
Change Patterns and Change Support Features
in Process-Aware Information Systems

Barbara Weber1,�, Stefanie Rinderle2, and Manfred Reichert3

1 Quality Engineering Research Group, University of Innsbruck, Austria
Barbara.Weber@uibk.ac.at

2 Inst. Databases and Information Systems, Ulm University, Germany
stefanie.rinderle@uni-ulm.de

3 Information Systems Group, University of Twente, The Netherlands
m.u.reichert@cs.utwente.nl

Abstract. In order to provide effective support, the introduction of
process-aware information systems (PAIS) must not freeze existing busi-
ness processes. Instead PAIS should allow authorized users to flexibly
deviate from the predefined processes if required and to evolve busi-
ness processes in a controlled manner over time. Many software ven-
dors promise flexible system solutions for realizing such adaptive PAIS,
but are often unable to cope with fundamental issues related to process
change (e.g., correctness and robustness). The existence of different
process support paradigms and the lack of methods for comparing exist-
ing change approaches makes it difficult for PAIS engineers to choose the
adequate technology. In this paper we suggest a set of changes patterns
and change support features to foster systematic comparison of existing
process management technology with respect to change support. Based
on these change patterns and features, we provide an evaluation of se-
lected systems.

1 Introduction

Contemporary information systems (IS) more and more have to be aligned in a
process-oriented way. This new generation of IS is often referred to as Process-
Aware IS (PAIS) [1]. In order to provide effective process support, PAIS should
capture real-world processes adequately, i.e., there should be no mismatch be-
tween the computerized processes and those in reality. In order to achieve this,
the introduction of PAIS must not lead to rigidity and freeze existing business
processes. Instead PAIS should allow authorized users to flexibly deviate from
the predefined processes as required (e.g., to deal with exceptions) and to evolve
PAIS implementations over time (e.g., due to process optimizations or legal
changes). Such process changes should be enabled at a high level of abstraction
and without affecting the robustness of the PAIS [2].

The increasing demand for process change support poses new challenges for
IS engineers and requires the use of change enabling technologies. Contemporary
� This work was done during a postdoctoral fellowship at the University of Twente.

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 574–588, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Change Patterns and Change Support Features 575

PAIS, in combination with service-oriented computing, offer promising perspec-
tives in this context. Many vendors promise flexible software solutions for realiz-
ing adaptive PAIS, but are often unable to cope with fundamental issues related
to process change (e.g., correctness and robustness). This problem is further ag-
gravated by the fact that several competing process support paradigms exist,
all trying to tackle the need for more process flexibility (e.g., adaptive processes
[3,4,5] or case handling [6]). Furthermore, there exists no method for system-
atically comparing the change frameworks provided by existing process-support
technologies. This, in turn, makes it difficult for PAIS engineers to assess the
maturity and change capabilities of those technologies. Consequently, this often
leads to wrong decisions and misinvestments.

During the last years we have studied processes from different application
domains and elaborated the flexibility and change support features of numerous
tools and approaches. Based on these experiences, in this paper we suggest a
set of changes patterns and change support features to foster the comparison
of existing approaches with respect to process change support. Change patterns
allow for high-level process adaptations at the process type as well as the process
instance level. Change support features ensure that changes are performed in a
correct and consistent way, traceability is provided, and changes are facilitated
for users. Both change patterns and change support features are fundamental to
make changes applicable in practice. Finally, another contribution of this paper
is the evaluation of selected approaches/systems based on the presented change
patterns and change support features.

Section 2 summarizes background information needed for the understanding
of this paper. Section 3 describes 17 change patterns and Section 4 deals with
6 crucial change support features. Based on this, Section 5 evaluates different
approaches from both academia and industry. Section 6 discusses related work
and Section 7 concludes with a summary.

2 Backgrounds

A PAIS is a specific type of information system which allows for the separation
of process logic and application code. At run-time the PAIS orchestrates the
processes according to their defined logic. Workflow Management Systems (e.g.,
Staffware [1], ADEPT [3], WASA [5]) and Case-Handling Systems (e.g., Flower
[1,6]) are typical technologies enabling PAIS.

For each business process to be supported a process type represented by a
process schema S has to be defined. In the following, a process schema is repre-
sented by a directed graph, which defines a set of activities – the process steps
– and control connections between them (i.e., the precedence relations between
these activities). Activities can either be atomic or contain a sub process (i.e.,
a reference to a process schema S′) allowing for the hierarchical decomposition
of a process schema. In Fig. 1a, for example, process schema S1 consists of six
activities: Activity A is followed by activity B in the flow of control, whereas C
and D can be processed in parallel. Activities A to E are atomic, and activity
F constitutes a sub process with own process schema S2. Based on a process

576 B. Weber, S. Rinderle, and M. Reichert

schema S, at run-time new process instances I1, . . . , In can be created and ex-
ecuted. Regarding process instance I1 from Fig. 1a, for example, activity A is
completed and activity B is activated (i.e., offered in user worklists). Generally,
a large number of process instances might run on a particular process schema.

