]. JOSM includes features to edit all aspects

of OSM data, including tags and relations. JOSM can also directly upload data to OSM

servers.

Figure 2.8 is an example of editing a highway tag of an intersection.

2.3 Routing

Part of this thesis is the implementation of routing functionality into an Android application.

Routing and its associated algorithms are based on algorithms from graph theory.

14

2.3 Routing

Figure 2.7: Example of the JOSM interface

15

2 Fundamentals

Figure 2.8: Editing an intersection in JOSM

16

2.3 Routing

Graph Theory

Graph theory is defined as ”the study of graphs, which are mathematical structures used to

model pairwise relations between objects.“ [70]. In the context of this thesis, the relations

between objects are the paths that can be traveled by a user between two points.

The following elements are important in the context of graph theory [4]:

Graph A graph is composed of a set of vertices and edges

vertices A vertex could also be called a node or point and represents a single point on

the graph.

edges An edge connects two vertices. As such it represents an ordered pair of vertices.

path A path is a sequence of vertices

The objective of a routing system is finding a path between two points, denoted as the

start (S) and the end (E). Figure 2.9 shows the trivial case of routing between two points

with only a single available path.

S E

Figure 2.9: Trivial routing

17

2 Fundamentals

S E

A

CB

Figure 2.10: Complex routing

2.3.1 Routing algorithms: Shortest path problem

The trivial case isn’t very realistic. Usually, there are multiple paths from the start to the

end and not all paths will lead us to the destination. In Figure 2.10, there are two ways to

get from the start to the end. The possible paths are:

1. S −→ A −→ E

2. S −→ B −→ C −→ E

Either path is a possible route between the two points and would get a user from the start

to the end.

18

2.3 Routing

The application of graph theory in this work is about navigation on a map. It is possible to

provide users with a working route without finding the shortest path, but in terms of user

acceptance it would provide a serious shortfall. To provide a correct routing algorithm, the

shortest path needs to be found between two points.

Since the points on the graph are not separated equally in terms of the distance between

them, a requirement of finding the shortest path is adding weights between two connected

points. The resulting graph is known as a weighted graph. Figure 2.11 shows a weighted

graph based on the example from Figure 2.10.

S E

2

A

CB 2

1

4 3

Figure 2.11: Weighted graph

19

2 Fundamentals

The connections between two points are now labeled with their corresponding weights,

which would correlate to the distance between two points. The weights can now be used,

to calculate the shortest path in Figure 2.11:

1. S 4−→ A
3−→ E, combined weights: 7

2. S 2−→ B
2−→ C

1−→ E, combined weights: 5

The best resulting path is the second path.

In the problem of routing on a map, the weighted graph is constructed as follows:

vertices All nodes that can be traversed. For example all the houses on a street.

edges All paths that can be taken. To continue with the previous example, these would

be the streets and side walks. The distance between two vertices are the weights

on the graph. Accordingly, the geographic distance between two points equals the

weight on the graph between two points.

The task of finding the shortest route thus equals the shortest path problem.

Comparison of shortest path algorithms

Dijkstra’s Algorithm [15] has a running time of O(n2) when no further optimizations are

considered [4]. A more popular algorithm for routing applications is the A* algorithm [26].

Through the use of heuristics, A* can achieve a faster running time. Considering the

complexity of the algorithm, Dijkstra’s algorithm was chosen for the implementation, since

its implementation was achievable in considerably less time.

Dijkstra’s algorithm The actual algorithm that was used to implement the routing

algorithm in this thesis is Dijkstra’s algorithm [15], published in 1959 by dutch computer

scientist Edsgar Dijkstra. The algorithm can be classified as a Greedy-Algorithm [56]. The

general hypothesis in this algorithm is, that by finding an optimal solution for a path to the

element n− 1, the path to element n is equal to the previous path plus the optimal path

from n− 1 to n.

20

2.4 Positioning system

The algorithms’s pseudo code is shown in Algorithm 1 with the following definitions [56]:

V list of all vertices

u starting vertex

v all other vertices

l(v) shortest length from u to v

k(v) optimal edge to v

W list of unchecked vertices

F selection of edges, which form the shortest path from u to all other vertices

Algorithm 1 Dijkstra’s algorithm in pseudo code [56]
for v ∈ V do
l(v) :=∞
l(u) := 0
W := V ;F := ∅

end for
for i := 1 to |v| do

find a vertex v ∈W with a minimal l(v)
W :=W − {v}
if v 6= u then
F := F ∪ {k(v)};

end if
for v′ ∈ Adj(v), v′ ∈W do

if l(v) + w(v, v′) < l(v′) then
l(v′) := l(v) + w(v, v′)
k(v′) := (v, v′)

end if
end for

end for

2.4 Positioning system

Another fundamental part of the application developed is a positioning system. Without a

positioning system, a user would have to find his position on the map manually. This time

21

2 Fundamentals

intensive and error-prone task should be handled by the application itself, resulting in a

automated positioning and the displaying of the current user position on a map.

A number of methods can be used for this kind of positioning system.

2.4.1 Overview of positioning systems

A large selection of navigation systems are currently available. These can range from a

compass and a map to systems that integrate a satellite based positioning system like

GPS with an on screen display of a map as used in in-car navigation systems. Common

to most of these systems is their reliance on radio waves as a positioning aid.

Manual positioning

A simple solution to the problem of showing the users current location on a map is relying

on the user to position himself. If a user is given a complete map, he can use it to

find his current location himself. This can only work if the user has a general idea of

his current location. Given a map of a university campus, a user can use visual cues

around him to accurately pinpoint his position on the map. This kind of process is labor

and time intensive, and as previously discussed, error-prone and not very user-friendly.

Considering the usability requirements of the application, a manual positioning system is

not practical.

Global Positioning System

One of the most popular systems to determine a location in wide spread use are systems

using satellites and trilateration. The best known system of this kind is the American

Global Positioning System (GPS). As found in previous work of the author [9], GPS signals

would provide an accuracy of at least seven meters. But since GPS requires a line of

sight to at least four satellites, such accuracy is not feasible in an indoor environment. If a

fix could be achieved at all, it could be very inaccurate and most of the time, a fix is not

achievable at all. Another downside of GPS based systems is the time required to get a

22

2.5 Indoor positioning systems

fix. This time frame is known as the time-to-first-fix (TTFF) and can take more than 20

minutes, if the GPS equipment has no up to date information about satellite positioning,

last position, or the date/time [45]. Through the usage of assistance technologies, it has

been possible to reduce this time. AGPS for example can typically achieve a TTFF of 30

seconds [35].

2.5 Indoor positioning systems

The previous examples of positioning systems are not optimized for an indoor environment,

and while they are sufficient in an outdoor environment, an indoor environment brings

these technologies to their limit. This has lead to the development of several different

positioning systems for the indoor environment, a selection of which are presented in the

following sections. The requirements and problems facing indoor positioning systems are

[5]:

Accuracy The accuracy of an indoor positioning system is one of the most important

metrics. The goal of any such system is the localization of a user in three dimensional

space. A system with an accuracy of only 50 meters might be sufficient for some

use cases, but in the context of indoor navigation, an accuracy of at least 10 meters

is necessary.

Security Providing accurate information about the position of a user is needed for indoor

navigation, but if an outside party is able to decrease the accuracy of the system, the

result would be limited to a bad user experience. As such, the security requirement

for the work of this thesis is not as strict as if the positing system is for example used

to navigate robotic vehicles.

2.5.1 Positioning principles

In general, the systems are using one or a combination of the following four principles:

trilateration, triangulation, scene analysis, and proximity [5].

23

2 Fundamentals

A

B

C

Figure 2.12: Trilateration: Three reference nodes

A←→ X 3
B ←→ X 4.7
C ←→ X 4

Table 2.2: Distance between X and reference nodes

Trilateration Uses the known location of three reference nodes and the distance from

each node to the unknown location [14]. The calculated distance to each reference node

can be visualized as a radius around each node. The intersection of all three radii should

correspond with the current location. Trilateration is usually used in combination with

radio/infrared radio systems, which can be used to get a reasonably good estimate about

the distance to the reference locations. Figure 2.12 shows a scenario, where three

reference nodes A, B, and C exist.

In this scenario, we are trying to find the current position, denoted as X. To perform

trilateration, the distance between X and the three reference nodes ist shown in Table

2.2

As shown in Figure 2.13, using these three distances as radii for each reference node, we

can now determine the location of X as the intersection of all three.

24

2.5 Indoor positioning systems

3

A

4,7

B
4

C X

Figure 2.13: Trilateration: position is at intersection of three radii

Triangulation Works similar to trilateration, except that instead of being able to measure

the distance to known points, measurements are based on angles. Unlike trilateration,

triangulaten requires only two reference nodes [14] in combination with the unknown third

node. The required information is now the angle from the reference nodes to the unknown

node. The intersection of the lines equals the location of the unknown node. Figure 2.14

shows an example of this scenario.

Scene Analysis In combination with radio waves is also known as fingerprinting [5]. ”Lo-

cation fingerprinting refers to techniques that match the fingerprint of some characteristic

of a signal that is location dependent“ [5]. The location is determined by comparing the

received radio waves and their characteristics with a database of readings. This database

is constructed during the offline phase by measuring signals at predetermined points at

the location that will later be used for positioning. The actual location is determined by

comparing these signal readings with the readings currently being received by a device.

Using pattern recognition algorithms [5], a most likely location is calculated. An example

25

2 Fundamentals

A

B

X

α

β

Figure 2.14: Example of triangulation

of this technique is the Wi-Fi fingerprinting system used in this thesis and described in

more detail in Section 2.5.2.

2.5.2 Wi-Fi indoor positioning system

The positioning system used for this thesis is based on wireless fingerprinting. The factors

that influenced this decision are explained in the following paragraphs:

Cost

Cost is one of the largest factors for this choice. The campus of the University of Ulm

provides a campus wide network of Wi-Fi access points. Therefore, using wireless

positioning does not require any additional infrastructure or changes to the existing

services. To provide an offline database of reference nodes, a database can be stored on

each client, minimizing the use of additional infrastructure. This also allows devices to

position themselves without the requirement of an internet connection.

The second factor in terms of cost is the client that needs to be located. On the client

side, wireless fingerprinting provides a cheap way to provide an indoor location system.

26

2.5 Indoor positioning systems

System/
Solution

Wireless
technolo-
gies

Positio-
ning algo-
rithm

Acc-
uracy

Precision Comp-
lexity

Scalability/
Space
dimension

Robust-
ness

Cost

Microsoft
RADAR

WLAN
Received
Signal
Strength
(RSS)

κNN,
Viterbi-like
algorithm

3 ∼
5m

50%
around
2.5m and
90%

Moderate Good/2D,
3D

Good Low

Horus WLAN RSS Proba-
bilistic
method

2m 90% within
2.1m

Moderate Good/2D Good Low

DIT WLAN RSS MLP, SVM,
etc.

3m 90% within
5.12m for
SVM;90%
within 5.4m
for MLP

Moderate Good/2D,
3D

Good Low

Ekahau WLAN
Received
Signal
Strength
Indicator
(RSSI)

Proba-
bilistic
method
(Tracking-
assistant)

1m 50% within
2m

Moderate Good/2D Good Low

SnapTrack Assisted
GPS,
TDOA

5m-
50m

50% within
25m

High Good/2D,
3D

Poor Medium

WhereNet UHF TDOA Least
square/
RWGH

2-3m 50% within
3m

Moderate Very
good/2D,
3D

Good Low

Ubisense unidirec-
tional UWB
TDOA +AOA

Least
square

15cm 99% within
0.3m

Real time
response
(1Hz-10Hz)

2-4 sen-
sors per
cell (100-
1000m);1
UbiTag per
object/2D,
3D

Poor Medium to
High

Sappire
Dart

unidirect-
ional UWB
TDOA

Least
square

<
0.3m

50% within
0.3m

response
frequency
(0.1Hz-
1Hz)

Good/2D,
3D

Poor Medium to
High

Smart-
LOCUS

WLAN
RSS + Ul-
trasound
(RTOF)

N/A 2-15m 50% within
15cm

Medium Good/2D Good Medium to
High

EIRIS IR +UHF
(RSS) +LF

Based on
PD

< 1m 50% within
1m

Medium to
High

Good/2D Poor Medium to
High

SpotON Active RFID
RSS

Ad-Hoc lat-
eration

Depends
on
cluster
size

N/A Medium Cluster
at least
2Tags/2D

Good Low

LAND-
MARC

Active RFID
RSS

KNN < 2m 50% within
1m

Medium Nodes
placed ev-
ery 2-15m

Poor Low

TOPAZ Bluetooth
(RSS) + IR

Based on
PD

2m 95% within
2m

position-
ing delay
15-30s

Excellent/
2D, 3D

Poor Medium

MPS QDMA Ad-Hoc lat-
eration

10m 50% within
10m

1s Good/2D Good Medium

GPPS DECT cellu-
lar system

Gaussian
process
(GP), κNN

7.5m
for GP,
7m for
κNN

50% within
7.3m

Medium Good/2D Good Medium

Robot-
based

WLAN RSS Bayesian
approach

1.5m Over 50%
within 1.5m

Medium Good/2D Good Medium

MultiLoc WLAN RSS SMP 2.7m 50% within
2.7m

Low Good/2D Good Medium

TIX WLAN RSS TIX 5.4m 50% within
5.4

Low Good/2D Good Medium

PinPoint
3D-ID

UHF
(40MHz)
(RTOF)

Bayesian
approach

1m 50% within
1m

5s Good/2D,
3D

Good Low

GSM finger-
printing

GSM cellu-
lar network

weighted
κNN

5m 80% within
10m

Medium Excel-
lent/2D,
3D

Good Medium

Table 2.3: Wireless-based indoor positioning systems [5]
27

2 Fundamentals

Wireless receivers are broadly available and most of todays handheld devices like smart

phones, tablets, or even laptops, provide all the needed hardware. Other indoor positioning

systems rely on specialized hardware, that is not currently available on the campus of the

university. The cost factor of installing specialized hardware for this purpose was also not

feasible in the scope of this thesis.

Accuracy

As shown in Table 2.3, wireless fingerprint systems provide a degree of accuracy that

is sufficient for the purpose of this thesis. While a position as accurate as possible is

favorable, increased accuracy is only achievable with an increase in cost.

2.5.3 Euclidean distance based algorithm

To be able to estimate the position of a user, an algorithm needs to combine the Wi-Fi

fingerprints in the database with the current signal landscape a device can receive. The

algorithm is based on the research in [21] on the Euclidean distance algorithm. The basic

idea of this algorithm is to compare the data measured by a device to the fingerprints in the

data base. Based on the euclidean distances to matching SignalNodes in the database,

the approximate position is calculated. The basic Euclidean distance algorithm is shown

in Equation 2.1, where d is the distance, n is the number of access points being compared.

RSSIci is the Received Signal Strength Indicator of access point i during the calibration

phase, and RSSIpi is the RSSI of the access point in the positioning phase [21]. RSSI

uses the unit dBm, a logarithmic scale which uses an output signal of 1 milliwatt as 0

dB.

d =

√√√√ n∑
i=1

(RSSIci −RSSIpi)2 (2.1)

This calculation is done for all matching fingerprints in the database, and the fingerprint

with the smallest distance d should be the one closest to the actual position of the device

in the positioning phase.

28

2.5 Indoor positioning systems

A problem that exists with the approach in Equation 2.1 is, that the number of base

stations for a fingerprint can change because of the nature of radio waves. Especially

inside building, external factors like moving subject, open or closed doors, change the

signal strengths of the access points. An access point that was measured during the

calibration phase might not be received during the positioning phase and vice versa.

To account for theses changes in the environment, the Euclidean distance equation was

adapted in [21] such that d is normalized by taking into account the varying number of

access points that can be received. This change is represented by Equation 2.2, averaging

the number of matching base stations m into the equation

d =

√√√√ 1

m

m∑
i=1

(RSSIci −RSSIpi)2 (2.2)

If the signals from an access point are received neither in the positioning phase nor in the

calibration phase, that access point is not considered for the calculation of the euclidean

distance. The work in [21] proposes more changes to the algorithm to account for the

effects of signal propagation. The changes are used to take into account the following

problems that might occur:

Case 1: An access point is measured during the calibration phase but not in the position-

ing phase.

