Implementation of a Java Framework for Marker Based Detection in Augmented Reality

Bachelor thesis of the University of Ulm

Presented by:
Tamino P.S.M. Hartmann
tamino.hartmann@uni-ulm.de

Verifier:
Professor Doctor Manfred Reichert

Supervisor:
Marc Schickler

2013
Abstract

Due to the drastic increase in powerful hardware in mobile devices, it has become possible to move Augmented Reality applications from desktop systems to their mobile counterparts, thus also opening a wide range of new uses and possibilities. To allow fast development of mobile Augmented Reality applications, we propose and implement a framework that handles the heavy lifting.

This paper describes the path from design to implementation of an augmented reality framework for the mobile Android platform. The goal is a framework for marker-based tracking and corresponding rendering of three dimensional objects, to be usable in any application for Android. The framework, called Imagine, will utilize OpenCV for Android for the image processing to detect markers and OpenGL ES 2.0 to render the corresponding 3D objects. The finished framework is also analyzed for possible improvements and corrections.
Gratitude

The author of this paper would first and foremost like to thank his supervisor Marc Schickler for his support. Beyond that, general thanks are in order for the author’s social support network in keeping him on track and motivated. This especially includes his parents, Stefan and Katja Hartmann, for proof-reading the text of this paper and his friends for continually reminding him that a deadline was quickly approaching (most persistently Laura Irlinger).

Further thanks are due to the online developer communities surrounding OpenGL ES, Android, and OpenCV for explanations and examples. Thanks are also due to Linux in general for offering a sane development environment, IntelliJ IDEA for a superior and not frustrating IDE compared to Eclipse, and Texmaker for easy \LaTeX.
Contents

1 Overview

1.1 Introduction ... 1
1.2 Project Context .. 3
1.3 Content of this Paper ... 3

2 Framework

2.1 Proposed Functionality ... 5
2.2 Dependencies .. 7
2.3 Limitations of Scope ... 8
2.4 General Class Diagram ... 10
2.5 Application Programming Interface 11
2.6 Usage .. 12
2.7 Implementation .. 13
 2.7.1 Tools and Environment 13
 2.7.2 First Steps and Trials .. 13
 2.7.3 Implemented Algorithm 14
2.8 Complete Class Diagram .. 18
2.9 How to Use ... 20

3 Markers

3.1 Coding Scheme .. 22
3.2 Usage ... 23
Contents

4 Results

4.1 Implementation .. 25
 4.1.1 Encountered Difficulties 26
 4.1.2 Performance 29

4.2 Features and Capabilities 32
 4.2.1 Debugging Capabilities 32
 4.2.2 Features ... 34

4.3 Application .. 35

4.4 Comparison to similar Apps 36
 4.4.1 Aruco .. 37
 4.4.2 DroidAR ... 38

5 Conclusion ... 39

5.1 Future Possibilities 39
 5.1.1 Performance .. 40
 5.1.2 Features .. 40
 5.1.3 Improvements 41
 5.1.4 Extended Possibilities 42

5.2 Closing Statement 43
1

Overview

1.1 Introduction

As mobile devices become more and more powerful and ubiquitous, developers continually realize new uses for them. One of the fields that is continually reinventing itself is the field of Augmented Reality. It is the integration of information onto and into our perception of the real world – an augmentation of our reality. To achieve this many different methods exist [GPSR13]. Many such applications use the user’s global position to overlay points of interest onto a camera feed; others use computer vision to track real world objects to enable software interaction with them. Detecting real world objects is however a non-trivial task, and thus a wide range of possibilities for accomplishing that exist.
1 Overview

One of these is the usage of so-called markers – visually significant patterns – to enable fast and easy detection of objects. To enable quick and easy development of applications that use marker-based tracking for the augmentation of our reality, this paper and the work it covers was envisioned.

This paper represents the initial design and development work for an Android framework to simplify the detection and usage of markers in Augmented Reality applications. The framework shall henceforth be named Imagine to differentiate it from other similar frameworks and the libraries it utilizes.

Imagine will initially only target applications written for Android using Java [and]. It will utilize the OpenCV for Android library, a sub-project of the original OpenCV framework specifically targeted for Android devices [opea]. By separating the detection and the rendering modules within Imagine, it should be relatively easy to extend the functionality of Imagine to other platforms and other technologies, such as desktop applications for Linux or rendering with DirectX instead of OpenGL ES.

To develop and test the framework, we will also implement an application that relies on Imagine for basic functionality. The application will allow for the real-time viewing of virtual objects on top of a marker and be used to test and evaluate Imagine. This shall prove the capability and initial concept of the framework and also serve as a starting point for any future derivative work.

This paper consists of all the work done around the actual implementation. We will look at the basic requirements of the framework. Basic necessities will be listed and reviewed. We’ll also present a proposal for the structure of the framework. Difficulties that arose during development will also be documented, along with possible solutions and commentary. At the end we will also shortly compare Imagine to other frameworks to put it into perspective.

Apart from the programmatic development of the framework and the final review of our work, we will also deliver at least basic documentation for the framework. For the framework this will include a Javadoc [doc] file for the completed code and a basic tutorial for usage. The implementing application should be self explanatory, although care will be taken to ensure a low learning hurdle for using it.
1.2 Project Context

This paper is the bachelor thesis of Tamino Hartmann, written at the Faculty of Engineering and Computer Science [fac] at the Institute of Databases and Information Systems at the University of Ulm [ulm], Germany. The work commissioned is to create a framework for fast and easy integration of marker-based tracking for possible future projects within the institute, thus decreasing repetitive re-implementation of the same features and allowing a faster development time for implementing applications. The supervisor was Marc Schickler and the examiner was Professor Doctor Manfred Reichert.

1.3 Content of this Paper

Chapter 2 presents the preliminary work done for finding an algorithm and subsequently for implementing it. We then shortly take a look at what encompasses our markers for Imagine in chapter 3.

Chapter 4 presents our encountered difficulties, implemented features, and a comparison to other, similar frameworks. We conclude with chapter 5, where we step back and give a more general outlook on possible future work.
In this section, we take a close look at the proposed structure and capabilities of the framework, Imagine. We will then discuss the implementation and its difficulties.

2.1 Proposed Functionality

The framework shall have two primary capabilities: first, it should enable *fast and easy access to the 3D pose calculated from the detected marker*. Second, given a *digital 3D model to display*, it should be capable of returning a rendering of the object within the scene on top of the live preview, correctly positioned.