PAIS must be able to cope with change. In general, changes can be triggered
and performed at two levels – the process type and the process instance level
(cf. Fig. 1b) [2]. Schema changes at the type level become necessary to deal with
the evolving nature of real-world processes (e.g., to adapt to legal changes). Ad-
hoc changes of single instances are usually performed to deal with exceptions,
resulting in an adapted instance-specific process schema.

BA

C

D

E F

Process Type Level

Process Schema S1 F1 F2 F3

Process Instance Level

Process Instance I1 Process Instance I2 Process Instance I3

(Sub-)Process Schema S2

Changes at the Process Instance Level

X

Y

dI5

X

Y

dI4

X

Y

dI1

BA

C

D

E F

Changes at the Process Type Level

S1‘

BA

D

E FX

Y

d

C X

Y

dI5

X

Y

dI4

X

Y

dI1

change

propagation

schema
evolution

S1

I1

Instance
change

W
it

h
o

u
t

C
h

an
g

e
(a

)
W

it
h

 C
h

an
g

e
(b

)

completed

activated

Fig. 1. Core Concepts

3 Change Patterns

In this section we describe 17 characteristic patterns we identified as relevant
for control flow changes (cf. Fig. 2). Adaptations of other process aspects (e.g.,
data or resources) are outside the scope of this paper. Change patterns reduce
the complexity of process change (like design patterns in software engineering
reduce system complexity [7]) and raise the level for expressing changes by pro-
viding abstractions which are above the level of single node and edge operations.
Consequently, due to their lack of abstraction, low level change primitives (add
node, delete edge, etc.) are not considered to be change patterns and thus are
not covered in this section.

As illustrated in Fig. 2, we divide our change patterns into adaptation pat-
terns and patterns for predefined changes. Adaptation patterns allow modify-
ing the schema of a process type (type level) or a process instance (instance
level) using high-level change operations. Generally, adaptation patterns can be

Change Patterns and Change Support Features 577

applied to the whole process schema or process instance schema respectively;
they do not have to be pre-planned, i.e., the region to which the adaptation pat-
tern is applied can be chosen dynamically. By contrast, for predefined changes,
at build-time, the process engineer defines regions in the process schema where
potential changes may be performed during run-time.

For each pattern we provide a name, a brief description, an illustrating ex-
ample, a description of the problem it addresses, a couple of design choices, re-
marks regarding its implementation, and a reference to related patterns. Design
Choices allow for parametrization of patterns keeping the number of distinct
patterns manageable. Design choices which are not only relevant for particular
patterns, but for a whole pattern category, are described only once at the cat-
egory level. Typically, existing approaches only support a subset of the design
choices in the context of a particular pattern. We denote the combination of
design choices supported by a particular approach as a pattern variant.

CHANGE PATTERNS

ADAPTATION PATTERNS (AP)

Pattern Name Scope Pattern Name Scope

AP1: Insert Process Fragment(*) I / T AP8: Embed Process Fragment in Loop I / T

AP2: Delete Process Fragment I / T AP9: Parallelize Process Fragment I / T

AP3: Move Process Fragment I / T AP10: Embed Process Fragment in Conditional Branch I / T

AP4: Replace Process Fragment I / T AP11: Add Control Dependency I / T

AP5: Swap Process Fragment I / T AP12: Remove Control Dependency I / T

AP6: Extract Sub Process I / T AP13: Update Condition I / T

AP7: Inline Sub Process I / T

PATTERNS FOR PREDEFINED CHANGES (PP)

Pattern Name Scope Pattern Name Scope

PP1: Late Selection of Process Fragments I / T PP3: Late Composition of Process Fragments I / T

PP2: Late Modeling of Process Fragments I / T PP4: Multi-Instance Activity I / T

I… Instance Level, T … Type Level
(*) A process fragment can either be an atomic activity, an encapsulated sub process or a process (sub) graph

Fig. 2. Change Patterns Overview

3.1 Adaptation Patterns

Adaptation patterns allow to structurally change process schemes. Examples
include the insertion, deletion and re-ordering of activities (cf. Fig. 2). Fig. 3
describes general design choices valid for all adaptation patterns. First, each
adaptation pattern can be applied at the process type or process instance level
(cf. Fig. 1b). Second, adaptation patterns can operate on an atomic activity, an
encapsulated sub process or a process (sub-)graph (cf. Fig. 3). We abstract from
this distinction and use the generic concept process fragment instead. Third,
the effects resulting from the use of an adaptation pattern at the instance level
can be permanent or temporary. A permanent instance change remains valid
until completion of the instance (unless it is undone by a user). By contrast, a
temporary instance change is only valid for a certain period of time (e.g., one
loop iteration) (cf. Fig. 3).

578 B. Weber, S. Rinderle, and M. Reichert

Design Choices for Adaptation Patterns
A. What is the scope of the respective pattern?

