
Collaboration Support Through Mobile Processes
and Entailment Constraints

Rüdiger Pryss
Institute of Databases and

Information Systems
University of Ulm, Germany

Email: ruediger.pryss@uni-ulm.de

Steffen Musiol
Institute of Databases and

Information Systems
University of Ulm, Germany

Email: steffen.musiol@uni-ulm.de

Manfred Reichert
Institute of Databases and

Information Systems
University of Ulm, Germany

Email: manfred.reichert@uni-ulm.de

Abstract—The computational capability of smart mobile de-
vices increasingly fosters their prevalence in many business
domains. Along this trend, process management technology is
going to be enhanced with mobile task support. However, tasks
executed stationarily so far cannot be simply transfered to mobile
devices. For the latter purpose, we developed an approach within
the MARPLE project enabling mobile and robust task execution
in the context of business processes. In particular, this approach
provides self-healing techniques that relieve mobile users from
manually handling errors (e.g., lost connections) during mobile
task execution. In this paper, we extend the collaboration facilities
of our approach by adding entailment constraints to mobile task
management. In the context of a business process, for example,
two tasks may have to be executed by the same (mobile) user.
Related research on integrating such constraints with business
processes has received growing attention recently. However, real-
izing entailment constraints in the context of mobile processes
and tasks raises additional issues, which must be probably
integrated with the mentioned error handling techniques. We
present fundamental entailment constraints supported by our
approach and discuss how they can be realized in a robust
and flexible manner. In particular, this will significantly enhance
mobile task and process support in next generation information
systems.

Keywords—mobile process, flexibility, mobile task support,
entailment constraints

I. INTRODUCTION

Knowledge workers increasingly demand for a mobile and
flexible access to information systems. However, the integra-
tion of mobile devices into an existing IT infrastructure is
laborious and error-prone. In particular, the infrastructure must
cope with ad hoc events, errors (e.g. connectivity problems),
physical limitations of mobile devices (e.g., limited battery
capacity), unexpected user behaviour (e.g., instant shutdowns),
and mobile data collection [1].
In general, proper exception handling is crucial for enabling
mobile process and task support. In this context, flexible
process management technology offers promising perspectives
based on a wide range of techniques (e.g., ad hoc changes) [2]–
[6]. In particular, these techniques foster robust mobile task
support during process execution as well. However, executing
tasks on mobile devices in the same way as on stationary
computers is usually not appropriate. For example, consider the
execution time required for processing a task. While for tasks
executed on stationary computers a long duration usually has
no particular effect, this is no longer the case for tasks running

on mobile devices, for which exceptions like a broken device or
lost connection might occur. Hence, any approach supporting
mobile tasks must consider the specific challenges of a mobile
environment (see [7], [8] for case studies we conducted in this
context).
In previous work within the MARPLE project, we developed
an approach that enables a robust execution of mobile tasks in
the context of business processes. The various challenges we
have addressed in this context are related to the following three
categories: (1) challenges raised by the mobile environment
itself (e.g., lost connections of mobile devices), (2) challenges
related to business process execution (e.g., missing process
data due to task failures), and (3) challenges caused by misbe-
haviour of the mobile user (e.g., mindless instant shutdowns).
Our approach provides two fundamental concepts to deal with
these challenges, i.e., a backup service and a service for mobile
delegation. During business process execution, the mobile del-
egation service ensures that already assigned mobile tasks are
automatically re-delegated to another authorized mobile user
in case of errors. To avoid wrong or unfavorable delegations in
this context, the service considers the context of mobile users
as well. Finally, if no suitable mobile user can be determined,
the backup service ensures that overall process execution will
not be harmed.
In this context, a particular challenge is raised by the need
to satisfy a number of entailment constraints. As examples
of such constraints consider separation of duties (i.e., two
particular tasks of a process instance must be executed by
different users) and binding of duties (i.e., two particular tasks
of a process instance must be executed by the same user).
In general, an entailment constraint defines a dependency
between tasks [9]. Regarding mobile process and task support,
respective constraints are crucial in order to ensure proper
collaboration among actors. However, satisfying respective
constraints in a mobile process context is a challenging task
to accomplish [9].
In a number of case studies, we identified three kinds of
entailment constraints being of particular interest: binding of
duties, separation of duties, and cardinality. The latter is a
constraint defined on a multi-instance task and restricts the
number of its executions (i.e., instances of this task at runtime).
When integrating entailment constraints in our approach en-
abling mobile process support additional challenges arise.
In particular, we must enhance the aforementioned mobile
delegation service properly. This paper shows how we have
accomplished this approach. In particular, we show how to



Perform
Blood test

Perform X-Ray 
Examination

Perform
Allergy Test

Administer
Medication

A

Administer
Medication

B

Finish
Treatment

Take Blood
Sample

Data

Data

Perform X-Ray
Examination

Finish
Treatment

Take Blood
Sample

Perform
Blood test

Administer
Medication

A

Add mobile devices (i.e., MD1, MD2, and MD3) to process execution

Data

Data

Administer
Medication

B

Mobile 
Device 2 
(MD2)

Mobile 
Device 3 
(MD3)

Mobile 
Device 1 
(MD1)

D1

D2

D1

D2

Perform
Allergy Test

CardinalitySeparation of Duties (SoD) Binding of Duties (BoD)

Figure 1. Adding mobile devices to process execution (i.e., the activities colored in red)

avoid burdening mobile users with manual tasks in case of
errors.
The remainder of this paper is organized as follows: Section
II describes the entailment constraints we consider, discusses
relevant challenges, and summarizes the major contributions
of our work. Section III presents background information on
our approach enabling mobile process and task support and
discusses the specific challenges to be addressed. Further,
we describe the steps to be performed during design and
runtime in order to provide mobile task support in the context
of business processes. Finally, we present two fundamental
concepts supporting the robust execution of mobile tasks, i.e.,
the backup and delegation service for mobile tasks. Section
IV shows how to add entailment constraints to the mobile
delegation service. Section V then presents details regarding
the implementation of our core approach and the way it
integrates entailment constraints. Finally, Section VI discusses
related work and Section VII concludes with a summary and
outlook.