Generally, the framework shall work as in the following. Once the framework is running, OpenCV reads the camera frame directly from the camera. This frame is copied to the
2 Framework

worker threads that will detect markers. The original unaltered frame is passed back up to be shown as the background of the later rendering.

These worker threads are where the computational expensive part of actually detecting the marker happens. Using the OpenCV for Android library, we detect markers and calculate their three dimensional pose. All detected markers are put into a list with the important attached information, such as the corresponding identification number of the detected marker.

This list is passed back to the main controlling element of the framework. Here it can be passed directly to listening classes if that option was chosen. This is done when only the marker information is required and not a rendering. If not, the list is filtered for only those markers that the user wants to track. These trackables have to have been registered beforehand by the user. Then the model information is attached to all detected trackable assets and passed down to the rendering part of the framework. Here, this filtered and supplemented list is used to render all objects onto the correct positions with the correct perspective modifications on top of the camera image.

Figure 2.1: The proposed sequence of the workflow with the framework, using OpenCV for Android and OpenGL ES.

Apart from the above mentioned basic functionality capabilities, the framework should also handle the easy gathering of performance and error information, mainly by extending the relevant functions of Android. This can include gathering the logs to a listener,
bypassing the Android logging mechanism, and any further functionality that could be useful.

Figure 2.1 shows the proposed sequence of events of Imagine, and where data can be input or read. As proposed, the framework should offer a wide variety of uses, without being overly complex from an outside perspective. Another important aspect we want to make possible is the possibility of changing all the more important parameters during runtime, such as switching the model or adding a new marker. This should allow a less restrictive usage of the framework and any derived apps as a result.

2.2 Dependencies

Primary dependency is of course an Android environment, given that it is the target platform for the framework. The framework is written in Java with Android specific syntax and structure. Aside from the basic requirements, the framework will depend mainly on two external software solutions.

The first is OpenCV, an open source collection of computer vision and machine learning software. Imagine makes use of the Java-based port, called OpenCV for Android [opea]. To use the framework on Android, the OpenCV Manager [opeb] needs to be installed alongside the application using the framework, as the marker detection relies on it. The OpenCV Manager offers the best version of OpenCV for Android for each Android device according to its specifications and capabilities.

Apart from OpenCV for Android, OpenGL ES is used for the rendering of the 3D objects to the display. For this dependency, nothing has to be considered from an application that would use the framework, as the mobile version of OpenGL is already built into Android. According to the capabilities of the developer device used, we choose to use OpenGL ES 2.x. This has the added advantage that at the time of development, a minority of devices support OpenGL ES 3.x anyway. At the same time using version (OpenGL ES 1.x) would broaden the pool of compatible devices by an insignificant amount.
2.3 Limitations of Scope

In the following we will look at the features required of the framework for it to be considered feature complete and basically usable. Some nice-to-have features will also be listed, meaning features that will not be implemented but could possibly be interesting for future development. For completeness we will also take a short look at features that are possibly too difficult to do, would take too much extra time, and or would require significant work.

To clarify the scope of the proposed framework, all features that will be delivered are described within table 2.1.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug messaging</td>
<td>The framework should be easy to debug and allow simple access to status messages</td>
</tr>
<tr>
<td>Manage trackers</td>
<td>Allow to add and remove trackers during runtime</td>
</tr>
<tr>
<td>Read position data</td>
<td>Give the possibility of accessing the raw data returned from the OpenCV interface, bypassing the rendering step</td>
</tr>
<tr>
<td>Configuration</td>
<td>Allow easy visualization for various aspects of the framework</td>
</tr>
<tr>
<td>Multi-threading</td>
<td>Allow computationally expensive tasks to run multi-threaded</td>
</tr>
<tr>
<td>Helpful functions</td>
<td>Offer functions for marker creation and object loading to decrease external work required to use Imagine</td>
</tr>
</tbody>
</table>

Table 2.1: This table lists the required features for the framework to be considered completely functional.

The features in table 2.2 are features that could be implemented relatively easily. Future work should begin with these features to expand the use-cases of the proposed framework.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animated objects</td>
<td>Allow the object to have an animation and offer access to control animation dynamically</td>
</tr>
<tr>
<td>Simple advanced rendering</td>
<td>Allow textured rendering and other visual improvements</td>
</tr>
</tbody>
</table>

Table 2.2: Features that could be added without a lot of work and time.
2.3 Limitations of Scope

Table 2.3 lists features that will not be implemented. These features would possibly require significant work to include and change fundamental parts of how the framework currently runs.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marker-less tracking</td>
<td>Foregoing markers and allowing any feature-rich object to be used instead</td>
</tr>
<tr>
<td>Fancy rendering</td>
<td>Alternative rendering output, such as stereoscopic output to be used by 3D capable viewing devices</td>
</tr>
<tr>
<td>Occlusion</td>
<td>The capability to detect where scene occlusion is taking place and render accordingly</td>
</tr>
<tr>
<td>Real-time detection</td>
<td>Raise performance enough to be perceived as smooth, no detection lag</td>
</tr>
</tbody>
</table>

Table 2.3: Features that are not implementable without comprehensive work.

For broader future possibilities concerning the use and further development of Imagine, see also section 5.1.
2 Framework

2.4 General Class Diagram

Now let us take a look at the proposed class structure of the framework, as illustrated in figure 2.2. For the complete class diagram, see section 2.8.

Figure 2.2: This is the preliminary class diagram of the proposed functionality of the framework accessible from outside.

Main access is controlled over the framework controller, labeled `MainInterface`, which almost exclusively contains all the public methods callable from outside of the framework that matter for normal usage. Apart from MainInterface, the log messages can be listened to via the `Messenger`, `ConvertHelper` offers matrix and float conversions, and `MarkerPatternHelper` offers methods for generating and detecting markers.

Some data object classes are also accessible as public classes to ease data transfer. Notably, this includes the `Marker` class for accessing the pose information and the `Flags` class for controlling flags for Imagine. Interface classes are also provided for passing and receiving information.
2.5 Application Programming Interface

Table 2.4 lists the methods that make up the more important aspects of the framework.