1. The respective pattern can be applied at the process instance level
2. The respective pattern can be applied at the process type level

B. Where does a respective change pattern operate on? (*)

1. On an atomic activity
2. On a sub process
3. On a process sub-graph

C. What is the validity period of the change?
1. The change can be of temporary nature
2. The change can be of permanent nature

(*) Design Choice B is only valid for AP1-AP10

Process Instance I
Temporary Change

B

C

D

E

B D E

B

C

D

E

1st loop iteration

2nd loop iteration
BA

C

D

E

F

Process Instance I
F1 F2 F3

Sub Process

G

X Z
X

Atomic Activity
Sub Graph

Design Choice B Design Choice C

Fig. 3. Design Choices for Adaptation Patterns

We describe four selected adaptation patterns in more detail. These four pat-
terns allow for the insertion, deletion, movement, and replacement of process
fragments in a given process schema. The Insert Process Fragment pattern (cf.
Fig. 4a) can be used to add process fragments to a process schema. In addition
to the general options described in Fig. 3, one major design choice for this pat-
tern (Design Choice D) describes the way the new process fragment is embedded
in the respective schema. There are systems which only allow to serially insert
a fragment between two directly succeeding activities. By contrast, other sys-
tems follow a more general approach allowing the user to insert new fragments
between two arbitrary sets of activities [3]. Special cases of the latter variant
include the insertion of a fragment in parallel to another one or the association
of the newly added fragment with an execution condition (conditional insert).
The Delete Process Fragment pattern, in turn, can be used to remove a process
fragment (cf. Fig 4b). No additional design choices exist for this pattern. Fig.
4b depicts alternative ways in which this pattern can be implemented.

The Move Process Fragment pattern (cf. Fig. 5a) allows to shift a process frag-
ment from its current position to a new one. Like for the Insert Process Fragment
pattern, an additional design choice specifies the way the fragment can be em-
bedded in the process schema afterwards. Though the Move Process Fragment
pattern could be realized by the combined use of AP1 and AP2 (Insert/Delete
Process Fragment), we introduce it as separate pattern as it provides a higher
level of abstraction to users. The latter also applies when a process fragment has
to be replaced by another one. This change is captured by the Replace Process
Fragment pattern (cf. Fig. 5b).

We have only described the most relevant adaptation patterns. Additional
patterns we identified are: swapping of activities (AP5), extraction of a sub
process from a process schema (AP6), inclusion of a sub process into a process
schema (AP7), embedding of an existing process fragment in a loop (AP8),

Change Patterns and Change Support Features 579

a) Pattern AP1: Insert Process Fragment
Description: A process fragment is added to a process schema.
Example: For a particular patient an allergy test has to be added due to a drug incompatibility.
Problem: In a real world process a task has to be accomplished which has not been modeled in
the process schema so far.
Design Choices (in addition to the ones in Fig. 3):

D. How is the additional process fragment X embedded in the process schema?
1. X is inserted between 2 directly succeeding activities (serial insert)
2. X is inserted between 2 activity sets (insert between node sets)

a) Without additional condition (parallel insert)
b) With additional condition (conditional insert)

X

A B

serialInsert

XA B A B C

X

A B C

X

parallelInsert

A B

X

conditionalInsert

x>0

else

X

A B

If x>0

Implementation: The insert adaptation pattern can be realized by transforming the high level
insertion operation into a sequence of low level change primitives (e.g., add node, add control
dependency).

b) Pattern AP2: Delete Process Fragment
Description: A process fragment is deleted from a process schema.
Example: For a particular patient no computer tomography is performed due to the fact that he
has a cardiac pacemaker (i.e., the computer tomography activity is deleted).
Problem: In a real world process a task has to be skipped or deleted.

BA

C

D

E F BA D E F

Implementation: Several options for implementing the delete pattern exist: (1) The fragment is
physically deleted (i.e., corresponding activities and control edges are removed from the process
schema), (2) the fragment is replaced by one or more null activities (i.e., activities without
associated activity program) or (3) the fragment is embedded in a conditional branch with
condition false (i.e., the fragment remains part of the schema, but is not executed).

Fig. 4. Insert (AP1) and Delete (AP2) Process Fragment patterns

a) Pattern AP3: Move Process Fragment
Description: A process fragment is moved from its current position in the process schema to
another position.
Example: Usually employees are only allowed to book a flight, after getting approval from the
manager. For a particular process instance the booking of a flight is exceptionally done in
parallel to the approval activity (i.e., the book flight activity is moved from its current position to
a position parallel to the approval activity).
Problem: Predefined ordering constraints cannot be completely satisfied for a set of activities.

BA

C

D E B

C

D EA

Design Choices:
D. How is the process fragment X embedded in the process schema?

1. X is inserted between 2 directly succeeding activities (serial move)
2. X is inserted between 2 activity sets (move between node sets)

a) Without additional condition (parallel move)
b) With additional condition (conditional move)

Implementation: This adaptation pattern can be implemented based on Pattern AP1 and AP2
(insert / delete process fragment).
Related Patterns: Swap adaptation pattern (AP5) (not detailed in the paper)

b) Pattern AP4: Replace Process Fragment
Description: A process fragment is replaced by another process fragment.
Example: Instead of the computer tomography activity, the X-ray activity shall be performed for
a particular patient.
Problem: A process fragment is no longer adequate, but can be replaced by another one.

BA

C

D E BA

X

D E

X

Implementation: This adaptation pattern can be implemented based on Pattern AP1 and AP2
(insert / delete process fragment).