II. ENTAILMENT CONSTRAINTS: EXAMPLE AND
CHALLENGES

First, we sketch the entailment constraints we consider
in this paper. Second, we present a healthcare scenario to
illustrate the challenges that emerge when integrating these
constraints with mobile process and mobile task support. In
the context of our work, entailment constraints are considered
with respect to business process execution (or to be more
precise, the execution of process instances according to a pre-
specified process model). For example, ensuring that two tasks
are not executed by the same user is required in many business
scenarios, e.g., a credit application must not be approved by
the same person who requested the credit.

A. Entailment Constraints

Figures 2 and 3 illustrate how we annotate a process
model with entailment constraints. In Fig. 2(a), denoted by
the connected green rectangles placed on top of mobile tasks

M2
M1 B

(a) Binding of Duties

M2
M1 B

(b) Separation of Duties

Figure 2. Binding and separation of duties

M1 B

Figure 3. Cardinality

M1 and M2, a binding of duties is defined. According to
this specification for any process instance, the mobile user
performing M1 must perform M2 as well. In a healthcare
context, for example, it must be ensured that the physician
who examines the patient also administers her medication. In
turn, in Fig. 2(b), denoted by the connected brown rectangles
placed on top of mobile tasks M1 and M2, a separation of
duties is defined. It expresses that a mobile user performing
M1 must not perform M2. For example, in the context of a
credit request, the person launching a credit enquiry must not
approve it.
Finally, in Fig. 3, denoted by inter-connected blue rectangles
placed on top of mobile task M1, a cardinality constraint is de-
fined. It expresses that multi-instance task M1 will be executed
a pre-specified number of times. Regarding the integration of
these constraints into our approach, we make the following
assumptions:

• Separation as well as binding of duties define a dependency
between mobile tasks M1 and M2, with M1 preceding M2,
i.e., M1 < M2. We neither consider separation of duties
nor binding of duties for mobile tasks belonging to parallel
branches. Further, we exclude respective constraints for
mobile tasks surrounded by a loop structure at this stage.
The latter applies to the cardinality constraint as well.

• A mobile task may be referred by more than one entailment
constraint. For example, a separation of duties between
mobile tasks M1 and M2 may be accompanied by a binding



of duties between M2 and M3.

B. Challenges

To illustrate the challenges that emerge when integrating
the three kinds of entailment constraints with mobile process
and mobile task support, we consider the healthcare scenario
from Fig. 1. For example, between mobile tasks Take Blood
Sample and Perform Blood Test, a separation of duties con-
straint is defined. Assume that at the time task Take Blood
Sample shall be executed, three authorized mobile users (i.e.,
Miller, Mayer, and Neuhann) are available. In addition, the
same users are authorized to perform task Perform Blood Test
later on. Furthermore, the mobile device of user Miller, who
is actually performing the task Perform Blood Test, encounters
physical problems. In this case, the process cannot terminate
properly, since task Finish Treatment is data-dependent on
this mobile task. In this scenario, the aforementioned mobile
delegation service will automatically delegate task Perform
Blood Test to another authorized mobile user available (e.g.,
Mayer).
Furthermore, we must consider the separation of duties be-
tween tasks Take Blood Sample and Perform Blood Test as
well. Since two mobile users have already worked on this
task, only mobile user Neuhann will be allowed to execute
Perform Blood Test. Consequently, for task Perform Blood
Test, no delegation is possible. Note that this scenario might
raise additional problems. Since Perform Blood Test requires a
binding of duties with Administer Medication A, for example,
only user Neuhann will be allowed to execute the latter task
(i.e., Administer Medication A) in our scenario. Overall, this
simple scenario shows that any mobile delegation service
might affect the enforcement of entailment constraints.

III. MOBILE PROCESS AND TASK SUPPORT

This section presents basic concepts of our approach en-
abling mobile process and task support. First of all, we discuss
the challenges addressed by it. Then, we present a procedure
for integrating mobile tasks into business process execution.
In this context, we show in which phases constraints may be
added and evaluated. Finally, we present the core components
of our approach, i.e., its backup and mobile delegation services.

A. Challenges in mobile environments

To enable a robust integration of mobile devices into
process execution, the fundamental challenges of mobile en-
vironments need to be addressed. In particular, the state of
mobile devices as well as the behaviour of mobile users
must be taken into account, since both might harm overall
process execution. In addition, we must consider the specific
challenges related to the execution of a mobile process, i.e., a
process for which a subset of its tasks is executed on mobile
devices. In the following, we categorize these challenges into
process-, environment-, and user-related ones.

Connectivity (environment). Connectivity refers to the
availability of users and the mobile devices assigned to them.
Hence, unavailability might be due to the status of a device
(e.g., broken device) or a personal status (e.g., user is on
vacation). If a mobile device is connected to a network, it

will be used as a potential target device for executing mobile
tasks, otherwise it will be not.

Low Battery (environment). A device already indicating
a low battery status should not be the target platform for exe-
cuting an upcoming mobile task until the battery is recharged;
i.e., a low battery status means that we do not consider this
mobile device (and its user) at the moment. Furthermore, that
users have backup devices is not considered at this stage.

Instant Shutdown (user behaviour). In practice, it hap-
pens that users instantly shut down their mobile device without
reflecting on the consequences of this shutdown. Usually,
this constitutes a short-term problem and the device can be
restarted soon in most cases. If a user exhibits many instant
shutdowns, however, this misbehaviour will be considered
in our approach. To deal with such ”careless” shutdowns, a
mobile device sends a message to our services indicating that
an instant shutdown will take place soon. In this context,
we evaluated several mobile development frameworks (i.e.,
Google Android, Apple iOS, Microsoft Windows Mobile) and
were able to demonstrate that we can apply this solution for
detecting instant shutdowns to all of them. Finally, to assess
user behaviour over time (e.g., whether or not she performs
many instant shutdowns), our approach manages the number
of instant shutdowns applied.

User Location (user behaviour). At runtime, for mobile
users, attribute UserLocation indicates where these users are
located. If a mobile user shall execute a mobile task at a
location different from her present one (e.g., if her coordi-
nates differ from the ones defined for the task), this will be
considered.