With the listed methods, all functionality that the framework offers can be accessed.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization</td>
<td>Constructs all the internal classes and prepares the major functionality. Also used to set the most important values such as camera distortion and camera perspective, as these are crucial for a correct processing. Furthermore also used to set the output layout where the results are drawn to.</td>
</tr>
<tr>
<td>setFlag</td>
<td>Sets the given flag to the specified value. For possible flags please see the Javadoc.</td>
</tr>
<tr>
<td>getMarker</td>
<td>Helper method for creating a boolean array representation of a marker for the given identification number.</td>
</tr>
<tr>
<td>importOBJ</td>
<td>Given an object file in the form of a string returns the correct float representation of it.</td>
</tr>
<tr>
<td>setBinaryThreshold</td>
<td>Sets the threshold used for binarizing the image for detecting markers.</td>
</tr>
<tr>
<td>onCreate</td>
<td>Must be called in the activities onCreate method; handles all the necessary calls within the framework.</td>
</tr>
<tr>
<td>onResume</td>
<td>Must be called in the activities onResume method.</td>
</tr>
<tr>
<td>onPause</td>
<td>Must be called in the activities onPause method.</td>
</tr>
<tr>
<td>onDestroy</td>
<td>Must be called in the activities onDestroy method.</td>
</tr>
<tr>
<td>registerListener</td>
<td>Add a homography listener. Listeners will be called if the correct flag has been set. Listeners will receive a list of detected markers containing all information.</td>
</tr>
<tr>
<td>removeListener</td>
<td>Removes a homography listener.</td>
</tr>
<tr>
<td>registerEntity</td>
<td>Adds an entity containing the ID, visibility status, and vertice buffer. This means that upon detection of the corresponding marker, the object will be rendered on top of it, according to the status of the visibility.</td>
</tr>
<tr>
<td>removeEntity</td>
<td>Removes an entity from the list.</td>
</tr>
</tbody>
</table>

Table 2.4: Methods for accessing the functionality of Imagine. Referred to as the application programming interface, short API, of the framework.

Important to note is that the `onCreate`, `onPause`, `onResume`, and `onDestroy` methods are inherent to the way programs work on Android, and thus must be called for the framework to function correctly.

Upon initialization of the framework, entities can be added to be tracked and rendered with the `registerEntity` method. To do that, the user has to implement the entity interface, providing functionality for reading the identification that the object is to be bound to, whether it is to be rendered (the visibility option), and finally a FloatBuffer containing...
2 Framework

vertex locations and color information. The use of the FloatBuffer might not seem intuitive at first glance, however it allows the framework to handle the rendering all on its own, greatly simplifying the usage of the framework.

2.6 Usage

The finished framework can track multiple markers in a single instance. In fact, it tracks all markers it finds from the beginning, only filtering out the ones that the user is interested in before rendering. This allows comparatively easy use of multiple, separately tracked entities. However, this also has a significant drawback: as the framework is computationally expensive, multiple markers can quickly degrade its performance, even if the user is only interested in a single marker – see also section 4.1.2.

Figure 2.3: From left to right: generated marker on screen, the same marker printed, the marker drawn by hand.

For the tracking to work, the marker must be visible to the camera. The marker can be shown on a separate screen, printed on paper, or drawn – as seen in figure 2.3. The framework will then detect the presence of the marker, continue with its identification and perspective information, and finally store it as a successfully detected marker for the render interface to render. Utilizing the thus calculated perspective information, paired with the correct object, the renderer then proceeds to render objects onto their respective markers.
2.7 Implementation

The following section describes in more detail the implementation of the framework. Here we will look at the tools used, the process of arriving at a satisfactory algorithm, and then how it works.

Due to performance considerations and access to low level hardware access, we decided not to implement a hybrid framework, such as a HTML5 application in a native container, but a native application [SSP+13].

2.7.1 Tools and Environment

We developed Imagine on a Linux Mint Debian Edition powered computer with the IntelliJ IDEA IDE [ide]. The development device was connected via USB debugging for rapid iterative coding. Javadoc was written directly into the code and then generated to readable format via internal IntelliJ IDEA tools.

For further documentation, we utilized Dia [dia] for generating diagrams, Umbrello [umb] for the class diagrams, Texmaker [tex] for \LaTeX creation, and Git [gita] for revision control.

Imagine was developed with the target of running smoothly on a Nvidia Tegra 3 processor. The development device is the Transformer Prime, a 10” tablet from ASUS [dev]. This means that the framework should run smoothly on a 1.6 Ghz Quadcore ARM processor rendering to a 1280 by 800 pixel screen.

2.7.2 First Steps and Trials

First we implemented a test project to experiment with OpenCV for Android to collect data on possible solutions and problems. This test project was later worked into the finished framework once a suitable algorithm had been found.

At first, a feature-based detection approach for markers was tried. That meant that feature detection was used on the marker, resulting in a cloud of key feature points. These can then theoretically be located in an image from which we have likewise extracted feature
2 Framework

points. However, this method proved to be too computationally expensive considering that we would then still need to identify the marker and calculate the geometric information. Initial tests only for detecting feature points in a live camera view yielded framerates below 2 frames per second. This was deemed insufficient for a realtime use of the finished product.

Initialized by that, further detailed research turned up a better solution based on the method used by the comparable Aruco [aru] framework. By comparing the performance of the marker-based approach of Aruco, the feature-based approach was discarded in favor of a marker-based approach, as it promised to offer a significant performance increase.

2.7.3 Implemented Algorithm

This section describes in detail how we detect, identify, and calculate the perspective transformation of the markers in Imagine. These steps are done for each frame, leveraging the image processing capabilities of OpenCV. It results in a list of detected markers with their transformation matrices.
The first step is to reduce the color image into a binary image. To do this, we take the gray-scaled image that we receive from OpenCV and threshold it against a constant value. As we are interested in highly contrasted regions as our markers are monochrome, this threshold was chosen relatively low. Figure 2.4 shows the result of the operation.

Alternative methods are available, but require some more work. These are using the Canny edge detection algorithm [Can86] or an adaptive threshold. Both of these however only detect edges as black on white lines. These can also be used to get possible contours but result in two contours for a marker – one on each side of the line, effectively an inside and outside contour. Therefore we filter these out, leaving only the outer contours in place.

This binary image is suitable for fast detection of all contours within the image. The detected contours are then filtered for size, as any contour that represents a marker below a certain size will be too small to safely and correctly identify. The filtering also improves performance as it removes much contour noise, therefore decreasing
2 Framework

our workload for further steps. Figure 2.5 shows the detected contours, filtered and overlayed on the original image.

