
Ulm University | 89069 Ulm | Germany Faculty for
Engineering and
Computer Science
Institute for Databases and
Information Systems

Enabling Personalized Business
Process Modeling:
The Clavii BPM Platform
Master Thesis at Ulm University

Submitted by:
Klaus Kammerer
Klaus.Kammerer@uni-ulm.de

Reviewer:
Prof. Dr. Manfred Reichert
Prof. Dr. Peter Dadam

Supervisor:
Dipl.-Inf. Jens Kolb

2014

Version of August 28, 2014

ACKNOWLEDGEMENTS:

First and foremost I offer my gratitude to my supervisor, Jens Kolb, who has supported me
throughout my studies with his enthusiasm and knowledge.
I would like to thank Prof. Dr. Manfred Reichert for making this thesis possible.
Many thanks to my fellow students and Clavii workmates Kevin Andrews, Stefan Büringer,
and Britta Meyer.
I would particularly like to thank my family, who made my studies possible and encouraged
all my decisions.
Finally, I thank Vanessa Schmitt. She was always cheering me up and stood by me through
the good times and bad.

c© 2014 Klaus Kammerer

Typeset: PDF-LATEX 2ε
Print: Ulm University

Abstract

Increasing adoption of business process management systems has resulted in large busi-
ness process models comprising hundreds of activities. Particularly, such process models
are hard to understand and maintain. This issue requires innovative approaches to simplify
and personalize process models. Therefore, this thesis introduces fundamentals for pro-
cess views offering personalized perspectives for process participants by abstracting not
necessary information. Furthermore, an approach for a domain-specific process modeling
language, so-called Process Query Language, is presented. The latter offers process
modeling notation independent abilities to define, search, and modify process models as
well as process views. The proof-of-concept implementation, so-called Clavii BPM platform,
shows up as integrated solution for simple, web-based business process modeling and
execution. Thus, it implements basic concepts for process views and the PQL language.

iii

Contents

1 Introduction 1

2 Fundamentals on Business Process Management 3

2.1 Business Process Management . 4

2.1.1 BPM Lifecycle . 4

2.2 Business Process Modeling . 5

2.2.1 Process Model . 6

2.2.2 Process Modeling Notation . 6

2.2.3 Block-Structured Process Models . 10

2.2.4 Workflow Patterns and Change Patterns 11

2.3 Executing Process Models . 12

2.4 Process-Aware Information Systems . 13

2.5 Summary . 14

3 Overview on Abstracting Process Models by Applying Process Views 15

3.1 Fundamentals on Process Views . 17

3.1.1 Process View . 17

3.1.2 Control Flow View Creation Operations 19

3.1.3 Control Flow View Update Operations 21

3.1.4 Migration of Process View Change Sets 24

3.1.5 Process View Refactoring Operations 26

3.2 Discussion . 28

3.3 Requirements for a BPM-Specific Language 29

3.4 Summary . 31

v

Contents

4 Process Query and Modification Language 33

4.1 PQL Process Meta-Model . 34

4.1.1 Process Model Correctness and Expressiveness 37

4.1.2 PQL Process Model Mapping . 38

4.2 Process Query Language . 39

4.2.1 Process Model Discovery Representation 39

4.2.2 PQL Process Model Change Operations 43

4.2.3 PQL Process Views . 45

4.2.4 PQL Modularity Concept . 48

4.3 Software Architecture Supporting PQL . 49

4.3.1 PQL Request . 50

4.3.2 Architectural Components . 52

4.3.3 Processing Pipeline . 54

4.4 Summary . 56

5 Activiti BPM Platform 57

5.1 Activiti Toolstack . 58

5.2 Process Modeling Support . 59

5.2.1 Java Object Representation for Process Models 59

5.2.2 XML Representation for Process Models 60

5.2.3 Custom Extensions of Process Models 62

5.2.4 Expression Language . 62

5.3 Activiti Server Component and Java API . 63

5.4 Summary . 64

6 The Clavii BPM Platform 65

6.1 Principles . 66

6.2 Proof-of-Concept Implementation Architecture 67

6.3 Functionalities . 69

6.4 Managing Process Models . 73

6.4.1 Process Model Representation . 74

6.4.2 Block-Structural Constraints . 76

6.4.3 Process Model Graph Utilities . 78

6.4.4 Process Model Creation . 79

6.4.5 Process Model Change Operations . 80

vi

Contents

6.4.6 Process Model Update Procedure . 82

6.5 PQL Proof-of-Concept Implementation . 84

6.5.1 Generating a Parser for Domain Specific Languages 87

6.5.2 PQL Request Representation . 89

6.5.3 Parsing and Conversion Procedure . 91

6.6 Process View Implementation . 92

6.6.1 Creating a Process View . 92

6.6.2 Updates on Process Views . 95

6.7 Summary . 97

7 Related Work 99

8 Conclusion 105

A Appendix 107

A.1 Activiti Code Examples . 107

Bibliography 121

vii

1
Introduction

In times of the information age companies are more than ever confronted with big challenges

[19]. On the one hand side customers ask for even lower prices, faster product delivery

and higher support—on the other side companies aim at maximizing their return on invest.