Data Dependencies (process). Data dependencies between
process activities can be derived from the order in which
activities read and write data objects. In our approach, we
explicitly consider mobile tasks with data dependencies.

Location (process). A mobile task has an attribute Location
that optionally stores the location this task shall be performed.
Note that in certain cases, data or physical objects needed to
accomplish a task, are only available at a certain location. If
the user is performing her work, while continuously moving,
it cannot be guaranteed that she is on the right spot to gather
data needed. For example, if a physical examination of a
patient is assigned to a physician who continuously switches
her location within the hospital, neither gathering patient data
nor performing the examination will be meaningful tasks for
this physician at the present moment.

Urgency (process): This task attribute reflects the urgency
of a mobile task. For example, if a lab test is required in the
context of an emergency surgery, urgency of a task performing
this lab test will be high. The value of this attribute either is
null or describes the point in time the mobile task shall be
performed, i.e., either a concrete point in time or a period. If a
period is specified, after allocating the mobile task to a mobile
user, she must finish it within the specified period.

B. Executing Processes with Mobile Tasks

We introduce the way we use mobile devices for executing
mobile tasks in the context of a business process. Understand-
ing this is crucial for realizing an approach that integrates



mobile devices with business process execution. Basically, two
options exist: First, a mobile device may be used as process
client to which tasks may be assigned at runtime. In this
case, the mobile device covers a subset of the functionality
of a stationary process client. In particular, it comprises a
worklist that will be continuously updated by the process
engine. Second, the mobile device itself might run a local
process engine and be able to autonomously execute an entire
process or process fragment. In [10] and [11], we have given
insights into the latter approach, whereas this paper focuses on
the integration of mobile devices following the first approach.
Both approaches are part of our MARPLE project focusing
on a tight integration of process management technology and
mobile computing.

C. Adding Mobile Tasks to Process Execution

This section introduces the four phases for integrating a
mobile task into process execution. Thereby, we illustrate how
our overall integration procedure works (cf. Fig. 5). Amongst
others, Fig. 5 indicates in which phases a manual interaction
(i.e., user interaction) and in which an automatic processing
(i.e., automated service operations) become possible. Further-
more, in Fig. 4 we illustrate in which phases the mentioned
challenges are considered. Thereby, Fig. 4 also shows in which
phases the entailment constraints are considered.

Regarding our procedure for adding mobile tasks to process
execution (cf. Fig. 5), we suggest two fundamental concepts
addressing the challenges illustrated in Fig. 4. First, we define a
backup service, which changes the process structure by adding
a backup task executed on a computer. This ensures robust
execution of mobile tasks. Further, note that in certain cases
even a backup task may be executed on a mobile device.
Second, we define a delegation service that automatically
delegates the execution of mobile tasks to other authorized
mobile users in case of failures (i.e., non-availability of a
particular mobile task). In addition, this service handles issues
related to the entailment constraints. These two techniques are
presented in Sections III(D+E), while this section illustrates
the context in which they are applied.

Design T ime Phase. Design time composes two phases.
The first one is called mobile process transformation 1©.
During this phase, a process designer may declare arbitrary
tasks as mobile, which means that they shall be executed on
a mobile device. Following this, he may optionally assign a
location, an urgency, and a threshold to these mobile tasks (cf.
1©). Regarding entailment constraints, we must distinguish two

cases: First, an entailment constraint may have been already

 

Aspects of Mobility Process 
Design 
Time 

Process 
Instantiation 

Time 

Task 
Activation 

Time 

Task 
Delegation 

Time 
Connectivity      

Low Battery    

Instant Shut‐Off    

Location    

UserLocation    

Data Dependencies    

Urgency    

Entailment Constraints    

|  (): is evaluated | (): is not evaluated | 
 

Figure 4. Challenges of processes with mobile tasks

defined for a process task that is now transformed into a
mobile one. Second, no constraint has been defined so far,
but shall be added to the mobile task. In this case, a process
designer must specify the respective constraint. Further, for
each mobile task its threshold defines the minimum number of
users that should be available at runtime to execute this task;
i.e., the threshold allows us to control delegation according to
particular needs of the (mobile) process. In addition, for all
mobile tasks associated with a threshold, during this phase,
we compute the list of users that may perform the task (cf.
1©, validateThreshold). For this purpose, we access the
user repository. Tasks, for which the threshold is set to a
value beyond the number of available users, are highlighted
to the process designer who may then alter the threshold.
Note that threshold validation is performed automatically. The
second design time phase we consider is the dependency
check 2©. In this phase, we determine for which mobile tasks
the backup service shall be performed. While the mobile
process transformation is accomplished manually (except the
validation of the threshold), the dependency check is performed
automatically. First, all mobile tasks are analyzed according to
their data dependencies with other process tasks. If a mobile
task writes data for subsequent tasks, the backup service will
be added for this mobile task (cf. 2©, addBackup). In case no
data dependency exists for a mobile task, it may be skipped
during runtime; i.e., operation setSkippable may be performed
on this mobile task (cf. 2©), i.e., attribute IS SKIPPABLE of
this mobile task is set to true. While the first two options
are performed automatically, the last action of this phase (cf.
2©, addV alidationTask) is performed manually. Thereby, a
process designer must decide how the validation tasks of the
backup service shall be evaluated during runtime. We present
the semantics of the validation task in the context of the backup
service in Section III(B).

Instantiation Phase. When creating a process instance,
we provide a service to change the runtime configuration for
this instance (cf. 3©, addFilterList). This enables us to cope
with the dynamics of mobile environments more properly. To
perform such change, the following steps are made. First, for
all mobile tasks we compute user lists. Thereby, we only
consider users who are currently online. Second, for each
mobile task, it must be decided whether to change its location,
urgency, or entailment constraints. In addition, users authorized
to execute this mobile task may be removed. The latter option
enables us to cover mobile business scenarios more properly.
For example, the mobile device of a physician who deals with
an emergency, should not be the target for mobile tasks.