![Figure 2.5: The detected contours.](image)

Next we calculate polynomial approximations for all remaining contours. We can then filter the polynomial objects based on two criteria for our markers. We only take polynomial objects with four corners and those which form a convex hull.

Now that we have a selection of detected perspective rectangles that might be markers, we sample all candidates for a black border. To do this, we first have to de-warp the part of the image that is confined by the rectangles. This is done to decrease sampling difficulty and decreases speed only by an insignificant amount. The now square texture is then used in the following steps, of which the first is to check that the candidates have a valid black border. Next we check for the orientation bits: if we find these, we can be comparatively sure that we have a valid marker and can continue to its identification. If the detection of orientation fails (meaning that we do not find a pattern of three white and one black inner corner block), we consider the candidate to be invalid. Now all that remains is the marker identification, which is done by sampling the remaining inside bits...
and decoding them. This process is further detailed in section 3. These steps can be seen in figure 2.6 in the top left corner.

Figure 2.6: Screenshot with the sampling visual debugging view active. The polygon rendering is also shown.

One of the major advantages of the polynomial representation of the markers is that it is very easy to calculate the 3D position of the markers from them. This is done by solving a linear equation that tries to find the translation values required to move the marker from the camera plane correctly to its 3D location according to its perspective distorted location. That step is the one that requires the camera matrix and camera distortion values, which have to be determined beforehand for each device. The resulting translation is saved along with marker identification and angle. It will later be used to correctly place an object on top of the marker to be rendered in OpenGL. All thus detected marker candidates are then passed to the main controller, which manages them for the renderer.

For further commentary on the implementation, see section 4.1. Concerning final performance of the framework, see section 4.1.2.
2 Framework

2.8 Complete Class Diagram

Figure 2.7 shows the complete class diagram of the finished framework.

MainInterface encapsulates all the primary functionality within the framework that is required to work with it from an application. Apart from managing all the other classes on startup and closure, it also handles the information exchange between them and the application itself. It also enables the management of the entities and their assigned trackables. *MainInterface* also handles any inter-system compatibility that the passage of information between the renderer and interface require, such as the filtering of detected markers for trackables that are to be rendered.

The *Messenger* class allows easy and quick access to any debugging, logging, or error messages to outside classes via a listener principle.

The *OpenGLRenderer* implements the functions that take the list of detected trackables and renders their objects onto the position given by the pose estimation. This class also implements all functionality for the rendering types and 3D drawing functions that are required.

The *OpenCVWorker* is a single thread that continually takes an input image and tries to detect all markers in it. The functionality itself however rests in the *Detector* class; this class only handles the logical functions surrounding the multithreading and work delegation.

The *Detector* class is where the main detection code lies. The algorithm was thus extracted from other classes to allow a clean differentiation in functionality. Here, the main OpenCV work is done. *Detector* also implements a few internal methods for the detection work that would be ill suited to lay elsewhere.

The above proposed system should enable an easily extensible build for the framework while retaining a simplistic use case. It should, in theory, be relatively easy to exchange either the worker threads or the render class to enable the framework to run beyond Android. That would enable the framework to run on normal personal computers using the full-fledged version of OpenGL or possibly DirectX.
Figure 2.7: This is the complete class diagram of the Imagine framework. It lists all methods of all the public, protected, and private classes.
2 Framework

2.9 How to Use

Using the framework is very easy. Simply create an instance of the MainInterface class of the framework either in the constructor or in the onCreate method of the activity where the application is run from. After creating the instance, the onCreate method of the framework must be called within the activity’s own onCreate method. To create the framework, an Android GroupView is required. Here it will place the camera view and the view responsible for rendering the detected objects. Also required are the camera values for the target device. These can either be calculated, copied from device information, or detected with an application like camera-calibration [cal]. Now all that remains is to also call onPause, onResume, and onDestroy in the respective methods of the activity via the framework.

The framework offers some helper functions to shift some workload away from the user. These should allow the usage of the framework to be very quick to learn and implement, without having to understand how the framework works internally.

One such helper function is the creation of correct markers in the form of a binary array. This can be used one-off to create a printable set of markers, or during use of the framework for internal representation of markers. The method takes the identification number and generates the complete marker for it, including border, orientation bits, and Hamming encoding.

Another helper function loads a 3D model file and converts it to the correct representation to be used with the entity class. This method takes a 3D model file and converts it to a float array, which can easily be converted to the FloatBuffer object used by the framework.
Markers

To enable the framework to detect a 3D pose from a video feed, a marker with specific properties will be required. A marker is a visually significant pattern that the system can detect within an image and can be used to calculate spatial coordinates. Figure 3.1 shows an example of such a marker.

![Figure 3.1: An example of a marker compatible with Imagine.](image-url)
3 Markers

Due to our approach for marker detection, we selected a square black on white marker. Other types exist, such as rotary markers or image-based feature markers, as seen in figure 3.2.

![Figure 3.2: An example of other types of markers: left a feature marker, right a rotary marker.](image)

3.1 Coding Scheme

For this framework, a marker is coded as seen in figure 3.3. The basis is a six by six sized grid, where the border is solid black. The internal four by four spaces are used to encode the orientation and identification of the marker. The orientation is encoded by coloring the corners white except for the top right corner, which is encoded black. The identification is binary encoded with a Hamming code [Ham50] for error detection and correction.

![Figure 3.3: A color coded representation of a legitimate marker.](image)

A real marker is monochrome, the colors here show the location of interesting bits. Green denotes the bits used to determine the rotation: the dark green bit is black, the rest
3.2 Usage

white. Light blue denotes the binary encoded identification number of the marker. Red represents the Hamming encoded parity bits used for error correction.

Thus encoded, the framework can by default detect 256 different markers. This was deemed sufficient, considering the penalty in performance for each additional detected marker when running on a mobile device, as Imagine becomes unusably slow long before reaching this limit – as seen in section 4.1.2.

3.2 Usage

Concerning the placement and creation of the marker a few points should be considered. First off, the framework offers a helper method for creating a binary representation of a marker given an identification number. This removes any need for the user to manually create and encode a marker and the resulting marker is guaranteed to be correct.