Case 2: An access point is measured in the positioning phase but not in the calibration

phase.

Case 3: The number of matching access points between the positioning phase and the

calibration phase for a fingerprint is too low. This value is set using a threshold

parameter.

Case 4: RSSI-values (Received Signal Strength Indicator) of positioning and/or calibration

tuple are too low.

To take these effects into account, the paper proposes the following threshold parame-

ters:

29

2 Fundamentals

NBSmin The minimal number of matching access points required to perform a distance

calculation.

TP1 Access points with a signal strength below this value are not used for the positioning

algorithm. This includes access points from the positioning as well as the calibration

phase.

TP2 If the RSSI-values from a matching access point from calibration and positioning

phase are larger than TP1 but lower than TP2, the access point is not used for the

calculation of d. This parameter is not used in the implementation of the positioning

algorithm used in this thesis.

TP3 If the RSSI value of an access point during the positioning phase exceeds this value,

and the access point is not part of the fingerprint, the fingerprint is excluded from

the positioning calculation.

The algorithm used in the implementation enhances the positioning algorithm as described

in 2.5.3 using the concept of weighted averages. The distances calculated from Equation

2.2 are averaged using their euclidean distance. The number of fingerprints used for this

process is set using another parameter neighbors. A maximum of neighbors nodes are

used for this calculation.

latitude =

∑n
i=1

latitudeci
dci∑n

i=1
1
dci

while i is < neighbors (2.3)

longitude =

∑n
i=1

longitudeci
dci∑n

i=1
1
dci

while i is < neighbors (2.4)

level =

∑n
i=1

levelci
dci∑n

i=1
1
dci

while i is < neighbors (2.5)

To determine the position of a device in the positioning phase, three values are required:

latitude, longitude, and the building level. Equation 2.4 and 2.5 show how these values

are determined.

The details of the implementation are described in Section 4.4.

30

2.5 Indoor positioning systems

Conclusion

The fundamentals described in this chapter are used throughout the next chapters (Chapter

3 and Chapter 4). They cover the basics of the methods used to implement all parts of the

system. The next chapter continues with the basics of the mapping system and how the

objects on the campus are documented.

31

3 Cartography on the University of Ulm

Campus

The following chapter will discuss the implementation of the mapping schema on the

University of Ulm Campus. In the implementation part of this thesis, a prototypical map of

a building on the campus of the University of Ulm was created using components from the

OpenStreetMap project.

Part of this process is a definition of how elements are mapped.

3.1 Requirements

The requirements for the mapping schema are as follows:

• Well structured and documented tagging system. Tags are used to define building

features and the tagging system needs to be documented, so that each item in the

building uses the correct tags.

• Documented system for creating rooms. If rooms are not created using the same

system of ways and tags, rooms might not be rendered consistently.

• Ability to differentiate between building levels. Since buildings feature multiple levels,

levels need to be rendered separately and the user needs to be able to tell which

level is shown.

• A system on which routing can be accomplished.

• Consistent naming schema for rooms and other building features.

33

3 Cartography on the University of Ulm Campus

• A rendering schema that differentiate between individual building features, as defined

in the tags. This includes:

◦ Distinct colors for rooms, auditorium, walls and stairways

• Geographical coordinate system. This ensures that future systems do not need to

work on an unknown coordinate system, should they want to use the data created.

Without a documented approach to tagging and mapping, it would not be possible to

provide a coherent map view. Since the data is not only used to render the map, but

also to provide a point of interest (POI) database, as well as the basis for the navigation

system, a strict approach to tagging and tracing features is required.

3.2 Campus structures and naming

The campus is divided into an eastern and a western part. The eastern part of the

university uses a coordinate style naming schema with a combination of letters and

numbers. Each building is labeled using a letter + number, for example “M 24”. Figure 3.1

is a schematical representation of the eastern campus.

The focus of this thesis is the building “O 27”, which houses the greater part of the

computer science faculty. The position on the map is shown in Figure 3.2

3.3 Creating a map

One of the first tasks when creating a map is getting a reference grid. Since rooms and

buildings need to be drawn on a map, a system of positioning these items needs to be

implemented.

The choice was between the following two systems:

34

3.3 Creating a map

20 21 22 23 24 25 26 27 28 29

P

O

N

M

L

O22 O23 O25 O26 O27

N22 N23 N24 N25 N26

M23 M24 M25

O28

O29

N27

Figure 3.1: Schematical representation of the University of Ulm, eastern campus

20 21 22 23 24 25 26 27 28 29

P

O

N

M

L

O22 O23 O25 O26 O27

N22 N23 N24 N25 N26

M23 M24 M25

O28

O29

N27

20 21 22 23 24 25 26 27 28 29

P

O

N

M

L

O22 O23 O25 O26 O27

N22 N23 N24 N25 N26

M23 M24 M25

O28

O29

N27

Figure 3.2: Position of Building O27 on the University of Ulm campus

35

3 Cartography on the University of Ulm Campus

1. Using a self created frame of reference, based on the existing coordinate system

(O27, M24, etc.) with the addition of a number based grid for higher precision. For

example: “O27.2534”. The numbering system can be based on a unit of length, for

example meters, or by creating a grid. An example of such a grid is shown in Figure

3.3

2. The buildings are drawn on a projection of the earth using latitude and longitude as

coordinates. The usage of latitude and longitude allows for the usage of standard

geographical tools and calculations. It also simplifies derivative work, since the

coordinate system is standardized.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

O27

Figure 3.3: Example of a coordinate grid around a building

Since the second solution provides a set of standardized coordinates, it was chosen for

the work in this thesis. It also allows for easier integration in the OpenStreetMap project,

36

3.3 Creating a map

whose tools are used throughout the thesis for work related to mapping and navigation.

To provide additional structures outside of the buildings the area around the campus was

imported from the OSM data. This way, the map does not only show the data created

during the work of this thesis, which would be only the structure of the buildings and its

rooms, but also the roads, paths and forests around the buildings. As a result of this, a

user can also see the area outside of the buildings on the map’s canvas.

3.3.1 Positioning elements

The architectural data used as the basis for the maps was provided by the university’s

department V5 in the form of PDFs, one PDF per building level. These architectural

drawings are available in Appendix A.1. One of the challenges with a system based on a

grid of latitude and longitude is the positioning of elements. This process is known as geo-

referencing. Since the available drawings do not provide any sort of positioning information

on a map projection, the drawings need to be positioned on the map manually.

The JOSM Editor described in Section 2.2.3 offers the plugin “PicLayer”.

PicLayer can be used to position elements on an OSM canvas. The plugin has support

for various raster formats like png and jpeg but does not support the usage of PDFs. As a

result, the PDFs needed to be converted into a raster format. For this task, the script in

Listing D.1 was used.

After importing a picture into a picture layer, the process of georeferencing a building is

described by [38] as:

1. Activate the layer

2. Click the green arrow button (PicLayer Move point) at the left toolbar

3. Select picture checkpoints (3 checkpoints needed for processing)

4. Click red arrow button (PicLayer Transform point) at the left toolbar

37

3 Cartography on the University of Ulm Campus

5. At this mode you can move checkpoints (you should point exactly in the circle at the

point) and the image will transform

For the mapping work of this thesis, the already existing outline of buildings in the Open-

StreetMap material was used as the reference for the images.

The process is shown in Figure 3.4, 3.5, and 3.4.

To verify the correct positioning, it is also possible to load satellite imagery into a layer.

This has to be done for every building level, but once a single floor has been put into

position, all other maps can be georeferenced on the floor already in position, using ,for

example, columns that lead through all floors of a building as reference points.

Figure 3.4: Setting three reference points on the picture

38

3.3 Creating a map

Figure 3.5: Two reference points are moved to the correct location on the map

Figure 3.6: All reference points are at their correct location

39

3 Cartography on the University of Ulm Campus

3.3.2 Errors

A possible point of failure in the process is that the existing map data could be offset

from the correct position. The only possible way to perform exact georeferencing is by

using high precision DGPS or similar equipment or by using data that already offers exact

positioning information.

Once all needed floors are at their correct position on the mapping canvas, the rooms,

corridors and other features need to be traced. To ensure a process of tagging and tracing,

a schema was devised by which all features are traced and tagged.

3.4 Tagging

The maps created in this thesis use a defined schema of tags. These tags are used to

provide a number of features:

• Rendering of rooms, outlines, corridors, auditoriums, and laboratories

• Paths used for navigation

• A database of rooms and points of interest

• Location of doors, elevators, and stairways

• Differentiate the building level a feature is on

Table 3.1 shows a list of all tags used to map the feature of the building O27. As far as

possible, the tags are based on the existing usage of the OpenStreetMap project. This

way other projects can work with a familiar system.

40

3.4 Tagging

Tag Possible
values

Description Element

level <int> Building level on the University of Ulm system node,
way

entrance yes Marks the entrance of a room or building node

room

yes Marks the outline of a room area
auditorium An auditorium area
stairs Area occupied by a staircase area
laboratory A laboratory area

laboratory yes Laboratory type not further specified area
computer A computer laboratory area

name <string> The room number/name fully qualified “O27 245” node,
way

highway
corridor Used for all corridors area
elevator An elevator area
steps A stairway way

incline up|down The incline of a stairway way
area yes Marks the area of a corridor area
building yes Marks the shell of a building closed

way
amenity toilets Restroom area

Table 3.1: Tags in use on the University of Ulm OSM schema. Loosely based on [40].

3.4.1 Tag usage

The following paragraphs describe all tags in use for the OSM schema of the University

of Ulm. Tags are explained by using examples of building features. Chapter A.2 offers

pictures of a number of these buildings features as additional examples.

3.4.2 Level definitions

The level tag is used to specify building level a feature is on. The University of Ulm uses a

number based system to specify each building level. The levels range from 0 to 7, and the

level tag uses the same system, as can be seen in Table 3.2.

41

3 Cartography on the University of Ulm Campus

Level name level=
Niveau 0 0
Niveau 1 1
Niveau 2 2
Niveau 3 3
Niveau 4 4
Niveau 5 5
Niveau 6 6
Niveau 7 7

Table 3.2: Mapping between University of Ulm schema and OSM schema

O 27
↑

building O27

level 3
↓

32
↑

eastern corridor

3

Figure 3.7: Explanation of numbering system

3.4.3 Rooms

The room tag is used to mark all kinds of indoor areas. Rooms on the University of Ulm

are named using the following numbering system:

1. The first digit is the building level

2. The second digit is the direction inside the building from the center as follows:

North _1_

East _2_

South _3_

West _4_

Figure 3.7 is a full example of a room name and an explanation what each digit means.

The rooms are named without the building name, for example 245 and not O27 245.

42

3.4 Tagging

Figure 3.8: A room in JOSM

The room = yes tag is used to mark all rooms that do not match any of the more specific

room tags. Examples of this tag usage include offices, class rooms, seminar rooms or

closets. Figure 3.8 shows the layout of a room.

A room is composed of the following tags:

Tag Value
level <int>
room yes
name <room name>

Table 3.3: Tags of a room

Rooms also have a node which marks the position of doors.

43

3 Cartography on the University of Ulm Campus

3.4.4 Auditorium

Auditoriums are an important part of a university campus and as such have their own color

schema in the rendered maps. The University of Ulm has a total of 22 auditoriums and

unlike room names, the auditoriums all have a unique name, since each number is only

assigned once on the whole campus. Building O27 has only one auditorium, H20.

Auditoriums are a special case of the room schema with the following tags:

Tag Value
level <int>
room auditorium
name <room name>

Table 3.4: Tags of an auditorium

3.4.5 Laboratory

A campus has a number of laboratories and in the OSM schema for the University of Ulm,

laboratories are given their own tagging schema, as another special case of the room

schema. There are a wide variety of laboratories on a campus, but in the case of O27,

these are limited to computer laboratories. The tagging schema is similiar to the room

schema, but since there are a wide variety of laboratories, the laboratory tag is used to

discern between different laboratory types. Examples of which are computer, chemistry,

or physics. If the type can not be specified further, a yes tag can also be used.

Tag Value
level <int>
room laboratory
laboratory computer
name <room name>

Table 3.5: Tags of a computer laboratory

44

3.4 Tagging

3.4.6 Doors

Doors are needed to mark possible ways to enter a room. As such, they are also used for

navigation, since a path to a room will end at its entrance. A room can have 0 . . . n doors.

Rooms with 0 doors are possible, since there are cases where a cabinet does not have an

actual door that can be accessed. The name tag of a door is used to store a fully qualified

form of a rooms name, which is formed using the building a room is in along with the room

number. An example of such an identifier is O27 245. A door has at least the following tags:

Tag Value
entrance yes
level <int>
name <fully qualified room name>

Table 3.6: Tags of a door

Figure 3.9 is an example of a room with two entrances.

Figure 3.9: A room with two doors in JOSM

45

3 Cartography on the University of Ulm Campus

3.4.7 Corridors

Hallways inside of buildings are primarily marked using the highway = corridor tag.

Corridors include all areas outside of rooms that are publicly accessible. Corridors are

named using a V in front of the number, for example V 501. An example of a corridor is

shown in Figure 3.10.

A fully tagged corridor has the following tags:

Tag Value
room yes
highway corridor
area yes
level <int>
name <corridor name>

Table 3.7: Tags of a corridor

Figure 3.10: The red area marks a corridor

46

3.4 Tagging

3.4.8 Stairways

Stairways are marked if they allow a person to move between building levels. A stairway

is marked using an area as well as a way. The area element is used to render areas

occupied by a stairway differently from a regular corridor. The way is used to mark the

direction of a staircase as well as the incline from the current building level. An example of

a stairway is shown in Figure 3.11.

The area occupied by a stairway has the following tags:

Tag Value
area yes
room stairs
level <int>
name <corridor name>

Table 3.8: Tags of a stairway

Since stairways are used for navigation, a stairway is also marked using a open way,

connecting two levels. Unlike other way or area elements, ways used for navigation have

the following requirements:

• Ways must not be closed. Only open ways work.

• All nodes on a way used for navigation must have a level tag.

The connection between levels is created by connecting the open way with an upward

incline to the open way with a downward incline from the level above the current one. The

open way used for the stairway on Level 2 is shown in Figure 3.11 as a green line.

An open way of a stairway has the following tags:

47

3 Cartography on the University of Ulm Campus

Figure 3.11: A stairway in JOSM; level 2 of building O27.

Tag Value
highway steps
incline up|down
level <int>
wheelchair no

Table 3.9: Tags of stairway open way

3.4.9 Elevators

Elevators are also tagged using a combination of the room and highway tag. Elevators

share the same naming schema as corridors, using a V with a number as the identifier. It

48

3.5 Map rendering

has the same properties as a normal room, as it is formed using a closed way. Elevators

are not used for navigation. Should such a feature be added in the future, a tag to specify

all the levels that can be reached would have to be added.

Tags of an elevator are:

Tag Value
room yes
highway elevator
level <int>
name <name>

Table 3.10: Tags of an elevator

3.4.10 Amenities

The only form of amenities currently used are restrooms. Restrooms are represented

using their own color schema on the map. Restrooms share the common properties of all

rooms, but add an amenity tag:

Tag Value
level <int>
room yes
name <room name>
amenity toilets

Table 3.11: Tags for a restroom

3.5 Map rendering

Once all the required information is acquired and converted into the OSM format, the data

needs to be rendered. Rendering is achieved by a special rendering server, that creates

map tiles. A map view is generated by combining a number of smaller map tiles. Each tile

49

3 Cartography on the University of Ulm Campus

is a square raster image, generated from a small segment of the map. The combination of

these tiles is used to create a view, with newly rendered tiles for every zoom level.

The software stack that is used to achieve a rendered map consists of a number of different

components. Figure 3.12 gives an overview of the server side components responsible to

render a map.

PostGis Server JOSM

OSM Data

Clients

Apache
Webserver mod_tile

Mapnik
Mapnik XML Schema

renderd

Figure 3.12: Rendering toolchain

The software pieces specific to the task of rendering the map on a server are:

mod_tile Is responsible for the caching and on the fly rendering of all map tiles [65].

renderd Renderd gets requests from mod_tile to render map tiles and saves these on

the file system. It is also used to queue requests for map tiles.