Activation Phase. When activating a mobile task, the
following steps are performed automatically by the delegation
service (cf. 4©). First, the users who may perform the mobile
task are determined (cf. 4©, user list). In this context, a mobile
user must meet the following to be allowed to perform the
mobile task (cf. 4©, user′s mobile status): First, she must
be connected and the battery status of her mobile device must
not be low. Second, she should not have performed too many
instant shutdowns. Third, if relevant, it will be (automatically)
checked whether the mobile user is at the right location, i.e.,
whether attributes UserLocation and Location match (cf. Fig.
4). Finally, constraint dependencies are considered. Note that
the latter might require a specific handling of the user list of
a mobile task.



Task

D
es

ig
n

 T
im

e
In

stan
tiation

 Tim
e

A
ct

iv
at

io
n

 T
im

e
D

eleg
ation

 Tim
e

mobile process

transformation

dependency

check

delegation

service

Automatically and manually performed operations

Automatically performed operations

1

4 5

2

3

constraints 

Mobile Task

backup service

{ �lter list }

optional Pre-Filter
(manual)

constraints 

Mobile Task

backup service

constraints 

Mobile Task

backup service

{ �lter list }

Mobile Task

backup service

{ mobile user list }

{ �lter list }

constraints 

Mobile Task

addLocation()
addUrgency()

addThreshold()
validateThreshold()

addBackup()
setSkippable()

optional: addValidationTask()

input:
initial user list

user‘s mobile status
user‘s location

delegation

service

constraints 

Mobile Task

backup service

{ mobile user list }

{ �lter list }

Mobile Task

backup service

{ mobile user list }

{ delegation list }

{ �lter list }
input:

initial & mobile userlist
user‘s mobile status

user‘s location

automatically | automatically and manually | manually

constraints 

Figure 5. Procedure of integrating mobile tasks into process execution

Delegation Phase. When delegating a mobile task at
runtime, we add a delegation list to its mobile task in order to
be able to track to which mobile users it has been delegated.

D. Backup Service

When combining business processes with mobile task
support, a particular challenge emerges if no mobile users
are available for an activated mobile task at runtime (see
Section III(A) for reasons causing this situation). In order
to ensure that mobile tasks will still be executed in such
a scenario, our approach provides a backup service, which
comprises two operations. In particular, these operations are
embedded in a process fragment that replaces the mobile task
if the aforementioned problems occur at runtime. Fig. 6 shows
an example of such a fragment. Note that the two backup
operations have two preconditions. First, the operations may
only be applied to mobile tasks. Second, a mobile task must
provide data for subsequent tasks. In particular, such mobile
tasks may harm overall process execution. To be more precise,
if the tasks succeeding a mobile task M in the flow of control
consume data provided by M , a deadlock or other error might
occur in case a failure of M is not handled properly. To avoid
such situations, we provide the backup service described in the
following. First of all, we present the simple backup operation.
Following this, we present the complex backup operation and
discuss its difference to the simple one.
During design time, we identify all mobile tasks producing
data for other tasks. Following this, we automatically apply
the simple backup operation to all these tasks. Thereby, the
following steps are applied: If a backup operation is needed for

B1

B2
backup task

validation
task C

sync flag

Data

XOR

Figure 6. Simple backup operation

a mobile task B1, it will be substituted by the process fragment
depicted in Fig. 6 at design time. During runtime, the execution
of backup task B2 on a stationary computer will then guarantee
that subsequent tasks of B1 will not be affected by a failure of
this mobile task, i.e., the backup task B2 will provide the same
data as mobile task B1. In this context, the sync flag guarantees
that B2 will be only performed if mobile task B1 fails (cf. Fig.
6). Thereby, B1 writes the sync flag according to its execution
state. If B1 has been executed correctly, the sync flag is set
to true, otherwise it will be set to false. Depending on the
value of the sync flag, the subsequent XOR process fragment
is then executed as follows: If the sync flag is true, the upper
branch will be chosen and B2 be executed. In turn, if the sync
flag is false the other branch will be chosen and nothing more
happens. Therefore, B2 will only be executed if B1 fails.
As shown in Fig. 6, the simple backup operation comprises
another task, i.e., the validation task. We use the validation
task to manually confirm the execution of B2. If, at design
time, the sync flag is set to true and assigned to the validation
task, the mobile user responsible for handling the failed mobile
task must confirm at runtime that the backup task has been
completed correctly.
In order to deal with urgent mobile tasks, we provide the com-
plex backup operation shown in Fig. 7. It allows performing
the backup task B2 more quickly. We changed two aspects
compared to the simple backup operation. First, we add a user
list task. Second, the backup task is executed in parallel to
the mobile task. In order to perform B2 more quickly, the
complex backup operations works as follows: First, the user
list task determines the lists of authorized users for tasks B1
and B2 (cf. Fig. 7, on activation). Then, at the time B1 is
started, B2 is started synchronously. Following this, the task
will be locked for all users from the user list of B2. After
assigning B1 to a user (cf. Fig. 7, started by uMob A), the
user list will be adapted for both tasks. Note that the user list
for B2 assigns the task to the same user who has performed it
on the mobile device as a mobile task. Applying this procedure
is advantageous in several respects: First, all other users who
may perform B2 are able to monitor which mobile user is
currently working on this task. Second, if for B1 no more
delegation to authorized mobile users is possible, we have
already determined the user list for backup task B2. Compared



backup task
B2

B1
user list

task
validation

task

Data

sync flag

B1
uMob A
uMob B
uMob C

B2
uMob A
uMob B
uStat D

on activation
(sync flag = false)

B1
uMob A
uMob B
uMob C

B2
uMob A
uMob B
uStat D

started by uMob A
(sync flag = false)

B1
uMob A
uMob B
uMob C

B2
uMob A
uMob B
uStat D

delegated to uMob B
(sync flag = false)

B1
uMob A
uMob B
uMob C

B2
uMob A
uMob B
uStat D

on backup
(sync flag = true)

C

AND

Figure 7. Complex backup operation

to the simple backup operation, for which the user list of B2
is determined after completing B1, this procedure speeds up
user assignment.
Finally, Fig. 8 presents the scenario in which a binding of
duties exists between two mobile tasks M1 and M2. Further-
more, both tasks write data and are not flagged as urgent. As
illustrated by Fig. 8, adding the authorization constraint will
have no implication for using the backup operation. The same
applies to the other entailment constraints.