Secondly, the marker should be black on white, with the black border contrasted by white space around it. Correct detection of the presence of a marker can not be guaranteed otherwise. Generally speaking, the framework is sensitive to the contrast range of the recorded camera feed, and thus it should be maximized. Apart from monochrome markers, this also means that the environment should be brightly and constantly lit.

Thirdly, the marker should be created and printed digitally. The correct detection of the border is the first and most important step in the detection of the marker and should thus be as good as can be managed. Drawing the markers by hand is possible, but will result in a loss of accuracy due to imperfections that are bound to arise with hand-drawn markers. Care should especially be taken concerning the outermost border of the marker, as it is the main aspect used for calculating its pose. This is only true for the border, however: the internal four by four grid containing the orientation and identification of the marker can be drawn in, so long as the drawing is done carefully.

Markers that are not smooth or have other imperfections will either outright fail in being identified or have an incorrect pose assigned to them.
This section provides a commentary of the implementation work of the framework. We will also take a closer look at the performance of the finished framework and where improvements can be made in the future. To allow our work to be put into perspective, we will also compare the framework with the Aruco framework. For that we implemented a basic application that implements the functionality of Imagine.

4.1 Implementation

Here we will take a look at the process of implementing Imagine. First we will discuss difficulties and hardships endured during actual coding. Then we will take a closer look at the performance of the completed framework.
4 Results

4.1.1 Encountered Difficulties

The first major difficulty we encountered upon beginning the implementation was the user generated documentation of the Java OpenCV for Android framework in the form of questions and answers or tutorials. The probable cause for this is most likely due to the fact that OpenCV was originally written for desktop applications using C++. That means that there are two major differences between the more widely used and documented version of the framework compared to the version used for this project. The first is that one of the goals of our work was to write a Java framework, thus encouraging that we use the Java wrapper for OpenCV – therefore making the majority of C++ resources moot and hard to use. The second difference is due to the fact that our framework’s platform was to be Android, for which a few small differences existed compared to the normal use of OpenCV – such as the use of OpenCV via the elegant solution of a separate application, the OpenCV manager. These two differences seem to have been sufficient in decreasing the usage of the Java port of OpenCV enough that documentation and accessible tutorials and examples proved to be far in between. This forced development to rely all too often on examples written for other platforms and programming languages. Luckily however the framework syntax is consistent, although the used data types are not always transferable. Thus such translation work was possible but difficult.

But not only unofficial documentation is lacking: official documentation in the form of documentation for the application programming interface and official tutorials are, for all intents, almost non existent at the time of this paper. Comparably to the lacking user generated documentation, this can be mitigated by using material intended for C++. C++ documentation is also all there is for the Javadoc used within the IDE. It is not easy working in Java with C++ code as Javadoc, with further text mostly not relevant to the problems encountered when coding with it.

While we’re on the topic of the C++ base of OpenCV, allow us to criticize the single most frustrating aspect of using OpenCV: the matrix object data type, short mat. Mats are used within OpenCV as a one-size-fits-all solution for any data ranging from vector points that represent polygons to multi-channel images in various more or less used formats.
While it was still easy to recognize the RGBA format1 that the framework receives the camera image in, using the correct conversions and the correct mat subtypes in the principle work thread within Imagine proved to be very frustrating. First we encountered difficulties with the conversion of different image formats to other formats, an operation that costs a good bit of processing power and time. Thankfully, we were able to work around any conversions by parallel usage of multiple mats whose results are used on one another to retain a higher overall speed.

Then another difficulty emerged while using the OpenCV function to calculate polygons for detected contours within an image. The method for these polygons returns these in a special mat subtype that is specialized for floating point numbers. However, the methods we then required to work with these polygons required the polygons in a normal mat, thus forcing us to convert from one type of mat to another. Again this problem could largely be mitigated by converting as little as possible, although the base conversion proved to be one of the smaller problems in the overall context of speed within the Imagine worker threads. Furthermore, there exist no methods for determining the type and allocation of channels within a mat. While not being able to check for these properties forced a clean usage of the data class within Imagine and thus probably increased speed somewhat, such methods are crucial for learning the correct usage of mat and certainty of stored data type. Writing and reading data with mats is also something that requires faith, as no checks for sanity can be performed on the data. For example, the method for reading a single coordinate returns a double array – always, even when using the mat for binary images (in which case a boolean would suffice), luminance images (possibly a short data type), or as an integer matrix (integers). The returned value then has to be cast to the (hopefully) correct data type – and if we made a mistake somewhere along the line and the mat doesn’t contain the data we expect it to contain, we have no tools that would help us catch that mistake. We therefore kindly suggest that OpenCV for Android make use of the Java generics mechanism, as we believe that would start to reduce the confusion surrounding mats.

1RGBA stands for, respectively: red, green, blue, alpha. This depicts the order and type of channels for an image.
4 Results

A further difficulty proved to be the debugging of errors while programming the worker
threads within Imagine. This came from the fact that OpenCV runs in C++ even on
Android and tracing errors to their source thus proved difficult. Often only careful
consideration of error messages and stack traces in the depths of the Android log
allowed any progress to be made in tracing a bug, although mostly trial and error proved
to be the primary method of correcting these errors. Problems debugging errors were
also due to the paradigm differences in error handling between how Java in general does
it (using so-called exceptions) and C++ does it (using integers as error codes). OpenCV
for Android does not cast the numeric error codes into equivalent Java exceptions,
instead leaving them as-is. Furthermore, the numerical error codes proved to be very
generic in their implications. An example of this can be found with the error code we
mostly fought with, which was 215. That numerical error can (and does!) mean anything
from incorrect mat sizes to incorrect number of channels. A quick search also showed
that the very same code is also used to signal unimplemented methods within OpenCV
itself.

While on the topic of paradigm differences: another difficulty we encountered with
OpenCV for Android was the difference in coding styles. With this we mean for example
that the result of a method was not returned, but instead called by reference. Due to the
existence of exceptions, this is usually done differently when using Java. While generally
more of a nuisance than a source of error, it would be helpful if the wrapper took care of
the paradigm shift between Java and the C++ interface, thus freeing developers from
having to work with two paradigms in parallel.