Mapnik A toolkit for rendering maps. It uses XML style sheets as configuration [64].

PostGIS A geospatial extension for PostgreSQL database. A detailed explanation is

available in Section 2.1.1.

50

3.5 Map rendering

3.5.1 Creating a database

Information created using JOSM is not directly used to render the map, since a database

is used to store the information. The created data has to undergo a two step process,

before it can be uploaded to the database:

1. Export OSM XML from JOSM

2. Upload data to database using osm2pgsql

3.5.2 osm2pgsql

Osm2pgsql is a command-line tool to convert OpenStreetMap data and upload this data

into a PostGIS database [66]. The database is used by the Mapnik library to render the

map tiles. Mapnik itself is explained in greater detail in Section 3.5.3. To change how

osm2pgsql converts OSM XML into the PostGIS database format, a style file is used. The

file uses a layout of four columns, with one entry per line. Each entry in the OSM XML file

is checked for the features in the first two columns.

The column entries in order are explained on the OSM wiki as follows [66]:

OSM object type The OSM element to match on, as defined in Section 2.2.2: node, way,

or both

Tag The OSM tag to match on

PostgreSQL data type specifies as what kind of PostGIS data element the data should

be stored as.

Flag Flags separated by commas:

linear Import ways as lines, even when they are closed.

51

3 Cartography on the University of Ulm Campus

polygon Closed ways with this tag are imported as polygons. Closed ways with

area = yes are always imported as polygons.

delete The specified tag is not stored in the database.

phstore “Behaves like the polygon flag, but is used in hstore mode when you do

not want to turn the tag into a separate PostgreSQL column” [66]

nocache Can be used for tags, that will not be part of a way.

The style file used in the thesis is based on the default style. An example of an entry as

used in the thesis is shown Listing 3.1. It matches on all elements with a room tag and

stores these as a polygon in the database. This way it is possible to have easy access to

rooms in the rendering process.

Listing 3.1: osm2pgsql style for rooms

1 node,way room text polygon

The full diff to the default style can be seen in Listing 3.2.

To upload the data using osm2pgsql the command-line options seen in Listing 3.2 are

used.

The description of these flags is described in Table 3.12.

-slim Is used as an optimization. The flag permits the database
to store temporary information in the database and not in
random access memory.

-C Specifies how much memory in MB may be used for
caching nodes.

-d Name of the database
-H Hostname
-W Interactive password entry
-U Username
-S Is used to specify a style sheet
OsmConverter/uulm.osm The location of the OSM XML file that will be uploaded

Table 3.12: Command-line flags used for osm2pgsql

52

3.5 Map rendering

Listing 3.2: osm2pgsql command used to upload map data

1 #!/bin/sh

2 osm2pgsql --slim -d gis -C 2048 -H example.org

3 -W -U USERNAME -S wifinder.style OsmConverter/uulm.osm

3.5.3 Mapnik

Mapnik is the toolkit responsible for the actual rendering of map tiles. It uses a style

sheet to render the elements in the database as map tiles. The style sheet allows for

customization of all aspects of map rendering, including “data features, icons, fonts, colors,

patterns and even certain effects such as pseudo-3d buildings and drop shadows” [64].

The style used by the official maps from the OSM project is known as the “OSM Standard

Mapnik Style”.

Mapnik supports a large variety of data sources thanks to a plugin architecture [16]:

• PostGIS, the data source used for the rendering in this thesis

• Shapefiles, a common format for geographic data. Shapefiles are used to render

additional aspects of the map not included in the PostGIS database, for example the

landmasses or coastlines.

• TIFF raster image

• OSM XML There is also limited support to render raw OSM data, without the need

for a database server.

3.5.4 Rendering Schema

Rendering of maps with Mapnik is based on the principle of layers, where each layer can

use a different data source. A style defines how the objects in each layer are rendered

[12]. These styles are defined using an XML schema with a combination of rules and

53

3 Cartography on the University of Ulm Campus

filters. The order of rules and layers defines the order in which objects are rendered on

the map canvas. Because XML files tend to be quite verbose, a different language was

used to create the style sheets for this thesis: The CartoCSS language [11]. CartoCSS is

a style sheet preprocessor, with a styling language very similar to the CSS language used

for web page design.

TileMill & CartoCSS

TileMill is a tool developed by MapBox with the goal of simplifying the design process for

mapping applications [34]:

“TileMill is not intended to be a general-purpose cartography tool, but rather

focuses on streamlining and simplifying a narrow set of use cases.” [34]

TileMill is the software used to design the maps with the help of the CartoCSS language.

It provides a live preview of the currently set map style, greatly enhancing the usability

of the CartoCSS language. The actual rendering backend used by TileMill is the Mapnik

library, which is also used for the rendering stack of the OSM project.

TileMill was used in the design phase of the maps rendering schema used for this thesis.

The considerations that led to this choice are:

• Streamlined and simplified process compared to manually writing Mapnik XML style

sheets

• Usage of variables in style sheets

• TileMill can export Mapnik XML style sheets

• Cross platform compatibility of TileMill

• Live preview of changes to rendering schema

TileMill uses the same concept of layers, each of which is based on a data source. The

data source in use for the thesis is the PostGIS database, created from data that is edited

with the JOSM editor and uploaded using the osm2pgsql tool.

54

3.5 Map rendering

Figure 3.13: TileMill user interface, showing the map of Building O27, Level three

The mapping schema used was not built from scratch, as it is based on the osm-bright

CartoCSS style available on GitHub [39]. To create the map style in use, the following new

layers were created, while other layers were modified to achieve the desired results:

#doors Used to render doors on the map

#corridors Used to render the corridors

#rooms Used to render the maps

A building is split into several layers, and only one layer may be visible at a single time.

Because the rendering of maps is not dynamic, but a collection of raster images, each

layer needs to have its own style sheet. The usage of variables in CartCSS is used to filter

the indoor elements. This way, only elements that are on the desired layer are visible.

55

3 Cartography on the University of Ulm Campus

Example: Rooms

The example of the room rendering is used to explain, how the available options are

used.

A layer #rooms is created. Using the SQL query in Listing 3.3, the layer is used to filter all

ways and areas from the database that match the criteria of having a room tag.

Listing 3.3: SQL query used to create the #rooms layer

1 (SELECT ’way’, ’way_area’ AS ’area’, ’room’ AS

2 ’type’,’name’, ’level’, ’amenity’

3 FROM ’planet_osm_polygon’ WHERE ’room’ NOT IN (’0’,’false’,’no’))

4 AS ’data’

Defining a layer has no effect on the map, since a layer definition is akin to defining a data

source and does not define how these objects are rendered. The actual operations that

are performed using the layer need to be defined using the style sheet in the form of the

CartoCSS language.

Rooms have a gray color as defined in the schema of Table 3.13. Through the usage of

variables, color styles are defined in palette.mss file using hexadecimal RGB represen-

tation. Listing 3.4 is a part of the color definitions used for the map style. The @room

variable can later be used to access the values from the color schema.

Listing 3.4: Color definitions used in the CartCSS style

1 /* ================================ */

2 /* Wifinder: Styles

3 /* =============================== */

4 //"normal rooms"

5 @room: #C4Dff6; //gray

6 @room_auditorium: #A200FF;

7 @toilets: #1BE0D6;

8

9 //Area marking a stairway

10 @stairs: #F5FF82;

56

3.5 Map rendering

11

12 //Corridors:

13 @corridor: #47943D;

The actual rules to render the rooms is shown in Listing 3.5. The #room tag is used to

access the layer created from the SQL query. The values in the rules in the brackets are

used to specify when the rule should be used. The zoom value is used to specify that the

elements should only be rendered if the zoom level is above the level of 17. The zoom

levels in OSM are defined using degrees, where zoom level 0 is relative to 360 degrees,

which results in a view covering the whole area of the world. Zoom level 17 results in a

view of 0.003 degrees.

The level is used to filter elements by the level tag assigned to them during the map

creation process. Inside the braces, the actual options for the rendering process are

defined. Through the usage of [] braces, rules can be applied for different types of rooms.

The type= identifier is used to match the OSM value that was given for the room tag.

For example an Auditorium tagged using room = auditorium is accessed using the rule

type=’auditorium’. The field is called type, because in the SQL query, the values of the

room column are selected as type. The command polygon-fill specifies the color of the

area as well as the fact that is is to rendered as a polygon.

Listing 3.5: CartCSS style to fill the are of a room using

1 // Room area fill

2 #rooms[zoom>=17][level=@level] {

3 [type=’auditorium’] { polygon-fill: @room_auditorium; }

4 [type=’laboratory’] { polygon-fill: #12FF5D; }

5 [type=’yes’]{ polygon-fill: @room; }

6 [type=’yes’][amenity=’toilets’] { polygon-fill: @toilets; }

7 [type=’stairs’] { polygon-fill: @stairs;}

8 polygon-opacity: 0.4;

9 line-color: #000;

10 line-width: 2;

11 }

57

3 Cartography on the University of Ulm Campus

All the commands outside the more specific filter values like polygon-opacity, line-color,

and line-width are set for all types filtered by the outside rule. Values specified using the

additional rules, as for example the color for the auditorium, have precedence over the

globally set values.

To use the CartoCSS style with Mapnik, the files need to be exported as a Mapnik XML

schema. Because a schema is needed for every level, the level variable is changed for

each level and the XML schema is exported. The resulting XML schemas are uploaded to

the rendering server along with all the other resources needed for the rendering process.

This includes shape files as well as images used to mark the position of doors.

Color definitions

The colors in use on the mapping style are defined in Table 3.13. This style is used

throughout all maps and for each level.

An example of the end result is shown in Figure 3.14, and Appendix A.3 shows the map

for every level of Building O27.

Element Color HEX value

Room C4DFF6

Auditorium A200FF

Laboratory 12FF5D

Toilets 1BE0D6

Stairs F5FF82

Corridors 47943D

Table 3.13: Colors in use on the University of Ulm style

renderd & mod_tile

Renderd and mod_tile are the two components on the server side that are responsible for

the process of creating tiles on demand. A part of this is a caching system, so that not all

58

3.5 Map rendering

Figure 3.14: Level 5 of Building O27

59

3 Cartography on the University of Ulm Campus

tiles have to be created for every request. Because of the nature of an indoor mapping

environment, a higher zoom level is required compared to regular maps. Renderd does

not have a configuration option to specify a higher zoom level, the maximum zoom level is

only a compile time option. Listing D.3 is a patch for the render_config.h file, to enable a

zoom level of 22. The default configuration allows a maximum zoom level of 18, which is

not high enough for an indoor map.

The configuration for renderd is used to configure the rendering system as well as the

endpoints for map tile requests. Every building level needs its own endpoint as well as

its own Mapnik XML schema. The URLs used for the map server are osm_level<level

number>/, in the case of the test server with the hostname example.org, the full URL

for map tiles from building Level 1 would be: http://example.org/osm_level1. The full

configuration file is available in Listing D.4.

Conclusion

The documentation in this chapter does not cover all objects that may be encountered on

the campus as a whole. As such the documentation will evolve further as more parts of

the university are added. Some buildings will feature items, that need to be tagged and

were simply not encountered during the mapping process of this building.

The next chapter describes, how the data created using the information and processes

from this chapter, can be used to perform routing, displaying a map, and provide a

database of point-of-interest information.

60

4 Implementation

This chapter covers the implementation of the server side components not directly related

to mapping, as well as the client side application, in the form of an Android application.

The code name for the application is WiFinder and the application as well as the web

service carry this name.

Requirements

The following requirements exist on the server side:

• Server side hosting of Wi-Fi positioning system calibration data

• Server side computation of a users current position based on a scan of Wi-Fi signal

strengths

• Calculation of a route between two rooms

• Calculation of a route between the users current location and a room

• A database of the position of all rooms

• Ability to query the position of a room

To fulfill this criteria, a RESTful web service [17] was implemented using the Python

programming language [19].

The following requirements exist on the client side:

• Provide the user with an estimate of his current position including his current level

• Display the users position on a map view

61

4 Implementation

• User interface to show a route between two rooms

• User interface to show a route from the users current location to another room.

4.1 Overview

To get a better understanding of the implementation, Figure 4.1 shows an overview of the

components and their connection within the implementation.

ServerAndroid Smartphone

Rendering-Database

POI & WiFi fingerprint database

Wi-Fi AP

Wi-Fi AP

Wi-Fi AP

Rendering service

Web service

Figure 4.1: Overview of the infrastructure

The components fulfill the following purpose:

• Web service with a RESTful API

◦ Route calculation

◦ Wi-Fi fingerprint database

◦ Calculation of smartphone position

◦ Resources to access position of rooms

62

4.2 Design choices

• Two PostGIS databases

1. Database used to render the map

2. Database for Wi-Fi fingerprints and map POIs

• Android application

◦ Capture Wi-Fi fingerprints (offline phase)

◦ Display Map

◦ User interface for route calculation

4.2 Design choices

Considering the nature of this prototypical implementation, no caching of the information

received from the web service is performed. In a later implementation that is meant for

public consumption, caching should be implemented to reduce the server load as well as

decrease the response time of the application. The server oriented architecture eliminates

the problems of keeping the data in sync between the device and the server, and simplifies

the maintenance of the code related to routing and positioning, since only the server side

software needs to be changed.

4.3 Web service

The web services based on the RESTful architectures style was implemented. The

implementation was done using a Python framework called Flask [54] in combination with

a number of other Python modules, noteworthy being:

sqlalchemy A Python SQL Toolkit and Object Relational Mapper used for all database

access [57]

63

4 Implementation

geoalchemy2 An extension of sqlalchemy for working with geospatial databases [22]

Flask

The implementation of the service was done using the flask microframework for Python.

Flask simplifies the task of creating a web service while also giving the developer full

control over all aspects of the application. Flask allows the developer control over all

aspects of the application, while providing sensible defaults for these options.

RESTful Webservice

The API to provide all the features relies on the RESTful pattern along with JSON [13] as

serialization format. The API developed provides the following endpoints:

4.4 Positioning system

The positioning system is implemented using the principle of Wi-Fi fingerprinting, also

known as scene analysis. The explanation of how this system works is shown Section

2.4.

The system requires an offline and an online phase, where the offline phase is used to

create a database of fingerprints. The online phase consists of devices trying to determine

their location using the database.

The system works by using the map created from the campus in combination with an

Android device. The requirement for the hardware of the android device is an internet

connection as well as Wi-Fi module.

The software used for the offline as well as the online phase is the Wi-Finder Android

application which was developed in this thesis.

64

4.4 Positioning system

URL Method Data Type Description
/entries GET HTML HTML view of all POI nodes in

the database
/poi GET JSON Request a JSON repre-

sentation of a POI using
name=<NAME> argument. If
no name is given, all POIs are
returned

/poi/names GET JSON Get a list of all names in the
database

/signalNodes/
GET JSON Retrieve all SignaNodes from

the database
POST JSON Submit a new SignalNode to

the database
/signalNodes/<id:int> GET JSON Retrieve the SignalNode with

the given id

/getLocation
GET JSON List of Wi-Fi Signal scans,

equivalent to SignalNodes
POST JSON Returns the users approximate

location given a signal scan
/route GET JSON Needs a start and end URL

parameter, calculates a route
between two points, and returns
the route as a JSON list of way-
points

/nav POST JSON Calculates a route based on the
location given in the POST re-
quest to the room given as a
start URL argument

Table 4.1: Endpoints provided by the Wi-Finder API [59]

65

4 Implementation

4.4.1 Data storage

The storage of the information from the positioning system is done using the web service’s

database. The data in the database consists of the data created using the fingerprinting

system for positioning information as well as OpenStreetMap data. The OpenStreetMap

data is based on the same raw data that is used for the map rendering system, but has to

be held in two separate databases because of the differences in how the data is stored in

the database.

Data for the rendering server is uploaded using the osm2pgsql tool while data for the

POI service is created using the osmosis tool. The databases are separate, because

OSM tags are stored using the key/value system provided through Postgresql’s HSTORE

functions. The rendering toolchain does not work with the HSTORE system.