E. Delegation Service

During task activation and task delegation, all actions
required to robustly execute a mobile task are performed
automatically, coordinated by the Mobile Delegation Service
(MDS). Since this delegation service maintains several lists
with respect to user management, we first describe them before
presenting the MDS.

User List Management: To foster robust execution of
mobile tasks, our approach maintains three user lists: ulinit,
ulmob, and dlmob. User list ulinit contains all mobile users
authorized to perform a mobile task t. Based on ulinit, the
mobile user list ulmob is determined. Thereby, only those
mobile users are added to ulmob, which are currently online,
whose user location is equal to the location of t, and who are
not excluded by the filter defined during instantiation time.
Then, ulmob is used for assigning mobile tasks to mobile
users. Further, if a mobile task t must be delegated, a mobile
delegation list dlmob will be determined. Thereby, all users
from ulmob are added to this list. Then, all users from list

M2M1
data 1 data 2

M1a
M1b
backup

sync flag

M2a
M2b
backup

sync flagdata 1 data 2

Figure 8. Mobile tasks constrained by a binding of duties and writing data

Transitions:
T1 build mobile user list
T2 handle user state changes
T3 start task
T4 finish task
T5.1 mobile delegation
T5.2 force mobile delegation
T5.3 force backup / skip
T6.1 finish delegated task
T6.2 mobile delegation

State

Transition

Figure 9. Mobile delegation service flow during runtime

dlmob will be ordered from high to low priority. A low priority
for a mobile user is assigned to him if his battery status is low
or his instant shutdown counter is high. Both ulmob and dlmob

will be recalculated if the connectivity status of a user from
list ulinit changes.
Taking these lists into account, the mobile delegation service
may enter six different states, denoted as t(<STATE>), via
respective state transitions Ti (cf. Fig. 9). Note that the dele-
gation service starts when a mobile task t becomes activated.

The following scenarios are relevant, when taking urgency
(timeout) tou (tou = 0 denotes a timeout), user list threshold
thmul, and the ability to skip a mobile task t into account:

1) Normal task execution: usera ∈ ulmob starts mobile task
t and performs it.
t(PENDING) → T3 → t(STARTED) → T4 →
t(FINISHED)

2) Delegated task execution: usera ∈ ulmob starts mobile
task t. When the state of usera changes to offline or
tou = 0 holds, t will be automatically delegated to a
user userb ∈ ulmob. The latter will then finish this task.
T3 → t(STARTED) → T5.1 → t(DELEGATED) →
T6.1 → t(FINISHED)

3) Forced delegation: Forced delegation becomes necessary,
if t(PENDING) ∧ (|ulmob| < thmul ∨ tou = 0), or if
t(DELEGATED) ∧ (tou = 0 ∨ State(userb) changes to
offline), t must be delegated to another usern ∈ ulmob

T5.2 → t(DELEGATED) ∨ T6.2 → t(DELEGATED)
4) Skip or Backup: Skip or backup will be performed, if t

changes into one of these scenarios: if (t(PENDING) ∧
tou = 0 ∧ |ulmob| = 0) ∨ (t(DELEGATED) ∧ tou = 0
∧ |dlmob| = 0). Furthermore, if IS_SKIPPABLE(t) =
true, t will transits to SKIP, otherwise to BACKUP
(t(PENDING) → T5.3 → t(SKIP) ∨ t(BACKUP) /
t(DELEGATED) → T6.3 → t(SKIP) ∨ t(BACKUP))

IV. ENTAILMENT CONSTRAINTS FOR MOBILE TASKS

This section discusses how our approach realizes the en-
tailment constraints and how it combines them with its mobile
delegation service. Basically, the provided backup operations
as well as the ability to skip tasks ease the integration
of entailment constraints and their handling during process
execution. In particular, we can ensure that all mobile tasks
will be properly executed, satisfying the defined constraints. In
order to integrate entailment constraints into our approach, we
enhance our mobile delegation service. In this context, consider
the scenario shown in Fig. 10. It shows two mobile tasks M1

and M2 constrained by a separation of duties. Further, consider
the delegation lists for both mobile tasks and assume that
during runtime delegations to all users authorized to perform



user A
user B
user C...

user A
user B
user C...

M1 B M2

de
le

ga
tio

n

Figure 10. Mobile delegation service combined with separation of duties

M1 become neccessary. As a result, no mobile user may
perform M2 later on since the delegations applied to M1 will
remove all mobile users from the user list of M2. Then, the
backup service ensures that M2 will be performed.
In order to address such scenarios properly, we apply several
changes to the user list (dlmob) management of our mobile
delegation service. We refer to Fig. 13, which shows the overall
approach for these changes.

Separation of Duties: In Fig. 13, 1© shows how we change
the order of the user list of M1 in order to realize separation
of duties more properly. First, we compare the user lists of the
constrained tasks M1 and M2 (cf. Fig. 13; compare(M1,M2)).
Then, for the user list of M1, a low priority is assigned to
the users also appearing in the user list of M2 (cf. Fig. 13;
setLowPriority(M1.A,M1.B)). Fig. 13, 1© depicts the scenarios
before and after the change.

• Before change: If delegations to the first two users A and
B become necessary for M1 during runtime, only user D
will later be allowed to perform M2 due to the separation
of duties constraint between M1 and M2.

• After change: By contrast, if delegations to the first two
users C and A become necessary for M1 during runtime,
there still exist two users B and D who may perform M2.
Compared to the situation before change, we obtain one
additional mobile user for delegation purpose.