Generally speaking, OpenCV for Android proved usable for this work, but with some
difficulty, as can be seen by the lengthy dissection here. OpenGL ES proved to relatively
trivial to use, notably because of the wealthy online resources in the form of extensive
documentation and multiple tutorials. The only bigger difficulties encountered while
working with OpenGL ES were using multidimensional math for the matrix operations
and how to get the renderer to render to a transparent layer.

\[2\text{This stems from the way C++ usually does error handling by returning numerical error codes. The result}
\text{is written into a referenced data class, freeing the return call for passing back numerically coded error or}
\text{success messages.}\]
4.1 Implementation

4.1.2 Performance

Here, we will take a brief look at the general performance of the Imagine framework. All numbers that will be given are approximations only, as we did not statistically analyze them. For a more in depth look of Imagine’s performance, further work can be done as necessary.

Frames per Second

To give the following numbers a frame of reference, here some numbers concerning the general speed of the Android platform, and the OpenGL ES and OpenCV utilization on it. OpenCV captures the preview frame of the camera from Android for the base frame from which all processing originates. This means that the speed at which it does this is the first important reference for all further values. The speed of this operation proves to be the first limiting factor: due to how Android camera capture works, the preview only offers 15 frames per second. This was measured by simply showing the image as received through OpenCV, meaning that there was no overhead work being done. This has some strong implications for the Imagine framework: however much the work done can be optimized, it will never be capable of running faster than that. As humans only begin to see a smooth video upwards of approximately 20 frames per second – for perfectly smooth video however at least 60 frames per second – this places Imagine already outside the range of smooth output.

Android itself renders the interface at 60 frames per second\(^3\). OpenGL ES also easily achieves 60 frames per second, although it is to note that the graphic pipeline has the advantage of serious hardware acceleration. Of course the speed at which OpenGL ES will render a scene for the Imagine framework is highly dependent on the complexity of the models, although that should not be a limiting factor for some time yet.

The comparison of these two limiting factors shows that Imagine is mainly performance dependent on the OpenCV for Android framework. Newer versions of it should theoretically be able to increase the speed up to the framerate of the camera preview. To

\(^3\)As of Android 4.1.
4 Results

achieve even higher speeds, the speed at which Android fetches the camera preview must be increased, which could happen with newer devices and or newer version of Android. All of these possible speed increases however lie outside of the influence of the Imagine framework.

Figure 4.1: This chart shows the performance in frames per second of Imagine, working both as a single pipeline and with multithreading.

For the speed of the Imagine framework, a general understanding of the algorithm that detects markers is required – as can be found in section 2.7.3. Imagine idles at up to seven frames per second, meaning that this is the best case performance under ideal circumstances with no markers present. When markers are present and detected, performance takes a hard dip. This and the difference multithreading makes can be seen in figure 4.1.
4.1 Implementation

Speed of Operations in Detector

The first performance sensitive operation is the conversion of the input image into a binary image. The default method with a static threshold takes around 8 ms. It is significantly faster than adaptive thresholding with 88 ms. However it does not work reliably in low contrast images or in high dynamic ranges within an image.

Next is the operation that finds all contours from the binary image. This operation is a vital part of the algorithm and cannot easily be exchanged for some other operation. The cost of finding contours varies strongly on the binary image, but generally takes around 22 ms.

Now Imagine has to process each contour separately, as each could be a marker. This step is where most of the performance is siphoned from. In total these operations take around 100 ms, with a high variance for the number of markers.

For each found contour, we calculate the polynomial approximation and use it to filter out any polygons that aren’t convex and don’t have 4 corners. This step takes about 3 ms. Imagine then calculates the perspective transform and applies it to dewarp the texture of the marker candidate to allow sampling. Using the RGBA input mat, OpenCV does this step in 12 ms. Originally however we require a grayscale image at this point; however it turns out that OpenCV has no hardware acceleration for dewarping grayscale mats on a Tegra CPU, such as the developer machine has. Using the grayscale image would impose a more hefty performance cost.

If the contour is still a valid candidate at this point, Imagine tries to detect a marker from it and the dewarped texture. This method takes anywhere from 5 ms to 30 ms, depending on whether the candidate is valid in terms of sampling its properties from the texture (meaning valid border, orientation, and identification marks). If a marker is rotated, then the correction of the identification pattern takes additional time, as rotating matrices is computationally expensive.

Now only one step remains for a complete marker detection: calculating the perspective transformations. This is done for all detected markers, but luckily is relatively fast.
compared to other operations. OpenCV takes 2 ms to calculate the data for every marker.

4.2 Features and Capabilities

In this section, we will take a look at the implemented features of Imagine. This includes basic features that are required for basic usability and capabilities for debugging various algorithm stages.

4.2.1 Debugging Capabilities

Imagine offers some easy options for selective debugging beyond the log output on Android. Specifically for debugging the visual pipeline we implemented some options so that pinpointing an error is comparatively easy. Setting debugging up is done via flags and should only be done before calling the onCreate method.

The first option we offer is to activate a more verbose logging mode, where Imagine logs quite a bit more information concerning possible errors – for example, the status of the hamming decoding upon marker detection. On par with that one can also activate frame per frame time logging, where Imagine will log the time each detection and rendering step takes.

Going into the visual debugging it is important to note that marker detection is partially suspended. In any case Imagine deactivates multithreading to enable the output to be shown – as seen in section 4.1.2, this decreases performance quite a bit. Once in visual debugging mode, three main aspects can be shown. The first option that can be activated shows the binary picture. This can be used to check whether the chosen binarization method is working correctly.

Another output that can be chosen is to let Imagine draw the detected contours. This option can be used to detect errors within the contour detection that arise from the method used to binarize the image.
4.2 Features and Capabilities

Figure 4.2: A screenshot of how the three more relevant debugging views can look. Shown are the polygonal rendering (perspective red squares around markers), the marker texture with the sampling points, and the correctly rotated processed marker pattern.

The following visual debugging methods are the more helpful ones. Figure 4.2 shows how the polygonal rendering, the texture sampling of markers, and the detected identification pattern are shown.

Of these, the option to display the polygons of detected markers is best used to check that Imagine sees a marker. Here, Imagine draws the perspective bounding box of all marker candidates that have been detected. To check whether Imagine correctly samples a marker candidate, both the option to draw the marker textures and the marker identification patterns can be used. Drawing marker textures can verify that Imagine has correctly dewarped a texture and show how warped the marker surface was. This can be seen when the dewarped marker texture is not perfectly aligned with the square sampling. The marker identifications can be used in conjunction with the option to draw the sampling onto the marker textures to check whether Imagine is correctly sampling the pattern of candidate markers.