Osmosis

Osmosis is a command-line utility in principle similar to osm2pgsql but with the ability to

perform larger and more configurable operations [67]. The data that is uploaded to the

database is the same raw data that is used to create the rendering database, but osmosis

expects a cleaner format than osm2pgsql. All data (nodes, ways, relations) that is

uploaded using osmosis need version information as well as timestamps. JOSM does not

export OSM XML data with this information. To overcome this problem, an XML parser

written in Python is used to add the missing information using dummy values. The source

code for this parser is shown in Listing D.7. To automate the process of conversion and

upload a small bash script is used, as shown in Listing D.8.

A fingerprint taken for the positioning system contains the following information:

• The position of the smartphone. This location is defined by the user performing the

scan. The scan consists of latitude, longitude, and the building level.

• Signal strength of all Wi-Fi access points in range. The data captures for each signal

includes:

◦ Signal strength in dBm

66

4.4 Positioning system

◦ Frequency of the signal

◦ SSID of the access point

◦ MAC address of the access point

• The model of the smartphone

• A time stamp added by the web service when the node is uploaded

The data is transmitted from the smartphone using the JavaScript Object Notation (JSON)

and saved in the database. Using the API, a JSON representation of a SignalNode can be

retrieved. Listing 4.1 is an example of such a SignalNode, shortened to only two signals.

The full representation of this node with the id 12 would have had 16 signals.

Listing 4.1: A shortened example of a Signal Node

1 {

2 "signalNodes": {

3 "level": 2,

4 "timestamp": "2013-04-03 15:05:49",

5 "longitude": 9.95694693177938,

6 "signals": [

7 {

8 "ap": {

9 "ssid": "eduroam",

10 "bssid": "00:1e:4a:54:f6:f0"

11 },

12 "signal_strength": -56,

13 "frequency": 2412,

14 "id": 157

15 },

16 {

17 "ap": {

18 "ssid": "eduroam",

19 "bssid": "00:1e:4a:57:76:a0"

67

4 Implementation

20 },

21 "signal_strength": -80,

22 "frequency": 5280,

23 "id": 158

24 },

25],

26 "device": "GT-I9100",

27 "latitude": 48.4231721291727,

28 "id": 12

29 }

30 }

The storage in the database is done using three tables with relationships between them.

Figure 4.2 shows the schema and the relations between the tables in detail.

SignalNode

SignalStrength

AccessPoint

id intPK

level int

tstamp DateTime

latitude Float

longitude Float

device String

id intPK

signal_strength int

ap_bssid String

node_id int

frequency int

bssid StringPK

ssid String

Figure 4.2: Wi-Fi fingerprints database schema

68

4.4 Positioning system

Parameter Value Description
TP1 −85 Minimal signal strength in dBm an access point needs to be

used in the positioning algorithm
TP3 −70 If signal strength of an access point is > TP3 and the signal

node is not in the calibration node, the calibration node is not
used

apThreshold 3 If less than apThreshold APs match between the positioning
scan and calibration node, calibration node is not used

neighbors 5 Number of SignalNodes at most averaged into the location

Table 4.2: Parameters in use for the positioning algorithm

4.4.2 Positioning algorithm

The algorithm used for the positioning system is based on the principle of Wi-Fi finger-

printing in combination with an euclidean distance based algorithm to determine the

position. The algorithm used in the implementation is an implementation of Dijkstra’s

algorithm as described in Section 2.3.1. The algorithm adds the component of averaging

the distance between the fingerprints, known as SignalNodes in the implementation.

Algorithm 2 is the first part of the process of calculating a position. The Euclidean distance

is calculated to all SignalNodes that match the criteria as stated in Section 2.5.3. The

implementation uses the parameters from Table 4.2 for the algorithm. The values are

based on the work in [21] but were changed based on experimentation using the developed

application.

The next step in the calculation of the position is the averaging of the weights which is

shown in Algorithm 3. The resulting level, latitude and longitude are the best possible

estimate of the users position.

69

4 Implementation

Algorithm 2 Part one of positioning algorithm in pseudo code
P is the position scan,
D is the database
for signal ∈ P do

if signal > TP1 then
mPosScan = mPosScan.append(signal)

end if
end for
for AP in mPosScan do
query = all SignalNodes in D which include AP

end for
for signalNode in query do

ap_counter = 0
distance_vector = 0
for positionSignal in mPosScan do
exists = True {Check if BS with signal_strength > TP3 exists in this calibrationN-
ode}
if positionSignal[’signal_strength’] > TP3 then

exists = False
for calibrationSignal in calibrationNode.signals do

if calibrationSignal.ap_bssid == positionSignal[’ap’][’bssid’] then
exists = True

end if
end for

end if
if not exists then

break {Signal strength is larger than TP3, calibration node is not used for locating}
else

for calibrationSignal in calibrationNode.signals do
if positionSignal[′ap′][′bssid′] == calibrationSignal.apbssid then
ap_counter = ap_counter + 1
distance = calibrationSignal.signal_strength −
positionSignal[′signal_strength′]
distance = distance2

distance_vector = distance+ distance_vector
end if
ELSE:
continue {no breaks encountered}

end for
end if
Else:
if ap_counter > apThreshold then
euclidian_distance =

√
distance_vector
ap_counter

tuple = euclidian_distance, callibrationNode
add tuple to positionList
continue

end if
end for

end for

70

4.4 Positioning system

Algorithm 3 Part two of positioning algorithm in pseudo code
Require: tuples of distance and signalNodes (positionList)

sort positionList from smallest to largest distance d
index, latitude, longitude, distances, level = 0
for signalNode, distance in positionList do

if index < neighbors then
index = index+ 1
distances = (1/distances) + distances
latitude = (node.latitude/distance) + latitude
longitude = (node.longitude/distance) + longitude
level = (node.level/distance) + level

end if
end for
latitude = latitude/distances
longitude = longitude/distances
level = level/distances

The position estimate is returned to the client using a JSON representation of the location,

an example of which can be seen in Listing 4.2

Listing 4.2: Example of a position as returned by the web service

1 {

2 "latitude": 48.4231721291727,

3 "longitude": 9.95694693177938,

4 "level": 2

5 }

4.4.3 Accuracy

To determine the accuracy of the positioning system a test series was done on two levels

of the building. On Level two the average deviation from the actual position was 3.84

meters. On Level three it was 6.76 meters. A total of 46 measurements were taken, five of

these measurements returned the wrong building level compared to the actual location.

The full test series is shown in Chapter B The accuracy that can be achieved varies

throughout the building. Factors like open spaces can contribute larger error margins. The

largest errors occur in stairways, where radio waves can travel mostly uninhibited between

71

4 Implementation

levels. As shown in the test series, the margin of error can be large enough such that the

position is off by a building level.

4.5 Routing

The RESTful web service is also responsible for the calculation of routes between rooms

or routes from the user’s location to a room. Navigation to an arbitrary point on the map is

not possible. The implementation of the routing algorithm uses the endpoints of the web

service as defined in Table 4.1. The actual implementation is based on Dijkstra’s algorithm,

which is explained in detail in Section 2.3.1. The full source code of the implementation is

shown in Listing D.6.

4.5.1 Implementation of a Dijkstra algorithm

To be able to calculate a route using a shortest path algorithm, a graph is needed. The

graph is constructed using elements from the OpenStreetMap project. The graph is

constructed with the JOSM in the form of ways with the tag highway=corridor. Because of

how the routing algorithm works, all the nodes on theses ways need to be tagged with

a level tag. These paths are later used to construct the waypoints that are used for the

route. The process of constructing this graph consists of connecting all nodes that are

tagged with the entrance = yes with the ways. Since the ways are used for the routing

process, the path that these ways take in the corridors must not be obstructed by walls or

other obstacles. Figure 4.3 shows the ways that were constructed in building Level 1.

72

4.5 Routing

Figure 4.3: Routing paths of Building O27, Level one

4.5.2 Getting a route

The web service needs two parameters to be able to construct the route: a room number

where the route starts and a room number where the route ends. These are transmitted in

the URL of the request that is transmitted to the web service using URL parameters, for ex-

ample http://example.org/poi-service/route/?start=O27%20245&end=H20

represents the route from the office in room O27 245 to the auditorium H20.

The web service returns a list of waypoints to the client questing a route, an example of

which is shown in Listing 4.3.

Listing 4.3: Example of a route from room O27 245 to O27 201

1 {

2 "waypoints": [

73

4 Implementation

3 {

4 "latitude": 48.42282045409622,

5 "longitude": 9.956953558398476,

6 "level": "2"

7 },

8 {

9 "latitude": 48.422857374806135,

10 "longitude": 9.957059467154115,

11 "level": "2"

12 },

13 {

14 "latitude": 48.42282647162592,

15 "longitude": 9.957096769402563,

16 "level": "2"

17 },

18 {

19 "latitude": 48.422840172020194,

20 "longitude": 9.95714660380187,

21 "level": "2"

22 },

23 {

24 "latitude": 48.42284657089658,

25 "longitude": 9.957166790861855,

26 "level": "2"

27 },

28 {

29 "latitude": 48.42283814387136,

30 "longitude": 9.957175493101834,

31 "level": "2"

32 }

33]

34 }

74

4.6 Android application

Since the data type being returned is a list, no numbering of waypoints is required. The

order is defined by the data type and as such by the order in which the items are returned.

The data format is held as simple as possible and makes the usage through any other

type of application which wants to perform routing functions inside the campus possible.

This makes way for future projects that need a routing API on the campus. By drawing a

line from the starting waypoint to the last item in the list, a route can be constructed.

4.5.3 Routing from the users current location

The second aspect of routing is using the information from the positioning system in

combination with the routing system. The user transmits his current location to the web

service using the endpoint nav. The web service computes a route using the same

algorithms that are used when routing between two rooms. But because the starting point

is usually not an already defined point, the process is more complex.

The routing process works by finding the point on the navigation grid as defined in Figure

4.3 that is closest to the starting point of the routing process. The process works by using

PostGIS functions to determine the nearest neighbor that matches the characteristics

of the routing grid nodes. Once such a point is determined, the routing process works

exactly the same as routing between two rooms. The route is returned in the same JSON

format as seen in Listing 4.3.

4.6 Android application

The component a user interacts with directly is a smartphone application developed for

the Android platform.

4.6.1 Choosing a platform

In the planning stages of the project, the three largest smartphone platforms were consid-

ered for the development of the end user component. The results of other papers were

75

4 Implementation

also taken into consideration during the process of choosing the implementation platform

[49], [53], and [55]. These platforms are:

• Apple’s iOS [28]

• Microsoft’s Windows Phone 7 [43]

• Google’s Android [30]

The deciding factor for the choice of the platform was the possibility to access the devices

information about Wi-Fi access points in range and their signal strength. Only the Android

platform has an interface in it’s SDK which allows access to this information. Windows

Phone and iOS only provide information about the connected networks or the network

state, Windows Phone provides information about the SSID of the connected network

[44], but not the signal strength or the MAC addresses [7] of the access points in range.

As a result of this required feature, only the Android platform could be used to implement

the positioning system as envisioned in the planning stages.

4.6.2 Android implementation

The Android implementation is built to be backwards compatible up to Android version

2.0. This backwards compatibility is needed because of the fragmentation of the Android

smartphone market. The most prevalent version of Android is 2.3 with a market share

of 36.4%. Building an application that is only compatible with versions starting from 4.0

would, at the time this application was developed, only work on 58.6% of devices. The full

set of statistics that show the grade of fragmentation can be seen in Table 4.3.

4.6.3 Libraries

The following libraries are used for the Android application:

ActionBarSherlock A backport of the Android action bar pattern and fragments. The

action bar is used to provide a standardized navigation interface for android applica-

76

4.6 Android application

Version Codename API Distribution
1.6 Donut 4 0.1%
2.1 Eclair 7 1.5%
2.2 Froyo 8 3.2%
2.3 - 2.3.2 Gingerbread 9 0.1%
2.3.3 - 2.3.7 Gingerbread 10 36.4%
3.2 Honeycomb 13 0.1%
4.0.3 - 4.0.4 Ice Cream Sandwich 15 25.6%
4.1.x Jelly Bean 16 29.0%
4.2.x Jelly Bean 17 4.0%

Table 4.3: Android fragmentation on June 3, 2013 [31]

tions, but was only added with the Android API 13. ActionBarSherlock allows the

usage of this pattern with Android versions 2.x and up [3]. Another feature provided

by ActionBarSherlock is its own implementation of the Android fragment pattern

Google Play Services The Google play services library provides the Google Map View

that is used to display the map tiles from the rendering server [25]. The Google Play

Services SDK provides this in the form of the “Google Maps Android API v2” [33].

Gson or “Google-Gson” “ is a Java library that can be used to convert Java Objects

into their JSON representation. It can also be used to convert a JSON string to an

equivalent Java object.” [23]. The library is used to convert the data from the web

service to Java objects.

4.6.4 Android implementation details

The Android implementation uses elements as suggested by the Android API guides when

possible. The user interface is constructed using the action bar pattern for navigation and

fragments to construct the individual views.

ActionBar

The action bar is a window on the upper edge of an application that provides a dedicated

space for navigation purposes. Through the use of the action bar, a consistent navigation

view can be provided across as many android applications as possible [2].

77

4 Implementation

Figure 4.4: Action bar as used in the Wi-Finder application

The action bar as used in the Wi-Finder application is shown in Figure 4.4, the action

bar provides three tabs to switch between the different views of the application. In the

example shown, the action bar also provides three buttons to access features of the view

currently being displayed as well as the so called “overflow” menu, accessed using the “
... ”

symbol.

The items shown in the action bar depend on the amount of screen real estate available

on the device. The items that cannot be shown on screen are moved to the menu button,

that is accessed using the menu key of the device.

Fragments

Fragments are components that hold the views being displayed. Fragments are primarily

designed to “support more dynamic and flexible UI designs on large screens, such as

tablets” [20]. The fragments implementation used in the application is the backported

fragment from the ActionBarSherlock library.

4.6.5 Application views

This section provides a description of what features are provided by each of the available

views and how these views are implemented.

The application has the following main views:

AP List A small view which displays a list of Wi-Fi access points currently in range along

with metadata for every access point.

78

4.6 Android application

Figure 4.5: Smartphone screen of the Wifinder map view

79

4 Implementation

Item Description

Start the positioning system

Switch the map view to a different building level

Open the dialog to get directions

Open the preferences screen

Table 4.4: Menu items in the map view

Map This is the default map view. It shows a map of the campus and provides features

for locating the user as well as the routing functionality

Wi-Fi Map This map view is used to perform the fingerprinting phase of the Wi-Fi posi-

tioning system.

Map

The most important view in the application is the map view. Figure 4.5 shows how this

view looks on a smartphone and Figure 4.6 shows the same view on an Android tablet.

The map view combines all the information from the mapping process by displaying the

map tiles as rendered by the server and can enable the positioning system. The menu

items offered in this view along with a description of their functions can be seen in Table

4.4.

The view includes a widget to switch between building levels in the form of a menu item

“BUILDING LEVEL”, the menu of which is shown in Figure 4.7.

Positioning system

The implementation consists of a specially crafted SherlockMapFragment based on Go-

ogle’s Android Map API v2 and components of the ActionBarSherlock library. To display

the map a MapTools class is used as a helper. It tailors the map view depending on

80

4.6 Android application

Figure 4.6: Screenshot of the map view of Level 1, Building O27

81

4 Implementation

Figure 4.7: Widget to switch between building levels

82

4.6 Android application

the required information and instantiates the maps canvas. It handles the display of a

route and any other functions that need to draw items on the map. The Locate Me button

starts the applications positioning system. It starts a service that is called when new

position information is available. The specifics of this service are explained in detail later

in this chapter. A marker is shown on the map once a position has been determined. This

marker is shown in Figure 4.8 along with a pop up showing detailed information about the

acquired position. Once a new location is determined, the marker is updated to reflect this

change.

If the marker is not visible on the current map canvas, the canvas is updated so that the

marker is centered on the screen. The map also changes the building level shown, based

on the calculated position.