Binding of Duties: Fig. 13, 1© shows the change we make
in order to realize binding of duties appropriately. Opposed to
separation of duties, we do not change user lists. Instead, we
cope with the situation that no mobile user satisfies the binding
of duties constraint. In order to illustrate this, consider the
situations before and after change. Before change, the user
lists for M3 and M5 indicate that binding of duties cannot be
enforced since no mobile user is allowed to perform both tasks.
As a result, in this scenario, M3 as well as M5 will be executed
using the backup service. To be able to still execute M3 and
M5 on a mobile device, we apply the following changes: First,
we allow every mobile user to perform M3 (cf. Fig. 13; after
change; select(M3)). Then, our backup service is applied to
M5 (cf. Fig. 13; after change; backup(M5)). In this context,
we use the complex backup operation to ensure that M5 will
be executed properly and quicker than with the simple backup
operation. We realize two ways for performing the backup
task: First, we assign it to the user who has performed M3.
In addition, she must perform it on a stationary computer.
Second, we allow all mobile users, authorized to perform
M5, to execute the backup task. Following this, the validation
task of the backup service is performed, and the user who
has performed M3, must confirm that the task was performed
correctly.

Cardinality: Regarding the cardinality constraint (cf. Fig.
13 4©), no changes are required.

After integrating entailment constraints with our approach,
the question emerges whether the combined use of several
constraints in the context of a business process necessitates
additional considerations.

Binding of Duties combined with Separation of Duties:
In order to combine binding of duties with separation of duties
(cf. Fig. 13 2©), no extensions are required. For example,
consider the scenario depicted in Fig. 13, 2©. Since the
separation of duties constraint between tasks M2 and M5 has
no effect on the binding of duties constraint between M1 and
M2, no extensions are required.

Separation of Duties combined with Binding of Duties:
Fig. 13, 3© shows how we adapt the order of the user list of M1
to properly support the combined use of separation of duties
with binding of duties. First, we compare user lists of mobile
tasks M1, M2, and M5 (cf. Fig. 13; compare(M1,M2,M5)).
Second, we adapt the user list of M1 (cf. Fig. 13; setLowPri-
ority(M1.A)). Fig. 13, 3© depicts the scenarios before and after
change.

• Before change: If a delegation to user A becomes neces-
sary for M1 during runtime, the binding of duties for M2
and M5 cannot be enforced.

• After change: After adapting the user list of M1, dele-
gations to users B and C are still possible for M1 during
runtime without affecting the binding of duties.

Cardinality combined with Binding of Duties: Fig. 13,
5a©, shows how cardinality and binding of duties constraints
can be combined. In this context, we assign a binding of
duties constraint to all task instances of M1 (cf. Fig. 13;
add.BindingOfDuties) and M2; i.e., each instance of M1 and
M2 will be performed by the same mobile user.

Cardinality combined with Separation of Duties: Fig.
13, 5b©, shows how cardinality and separation of duties
constraints are combined. We provide two options for this:
First, each task instance of M1 may be constrained through
separation of duties with M2 and then threshold thmul be
changed for all task instances (cf. Fig. 13; adjuste.Threshold).
The latter ensures that not all users, who may work on an
instance of M1, will be a subject for delegation. As a result,
the number of mobile user who may perform M2 increases.
Second, we define a binding of duties constraint between all
task instances of M1 and combine it with a separation of duties
constraint with M2 (cf. Fig. 13; add.BindingOfDuties); i.e., all
task instances of M1 are performed by the same user, who is
then not allowed to perform M2.

We discuss two cases of particular interest. The first one is
illustrated by Fig. 11. Consider task M2. It is located between
M1 and M3, which are constrained by a binding of duties.
In this context, the question emerges whether changes made
to M2 will affect the separation of duties constraint between
M1 and M3. Assume that user A performed M1. Then, he
must perform M3 as well. However, if he is also authorized
to perform M2, the probability that he will be able to perform
M3 might decrease. Since his mobile device consumes power
while he is working on M2, he might be unable to directly
perform M3 afterwards due to a low battery status. Therefore,
we decrease the priority of this user in the respective user list
of M2.



M3
M1 B M2

Figure 11. Mobile tasks M1 and M3 constrained by a binding of duties and
preceding/succedding mobile task M2

Another special case is shown in Fig. 12. Between mobile
tasks M1a and M2a a binding of duties constraint exists.
Furthermore, both tasks produce data. Recall that for a task
producing data, the presented backup service ensures that it
will be executed properly. Furthermore, assume that for M1a
the backup service must perform M1b during runtime. Then,
it must be determined who shall be allowed to perform M2a.
If the binding of duties constraint between M1a and M2a
is strictly enforced, M2a must be automatically performed
applying the backup service to M2b, since no mobile user
has performed M1b. In this particular situation, we also con-
sider the location attribute of M2a and change the execution
semantics of the backup service. To assess the location, we
need to meet the demands of mobility properly. In this context,
the changes we make with respect to the scenario from Fig.
12 are as follows. First, if a location is defined for M2a, we
allow arbitrary mobile users to perform M2b. Furthermore,
the validation task of the backup operation for M2b is used
to confirm that M2b was performed correctly. In turn, this
confirmation must be done by the user performing M1b.
However, applying this change means that we violate the
binding of duties constraint between M1b and M2b on one
hand and allow mobile users to perform a backup task on the
other. With the latter, we enhance overall mobility. Based on
the validation task, the binding of duties is satisfiable through
user confirmation. Second, if no location is defined for M2a,
we apply the same procedure as described above. In addition,
M2b may then be also performed by stationary users since
no particular location is defined. Overall, these changes allow
for a better handling of the scenario from Fig. 12 and further
fosters mobility.

V. VALIDATION

User acceptance is often neglected in the context of mo-
bile process and task support. To demonstrate the general
feasibility of our approach on one hand and to assess user
acceptance on the other, we implemented a proof-of-concept.
In this context, we applied the procedure depicted in Fig.
5. As a result, the core of our prototype is implemented as
intermediate component between a process engine and mobile
devices. Moreover, it is based on existing tools and standards.