Fig. 5. Move (AP3) and Replace (AP4) Process Fragment patterns

580 B. Weber, S. Rinderle, and M. Reichert

parallelization of process fragments (AP9), embedding of a process fragment in
a conditional branch (AP10), addition of control dependencies (AP11), removal
of control dependencies (AP12), and update of transition conditions (AP13). A
description of these patterns can be found in [8].

3.2 Patterns for Predefined Changes

The applicability of adaptation patterns is not restricted to a particular process
part a priori. By contrast, the following patterns predefine constraints concern-
ing the parts that can be changed. At run-time changes are only permitted
within these parts. In this category we have identified 4 patterns, Late Selection
of Proces Fragments (PP1), Late Modeling of Process Fragments (PP2), Late
Composition of Process Fragments (PP3) and Multi-Instance Activity (PP4) (cf.
Fig. 6). The Late Selection of Process Fragments pattern (cf. Fig. 7) allows to
select the implementation for a particular process step at run-time either based
on predefined rules or user decisions. The Late Modeling of Process Fragments
pattern (cf. Fig. 8a) offers more freedom and allows to model selected parts of
the process schema at run-time. Furthermore the Late Composition of Process
Fragments pattern (cf. Fig. 8b) enables the on-the fly composition of process
fragments (e.g., by dynamically introducing control dependencies between a set
of fragments).

In case of Multi-Instance Activities the number of instances created for a par-
ticular activity is determined at run-time. We do not consider multi-instance
activity patterns in detail as they constitute some of the workflow patterns
described in [9]. Multi-instance activities enable the creation of a particular
process activity during run-time. The decision how many activity instances
are created can be based either on knowledge available at build-time or on
some run-time knowledge. We do not consider multi-instances of the former
kind as change pattern since their use does not lead to change. For all other
types of multi-instance activities the number of instances is determined based
on run-time knowledge which can or cannot be available a-priori to the exe-
cution of the multi-instance activity. While in the former case the number of
instances can be determined at some point during run-time, this is not pos-
sible for the latter case. We consider multi-instance activities as change pat-
terns too, since their dynamic creation works like a dynamic schema
expansion.

4 Change Support Features

So far, we have introduced a set of change patterns, which can be used to accom-
plish changes at the process type and/or process instance level. However, simply
counting the number of supported patterns is not sufficient to analyze how well a
system can deal with process change. In addition, change support features must
be considered to make change patterns useful in practice (cf. Fig. 9). Relevant
change support features include process schema evolution and version control,

Change Patterns and Change Support Features 581

Process
Instance
Level

Process
Type
Level

Process
Instance
Level

S1

B

C

D

E FA

I1

Process
Type
Level

S1
B C

D

E FA

I1 How should the execution

of instance I1 proceed?

Pattern PP4Pattern PP3

S1

B

C

D

E FA

X Y Z

VU

S T R

Pr. Fragments for
Implementation of F

selection based on rules of

user decisions

IF …. THEN

ELSE IF

ELSE …

Pattern PP1 S1

B

C

D

E FA

I1 How to realize step B for

process instance I1?

Pattern PP2

D

E FA

?

I1

Fig. 6. Patterns for Predefined Changes (Overview)

Pattern PP1: Late Selection of Process Fragments
Description: For particular activities the corresponding implementation (activity program or sub
process model) can be selected during run-time. At build time only a placeholder is provided,
which is substituted by a concrete implementation during run-time (cf. Fig. 6).
Example: For the treatment of a particular patient one of several different sub-processes can be
selected depending on the patient’s disease.
Problem: There exist different implementations for an activity (including sub-processes), but for
the selection of the respective implementation run-time information is required.
Design Choices:

A. How is the selection process done?
1. Automatically based on predefined rules
2. Manually by an authorized user
3. Semi-automatically: options are reduced by applying some predefined rules; user

can select among the remaining options
B. What object can be selected?

1. Atomic activity
2. Sub process

C. When does late selection take place?
1. Before the placeholder activity is enabled
2. When enabling the placeholder activity

Implementation: By selecting the respective sub process or activity program, a reference to it is
dynamically set and the selected sub-process or activity program is invoked.
Related Patterns: Prerequisite for Pattern Late Modeling of Process Fragment (PP2)

Fig. 7. Late Selection of Process Fragments (PP1)

change correctness, change traceability, access control and change reuse1. As
illustrated in Fig. 9 the described change support features are not equally im-
portant for both process type level and process instance level changes. Version
control, for instance, is primarily relevant for changes at the type level, while
change reuse is particularly useful at the instance level [10].

4.1 Schema Evolution, Version Control and Instance Migration

In order to support changes at the process type level, version control for process
schemes should be supported (cf. Fig. 9). In case of long-running processes, in

1 Again we restrict ourselves to the most relevant change support features. Additional
change support features not covered in this paper are change concurrency control
and change visualization.