Routing

The map view includes the functionality required to query the web service for routes and

display the returned route on the maps canvas. The calculated route is then displayed on

the map canvas, so that a person can follow the path and reach their destination. To get

the directions the user opens the Get Directions dialog enters a start and an end point of

his route, as shown in Figure 4.9. The text fields need the unique identifiers of the rooms

as set in Section 3.4.3. The text fields uses auto completion to show suggestions in a drop

down list below the text box during text input (Figure 4.10). This simplifies the data entry

process for the user, since all possible values are part of the auto complete function. The

auto complete function is implemented by querying the web service for a list of all rooms.

Besides the possibility to specify a starting and a end room, a check box can be used to

specify that the current location should be used as the starting point of the route.

83

4 Implementation

Figure 4.8: Marker showing the devices calculated position

84

4.6 Android application

Figure 4.9: Dialog to request directions between two rooms

85

4 Implementation

Figure 4.10: Auto completion function of the Get Directions dialog

86

4.6 Android application

Figure 4.11: Example of a route as displayed on the canvas

87

4 Implementation

Item Description

Record a Wi-Fi fingerprint at the position indicated
and send it to the web service

Switch the map view to a different building level

Open the preferences window

Table 4.5: Menu items in the Wi-Fi Map screen

Once the user has entered the required information and has clicked the Get Directions

button, the route is calculated using the web services API and the result is then shown in

the map canvas in the form of a blue line from the starting point to the end point. Figure

4.11 is an example of a route as it is displayed on the map’s canvas.

WiFi Map

The WiFi Map uses the same tools to construct a map canvas as the Map screen, but

serves an entirely different purpose. It can be seen as the development front end of the

Wi-Fi positioning system. The map displayed is the same canvas as the Map view, but

with some added features to help with the process of capturing Wi-Fi fingerprints. The

first thing a users sees is that the canvas is overlayed with a grid with a mesh size of five

meters. The grid is shown to have frame of reference when creating Wi-Fi fingerprints.

Without such a grid it is not immediately apparent where fingerprints need to be placed.

Another visible feature in this view are markers on the map. Each marker represents an

existing Wi-Fi fingerprint. The Wi-Fi fingerprints are downloaded from the API service

when the map view is loaded, so that the view always shows an up to date view of the

fingerprints.

The view of the existing fingerprints makes it easier for a user to add missing fingerprints,

since he can see where fingerprints were already taken. Another feature provided by the

markers is the ability to delete fingerprints. This is useful, if a fingerprint was taken at

the wrong location or fingerprints need to be updated. Because the device can provide

88

4.6 Android application

the needed functionality to change the fingerprints in the database, no other software is

required to manage the fingerprints.

Fingerprinting

The main purpose of this view is to take fingerprints for the Wi-Fi positioning system. The

process consists of the following steps:

1. The application on the device is started and the Wi-Fi fingerprint view is loaded.

2. The user selects the level he wants to take fingerprints on.

3. The user walks to the position where he wants to take the fingerprint at.

4. On the applications map canvas, the blue crosshairs are moved to the position the

user is currently at, as seen in Figure 4.14.

5. The user presses the SEND WIFI FINGERPRINT button.

6. The dialog in Figure 4.15 is displayed. during the fingerprinting process. During

this phase, the applications service queries the Wi-Fi radio and receives a callback

when the results are available. Then the fingerprint is uploaded to the web service,

where the fingerprint is stored in the database. Once this process is complete, the

dialog is closed. The user must not move during this process, since otherwise the

fingerprint will not be at the users current location.

7. A marker is shown on the map canvas at the location the fingerprint was created.

The process of deleting a fingerprint involves clicking that fingerprints marker. The dialog

in Figure 4.15 is shown and once the user confirms the deletion, the fingerprint is deleted

using the web service.

AP List

The AP list view was originally conceived as a test bed for parts of the application like the

background service that queries the Wi-Fi module for access points. It has remained in

89

4 Implementation

Figure 4.12: Mesh grid and existing fingerprints in the Wifi Map screen

90

4.6 Android application

Figure 4.13: Dialog asking for confirmation that a Wi-Fi fingerprinting node is to be deleted

91

4 Implementation

Figure 4.14: Crosshairs used to show the position of the fingerprint

92

4.6 Android application

Figure 4.15: Dialog shown when a fingerprint is taken

the application since it is a valuable tool to check the Wi-Fi reception and the number of

access points currently in range. It’s functionality consists of querying the Wi-Fi service for

access points and displaying them in a ListFragment, a fragment designed to display a list

of items. An example of this view is shown in Figure 4.16, To get more information about

an access point, it can be clicked. The information consists of all information available

about the given access point, including signal strength and capabilities. Figure 4.17 is an

example of the detailed view.

Figure 4.16: A list of access points in the AP List scanner view

93

4 Implementation

Figure 4.17: Detailed view of an access point in the AP list view

Preferences

Wifinder Preferences

Wi-Fi Fingerprinting

Draw grid over map

Server URLs

Tileserver for indoor map tiles

POI Service URL

Figure 4.18: Structure of preferences

94

4.6 Android application

The application also features a preferences screen, where some settings can be influenced.

The settings are mostly related to server URLs, since these were sometimes changed to

reflect the usage of the debugging servers during the development phase. The preferences

are split into two different preference screens, the Wi-Fi Fingerprinting preferences as

well as the Server URLs preferences screen. The preferences can be accesses in any

part of the application using the devices Menu button when available. The structure of the

preferences can be seen in Figure 4.18. Figure 4.19 shows the actual preferences window

in the application. The implementation is done using Android’s preference management

API [6].

Figure 4.19: Preferences screen of the application

Server preferences

The preferences in this part allow the user to change the URL opened for the map tiles as

well as the URL used for the calls to the web services. The URLs can be changed using a

text field, when the corresponding entry is clicked in the preferences screen.

95

4 Implementation

Fingerprinting preferences

The fingerprinting preferences are used to enable or disable the mesh grid that is shown

on the Wi-FiMap canvas.

Wi-Fi service

The implementation of the Wi-Fi service is responsible for the querying of the device’s Wi-

Fi radio and providing applications with the results. The system works through the usage

of Androids concept of System Services. These service send broadcasts to registered

receivers. A service can have a multiple broadcasts a receiver can subscribe to. In

the case of the applications Wi-Fi receiver, the system service WIFI_SERVICE and its

callback for new scan results is used. As an example of this usage, should a Wi-Fi

fingerprint be created, a BroadcastReceiver is created and registered. Then the

WIFI_SERVICE is instructed to scan for Wi-Fi signals and once this scan is complete, a

callback interface is used to notify the application that new results are available.

Network tasks

The Android application relies heavily on calls to the web service and rendering server to

perform its tasks. Without a network connection, the app has no functionality to speak of.

The specifics of this design choices are in Section 4.2. All calls to the web services are

handled in the background, which prevents the UI thread from freezing for the duration of

these requests. The Android SDK provides a class called AsyncTask, which can handle

these kind of background tasks.

“AsyncTask is designed to be a helper class around Thread and Handler and

does not constitute a generic threading framework. AsyncTasks should ideally

be used for short operations (a few seconds at the most.) If you need to keep

threads running for long periods of time, it is highly recommended you use the

various APIs provided by the java.util.concurrent pacakge such as Executor,

ThreadPoolExecutor and FutureTask.” [8]

96

4.6 Android application

The implementation uses these AsyncTasks to perform the background requests to the

web service and callbacks are used to inform the UI of the finished request, so that the UI

can update its screen as needed.

97

5 Outlook

The implementation in this work has succeeded in providing a system that can position a

user on the campus of the university, display a map of the interior of the building with a high

level of detail and provide directions to rooms in the building. The accuracy is high enough

for a user to be able to find his position on the map and have a better understanding of his

or her surroundings.

Requirements revisited

The following requirements for the client side were documented before the implementation

phase of the project:

1. Provide the user with an estimate of his current position including his current level.

2. Display the users position on a map view.

3. User interface to calculate a route between two rooms.

4. User interface to calculate a route from the users current location to another room.

Table 5.1 shows a listing of these requirements and their corresponding solution. Using

the implementation in this thesis, all requirements that were stated could be achieved. As

such the implementation is successful in providing a mapping system for the Building O27

with the potential to expand the coverage across the whole campus.

99

5 Outlook

Requirement Fulfillment
1 The positioning system created can provide the user with a position

such that the user can see an estimate of his position inside the building.
The position is not 100% accurate, but provides a best-effort solution
to this requirement.

2 The map canvas in the Android application can use the data from the
positioning system and show this position on the map.

3 A user interface to enter two rooms was implemented and the resulting
route is shown by the Android application.

Table 5.1: Requirements and their fulfillment

5.1 Challenges

One of the challenges of this system was the creation of high quality mapping material.

The process as outlined is highly manual and labor-intensive. The task of creating rooms

and manually tagging them is also error-prone. Considering the size of for example, the

campus of a university, the chances are high, that the maps will have errors. This can

lead to maps that do not correctly portray the location of rooms or show areas that do not

actually exist. These problems are not as serious as errors in the routing ways that are

computed inside buildings. Errors in this grid of paths can lead to longer routes, errors in

the routing algorithm, or rooms that can not be reached through navigation.

There are ways to reduce these errors. For example, an algorithm could be designed

that checks the reachability of all POIs in the web service and reports such errors before

new data is added to the database. Similar checks can be developed for other map

data, which check if rooms have inconsistent tags. Both of these can eliminate errors.

But these algorithms cannot decrease the amount of time needed to generate the map

material. A way that has been devised during this thesis, but could not be tested because

of time constraints, would be the automatic creation of map data from already existing

schematics. Such data is usually available for buildings in the form of AutoCAD [29] or

similar computer-aided-design software.

If a parser can be written that is able to produce map data for OSM, it can reduce errors in

the material and either decrease the amount of time needed to create maps or, in the best

case, automate the process as a whole. This would leave the Wi-Fi positioning system as

100

5.2 Future work

the last task that required a large amount of manual labor. But the advances in robotics

might be able to automate even this process.

5.2 Future work

The way the application is designed is very modular as the system used for Wi-Fi posi-

tioning is separate from the components used to render the map. The POI service and

Wi-Fi positioning both run on the same server, but can easily be separated from each

other, since there are no interdependencies. the usage of OSM tools brings a framework

of other software that can work with the created material. Through the usage of readily

available components that work with OSM data, other systems can profit from this data.

One such example is the OpenStreetMap project called “Slippy Map” [68]. It provides a

browser interface to map tiles. This interface was used to create a browser based map

of O27, using the OSM material created for this thesis. This application can be seen in

Figure 5.1. Such a map can be used throughout web sites of the campus to show the

location of rooms or events.

Positioning system

The accuracy of the positioning system can be improved to increase its accuracy. Table

2.3 shows that accuracies in the range of two meters are possible using Wi-Fi based

systems. Increasing the number of fingerprints is one way to increase the accuracy

of these positioning systems. Another way to increase the accuracy is by taking four

measurements at each fingerprint, in four different directions. This is used to reduce the

impact on the received signals strengths caused by the person performing this scan.

Routing

The routing system currently uses Dijkstra’s algorithm to find the shortest path between

two points. Using different algorithms, for example A*, can decrease the time needed to

calculate a route. Route calculation could also be performed on the device to decrease

the reliance on a internet connection. Especially, a visitor might not always have the

101

5 Outlook

Figure 5.1: OSM Slippy Map of building O27

102

5.3 Conclusion

needed credentials to use the University’s Wi-Fi system or even know of it’s existence. The

reception from the cell phone network is not always reliable and especially in underground

levels unreliable at best. Another possibility is the optimization of routes in the context of

process management and mobile process management, examples that can profit from

this work are [51] and [50].

App enhancements The functionality of the app can also be expanded to include more

meta information. One idea that can be envisioned using the map material in combination

with other data could be an extension of the map, where clicking on a office can show the

occupants with phone numbers and other contact information. Clicking on an auditorium

could show information about the usage for the current day and the maximum occupancy.

Another possibility is the combination of the POI data with an augmented reality application.

This app could show the location of all rooms or the location of some of the more important

places on campus.

5.3 Conclusion

While the application leaves room for future enhancements, the application shows that

using the technologies as described in this thesis provide a system that constitutes a full

solution for indoor navigation. The concepts described in this system are fully transferable

to almost any other indoor environment, especially considering the prevalence of Wi-Fi

networks in most indoor environments.

103

Bibliography

[1] private communication. Department V - Facility management, University of Ulm,

July 2, 2013.

[2] Action Bar | Android Developers. June 25, 2013. URL: http://developer.andr

oid.com/guide/topics/ui/actionbar.html.

[3] ActionBarSherlock - Home. June 25, 2013. URL: http://actionbarsherlock

.com/index.html.

[4] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. Data structures and algorithms: Addison-

Wesley series in computer science and information processing. Addison-Wesley,

1983. ISBN: 9780201000238. URL: http://books.google.de/books?id=Ast

QAAAAMAAJ.

[5] K. Al Nuaimi and H. Kamel. “A survey of indoor positioning systems and algorithms”.

In: Innovations in Information Technology (IIT), 2011 International Conference on.

2011, pp. 185–190. DOI: 10.1109/INNOVATIONS.2011.5893813.

[6] android.preference | Android Developers. June 26, 2013. URL: http://develo

per.android.com/reference/android/preference/package-summary

.html.

[7] IEEE Standars Association. Standard Group MAC Addresses: A Tutorial Guide.

URL: http://standards.ieee.org/develop/regauth/tut/macgrp.pdf

(visited on 07/02/2013).

[8] AsyncTask | Android Developers. June 26, 2013. URL: http://developer.and

roid.com/reference/android/os/AsyncTask.html.

[9] Alexander Bachmeier. Indoor Ortung und Kartografie. Ulm University, 2013.

[10] Bing Maps. URL: http://www.bing.com/maps/ (visited on 07/01/2013).

[11] CartoCSS | MapBox. June 18, 2013. URL: http://www.mapbox.com/tilemil

l/docs/manual/carto/.

105

http://developer.android.com/guide/topics/ui/actionbar.html
http://developer.android.com/guide/topics/ui/actionbar.html
http://actionbarsherlock.com/index.html
http://actionbarsherlock.com/index.html
http://books.google.de/books?id=AstQAAAAMAAJ
http://books.google.de/books?id=AstQAAAAMAAJ
http://dx.doi.org/10.1109/INNOVATIONS.2011.5893813
http://developer.android.com/reference/android/preference/package-summary.html
http://developer.android.com/reference/android/preference/package-summary.html
http://developer.android.com/reference/android/preference/package-summary.html
http://standards.ieee.org/develop/regauth/tut/macgrp.pdf
http://developer.android.com/reference/android/os/AsyncTask.html
http://developer.android.com/reference/android/os/AsyncTask.html
http://www.bing.com/maps/
http://www.mapbox.com/tilemill/docs/manual/carto/
http://www.mapbox.com/tilemill/docs/manual/carto/

Bibliography

[12] Core Concepts of Mapnik — mapnik Wiki. June 18, 2013. URL: https://github

.com/mapnik/mapnik/wiki/MapnikCoreConcepts.

[13] D. Crockford. The application/json Media Type for JavaScript Object Notation (JSON).

RFC 4627 (Informational). Internet Engineering Task Force, July 2006. URL: http:

//www.ietf.org/rfc/rfc4627.txt.

[14] Zhang Da et al. “Localization Technologies for Indoor Human Tracking”. In: CoRR

abs/1003.1833 (2010). URL: http://dblp.uni-trier.de/db/journals/co

rr/corr1003.html#abs-1003-1833.

[15] E. W. Dijkstra. “A note on two problems in connexion with graphs”. In: Numerische

Mathematik 1.1 (Dec. 1, 1959), pp. 269–271. ISSN: 0029-599X. DOI: 10.1007/bf

01386390. URL: http://dx.doi.org/10.1007/bf01386390.

[16] FAQ — Mapnik. URL: http://mapnik.org/faq/.

[17] Roy Thomas Fielding. “Architectural styles and the design of network-based software

architectures”. AAI9980887. PhD thesis. University of California, Irvine, 2000. ISBN:

0-599-87118-0.