M1a
M1b
backup

sync flag

M2a
M2b
backup

sync flag

M2b
uMob A
uMob B
uMob C

if M2a has a Location
(mobile users only)

M2b
uMob A
uMob B
uStat C

if M2a has no Location
(mobile AND stationary users)

Figure 12. Binding of duties and backup operations

 engine  MDS

user A
user B
user C

interface

operations

Figure 14. Integrating entailment constraints with prototype

Implementing a specific process engine, which provides all
functions to create and execute mobile tasks, have constitute a
possible direction as well. However, if a process management
system is already in use, the introduction of another engine
might be not accepted (e.g., due to high efforts for transfering
process models to the new engine). Therefore, our approach
provides an engine-independent interface for executing mobile
tasks. Since invocation of web services is a core feature of
any modern process engine, we have realized a service-driven
approach for this purpose.
Due to lack of space, we only sketch how we integrated
entailment constraints into this prototype (cf. Fig. 14): Based
on the service-driven interface provided, the mobile delegation
service gets access to an existing user management. Recall
that we integrate process engines already in use including
their user management. Through the access to such an existing
user management, the mobile delegation service is run in two
stages. First, it computes the mobile user and delegation lists.
Second, it applies changes (cf. Fig. 14) to mobile user and
delegation lists as described in Section IV. Due to lack of
space, we omit details on the architecture of the prototype.

VI. RELATED WORK

Two research fields are relevant in the context of our work:
approaches addressing mobile process execution in general and
approaches integrating entailment constraints with business
process execution.
In the first category, work exists providing logical models
for mobile processes on one hand and architectures and im-
plementations of light-weight process engines on the other.
Logical models for mobile processes include, for example,
approaches partitioning BPEL process models and executing
the resulting process fragments on mobile devices [12]–[15].
Similar approaches exist in the context of distributed process
execution (e.g., [16]). However, none of them provides support
for executing mobile tasks as in our approach.
There exist specific approaches handling failures like broken
connections or missing communication facilities [14], [17]–
[22]. Corresponding implementations mainly apply web ser-
vice standards and rely on BPEL (or more specific execution
models). In turn, none of them provides self-healing techniques
to relieve users from manual tasks in case of errors. Note
that this is crucial with respect to overall user acceptance.
Generally, self-healing techniques, like the backup service
we suggest, and task migration support, like the presented
delegation service are indispensable when executing mobile
tasks in the large scale while targeting at a high user acceptance
at the same time. Existing approaches addressing respective
aspects in the context of process-aware information systems
again focus on BPEL as execution language [13], [23], [24].
Several approaches exist integrating entailment constraints
with business process execution [9], [25]–[27]. They all focus
on the specification of entailment constraints and their sat-
isfiability. Thereby, those approaches dealing with delegation
in the context of entailment constraints are directly related to



M2

M3
M1 M4 M5A

C

B

1. Separation of Duties and Binding of Duties

M1
user A
user B
user C

M2
user A
user B
user D

M3
user A
user B
user C

M5
user D
user E
user F

compare(M1,M2)
setLowPriority(M1.A, M1.B)

select backup
M5

M2
user A
user B
user D

M1
user C
user A
user B

M5
user D
user E
user F

M3
user A
user B
user C

before change after change

before change after change

before change after change

before change after change

M2

M3
M1 M4 M5A

C

B

2. Binding of Duties combined with Separation of Duties      

3. Separation of Duties combined with Binding of Duties 

M1
user A
user B
user C

M2
user D
user A
user E

M5
user F
user A
user G

M5
user F
user A
user G

M1
user B
user C
user A

M2
user A
user D
user E

compare(M1,M2,M5)
setLowPriority(M1.A)

4. Cardinality

5. Cardinality combined with Binding of Duties and Separation of Duties

M2

M3
M1 M4 M5A

C

B

M2

B
M1 A

M2

B
M1.1 AM1.2 M1.n[...]

M2

B
M1 A

M2

B
M1.1 AM1.2 M1.n[...]add.BindingOfDuties

M2

B
M1 A

M2

B
M1.1 AM1.2 M1.n[...]

M2

B
M1 A

M2

B
M1.1 AM1.2 M1.n[...]

adjuste.Threshold

add.BindingOfDuties

M1
user A
user B
user C

M2
user D
user E
user F

select backup
M2

M2
user D
user E
user F

M1
user A
user B
user C

Separation of Duties (SoD) Binding of Duties (BoD) Cardinality

OR

Figure 13. Enabling entailment constraints for mobile process execution



our approach [25], [28]–[31]. In turn, they use delegation in
a different way, delegating tasks in a controlled manner from
one user to another based on defined context configurations.
Usually, a delegator requests a delegation to a delegatee.
Usually this is accomplished in a user-centric way. However, to
use delegation as a strategy for delegating tasks automatically
in case of errors has not been addressed yet. Finally, to the best
of our knowledge, there is no work dealing with the integration
of entailment constraints and mobile process execution.
Altogether, the integration of entailment constraints with mo-
bile process and task support has not yet received the attention
as in our approach.

VII. SUMMARY

We introduced an approach for integrating entailment con-
straints with mobile process and task support. In this context,
the presented backup service as well as the mobile delegation
service allow for a robust process execution. Our overall vision
is to provide advanced mobile process and task support. The
integration of entailment constraints constitutes one important
step towards enhancing our approach. Mobile users are often
in a line of visibility and hence separating or binding respon-
sibilities might be crucial. To meet this demand, we added
separation and binding of duties constraints to our approach.
Further, in a mobile context, tasks may have to be executed
more than once. This is covered by the cardinality constraint
in our approach. Moreover, we argued that integrating these
constraints must not harm overall process execution and we
showed how this can be ensured based on the presented backup
service. We further described changes to our mobile delegation
service to optimize the support of entailment constraints. In
particular, this optimization aims at decreasing the use of the
backup service on one hand and fostering mobility on the other.
Overall, we have shown that integrating entailment constraints
with mobile process and task support is feasible. In future
work, we will make experiments in the field, e.g., considering
scenarios in which entailment constraints exist between mobile
and stationary tasks.

REFERENCES

[1] J. Schobel and M. Schickler and R. Pryss and H. Nienhaus and
M. Reichert, “Using Vital Sensors in Mobile Healthcare Business
Applications: challenges, Examples, Lessons Learned,” Int’l Conference
on Web Information Systems and Technologies, pp. 509–518, 2013.

[2] M. Reichert and B. Weber, Enabling Flexibility in Process-Aware
Information Systems: Challenges, Methods, Technologies. Springer,
2012.