582 B. Weber, S. Rinderle, and M. Reichert

a) Pattern PP2: Late Modeling of Process Fragments
Description: Parts of the process schema have not been defined at build-time, but are modeled during
run-time for each process instance (cf. Fig. 6). For this purpose, placeholder activities are provided,
which are modeled and executed during run-time. The modeling of the placeholder activity must be
completed before the modeled process fragment can be executed.
Example: The exact treatment process of a particular patient is composed out of existing process
fragments at run-time.
Problem: Not all parts of the process schema can be completely specified at build time.
Design Choices:

A. What are the basic building blocks for late modeling?
1. All process fragments (including activities) from the repository can be chosen
2. A constraint-based subset of the process fragments from the repository can be chosen
3. New activities or process fragments can be defined

B. What is the degree of freedom regarding late modeling?
1. Same modeling constructs and change patterns can be applied as for modeling at the

process type level (*)

2. More restrictions apply for late modeling than for modeling at the process type level
C. When does late modeling take place?

1. When a new process instance is created
2. When the placeholder activity is instantiated
3. When a particular state in the process is reached (which must precede the instantiation

of the placeholder activity)
D. Does the modeling start from scratch?

1. Late modeling may start with an empty template
2. Late modeling may start with a predefined template which can then be adapted

Implementation: After having modeled the placeholder activity with the editor, the fragment is
stored in the repository and deployed. Finally, the process fragment is dynamically invoked as an
encapsulated sub-process. The assignment of the respective process fragment to the placeholder
activity is done through late binding.
Related Patterns: necessitates Late Selection of Process Fragments (PP1) of the dynamically
modified fragment
(*) Which of the adaptation patterns are supported within the placeholder activity is determined
by the expressiveness of the used modeling language.

b) Pattern PP3: Late Composition of Process Fragments
Description: At build time a set of process fragments is defined out of which a concrete process
instance can be composed at run time. This can be achieved by dynamically selecting fragments and
adding control dependencies on the fly (cf. Fig. 6).
Example: Several medical examinations can be applied for a particular patient. The exact
examinations and the order in which they are performed are defined for each patient individually.
Problem: There exist several variants of how process fragments can be composed. In order to reduce
the number of process variants to be specified by the process engineer during build time, process
instances are dynamically composed out of fragments.

Fig. 8. Late Modeling (PP2) and Late Composition of Process Fragments (PP3)

Change Support Features
Change Support Feature Scope Change Support Feature Scope

2. By change primitives F1: Schema Evolution, Version Control and
Instance Migration

T

F3: Correct Behavior of Instances After Change I + T

No version control – Old schema is overwritten F4: Traceability & Analysis I + T

1. Running instances are canceled 1. Traceability of changes

2. Running instances remain in the system 2. Annotation of changes

Version control 3. Change Mining

3. Co-existence of old/new instances, no instance migration F5: Access Control for Changes I+T

4. Uncontrolled migration of all process instances 1. Changes in general can be restricted to authorized users

5. Controlled migration of compliant process instances 2. Application of single change patterns can be restricted

F2: Support for Ad-hoc Changes I 3. Authorizations can depend on the object to be changed

1. By change patterns F6: Change Reuse I

T … Type Level, I … Instance Level

Fig. 9. Change Support Features

addition, controlled migration of already running instances, from the old process
schema version to the new one, might be required. In this subsection we describe
different existing options in this context (cf. Fig. 10).

Change Patterns and Change Support Features 583

If a PAIS provides no version control feature, either the process designer can
manually create a copy of the process schema (to be changed) or this schema is
overwritten (cf. Fig. 10a). In the latter case running process instances can either
be withdrawn from the run-time environment or, as illustrated in Fig. 10a, they
remain associated with the modified schema. Depending on the execution state
of the instances and depending on how changes are propagated to instances
which have already progressed too far, this missing version control can lead to
inconsistent states and, in a worst case scenario, to deadlocks or other errors
[2]. As illustrated in Fig. 10a process schema S1 has been modified by inserting
activities X and Y with a data dependency between them. For instance I1 the
change is uncritical, as I1 has not yet entered the change region. However, I2
and I3 would be both in an inconsistent state afterwards as instance schema and
execution history do not match (see [2]). Regarding I2, worst case, deadlocks or
activity invocations with missing input data might occur.

By contrast, if a PAIS provides explicit version control two support features
can be differentiated: running process instances remain associated with the old
schema version, while new instances will be created on the new schema ver-
sion. This approach leads to the co-existence of process instances of different
schema versions (cf. Fig. 10b). Alternatively a migration of a selected collec-
tion of process instances to the new process schema version is supported (in
a controlled way) (cf. Fig. 10c). The first option is shown in Fig. 10b where
the already running instances I1, I2 and I3 remain associated with schema S1,
while new instances (I4-I5) are created from schema S1′ (co-existence of process
instances of different schema versions). By contrast, Fig. 10c illustrates the con-
trolled migration of process instances. Only those instances are migrated which
are compliant2 with S1′ (I1). All other instances (I2 and I3) remain running
according to S1. If instance migration is uncontrolled (as it is not restricted to
compliant process instances) this will lead to inconsistencies or errors. Never-
theless, we treat the uncontrolled migration of process instances as a separate
design choice since this functionality can be found in several existing systems
(cf. Section 5).