[18] Kenneth E. Foote and University of Texas at Austin) Lynch, Margaret (Department

of Geography. Principles of Geographical Information Systems. 2000. URL: http:

//www.rc.unesp.br/igce/geologia/GAA01048/papers/Burrough_Mc

Donnell-Two.pdf (visited on 05/23/2013).

[19] Python Software Foundation. Python Programming Language - Official Website.

URL: http://www.python.org/ (visited on 07/02/2013).

[20] Fragments | Android Developers. June 25, 2013. URL: http://developer.and

roid.com/guide/components/fragments.html.

[21] S. Gansemer, U. Grossmann, and S. Hakobyan. “RSSI-based Euclidean Distance

algorithm for indoor positioning adapted for the use in dynamically changing WLAN

environments and multi-level buildings”. In: Indoor Positioning and Indoor Navigation

(IPIN), 2010 International Conference on. 2010, pp. 1–6. DOI: 10.1109/IPIN.20

10.5648247.

[22] Geoalchemy2 Documentation. June 20, 2013. URL: http://geoalchemy-2.re

adthedocs.org/en/0.2/.

[23] google-gson - A Java library to convert JSON to Java objects and vice-versa.

June 26, 2013. URL: https://code.google.com/p/google-gson/.

106

https://github.com/mapnik/mapnik/wiki/MapnikCoreConcepts
https://github.com/mapnik/mapnik/wiki/MapnikCoreConcepts
http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc4627.txt
http://dblp.uni-trier.de/db/journals/corr/corr1003.html#abs-1003-1833
http://dblp.uni-trier.de/db/journals/corr/corr1003.html#abs-1003-1833
http://dx.doi.org/10.1007/bf01386390
http://dx.doi.org/10.1007/bf01386390
http://dx.doi.org/10.1007/bf01386390
http://mapnik.org/faq/
http://www.rc.unesp.br/igce/geologia/GAA01048/papers/Burrough_McDonnell-Two.pdf
http://www.rc.unesp.br/igce/geologia/GAA01048/papers/Burrough_McDonnell-Two.pdf
http://www.rc.unesp.br/igce/geologia/GAA01048/papers/Burrough_McDonnell-Two.pdf
http://www.python.org/
http://developer.android.com/guide/components/fragments.html
http://developer.android.com/guide/components/fragments.html
http://dx.doi.org/10.1109/IPIN.2010.5648247
http://dx.doi.org/10.1109/IPIN.2010.5648247
http://geoalchemy-2.readthedocs.org/en/0.2/
http://geoalchemy-2.readthedocs.org/en/0.2/
https://code.google.com/p/google-gson/

Bibliography

[24] Google Maps - University of Ulm Campus. June 11, 2013. URL: https://www.g

oogle.de/maps/preview#!data=!1m4!1m3!1d3206!2d9.9584841!3d48

.4236206.

[25] Google Play Services | Android Developers. June 25, 2013. URL: http://dev\-

eloper.android.com/google/play-services/index.html.

[26] P.E. Hart, N.J. Nilsson, and B. Raphael. “A Formal Basis for the Heuristic Deter-

mination of Minimum Cost Paths”. In: Systems Science and Cybernetics, IEEE

Transactions on 4.2 (1968), pp. 100–107. ISSN: 0536-1567. DOI: 10.1109/TSSC

.1968.300136.

[27] How MySQL Uses Indexes. Oracle Corporation. URL: http://dev.mysql.com

/doc/refman/5.1/en/mysql-indexes.html (visited on 05/25/2013).

[28] Apple Inc. Apple - iOS - 6. URL: http://www.apple.com/ios/ (visited on

07/02/2013).

[29] Autodesk Inc. AutoCAD Design Suite | CAD Design Software | Autodesk. Autodesk

Inc. 2013. URL: http://www.autodesk.com/suites/autocad-design-su

ite/overview (visited on 07/02/2013).

[30] Google Inc. Android. URL: http://www.android.com/ (visited on 07/02/2013).

[31] Google Inc. Dashboards | Android DEvelopers. June 25, 2013. URL: http://dev

eloper.android.com/about/dashboards/index.html.

[32] Google Inc. Google Maps. July 1, 2013. URL: https://www.google.com/maps.

[33] Google Inc. Google Maps Android API v2 – Google Developers. URL: https://

developers.google.com/maps/documentation/android/ (visited on

07/03/2013).

[34] Introduction | MapBox. June 18, 2013. URL: http://www.mapbox.com/tilemi

ll/docs/manual/.

[35] Javier DeSalas Jimmy LaMance and Jani Järvinen, eds. Innovation: Assisted GPS:

A Low-Infrastructure approach. GPS World (Mar. 1, 2002). URL: http://www.gp

sworld.com/innovation-assisted-gps-a-low-infrastructure-app

roach/ (visited on 06/27/2013).

[36] JOSM - OpenSteetMap Wiki. June 10, 2013. URL: http://wiki.openstreetm

ap.org/w/index.php?title=JOSM&oldid=908119.

107

https://www.google.de/maps/preview#!data=!1m4!1m3!1d3206!2d9.9584841!3d48.4236206
https://www.google.de/maps/preview#!data=!1m4!1m3!1d3206!2d9.9584841!3d48.4236206
https://www.google.de/maps/preview#!data=!1m4!1m3!1d3206!2d9.9584841!3d48.4236206
http://dev\-eloper.android.com/google/play-services/index.html
http://dev\-eloper.android.com/google/play-services/index.html
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dev.mysql.com/doc/refman/5.1/en/mysql-indexes.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-indexes.html
http://www.apple.com/ios/
http://www.autodesk.com/suites/autocad-design-suite/overview
http://www.autodesk.com/suites/autocad-design-suite/overview
http://www.android.com/
http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html
https://www.google.com/maps
https://developers.google.com/maps/documentation/android/
https://developers.google.com/maps/documentation/android/
http://www.mapbox.com/tilemill/docs/manual/
http://www.mapbox.com/tilemill/docs/manual/
http://www.gpsworld.com/innovation-assisted-gps-a-low-infrastructure-approach/
http://www.gpsworld.com/innovation-assisted-gps-a-low-infrastructure-approach/
http://www.gpsworld.com/innovation-assisted-gps-a-low-infrastructure-approach/
http://wiki.openstreetmap.org/w/index.php?title=JOSM&oldid=908119
http://wiki.openstreetmap.org/w/index.php?title=JOSM&oldid=908119

Bibliography

[37] JOSM/Plugins - OpenStreetMap Wiki. June 10, 2013. URL: https://wiki.open

streetmap.org/w/index.php?title=JOSM/Plugins&oldid=802496.

[38] Josm/Plugins/PicLayer. June 13, 2013. URL: http://wiki.openstreetmap.o

rg/w/index.php?title=JOSM/Plugins/PicLayer&oldid=734413.

[39] mapbox/osm-bright - GitHub. June 18, 2013. URL: https://github.com/mapb

ox/osm-bright.

[40] Map Features - OpenSteetMap Wiki. June 10, 2013. URL: http://wiki.openst

reetmap.org/w/index.php?title=Map_Features&oldid=836071.

[41] MapQuest maps - Driving Directions - Map. URL: http://www.mapquest.com/

(visited on 07/01/2013).

[42] Brian McClendon. A new frontier for Google Maps: mapping the indoors. Nov. 29,

2011. URL: http://googleblog.blogspot.de/2011/11/new-frontier-

for-google-maps-mapping.html (visited on 06/29/2013).

[43] Microsoft. The Smartphone Reinvented Around You | Windows Phone (United

States). URL: http://www.windowsphone.com/en-us (visited on 07/02/2013).

[44] MSDN. NetworkInterfaceInfo.InterfaceName Property. May 2013. URL: http://m

sdn.microsoft.com/en-us/library/windowsphone/develop/microso

ft.phone.net.networkinformation.networkinterfaceinfo.interfa

cename(v=vs.105).aspx.

[45] NAVSTAR GPS USER EQUIPMENT INTRODUCTION. 1996. URL: http://www

.navcen.uscg.gov/pubs/gps/gpsuser/gpsuser.pdf.

[46] OpenGeo : Introduction to PostGIS : Section 1: Introduction. 2013. URL: http://w

orkshops.opengeo.org/postgis-intro/introduction.html (visited on

05/24/2013).

[47] OpenSteetMap - Copyright and License. June 8, 2013. URL: http://www.opens

treetmap.org/copyright/en.

[48] OpenStreetMap project. OpenStreetMap. URL: http://www.openstreetmap.o

rg/ (visited on 07/01/2013).

[49] Rüdiger Pryss et al. “Mobile Task Management for Medical Ward Rounds - The

MEDo Approach”. In: 1st Int’l Workshop on Adaptive Case Management (ACM’12),

BPM’12 Workshops. LNBIP 132. Springer, Sept. 2012, pp. 43–54.

108

https://wiki.openstreetmap.org/w/index.php?title=JOSM/Plugins&oldid=802496
https://wiki.openstreetmap.org/w/index.php?title=JOSM/Plugins&oldid=802496
http://wiki.openstreetmap.org/w/index.php?title=JOSM/Plugins/PicLayer&oldid=734413
http://wiki.openstreetmap.org/w/index.php?title=JOSM/Plugins/PicLayer&oldid=734413
https://github.com/mapbox/osm-bright
https://github.com/mapbox/osm-bright
http://wiki.openstreetmap.org/w/index.php?title=Map_Features&oldid=836071
http://wiki.openstreetmap.org/w/index.php?title=Map_Features&oldid=836071
http://www.mapquest.com/
http://googleblog.blogspot.de/2011/11/new-frontier-for-google-maps-mapping.html
http://googleblog.blogspot.de/2011/11/new-frontier-for-google-maps-mapping.html
http://www.windowsphone.com/en-us
http://msdn.microsoft.com/en-us/library/windowsphone/develop/microsoft.phone.net.networkinformation.networkinterfaceinfo.interfacename(v=vs.105).aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/microsoft.phone.net.networkinformation.networkinterfaceinfo.interfacename(v=vs.105).aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/microsoft.phone.net.networkinformation.networkinterfaceinfo.interfacename(v=vs.105).aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/microsoft.phone.net.networkinformation.networkinterfaceinfo.interfacename(v=vs.105).aspx
http://www.navcen.uscg.gov/pubs/gps/gpsuser/gpsuser.pdf
http://www.navcen.uscg.gov/pubs/gps/gpsuser/gpsuser.pdf
http://workshops.opengeo.org/postgis-intro/introduction.html
http://workshops.opengeo.org/postgis-intro/introduction.html
http://www.openstreetmap.org/copyright/en
http://www.openstreetmap.org/copyright/en
http://www.openstreetmap.org/
http://www.openstreetmap.org/

Bibliography

[50] Rüdiger Pryss et al. “Towards Flexible Process Support on Mobile Devices”. In:

Proc. CAiSE’10 Forum - Information Systems Evolution. LNBIP 72. Springer, 2010,

pp. 150–165.

[51] Manfred Reichert and Barbara Weber. Enabling Flexibility in Process-Aware Infor-

mation Systems: Challenges, Methods, Technologies. Berlin-Heidelberg: Springer,

2012.

[52] Relation - OpenSteetMap Wiki. June 8, 2013. URL: http://wiki.openstreetm

ap.org/w/index.php?title=Relation&oldid=876549.

[53] Andreas Robecke, Rüdiger Pryss, and Manfred Reichert. “DBIScholar: An iPhone

Application for Performing Citation Analyses”. In: CAiSE Forum-2011. Proceed-

ings of the CAiSE’11 Forum at the 23rd International Conference on Advanced

Information Systems Engineering Vol-73. CEUR Workshop Proceedings, June 2011.

[54] Armin Ronacher. Welcome | Flask (A Python Microframework). URL: http://fla

sk.pocoo.org/ (visited on 07/02/2013).

[55] Johannes Schobel et al. “Using Vital Sensors in Mobile Healthcare Business Ap-

plications: Challenges, Examples, Lessons Learned”. In: 9th Int’l Conference on

Web Information Systems and Technologies (WEBIST 2013), Special Session on

Business Apps. 2013 SCITEPRESS, May 2013, pp. 509–518.

[56] Uwe Schöning. Algorithmik. Spektrum Akadem. Verl., 2001, pp. 1–384. ISBN: 978-

3-8274-1092-4.

[57] SQLAlchemy - The DataData Toolkit for Python. June 20, 2013. URL: http://ww

w.sqlalchemy.org/.

[58] Tags - OpenStreetMap Wiki. June 9, 2013. URL: http://wiki.openstreetmap

.org/w/index.php?title=Tags&oldid=867416.

[59] OpenStreetMap Wiki. About — OpenStreetMap Wiki, [Online; accessed 8-June-

2013]. 2013. URL: http://wiki.openstreetmap.org/w/index.php?title

=About&oldid=905556.

[60] OpenStreetMap Wiki. Beginners Guide 1.3 — OpenStreetMap Wiki, [Online; ac-

cessed 8-June-2013]. 2013. URL: http://wiki.openstreetmap.org/w/ind

ex.php?title=Beginners_Guide_1.3&oldid=908918.

[61] OpenStreetMap Wiki. Bing — OpenStreetMap Wiki. June 17, 2013. URL: http://w

iki.openstreetmap.org/w/index.php?title=Bing&oldid=869138.

109

http://wiki.openstreetmap.org/w/index.php?title=Relation&oldid=876549
http://wiki.openstreetmap.org/w/index.php?title=Relation&oldid=876549
http://flask.pocoo.org/
http://flask.pocoo.org/
http://www.sqlalchemy.org/
http://www.sqlalchemy.org/
http://wiki.openstreetmap.org/w/index.php?title=Tags&oldid=867416
http://wiki.openstreetmap.org/w/index.php?title=Tags&oldid=867416
http://wiki.openstreetmap.org/w/index.php?title=About&oldid=905556
http://wiki.openstreetmap.org/w/index.php?title=About&oldid=905556
http://wiki.openstreetmap.org/w/index.php?title=Beginners_Guide_1.3&oldid=908918
http://wiki.openstreetmap.org/w/index.php?title=Beginners_Guide_1.3&oldid=908918
http://wiki.openstreetmap.org/w/index.php?title=Bing&oldid=869138
http://wiki.openstreetmap.org/w/index.php?title=Bing&oldid=869138

Bibliography

[62] OpenStreetMap Wiki. Elements — OpenStreetMap Wiki, June 8, 2013. URL: http:

//wiki.openstreetmap.org/w/index.php?title=Elements&oldid=89

5354.

[63] OpenStreetMap Wiki. History of OpenStreetMap — OpenStreetMap Wiki, [Online;

accessed 7-June-2013]. 2013. URL: http://wiki.openstreetmap.org/w/in

dex.php?title=History_of_OpenStreetMap&oldid=897370.

[64] OpenStreetMap Wiki. Mapnik — OpenStreetMap Wiki. June 16, 2013. URL: http:

//wiki.openstreetmap.org/w/index.php?title=Mapnik&oldid=9081

71.

[65] OpenStreetMap Wiki. Mod tile — OpenStreetMap Wiki. June 17, 2013. URL: http:

//wiki.openstreetmap.org/w/index.php?title=Mod_tile&oldid=90

4480.

[66] OpenStreetMap Wiki. Osm2pgsql — OpenStreetMap Wiki. June 17, 2013. URL:

http://wiki.openstreetmap.org/w/index.php?title=Osm2pgsql&ol

did=913771.

[67] OpenStreetMap Wiki. Osmosis - OpenStreetMap Wiki. June 25, 2013. URL: http:

//wiki.openstreetmap.org/w/index.php?title=Osmosis&oldid=888

510.

[68] OpenStreetMap Wiki. Slippy Map - OpenSteetMap Wiki. June 26, 2013. URL: http

://wiki.openstreetmap.org/w/index.php?title=Slippy_Map&oldid

=901993.

[69] Wikipedia. Cartography — Wikipedia, The Free Encyclopedia. [Online; accessed

7-June-2013]. 2013. URL: http://en.wikipedia.org/w/index.php?title

=Cartography&oldid=552817872.

[70] Wikipedia. Graph theory — Wikipedia, The Free Encyclopedia. [Online; accessed

28-May-2013]. 2013. URL: http://en.wikipedia.org/w/index.php?title

=Graph_theory&oldid=556443216.