[3] ——, “Process Change Patterns: Recent Research, Use Cases, Research
Directions,” Seminal Contributions to Information Systems Engineering
- 25 Years of CAiSE, pp. 398–404, 2013.

[4] J. Kolb and M. Reichert, “A Flexible Approach for Abstracting and
Personalizing Large Business Process Models,” Applied Computing
Review, vol. 13, no. 1, pp. 6–17, March 2013.

[5] A. Lanz and B. Weber and M. Reichert, “Time patterns for process-
aware information systems,” Requirements Engineering, pp. 1–29, 2012.

[6] B. Weber and M. Reichert and S. Rinderle-Ma, “Change Patterns and
Change Support Features - Enhancing Flexibility in Process-Aware
Information Systems,” Data Knowl. Eng., vol. 66, no. 3, pp. 438–466,
2008.

[7] R. Pryss and D. Langer and M. Reichert and A. Hallerbach, “Mobile
Task Management for Medical Ward Rounds - The MEDo Approach,”
Proc. BPM’12 Workshops, LNBIP, no. 132, pp. 43–54, 2012.

[8] R. Lenz and M. Reichert, “IT Support for Healthcare Processes -
Premises, Challenges, Perspectives.” Data Knowl. Eng., vol. 61, no. 1,
pp. 39–58, 2007.

[9] J. Crampton, “An algebraic approach to the analysis of constrained
workflow systems,” Proc. 3rd Workshop on Foundations of Computer
Security, pp. 61–74, 2004.

[10] R. Pryss and J. Tiedeken and U. Kreher and M. Reichert, “Towards
Flexible Process Support on Mobile Devices,” Proc. CAiSE’10 Forum,
pp. 150–165, 2010.

[11] R. Pryss and J. Tiedeken and M. Reichert, “Managing Processes on
Mobile Devices: The MARPLE Approach,” CAiSE’10 Demos, June
2010.

[12] L. Baresi and A. Maurino and S. Modafferi, “Workflow partitioning in
mobile information systems,” Proc. IFIP TC8 Working Conf. on Mobile
Information Systems, pp. 93–106, 2004.

[13] L. Baresi and S. Guinea and L. Pasquale, “Self-healing BPEL processes
with DYNAMO and the JBoss rule engine,” Int. Workshop on Engineer-
ing of Software Services for Pervasive Environments, pp. 11–20, 2007.

[14] K. Hahn and H. Schweppe, “Exploring Transactional Service Properties
for Mobile Service Composition,” MMS’09, pp. 39–52, 2009.

[15] H. Schmidt and F. J. Hauck, “SAMPROC: middleware for self-adaptive
mobile processes in heterogeneous ubiquitous environments,” Proc. 4th
Middleware Doctoral Symposium, pp. 1–6, 2007.

[16] T. Bauer and M. Reichert and P. Dadam, “Intra-subnet Load Balancing
in Distributed Workflow Management Systems,” Int’l Journal of Coop.
Inf. Sys., vol. 12, no. 3, pp. 205–323, 2003.

[17] C. P. Kunze, “DEMAC: A Distributed Environment for Mobility-Aware
Computing,” Proc. 3rd Int. Conf. on Perv. Comp., pp. 115–121, 5 2005.

[18] G. Hackmann and M. Haitjema and C. Gill, “SLIVER: A BPEL
Workflow Process Execution Engine for Mobile Devices,” ICSOC’06,
pp. 503–508, 2006.

[19] H. Schmidt and R. Kapitza and F. J. Hauck, “Mobile-process-based
ubiquitous computing platform: a blueprint,” Proc. 1st Workshop on
Middleware-application interaction, pp. 25–30, 2007.

[20] G. Stuermer and J. Mangler and E. Schikuta, “Building a Modular
Service Oriented Workflow Engine,” IEEE Int. Conf. on Service-
Oriented Computing and Applications, pp. 1–4, 12 2009.

[21] D. Battista and M. Leoni and A. Gaetanis and M. Mecella and A.
Pezzullo and A. Russo and C. Saponaro, “ROME4EU: A Web Service-
Based Process-Aware System for Smart Devices,” Proc. ICSOC’08, pp.
726–727, 2008.

[22] S. Zaplata and V. Dreiling and W. Lamersdorf, “Realizing Mobile Web
Services for Dynamic Applications,” I3E’09, pp. 240–254, 9 2009.

[23] L. Baresi and S. Guinea, “DYNAMO and Self-Healing BPEL Compo-
sitions,” Proc. 29th Int. Conf. on Software Eng., pp. 69–70, 2007.

[24] S. Zaplata and K. Kottke and M. Meiners and W. Lamersdorf, “Towards
Runtime Migration of WS-BPEL Processes,” WESOA’09, 4 2010.

[25] J. Crampton and H. Khambhammettu, “Delegation and satisfiability in
workflow systems,” Proc. 13th ACM Symposium on Access Control
Models and Technologies, pp. 31–40, 2008.

[26] E. Bertino and E. Ferrari and V. Atluri, “The specification and enforce-
ment of authorization constraints in workflow management systems,”
ACM Trans. on Inf. and Sys. Sec., pp. 65–104, 1999.

[27] C. Wolter and A. Schaad and C. Meinel, “Task-based entailment con-
straints for basic workflow patterns,” Proc. of the 13th ACM symposium
on Access control models and technologies, pp. 51–60, 2008.

[28] L. Zhang and G-J. Ahn and B-T. Chu, “A rule-based framework for role-
based delegation and revocation,” ACM Trans.on Inf. and Sys. Security,
vol. 6, no. 3, pp. 404–441, 2003.

[29] K. Gaaloul and F. Charoy, “Task delegation based access control models
for workflow systems,” Software Services for e-Business and e-Society,
pp. 400–414, 2009.

[30] V. Atluri and J. Warner, “Supporting conditional delegation in secure
workflow management systems,” Proc. 10th ACM Symposium on Access
Control Models and Technologies, pp. 49–58, 2005.

[31] L. Zhang and G-J. Ahn and B-T. Chu, “A rule-based framework for role-
based delegation and revocation,” ACM Transactions on Information
and System Security (TISSEC), vol. 6, no. 3, pp. 404–441, 2003.