4.2 Other Change Support Features

Support for Ad-hoc Changes: In order to deal with exceptions PAIS must
support changes at the process instance level either through high level changes
in the form of patterns (cf. Section 3) or through low level primitives. Although
changes can be expressed in both ways, change patterns allow to define changes
at a higher level of abstraction making change definition easier.

Correctness of Change: The application of change patterns must not lead
to run-time errors (e.g., activity program crashes due to missing input data,
deadlocks, or inconsistencies due to lost updates or vanishing of instances).

2 A process instance I is compliant with process schema S, if the current execution
history of I can be created based on S (for details see [2]).

584 B. Weber, S. Rinderle, and M. Reichert

Process
Type
Level

Process
Instance
Level

X

Y

d

?

d

B

C

D

E F

X Y
dS1

I1 I2 dI3

A

Process
Type
Level

Process
Instance
Level

BA

C

D

E F

S1 S1‘

BA

D

E FX

Y

d

C

X

Y

dI5

Process
Type
Level

Process
Instance
Level

BA

C

D

E F

S1 S1‘

BA

D

E FX

Y

d

C

X

Y

dI5

S
ch

em
a

is
 o

ve
rw

ri
tt

en
(a

)

C
o

-e
xi

st
en

ce
 o

f
p

ro
ce

ss

in
st

an
ce

s
o

f
d

if
fe

re
n

t
sc

h
em

a
ve

rs
io

n
s

(b
)

In
st

an
ce

 M
ig

ra
ti

o
n

(c
)

Instances I2 and I3 are in inconsistent sates

X

Y

dI4

X

Y

dI4

X

Y

dI4

X

Y

dI1

?

Type change overwrites S1

Type change results

in a new schema

version S1’

Instances created from S1

I3
I2

I1

Instances created from S1’

Non-compliant instances

Type change results

in a new schema

version S1’

and the

migration of

compliant

instance I1

old instances

remain with

S1

I3
I2

Fig. 10. Version Control

Different criteria (see [2]) have been introduced to ensure that instances can
only be updated to a new schema if they are compliant with it.

Traceability and Analysis: To ensure traceability of changes, they have to
be logged. For adaptation patterns the applied changes have to be stored in
a change log as change patterns and/or change primitives. While both options
allow for traceability, change mining [11] becomes easier when the change log
contains high-level information about the changes as well. Regarding patterns for
predefined changes, an execution log is usually sufficient to enable traceability.
In addition, logs can be enriched with more semantical information, e.g., about
the reasons and context of the changes [10]. Finally, change mining allows for
the analysis of changes (e.g., to support continuous process improvement) [11].

Access Control for Changes: The support of change patterns leads to in-
creased PAIS flexibility. This, in turn, imposes security issues as the PAIS be-
comes more vulnerable to misuse. Therefore, the application of changes at the
process type and the process instance level must be restricted to authorized
users. Access control features differ significantly in their degree of granularity.
In the simplest case, changes are restricted to a particular group of people (e.g.,
to process engineers). More advanced access control components allow to define
restrictions at the level of single change patterns (e.g., a certain user is only
allowed to insert additional activities, but not to delete activities). In addition,
authorizations can depend on the object to be changed, e.g., the process schema.

Change Reuse: In the context of ad-hoc changes ”similar” deviations (i.e.,
combination of one or more adaptation patterns) can occur more than once. As

Change Patterns and Change Support Features 585

it requires significant user experience to define changes from scratch change reuse
should be supported. To reuse changes they must be annotated with contextual
information (e.g., about the reasons for the deviation) and be memorized by the
PAIS. This contextual information can be used for retrieving similar problem
situations and therefore ensures that only changes relevant for the current situa-
tion are presented to the user [12,10]. Regarding patterns for predefined changes,
reuse can be supported by making historical cases available to the user and by
saving frequently re-occurring instances as templates.

5 Change Patterns and Change Support in Practice

In this section we evaluate approaches from both academia and industry regard-
ing their support for change patterns as well as change features. For academic
approaches the evaluation has been mainly based on literature. In cases where it
was unclear whether a particular change pattern or change feature is supported
or not, the respective research groups were additionally contacted. The evalu-
ated academic approaches are ADEPT[3], WIDE [13], Pockets of Flexibility [14],
Worklets/Exlets [4,15], CBRFlow [12,10], MOVE [16], HOON [17], and WASA
[5]. In respect to commercial systems only such systems have been considered
for which we have hands on experience as well as a running system installed.
This allowed us to test the change patterns and change features. As commer-
cial systems Staffware [1] and Flower [6] were considered. Evaluation results are
summarized in Fig. 11. A detailed description of the evaluated approaches can
be found in [8].

If a change pattern or change support feature is not supported at all, the
respective table entry will be labeled with ”-”. Otherwise, it describes the exact
pattern variants as supported by listing all available design choices. In case
no design choices exist for a particular change pattern, which is supported, the
respective table entry is simply labeled with ”+”. Partial support is labeled with
”◦”. As an example take change pattern PP1 of the Worklet/Exlet approach
[4,15]. The string ”A[1,2], B[1,2], C[2]” indicates that design choices A, B and
C are supported. Further, it shows for every design choice the exact options
available (e.g., for design choice A, Options 1 and 2 are supported).