110

http://wiki.openstreetmap.org/w/index.php?title=Elements&oldid=895354
http://wiki.openstreetmap.org/w/index.php?title=Elements&oldid=895354
http://wiki.openstreetmap.org/w/index.php?title=Elements&oldid=895354
http://wiki.openstreetmap.org/w/index.php?title=History_of_OpenStreetMap&oldid=897370
http://wiki.openstreetmap.org/w/index.php?title=History_of_OpenStreetMap&oldid=897370
http://wiki.openstreetmap.org/w/index.php?title=Mapnik&oldid=908171
http://wiki.openstreetmap.org/w/index.php?title=Mapnik&oldid=908171
http://wiki.openstreetmap.org/w/index.php?title=Mapnik&oldid=908171
http://wiki.openstreetmap.org/w/index.php?title=Mod_tile&oldid=904480
http://wiki.openstreetmap.org/w/index.php?title=Mod_tile&oldid=904480
http://wiki.openstreetmap.org/w/index.php?title=Mod_tile&oldid=904480
http://wiki.openstreetmap.org/w/index.php?title=Osm2pgsql&oldid=913771
http://wiki.openstreetmap.org/w/index.php?title=Osm2pgsql&oldid=913771
http://wiki.openstreetmap.org/w/index.php?title=Osmosis&oldid=888510
http://wiki.openstreetmap.org/w/index.php?title=Osmosis&oldid=888510
http://wiki.openstreetmap.org/w/index.php?title=Osmosis&oldid=888510
http://wiki.openstreetmap.org/w/index.php?title=Slippy_Map&oldid=901993
http://wiki.openstreetmap.org/w/index.php?title=Slippy_Map&oldid=901993
http://wiki.openstreetmap.org/w/index.php?title=Slippy_Map&oldid=901993
http://en.wikipedia.org/w/index.php?title=Cartography&oldid=552817872
http://en.wikipedia.org/w/index.php?title=Cartography&oldid=552817872
http://en.wikipedia.org/w/index.php?title=Graph_theory&oldid=556443216
http://en.wikipedia.org/w/index.php?title=Graph_theory&oldid=556443216

A Figures

A.1 Levels of Building O27

111

A
Figures

Figure A.1: Level one of Building O27

112

A
.1

Levels
ofB

uilding
O

27

Figure A.2: Level two of Building O27

113

A
Figures

Figure A.3: Level three of Building O27

114

A
.1

Levels
ofB

uilding
O

27

Figure A.4: Level four of Building O27

115

A
Figures

Figure A.5: Level five of Building O27

116

A.2 Examples of building features

A.2 Examples of building features

Figure A.6: Building O27 on the eastern campus of the University of Ulm. Tagged using
building = yes.

117

A Figures

Figure A.7: A computer laboratory in Building O27, tagged using room = laboratory and
laboratory = computer.

118

A.2 Examples of building features

Figure A.8: A restroom as an example for the amenity = toilets tag.

119

A Figures

Figure A.9: An elevator on Level one of Building O27. Tagged using highway = elevator.

120

A.2 Examples of building features

Figure A.10: Stairway on Level two of Building O27. The downward stairs lead to Level one,
while the upward stairs lead to Level three. Tagged using highway = steps,
area = yes.

Figure A.11: Auditorium “H20”, tagged using room = auditorium.

121

A Figures

A.3 Building O27 rendered using the specified maps

Figure A.12: Level one of Building O27

122

A.3 Building O27 rendered using the specified maps

Figure A.13: Level two of Building O27

123

A Figures

Figure A.14: Level three of Building O27

124

A.3 Building O27 rendered using the specified maps

Figure A.15: Level four of Building O27

125

A Figures

Figure A.16: Level five of Building O27

126

B Test series

The following test series was done using the positioning system developed in this thesis.

The test consisted of measuring the distance from the actual location to the first two

positions calculated by the positioning system. Position calculations that gave the wrong

building level are also marked as such.

Point Distance A in m level error Distance B in m level error
A1 2.6 0 4.1 0
A2 7.4 0 10.7 0
A3 2.6 0 3.0 0
A4 1.5 0 2.2 0
A5 1.5 0 0.0 0
A6 0.0 0 2.2 0
A7 8.1 0 0.0 0
A8 1.5 0 1.1 0
A9 10.0 0 8.1 1
A10 2.6 0 10.4 0
A11 1.9 0 3.0 0

Average: 3.6 4.1
Combined average: 3.84
Combined median: 2.59
Combined variance: 12.47

Table B.1: Test series taken in Level two of Building O27

127

B Test series

Point Distance A in m level error Distance B in m level error
A1 9.3 0 11.7 0
A2 2.3 1 2.7 1
A3 3.7 0 2.0 0
A4 9.7 0 21.7 0
A5 5.0 0 10.0 1
A6 11.0 0 9.3 1
A7 0.0 0 0.0 0
A8 9.3 0 10.3 0
A9 2.3 0 2.3 0
A10 12.7 0 11.0 0
A11 2.7 0 2.0 0
A12 4.3 0 6.7

Average 5.7 7.1
Combined average: 6.76
Combined median: 5.83
Combined variance: 26.79

Table B.2: Test series taken in Level three of Building O27

128

C Guides

C.1 Installation guide

This section is an installation guide for the databse required for the POI service as well as

the upgrade of the database to PostGIS 2.0

C.1.1 Geocoding

The pipeline consists of the following tools:

• Storage: JOSM(OSM XML)→ osmosis(SQL)→ PostgreSQL + PostGIS

• Retrieval: Request ("NAME") ←→ query key ’name’ on nodes layer ←→ search

PostgreSQL + PostGIS

Customizations compared to the normal process of exporting OSM data to a PostGIS

database: JOSM does not export clean OSM XML, since the raw data is complemented

by change set information, there are now configuration options to change this behavior,

but through a small change in the sources of JOSM, the data exported is clean OSM XML

data.

C.1.2 Compiling JOSM in Eclipse

The following steps are required to compile JOSM using the Eclipse IDE. Subversion is

required to get the latest release from the JOSM project.

129

C Guides

1. Get JOSM Source:

$svn co http://josm.openstreetmap.de/svn/trunk josm

2. Install Eclipse JavaCC plugin from http://eclipse-javacc.sourceforge.

net/

3. Import the project into Eclipse using the existing project wizard

4. Open org.openstreetmap.josm.gui.mappaint.mapcss in package explor-

er, right click apCSSParser.jj Compile with JavaCC

5. Create package

org.openstreetmap.josm.gui.mappaint.mapcss.parsergen

6. Move the files created by JavaCC into the new package

7. Modify org.openstreetmap.josm.io.OsmExporter.java

8. Execute ant in JOSM source path

9. The resulting binary in the form of a .jar can be found in the path:

dist/josm-custom.jar

Listing C.1: Original line of source code

1 OsmWriter w =

2 OsmWriterFactory.createOsmWriter(new PrintWriter(writer), false,

3 layer.data.getVersion());

Listing C.2: Modefied line of source code

1 OsmWriter w =

2 OsmWriterFactory.createOsmWriter(new PrintWriter(writer),

3 true, layer.data.getVersion());

130

http://eclipse-javacc.sourceforge.net/
http://eclipse-javacc.sourceforge.net/

C.1 Installation guide

C.1.3 Database

The guide to install the PostGIS database is based on the official tutorial from http:

//wiki.openstreetmap.org/wiki/Osmosis/PostGIS_Setup. The database set

up on a server running Ubuntu 12.04 was done using the following configuration. All

commands are entered using a bash shell. Postgres 9.1 + PostGis 1.5 setup:

1. Dependencies: postgis, postgresql, osmosis

2. #su postgres

3. $createdb osm

4. $createuser osm (yes superuser)

5. $psql osm --command "CREATE EXTENSION hstore;"

6. $psql --command "ALTER USER <username>

WITH ENCRYPTED PASSWORD ’osm’";

7. $psql -d osm -f

/usr/share/postgresql/9.1/contrib/postgis-1.5/postgis.sql

8. $psql -d osm -f

/usr/share/postgresql/9.1/contrib/postgis-1.5/

spatial_ref_sys.sql

9. $cd "/usr/share/doc/osmosis/examples"

10. $psql -d osm -f pgsnapshot_schema_0.6.sql

11. $psql -d osm -f pgsnapshot_schema_0.6_action.sql

12. $psql -d osm -f pgsnapshot_schema_0.6_bbox.sql

13. $psql -d osm -f pgsnapshot_schema_0.6_linestring.sql

131

http://wiki.openstreetmap.org/wiki/Osmosis/PostGIS_Setup
http://wiki.openstreetmap.org/wiki/Osmosis/PostGIS_Setup

C Guides

14. If there are problems using peer authentication, the usage of a host name forces

password authentication

Import osm file into database:

$osmosis --read-xml file="osm_output.xml"

--write-pgsql user="osm" database="osm"

password="PASSWORD" host="HOSTNAME"

Upgrade PostGIS database to version 2.0

To solve the closest neighbor problem using the geospatial database, an upgrade of

PostGIS to version 2.0 was required.

1. Install Ubuntu GIS stable PPA:

apt-add-repository ppa:ubuntugis/ppa && apt-get update

&& apt-get dist-upgrade

2. Dump the old database:

#pg_dump -h localhost -p 5432 -U postgres

-Fc -b -v -f "/somepath/olddb.backup" olddb

3. Rename the database to have a backup to return:

postgres=# ALTER DATABASE osm RENAME TO osm_backup;

4. Recreate the database:

a) #createdb osm

b) psql osm: "create extension hstore;

c) osm=# alter database osm OWNER to osm;

5. Restore backup:

#cd /usr/share/postgresql-9.1-postgis/utils

perl postgis_restore.pl

132

C.1 Installation guide

"/var/lib/postgresql/postgis_upgrade/osm.backup"

|psql osm 2> /var/lib/postgresql/postgis_upgrade/errors.txt

6. Check PostGIS version:

a) $psql osm=# SELECT postgis_full_version();

b) Exepcted output:

POSTGIS="2.0.1 r9979" GEOS="3.3.3-CAPI-1.7.4"

PROJ="Rel. 4.7.1, 23 September 2009"

GDAL="GDAL 1.9.1, released 2012/05/15"

LIBXML="2.7.8" RASTER

7. Install topology support:

osm=# CREATE EXTENSION postgis_topology;

133

D Sources

135

List of source code

3.1 osm2pgsql style for rooms . 52

3.2 osm2pgsql command used to upload map data 53

3.3 SQL query used to create the #rooms layer 56

3.4 Color definitions used in the CartCSS style 56

3.5 CartCSS style to fill the are of a room using 57

4.1 A shortened example of a Signal Node 67

4.2 Example of a position as returned by the web service 71

4.3 Example of a route from room O27 245 to O27 201 73

C.1 Original line of source code . 130

C.2 Modefied line of source code . 130

D.1 BASH script to convert PDF images to JPEG 137

D.2 osm2pgsql style diff . 138

D.3 Renderd patch to enable higher zoom levels 138

D.4 Configuration file used for renderd (renderd.conf) 139

D.5 Python code to calculate the position of a device 141

D.6 Python implementation of Dijkstra’s algorithm 148

D.7 OsmConvert.py, used to add missing information from OSM XML data . . 160

D.8 Tool to automate process . 161

Listing D.1: BASH script to convert PDF images to JPEG

1 #!/bin/sh

2 for file in ‘ls *.pdf‘; do

3 convert -verbose -density 600 $file ‘echo $file |

4 sed ’s/\.pdf$/\.jpg/’‘

5 done

137

List of source code

Listing D.2: osm2pgsql style diff

1 --- /usr/share/osm2pgsql/default.style

2 +++ wifinder.style

3 @@ -69,7 +69,6 @@

4 node,way motorcar text linear

5 node,way name text linear

6 node,way natural text polygon

7 -node,way office text polygon

8 node,way oneway text linear

9 node,way operator text linear

10 node poi text

11 @@ -121,3 +120,12 @@

12 #node,way osm_uid text

13 #node,way osm_version text

14 #node,way osm_timestamp text

15 +#

16 +#

17 +#

18 +#### Wifinder Osm2Pgsql style

19 +node,way room text polygon

20 +node entrance text linear

21 +node,way level text ploygon

22 +node,way incline text polygon

23 +#node,way highway text polygon

D.1 Renderd & mod_tile

Listing D.3: Renderd patch to enable higher zoom levels

1 --- render_config.h 2011-12-04 21:57:22.000000000 +0100

2 +++ render_config.h.old 2013-06-18 16:03:17.740752121 +0200

3 @@ -1,7 +1,7 @@

138

D.1 Renderd & mod_tile

4 #ifndef RENDER_CONFIG_H

5 #define RENDER_CONFIG_H

6

7 -#define MAX_ZOOM 18

8 +#define MAX_ZOOM 22

9

10 // MAX_SIZE is the biggest file which we will return to the user

11 #define MAX_SIZE (1 * 1024 * 1024)

Listing D.4: Configuration file used for renderd (renderd.conf)

1 [renderd]

2 socketname=/var/run/renderd/renderd.sock

3 num_threads=4

4 tile_dir=/var/lib/mod_tile ; DOES NOT WORK YET

5 stats_file=/var/run/renderd/renderd.stats

6

7 [mapnik]

8 plugins_dir=/usr/lib/mapnik/input

9 font_dir=/usr/share/fonts/truetype/ttf-dejavu

10 font_dir_recurse=0

11

12 [level1]

13 URI=/osm_level1/

14 XML=/etc/renderd/Wifinder_level1.xml

15 HOST=localhost

16 MAXZOOM=22

17 SERVER_ALIAS=http://example.org/

18

19 [level2]

20 URI=/osm_level2/

21 XML=/etc/renderd/Wifinder_level2.xml

22 HOST=localhost

23 MAXZOOM=22

139

List of source code

24 SERVER_ALIAS=http://example.org/

25

26 [level3]

27 URI=/osm_level3/

28 XML=/etc/renderd/Wifinder_level3.xml

29 HOST=localhost

30 MAXZOOM=22

31 SERVER_ALIAS=http://example.org/

32

33 [level4]

34 URI=/osm_level4/

35 XML=/etc/renderd/Wifinder_level4.xml

36 HOST=localhost

37 MAXZOOM=22

38 SERVER_ALIAS=http://example.org/

39

40 [level5]

41 URI=/osm_level5/

42 XML=/etc/renderd/Wifinder_level5.xml

43 HOST=localhost

44 MAXZOOM=22

45 SERVER_ALIAS=http://example.org/

140

D
.2

W
eb

service
code

D.2 Web service code

Listing D.5: Python code to calculate the position of a device

1 @app.route(’/getLocation’, methods=[’GET’, ’POST’])

2 def wifiPosition():

3 """

4 Calculate the approximate position of a device that transmits a signal

5 scan.