All of these debugging capabilities arose out of the step-by-step development process. Once we realized how useful such functions were, we decided to keep them accessible from the outside. Thus we made sure that they work relatively well and can be activated easily\(^4\).

\(^4\)This is realized by the methods in MainInterface for setting and removing debugging flags.
4 Results

4.2.2 Features

Of the features listed in section 2.3, the following are accessible and usable. Debug messaging is possible beyond the functionality already offered by Android, most notably a unified logging mechanism and timing functions. Managing so-called trackables is possible, including the on-the-fly adding, removing, and exchanging of marker-object associations. Reading the pure 3D transformation data is also possible via a listener, bypassing the graphical part of Imagine. Manual configuration is somewhat possible, as many values can be changed to accommodate special use cases. It is however easily possible to configure debugging views to display relevant information and to enable extensive debugging output. Multithreading is also implemented and beneficial, as seen in section 4.1.2. If required or when debugging views are to be used, a single thread pipeline can also be used.

Therefore we conclude that our framework covers the basics in functionality, although a multitude of improvements can be made. These improvements are listed in section 5.1.3.
4.3 Application

To enable rapid testing and experimenting, we implemented a basic application for evaluating our framework. It consists of two activities: one for setting parameters and control values and one for actually running the framework.

Figure 4.3 shows a screenshot of the menu of the application. Here, most values that are of interest for using Imagine can be set. Most important are the start button on top and the textfield for adding and removing trackables beneath it. For this application, a simple model is provided – the user can only change which markers will be tracked.

![Figure 4.3: A screenshot of the menu of the application.](image)

Figure 4.4 shows how the application is rendering after choosing marker 42 to track. Note that the model is imported from an obj file. The face colors are chosen at random, as distinguishing them without shading is impossible.
4 Results

Figure 4.4: A screenshot of the application rendering the trackable for marker 42.

Figure 4.2 is a screenshot of the application running the framework activity with debugging values activated. These are all the options given below the marker selection field.

4.4 Comparison to similar Apps

In this section, we will compare Imagine to two other marker-based augmented reality frameworks for Android. Both are open source projects and can be used freely in personal projects. Table 4.1 lists the main differences.

<table>
<thead>
<tr>
<th>Framework</th>
<th>FPS</th>
<th>Number of markers</th>
<th>Maximum parallel markers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imagine</td>
<td>5</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>Aruco</td>
<td>4</td>
<td>1024</td>
<td>unknown</td>
</tr>
<tr>
<td>DroidAR</td>
<td>unknown</td>
<td>4096</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 4.1: Short table of feature comparison of Imagine, Aruco, and DroidAR.
4.4 Comparison to similar Apps

4.4.1 Aruco

Aruco [aru] is a minimal library for Augmented Reality applications based on OpenCV. Primarily, it is intended for desktop C++ applications, although an Android port and web-based Javascript port exist. For the purpose of comparing it to our own framework, we will base the comparison on the Javascript port [jsa] running on the same developer machine.

![Screenshot of a basic Aruco application.](image)

The main features of Aruco are simple usage, 1024 markers that can be identified, and the support of so-called AR boards.\(^5\) The marker detection algorithm used by Aruco is the basis for our own work and thus works similarly. The main differences in implementation are that Aruco does sub pixel accuracy and a higher number of markers. These are advantages of Aruco over Imagine.

The Javascript port runs at around four frames per second in a mobile web browser. This is a low difference compared to Imagine, although our framework runs natively. We believe this due to the fact that while Aruco is based on OpenCV, the Javascript port can not use the library, and thus re-implements the required features. That removes any overhead caused by unused features and allows a completely native environment for data objects, without any significant conversions having to be done, which were one bottleneck in Imagine. Nonetheless Imagine is a small step faster.

\(^5\)Markers composed of several markers for higher reliability.
4 Results

4.4.2 DroidAR

DroidAR [dro] is another framework for Android that allows, among other Augmented Reality features, marker-based tracking. Due to difficulties using the framework on the developer's machine, no performance comparison could be made. DroidAR could not be tested solely without any other features without writing an application for that, which is beyond the scope of this comparison.

![Figure 4.6: Screenshot of a basic DroidAR application.](image)

Feature wise a few things are different compared to Imagine, although some interesting parallels also exist. Most notably, DroidAR uses threads for the detection of markers and also utilizes OpenCV for Android. The detection method is also similar to both Aruco and Imagine. However, the actual detection is done with native C++ code. DroidAR can differentiate 4096 markers, although only 5 can be detected at once, probably for performance reasons. Imagine can detect more than 5 markers in parallel, DroidAR however has a faster implementation.
Finally we will give a broad overview of the accomplishments of this work, difficulties encountered, possible improvements, and use cases. We will finish with a broad closing statement.

The complete final version of the code base for Imagine can be found on Github [gitb].

5.1 Future Possibilities

While basically completely usable, there are many aspects that can still be improved. These range from performance considerations, porting Imagine to other platforms, to extending the functionality offered. In this section, we will propose some aspects that we think could be of interest for future work as they were beyond the time scope of this project.
5 Conclusion

5.1.1 Performance

Concerning the performance of Imagine a lot could still be done, although globally the performance will remain limited by the capabilities of OpenCV for Android – see also section 4.1.2. One of the main aspects that could be tried however is writing the main method that detects markers using OpenCV with native C++ and calling that from the Java environment with a native call. We did not try that because of two factors: one, a basic Java framework was the primary goal, and two, developing a Java application for Android with native code in C++ would have put this work beyond our time frame. It would also have further divided our attention away from the core functionality, as considerable time would have had to be spent learning and utilizing the native development kit.

We are also confident that some aspects of the OpenCV code could be optimized even further, although that might require a more significant analysis with better and robuster timing features. The performance of the worker threads when using multithreading could certainly also be improved further, as multithreading is hard to do correctly.

Apart from Imagine, improvements in the runtime environment – Android itself – could yield further speed gains, although that would most definitely be beyond the scope of the framework and take a lot of time.

Apart from software aspects various hardware considerations could also lead to better performance. One would be the increase of the speed at which the camera generates preview images, allowing OpenCV to grab these faster for further accessing. A higher count of CPU cores could also serve to increase the speed by running more worker threads. A faster CPU than the 1.4 GHz Quadcore used here will should also increase performance.