In particular an adaptation pattern will be only considered as being provided,
if the respective system supports the pattern directly, i.e., based on one high-level
change operation. Of course, adaptation patterns can be always expressed by
means of a set of basic change primitives (like add node, delete node, add edge,
etc.). However, this is not the idea behind adaptation patterns. Since process
schema changes (at the type level) based on these modification primitives are
supported by almost each process editor, this is not sufficient to qualify for
pattern support. By contrast, the support of high-level change operations allows
introducing changes at a higher level of abstraction and consequently hides a
lot of the complexity from the user. Therefore changes can be performed in a
more efficient and less error prone way. In addition, in order to qualify as an
adaptation pattern the application of the respective change operations must not
be restricted to predefined regions in the process.

586 B. Weber, S. Rinderle, and M. Reichert

Several of the adaptation patterns (e.g., AP3 or AP4) can be implemented by
applying a combination of the more basic patterns AP1, AP2, AP10 and AP11.
However, a given approach will only qualify for a particular adaptation pattern,
if it supports this pattern directly (i.e., it offers one respective change operation).

Note that missing support for adaptation patterns does not necessarily mean
that no run-time changes can be performed. As long as feature F2 is supported
ad-hoc changes to running process instances are possible (for details see [8]). In
general, if a respective approach provides support for predefined change patterns
like for instance late modeling of process fragments (PP1) or late selection of
process fragments (PP2) the need for structural changes of the process schema
can be decreased making feature F3 less crucial.

The evaluation of selected approaches shows that there exists no single system
which supports all changepatterns and features (cf.Table 11). Inparticular, noneof
the approachesprovides both adaptation patterns and predefined change patterns,
which would allow addressing a much broader process spectrum. While predefined
change patterns allow to reduce the need for structural changes during run-time by
providing more flexible models, adaptation patterns allow for structural changes
which cannot be pre-planned. In addition, they make changes more efficient, less
complex and less error-prone through providing high-level change operations.

Change Patterns and Change Support

Academic Commercial
Pattern/
Feature ADEPT /

CBRFlow WIDE
Pockets of
Flexibility

Worklets /
Exlets MOVE HOON WASA Staffware Flower

Change Patterns

Adaptation Patterns

AP1
A[1, 2],

B[1,2,3], C[1,2],
D[1, 2]

A[2], B[1],
C[2], D[1,2] – – – – – – –

AP2 A[1, 2],
B[1,2,3], C[1,2]

A[2], B[1],
C[2] – – – – – – A[2], B[1],

C[2]

AP3
A[1, 2],

B[1,2,3], C[1,2],
D[1, 2]

– – – – – – – –

AP4 – A[2], B[1],
C[2] – A[1], B[2],

C[1,2] – – – – –

Preplanned Change Patterns

PP1 – – – A[1,2],
B[1,2], C[2] – A[1,2],

B[1,2], C[2] – A[1,2],
B[1,2], C[2] –

PP2 – – A[1,2], B[2],
C[2], D[1,2] – A[1], B[1],

C[3], D[1,2] – – – –

PP3 – – – – – – – – –

PP4 – + – – – – – + +

Change Features

F1 3, 5 3, 5 – 3 – – 3, 5 3, 4 1, 2, 3

F2 1 – 2 2 2 2 2 2 1

F3 + + + ° + + + – –

F4 1, 2, 3 1 1 1 1 1 1 1 1

F5 1, 2, 3 1, 3 1, 2, 3 1, 2, 3 1, 3 1, 2, 3 1 1, 2, 3 1, 2, 3*

F6 + – + + – – – – –
(*) Flower supports Option 2 and 3 of feature F4 only for process instance changes, but not for process type changes

Fig. 11. Change Patterns and Change Support Features in Practice

Change Patterns and Change Support Features 587

6 Related Work

Patterns were first used to describe solutions to recurring problems by Ch.
Alexander, who applied patterns to descibe best practices in architecture [18].
Patterns also have a long tradition in computer science. Gamma et al. applied
the same concepts to software engineering and described 23 patterns in [7].

In the area of workflow management, patterns have been introduced for an-
alyzing the expressiveness of process modeling languages (i.e., control flow pat-
terns [9]). In addition, workflow data patterns [19] describe different ways for
modeling the data aspect in PAIS and workflow resource patterns [20] describe
how resources can be represented and utilized in workflows. The introduction
of workflow patterns has significant impact on the design of PAIS and has con-
tributed to the systematic evaluation of PAIS and process modeling standards.
However, to evaluate the powerfulness of a PAIS regarding its ability to deal
with changes, the existing patterns are important, but not sufficient. In addi-
tion, a set of patterns for the aspect of workflow change is needed. Further,
the degree to which control flow patterns are supported provides an indica-
tion of how complex the change framework under evaluation is. In general,
the more expressive the process modeling language is (i.e., the more control
flow and data patterns are supported), the more difficult and complex changes
become.