6

7 :return:

8 """

9

10 # Threshold Parameter:

11 TP1 = -85

12 TP2 = -80

13 TP3 = -70

14 apThreshold = 3

15 #of signalNodes averaged into location

16 neighbours = 5

17

18 if request.method == ’GET’:

19 query = g.db.query(SignalNode)

20 query = query.all()

141

Listofsource
code

21

22 if app.config[’DEBUG’]:

23 print(’List of wifi signals %s’ % query[0])

24

25 return jsonify(miau=query[0].to_dict())

26

27 if request.method == ’POST’:

28 js = request.json

29

30 posScan = js[’position_scan’]

31

32 # Values for location heuristic

33 lastLatitude = posScan[’last_latitude’]

34 lastLongitude = posScan[’last_longitude’]

35 last_level = posScan[’last_level’]

36

37 mPosScan = []

38

39 print(’Delete APs with signal strength lower %s ’ % TP1)

40 # remove Signals < threshold 1

41 for signal in posScan[’signals’]:

42 if signal[’frequency’] > 5000:

43 wifi5 = True

142

D
.2

W
eb

service
code

44 if signal[’signal_strength’] > TP1:

45 mPosScan.append(signal)

46

47 #5GhZ results available

48 wifi5 = False

49

50 aps = []

51 for signal in mPosScan:

52 print((’add signal {} with signal strength {} to positioning signal’).format(

53 signal[’ap’][’bssid’],

54 signal[’signal_strength’]))

55 aps.append(signal[’ap’][’bssid’])

56

57

58

59

60 ## Get all SignalNodes with the found APs

61 query = g.db.query(SignalNode)

62 query = query.filter(Signal.ap_bssid.in_(aps)).all()

63

64 positionList = []

65

66 #calculate euclidean distance:

143

Listofsource
code

67

68 #iterate over all found calibration nodes

69 for calibrationNode in query:

70

71

72 ap_counter = 0

73 distance_vector = 0

74 print((’Checking Calibration Node {}’).format(calibrationNode.to_dict()))

75

76 # iterate over position scan signals

77 for positionSignal in mPosScan:

78

79 #Check if BS with signal strength > TP3 exists in this calibrationNode

80 exists = True

81 if positionSignal[’signal_strength’] > TP3:

82 exists = False

83 for calibrationSignal in calibrationNode.signals:

84 if calibrationSignal.ap_bssid == positionSignal[’ap’][’bssid’]:

85 exists = True

86

87 if not exists:

88 # no check if 5GHZ

89 #if positionSignal[’frequency’] > 5 and not wifi5:

144

D
.2

W
eb

service
code

90 # pass

91 #Signal strength is larger then TP3, calibration node ist

92 # not used for locating

93 print((’AP {} with signal strength {} is above TP3 of {}’).format(

94 positionSignal[’ap’],

95 positionSignal[’signal_strength’],

96 TP3))

97 break

98

99 else:

100 for calibrationSignal in calibrationNode.signals:

101 if positionSignal[’ap’][’bssid’] == calibrationSignal.ap_bssid:

102 print(

103 (’adding positionSignal of {} to distance_vector’).format(

104 positionSignal[’ap’][’bssid’]))

105 ap_counter = ap_counter + 1

106 distance = calibrationSignal.signal_strength\

107 -positionSignal[’signal_strength’]

108 distance = math.pow(distance, 2)

109 distance_vector = distance + distance_vector

110 else:

111 #no breaks encountered

112 continue

145

Listofsource
code

113 break

114 else:

115 if ap_counter > apThreshold:

116 euclidian_distance = math.sqrt(distance_vector / ap_counter)

117 print(’Euclidian Distance: %s’ % euclidian_distance)

118 tuple = euclidian_distance, calibrationNode

119 positionList.append(tuple)

120 continue

121

122

123 ##TODO: correct message if list too small

124 if len(positionList) < 1:

125 response = Response(status=500)

126 return response

127

128 positionList.sort()

129 if True:

130 for k, v in positionList:

131 print(’Distance {} for Node {} ’).format(k, v.to_dict())

132

133 distance, bestSignalNode = positionList[0]

134

135

146

D
.2

W
eb

service
code

136

137 location = [[’latitude’, bestSignalNode.latitude],

138 [’longitude’, bestSignalNode.longitude],

139 [’level’, bestSignalNode.level]]

140 print((’Location of best signal node: {}’).format(location))

141

142 #initialize counting variables

143 index = 0

144 latitude = 0

145 longitude = 0

146 distances = 0

147 level = 0

148 level_sum = 0

149

150 for distance, node in positionList:

151 if index >= neighbours:

152 break

153

154 index = index + 1

155 distances = (1 / distance) + distances

156 latitude = (node.latitude / distance) + latitude

157 longitude = (node.longitude / distance) + longitude

158 level = (node.level / distance) + level

147

Listofsource
code

159

160 latitude = latitude / distances

161 longitude = longitude / distances

162 level = level / distances

163 print((’average level {}’).format(level))

164 level = round(level, 0)

165

166 location = [[’latitude’, latitude], [’longitude’, longitude], [’level’, level]]

167

168 print(’Average location: {} ’).format(location)

169

170 return jsonify(location)

171

172

173 # TODO: Return a URL to the uploaded object

174 resp = Response(status=200)

175 return resp

Listing D.6: Python implementation of Dijkstra’s algorithm

1 from sqlalchemy import *

2 from sqlalchemy.dialects.postgresql import array

3 from sqlalchemy.types import BigInteger

148

D
.2

W
eb

service
code

4 from sqlalchemy import func

5

6 from shapely.geometry import Point

7

8 from geoalchemy2.elements import WKTElement

9

10 from uulm_find.database import db_session

11 from uulm_find.models.osm import *

12 from uulm_find import app

13 from itertools import chain

14

15

16 __author__ = ’Alexander Bachmeier’

17

18

19 class Routing:

20 def init(self, g):

21 #Get the g object from the current flask request (allows us to perform database queries)

22 #self.g = g

23 self.db = g.db

24 self.metadata = MetaData()

25

26 pass

149

Listofsource
code

27

28

29 def getWays(self, level):

30 query = db.query(Ways).filter(

31 and_(Ways.tags[’level’] == level, Ways.tags[’highway’] == ’corridor’))

32

33 return query

34

35

36 def get_neighbour_nodes(self, nodeId):

37 """

38 Returns a list of nodes with the id of all neighbours of the given node

39 :param node:

40 :return: list of node ids

41 """

42 if app.config[’DEBUG’]:

43 print("getNeighourNodes Start")

44

45 ## Get all ways the starting node is on:

46 ## select * from ways where nodes @> ’-710’::bigint[];

47

48 ways_with_node = self.db.query(Ways).filter(

49 and_(Ways.nodes.contains(array([cast(nodeId, BigInteger)])),

150

D
.2

W
eb

service
code

50 or_(Ways.tags[’highway’] == ’corridor’, Ways.tags[’highway’] == ’steps’),

51 not_(Ways.tags.has_key(’area’)))).all()

52

53 neighbour_ids = []

54

55 #Traverse ways with nods

56 for way in ways_with_node:

57 if app.config[’DEBUG’]:

58 print(

59 ("Getting neighbour nodes of {0} on way with id: {1}").format(nodeId,

60 way.id))

61 #get seq# of "node" on current way:

62 way_node = self.db.query(WayNodes).filter(

63 and_(WayNodes.way_id == way.id, WayNodes.node_id == nodeId)).one()

64 node_seq = way_node.sequence_id

65

66 #get all nodes on way

67 all_way_nodes = self.db.query(WayNodes).filter(

68 WayNodes.way_id == way.id).all()

69

70 ##check if nodes are -1 or +1 in seq from "node"

71 for way_node in all_way_nodes:

72 if way_node.sequence_id == (node_seq + 1) or way_node.sequence_id == (

151

Listofsource
code

73 node_seq - 1):

74 neighbour_ids.append(int(way_node.node_id))

75

76 if app.config[’DEBUG’]:

77 print(

78 ("List of neighbours of node with id {0}: {1}").format(nodeId, neighbour_ids))

79 print("getNeighourNodes END")

80

81 return neighbour_ids

82

83

84 def getDistance(self, node1_id, node2_id):

85 """

86 Calculate the distance between two nodes

87 :param node1_id: id of the first node

88 :param node2_id: id of the second node

89 :return: distance as a geom object between the two nodes

90 """

91 node1 = self.db.query(Nodes).get(node1_id)

92 node2 = self.db.query(Nodes).get(node2_id)

93

94 query = self.db.query(func.ST_DISTANCE(node1.geom, node2.geom)).one()

95 if app.config[’DEBUG’]:

152

D
.2

W
eb

service
code

96 print(

97 ("distance between node {0} and node {1}: {2}").format(node1_id, node2_id,

98 query))

99

100 return query[0]

101

102

103 def dijkstra(self, startNode, endNode):

104 """

105 Dijkstra algorithm that returns the shortest path from startNode to endNode

106 :param startNode: uulm_find.models.osm.Node object

107 :param endNode: uulm_find.models.osm.Node object

108 """

109

110 distance = {} #distance

111 best_prev_node = {}

112

113 distance[startNode.id] = 0 ##distance to start node = 0

114

115 #add starting nodes to queue

116 queue = []

117 queue.append(startNode.id)

118

153

Listofsource
code

119 #the algorithm itself only uses the ID of the nodes,

120 #not the actual representation of the node!

121

122 #while loop counter

123 count = 0

124 #make sure code doesn’t run forever

125 max_count = 100000

126

127 while count < max_count:

128 if app.config[’DEBUG’]:

129 print((’While counter : {0}’).format(count))

130 count = count + 1

131

132 try:

133 current_node = queue.pop(0)

134 except IndexError:

135 print("IndexError")

136 break

137

138 if current_node == endNode.id:

139 ##our endNode has been found ==> shortest path found

140 print("Found End Node!")

141 return best_prev_node, distance

154

D
.2

W
eb

service
code

142

143 #"usual" case of find neighbours and calculating their distance

144

145 neighbors = self.get_neighbour_nodes(current_node)

146 if app.config[’DEBUG’]:

147 print("Node {0} has {1} Neighbours".format(current_node, len(neighbors)))

148

149 for nodeId in neighbors:

150 #append new neighbors to the queue

151 if nodeId not in distance:

152 queue.append(nodeId) ##TODO: might lead to longer routes!

153

154 dist = distance[current_node] + self.getDistance(current_node, nodeId)

155

156 if nodeId in distance:

157 if dist < distance[nodeId]:

158 ##shorter path found, update!

159 distance[nodeId] = dist

160 best_prev_node[nodeId] = current_node

161 else:

162 distance[nodeId] = dist

163 best_prev_node[nodeId] = current_node

164

155

Listofsource
code

165

166 def getRoute(self, startNode, endNode):

167 print("Start Node ID {0}: \n {1}".format(startNode.id, startNode.to_dict()))

168 print("End Node ID {0}: \n {1}".format(endNode.id, endNode.to_dict()))

169

170 print(’Neighbors of EndNode: {0}’.format(self.get_neighbour_nodes(endNode.id)))

171

172 best_prev_node, distance = self.dijkstra(startNode, endNode)

173

174 route = []

175 loop_node_id = endNode.id

176 while 1:

177 #route complete if previous node is start node:

178 node = self.db.query(Nodes).get(loop_node_id)

179 #

180 # if node.tags[’highway’] is ’steps’:

181 # steps = True

182 # else:

183 # steps = False

184 node_dict = node.to_dict()

185 waypoint = {

186 ’latitude’: node_dict[’latitude’],

187 ’longitude’: node_dict[’longitude’],

156

D
.2

W
eb

service
code

188 ’level’: node_dict[’level’],

189 ’steps’: False,

190 }

191

192 route.insert(0, waypoint)

193 if (best_prev_node[loop_node_id] == int(startNode.id)):

194 break

195 loop_node_id = best_prev_node[loop_node_id]

196

197 ##close database collection

198 #db.close()

199

200 print(’Finished Route:’)

201 for waypoint in route:

202 print(waypoint)

203

204 #Return a route, represented by a list of waypoints.

205 #Starting from the StartNode to the EndNode

206 return route

207

208

209 def getNextWayNode(self, location):

210

157

Listofsource
code

211

212 # Create a geometry point; arguments are lon, lat

213 point = ’Point(%0.8f %0.8f)’ % (location[’longitude’], location[’latitude’])

214

215 # transform into a wkt element

216 wkt_point = WKTElement(

217 ’Point({0} {1})’.format(location[’longitude’], location[’latitude’]),

218 srid=4326)

219

220 #get a list of all way nodes

221 listOfNodes = self.db.query(Ways.nodes).filter(

222 and_(Ways.tags[’highway’] == ’corridor’),

223 % Ways.tags[’level’] == str(location[’level’])).order_by(

224 Ways.bbox.distance_box(wkt_point)).all()

225

226

227 #flatten list of lists of lists:

228 node_ids = list(chain.from_iterable((chain.from_iterable(listOfNodes))))

229

230 best_node = self.db.query(Nodes).filter(Nodes.id.in_(node_ids)).order_by(

231 Nodes.geom.distance_box(wkt_point)).first()

232

233

158

D
.2

W
eb

service
code

234 return best_node

235

236

237 if __name__ == ’__main__’:

238 db = db_session()

239

240 routing = Routing()

241 routing.db = db

242 #routing.getRoute(node1, node2)

243 current_location = {’latitude’: 48.4228724245706, ’longitude’: 9.95691005140543,

244 ’level’: 2}

245

246 routing.getNextWayNode(current_location)

247

248

249

250 #g.db.close()

159

List of source code

D.3 OsmConverter

These tools are used to upload OSM data into the webservice’s database. The data is

used for POI services as well as routing.

Listing D.7: OsmConvert.py, used to add missing information from OSM XML data

1 #!/usr/bin/env python2

2

3 __author__ = ’Alexander Bachmeier’

4 # add missing version attribute from JOSM osm exports

5 import xml.etree.ElementTree as ET

6 from datetime import datetime

7

8

9 INPUT_FILE = ’uulm.osm’

10 OUTPUT_FILE = ’osm_output.xml’

11

12

13 #get input file using ElementTree parser

14 tree = ET.parse(INPUT_FILE)

15 root = tree.getroot()

16

17 #timestamp format: timestamp="2012-06-04T21:25:04Z"

18 now = datetime.datetime.now()

19 timestamp = now.strftime("%Y-%m-%dT%H:%M:%SZ")

20

21 #traverse children

22 for child in root:

23 #add required version attribute

24 if child.tag == ’node’ or child.tag == ’way’ or \

25 child.tag == ’relation’\

26 and ’version’ not in child.attrib:

27 child.set(’version’, ’0’)

160

D.3 OsmConverter

28 #add required timestamp attribute

29 if child.tag == ’node’ or child.tag == ’way’ or \

30 child.tag == ’relation’ \

31 and ’timestamp’ not in child.attrib:

32 child.set(’timestamp’, timestamp)

33

34 tree.write(OUTPUT_FILE)

Listing D.8: Tool to automate process

1 #!/bin/bash

2

3

4 ./OsmConvert.py

5 #Truncate Database before import

6 osmosis --tp user="osm" database="osm" \

7 password="$PASSWORD" \

8 host="example.org" \

9

10

11 osmosis --read-xml file="osm_output.xml" \

12 --write-pgsql user="USER" database="osm" \

13 password="$PASSWORD" host="example.org"

161

Name: B. Sc. Alexander Bachmeier Matrikelnummer: 628453

Erklärung

Ich erkläre, dass ich die Arbeit selbständig verfasst und keine anderen als die angegebe-

nen Quellen und Hilfsmittel verwendet habe.

Ulm, den .

B. Sc. Alexander Bachmeier

	Motivation
	Comparable systems
	University of Ulm

	Fundamentals
	Geographic Information Systems
	PostGIS

	Cartography
	The OpenStreetMap project
	OSM concepts
	Data elements
	Tags

	Editing
	Java OpenStreetMap Editor

	Routing
	Routing algorithms: Shortest path problem

	Positioning system
	Overview of positioning systems
	Manual positioning
	Global Positioning System

	Indoor positioning systems
	Positioning principles
	Wi-Fi indoor positioning system
	Euclidean distance based algorithm

	Cartography on the University of Ulm Campus
	Requirements
	Campus structures and naming
	Creating a map
	Positioning elements
	Errors

	Tagging
	Tag usage
	Level definitions
	Rooms
	Auditorium
	Laboratory
	Doors
	Corridors
	Stairways
	Elevators
	Amenities

	Map rendering
	Creating a database
	osm2pgsql
	Mapnik
	Rendering Schema

	Implementation
	Overview
	Design choices
	Web service
	Positioning system
	Data storage
	Positioning algorithm
	Accuracy

	Routing
	Implementation of a Dijkstra algorithm
	Getting a route
	Routing from the users current location

	Android application
	Choosing a platform
	Android implementation
	Libraries
	Android implementation details
	Application views
	Map
	WiFi Map
	AP List
	Preferences
	Wi-Fi service
	Network tasks

	Outlook
	Challenges
	Future work
	Conclusion

	Bibliography
	Figures
	Levels of Building O27
	Examples of building features
	Building O27 rendered using the specified maps

	Test series
	Guides
	Installation guide
	Geocoding
	Compiling JOSM in Eclipse
	Database
	Upgrade PostGIS database to version 2.0

	Sources
	Renderd & mod_tile
	Web service code
	OsmConverter