5.1.2 Features

While Imagine offers a basic rendering system, it lacks a decent rendering system for production use that can fully utilize the OpenGL ES 2.0 framework. Shading, texturing, and animation would benefit the use-cases greatly. These features however would be a project unto itself and was thus left for a future time.
5.1 Future Possibilities

Another feature that would make using Imagine easier is implementing either a lookup model for camera values or offering an internal method for generating them. This would allow the removal of determining these numbers externally into the framework, further abstracting away possible hurdles to using it.

To improve resistance against marker occlusion and increase marker detection precision, support for marker boards such as used by Aruco could also be added. However we believe that implementation of such a capability would only be feasible once Imagine has better performance, as the number of markers required for a marker board greatly decrease the framerate.

5.1.3 Improvements

From an architectural standpoint, the flow of data within the framework could be improved. Especially the transfer of data to and from the worker threads could surely be solved better to remove execution blocks. Most notably the fetching of input frames could be resolved so that the live preview drawn in the background were independent in speed from the worker threads. This would however require extensive knowledge of multi-threading, and was thus deemed beyond the scope of this project.

The external application programming interface could be expanded too to allow a better and more detailed control of the inner workings. Care should be taken to keep the basic simplicity of using the framework though. Internal states that could be opened to external control include the resolution of the images, rendering settings, and marker properties.

Internally, Imagine could be expanded to refine corners using subpixel interpolation when detecting the contours of possible markers. The OpenCV method for subpixel precision is however expensive in terms of performance. The advantage of subpixel interpolation would be a better pose estimation, removing sudden jumps and improving the visual fidelity.
5 Conclusion

5.1.4 Extended Possibilities

Speaking on a more general view, some extended possibilities for future work offers themselves. One of the more interesting ones would be the porting of the framework to other platforms, most likely for desktop computers first as they offer significantly more processing power. Higher graphical fidelity and more features for the rendering side would also become a possibility.

A further possibility would be the harnessing of further OpenCV functionality concerning the adaptability of the output. This could range from situation aware rendering concerning the lighting of models to detection of further information from objects found in the scene.
5.2 Closing Statement

We have shown our results of implementing a Java framework for Android for marker based detection to be used in Augmented Reality programs. This includes preparatory work for the framework and the basic application that utilizes it, to the finished results. The framework, called Imagine, covers the basic required features to be fully functioning, although various aspects could still be greatly improved and expanded upon.

Apart from the framework, documentation and explanation of its workings have been created. Documentation is to be found in the Javadoc of the project, also seamlessly accessible by any modern IDE during active development. This paper highlights the internal functionality of Imagine and how to access it. Insight into debugging capabilities and possible areas where difficulties might arise are also highlighted.

We have also shown some possibilities for further work that would significantly expand the use-cases of our framework. To help with future evaluations we have also done some basic benchmarks and timed the currently most processing intensive part – the detection algorithm.

All in all, we are satisfied with the promise of Imagine, although in detail there are many areas worthy of more development time. We consider the framework to be academically usable, but would refrain from utilizing it in a production scenario due to low performance while detecting markers. We believe the code of Imagine however to be an excellent starting point to learn how to implement Augmented Reality applications as it provides at the very least a basically functional framework.
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D</td>
<td>Refers to three dimensional space; mainly to differentiate from two dimensions</td>
</tr>
<tr>
<td>Activity</td>
<td>Main component of Android applications; implements required methods for running on Android</td>
</tr>
<tr>
<td>Android</td>
<td>Refers to the mobile operating system developed by Google, mainly for ARM CPUs</td>
</tr>
<tr>
<td>Augmented Reality</td>
<td>Refers to a live, direct view of a physical, real-world environment whose elements are augmented by computer-generated sensory input[ard]; Often simply AR</td>
</tr>
<tr>
<td>C++</td>
<td>C-based object oriented programming language, primarily general purpose, although high performance applications on Android can use it</td>
</tr>
<tr>
<td>De-warp</td>
<td>Refers here to warping an image from its perspective view to a flat view</td>
</tr>
<tr>
<td>Entity</td>
<td>The user created object used by Imagine to register a marker to track, complete with 3d model information to be shown when the corresponding marker is detected. Externally accessible</td>
</tr>
<tr>
<td>IDE</td>
<td>Stands for integrated development environment; mostly a supportive program for writing and deploying code</td>
</tr>
<tr>
<td>Imagine</td>
<td>Name of the project framework</td>
</tr>
<tr>
<td>Java</td>
<td>Object oriented programming language that is the main language for programming Android applications</td>
</tr>
<tr>
<td>Marker</td>
<td>A printed or displayed significant pattern which the system can recognize through image detection. Used to represent the location of the augmented space projected by the system</td>
</tr>
<tr>
<td>OpenCV</td>
<td>Library for computer vision algorithms and methods; OpenCV for Android therefore refers to the Android port</td>
</tr>
<tr>
<td>OpenGL ES</td>
<td>Library for hardware accelerated, cross-platform graphics</td>
</tr>
<tr>
<td>Trackable</td>
<td>The object used by Imagine to combine detected marker information with data to be used when rendering. Not externally accessible</td>
</tr>
</tbody>
</table>
List of Figures

2.1 Access Sequence ... 6
2.2 Public Class Diagram 10
2.3 Usage Forms of Markers 12
2.4 Binarization ... 15
2.5 Contour Detection ... 16
2.6 Marker Sampling .. 17
2.7 Complete Class Diagram 19

3.1 Example Marker ... 21
3.2 Alternative Marker Types 22
3.3 Template Marker ... 22

4.1 Imagine Performance Chart 30
4.2 Debugging View ... 33
4.3 Application Menu .. 35
4.4 Application Render .. 36
4.5 Aruco ... 37
4.6 DroidAR ... 38
List of Tables

<table>
<thead>
<tr>
<th>Table Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Required Features</td>
<td>8</td>
</tr>
<tr>
<td>2.2 Possible Features</td>
<td>8</td>
</tr>
<tr>
<td>2.3 Difficult Features</td>
<td>9</td>
</tr>
<tr>
<td>2.4 Application Programming Interface</td>
<td>11</td>
</tr>
<tr>
<td>4.1 Performance Comparison</td>
<td>36</td>
</tr>
</tbody>
</table>
Bibliography

Bibliography

Erklärung

Ich erkläre, dass ich die Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Ulm, den

Tamino P.S.M. Hartmann