In [21] exception handling patterns which describe different ways for coping
with exceptions are proposed. In contrast to change patterns, exception han-
dling patterns like Rollback only change the state of a process instance (i.e., its
behavior), but not its schema. The patterns described in this paper do not only
change the observable behavior of a process instance, but additionally adapt the
process structure. For a complete evaluation of flexibility, both change patterns
and exception handling patterns must be evaluated.

7 Summary and Outlook

In this paper we proposed 17 change patterns (and described 8 of them in detail)
and 6 change support features, which in combination allow to assess the power
of a particular change framework. In addition, we evaluated selected approaches
and systems regarding their ability to deal with process changes. We believe that
the introduction of change patterns complements existing workflow patterns and
allows for more meaningful evaluations of existing systems and approaches. In
combination with workflow patterns the presented change framework will enable
(PA)IS engineers to choose process management technologies

Future work will include change patterns for aspects other than control flow
(e.g., data or resources) and patterns for more advanced adaptation policies
(e.g., the accompanying adaptation of the data flow when introducing control
flow changes) as well as the evaluation of additional systems and approaches.

588 B. Weber, S. Rinderle, and M. Reichert

Acknowledgements. We would like to thank S. Shadiq, M. Adams, M. Weske
and Y. Han for their valuable feedback and the many fruitful discussions, which
helped us to significantly improve this paper.

References

1. Dumas, M., ter Hofstede, A., van der Aalst, W. (eds.): Process Aware Information
Systems. Wiley Publishing, Chichester (2005)

2. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems – a survey. Data and Knowledge Engineering 50, 9–34 (2004)

3. Reichert, M., Dadam, P.: ADEPTflex – supporting dynamic changes of workflows
without losing control. JIIS 10, 93–129 (1998)

4. Adams, M., ter Hofstede, A.H.M., Edmond, D., v.d.Aalst, W.M.: A service-oriented
implementation of dynamic flexibility in workflows. In: Coopis’06 (2006)

5. Weske, M.: Workflow management systems: Formal foundation, conceptual design,
implementation aspects. University of Münster, Germany, Habil Thesis (2000)

6. van der Aalst, W., Weske, M., Grünbauer, D.: Case handling: A new paradigm for
business process support. Data and Knowledge Engineering. 53, 129–162 (2005)

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, New York (1995)

8. Weber, B., Rinderle, S., Reichert, M.: Identifying and evaluating change patterns
and change support features in process-aware information systems. Technical Re-
port Report No. TR-CTIT-07-22, CTIT, Univ. of Twente, The Netherlands (2007)

9. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14, 5–51 (2003)

10. Rinderle, S., Weber, B., Reichert, M., Wild, W.: Integrating process learning and
process evolution - a semantics based approach. In: BPM 2005, pp. 252–267 (2005)

11. Günther, C., Rinderle, S., Reichert, M., van der Aalst, W.: Change mining in
adaptive process management systems. In: CoopIS’06, pp. 309–326 (2006)

12. Weber, B., Wild, W., Breu, R.: CBRFlow: Enabling adaptive workflow manage-
ment through conversational cbr. In: ECCBR’04, Madrid, pp. 434–448 (2004)

13. Casati, F.: Models, Semantics, and Formal Methods for the design of Workflows
and their Exceptions. PhD thesis, Milano (1998)

14. Sadiq, S., Sadiq, W., Orlowska, M.: A framework for constraint specification and
validation in flexible workflows. Information Systems 30, 349–378 (2005)

15. Adams, M., ter Hofstede, A.H.M., Edmond, D., v. d. Aalst, W.M.: Dynamic and
extensible exception handling for workflows: A service-oriented implementation.
Technical Report BPM Center Report BPM-07-03, BPMcenter.org (2007)

16. Th. Herrmann, A.-W., Scheer, H.W. (eds.): Verbesserung von Geschftsprozessen
mit flexiblen Workflow-Management-Systemen - Verffentlichungen des Forschung-
sprojektes MOVE. Bd. 1 - 4. Physica Verlag, Heidelberg (1998)

17. Han, Y.: Software Infrastructure for Configurable Workflow Systems. PhD thesis,
Univ. of Berlin (1997)

18. Alexander, C., Ishikawa, S., Silverstein, M. (eds.): A Pattern Language. Oxford
University Press, New York (1977)

19. Russell, N., ter Hofstede, A., Edmond, D., van der Aalst, W.: Workflow data pat-
terns. Technical Report FIT-TR-2004-01, Queensland Univ. of Techn. (2004)

20. Russell, N., ter Hofstede, A., Edmond, D., van der Aalst, W.: Workflow resource
patterns. Technical Report WP 127, Eindhoven Univ. of Technology (2004)

21. Russell, N., van der Aalst, W.M., ter Hofstede, A.H.: Exception handling patterns
in process-aware information systems. In: CAiSE’06 (2006)

	Introduction
	Backgrounds
	Change Patterns
	Adaptation Patterns
	Patterns for Predefined Changes

	Change Support Features
	Schema Evolution, Version Control and Instance Migration
	Other Change Support Features

	Change Patterns and Change Support in Practice
	Related Work
	Summary and Outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