One solution may be to manage and optimize efficiency through managing internal process

flows.

Companies often attach significant importance to Business Process Management (BPM)

[26], but comprehensive BPM software platforms are costly and require profound BPM

knowledge. Additionally, business processes are subject of continuous change demanding

for advanced technologies supporting a fast adaption and optimization of company wide

business processes. BPM software platforms have to address these challenges.

1

1 Introduction

Large companies are able to use a great variety of BPM platforms, which include Business

Intelligence1, Service-Oriented Architectures or Business Rules. Small and medium-sized

companies are often overcharged with an integrated BPM platform, since BPM knowledge—

or available platforms are too complex and expensive for them [34]. BPM platforms are often

developed for comprehensive mapping of ideally all accruing internal and external work-

flows. They follow a top-down approach, which requires a high-level view on a companies

processes.

This thesis presents the Clavii BPM platform (Clavii for short), an integrated, web-based

solution to manage, execute, and optimize process models. It illustrates different concepts to

simplify process models. Clavii is optimized for small and mid-sized companies with limited

experiences with BPM. Therefore, Clavii offers a simple and self-explaining user interface

(UI) trying to close the gap between organizational and technical BPM aspects. Assisted

process modeling bypasses technical difficulties to ensure, for example, correct control and

data flow in process models. Advanced concepts, e.g., process views for process model

abstractions, streamline the management of large and complex business processes. As

a research result for this topic the Process Query Language (PQL) is presented. PQL is

a domain-specific language for process modeling and enables the definition of notation-

independent change and abstraction operations. Moreover, Clavii features a simplified data

flow by supporting business objects and allows for an easy automation of BPM tasks. Hence,

end-users are not required to develop software component tasks, like premised for other

BPM platforms. Therefore, execution-ready generic tasks for process automation can be

obtained in a store and require little or no configuration effort. Furthermore, process models

for common activities, like delivery processing, can also be obtained in the store to further

minimize initial obstacles.

Section 2 introduces fundamentals on business process management. Section 3 presents

theoretical approaches for process views. Section 4 introduces PQL as well as a generic

software architecture supporting PQL. Section 5 presents the Activiti BPM platform as base

of the developed Clavii BPM platform. Section 6 introduces the Clavii BPM platform by

describing various innovative principles and its software architecture. Section 7 discusses

related work. A conclusion is given in Section 8.

1Technologies to transform raw data into meaningful and useful information for business analysis purposes

2

2
Fundamentals on Business Process

Management

In the following fundamentals of Business Process Management, serving basic knowledge

for further aspects of this thesis, are introduced [29, 70, 82]. Section 2.1 explains Business

Process Management and the BPM lifecycle in general. Section 2.2 describes essentials,

like the definition of a process model, its graphical description model and an introduction to

BPMN 2.0, a de-facto standard for todays process modeling notations. Executing business

processes is explained in Section 2.3.

3

2 Fundamentals on Business Process Management

2.1 Business Process Management

The European Association of BPM (EABPM) defines business process management as

following: "Business Process Management or BPM is synonymously used for process man-

agement. A process is a set of defined operations (i.e., activities, tasks), that are executed

by human or a system to achieve a goal. [...] Business process management is a system-

atical approach to capture, execute, document, measure, monitor and control automated

and non-automated processes to reach goals defined by a business strategy. BPM com-

prises an emerging IT-supported determination, enhancement, innovation and preservation

of end-to-end processes" [39].

In practice a company introduces business process management to document implicit

business processes, automate certain tasks, and optimize internal workflows. Difficulties for

a BPM introduction are the chosen degree of granularity, integration into existing workflows

and a lack of BPM, and IT knowledge through a company [29].

The continuous process which accompanies with BPM is called BPM lifecycle.

2.1.1 BPM Lifecycle

The BPM lifecyle consists of the steps design, modeling, execution, monitoring and opti-

mization of business processes [6]. The BPM lifecycle is a never ending looping process.

The time to complete each lifecycle step is not completely delimitable. In the following each

step is described shortly.

Design: In this step tasks of a business process are identified on a high-level basis, organi-

zational changes are discussed, and additional process dimensions (process participants,

notifications, escalations) are defined.

Modeling: The modeling step creates a full documentation of a business process (i.e., by

an explicit process model). It is also a validation step, where a specification is formalized

(e.g., by utilizing BPMN). In this context even more details, like data handling have to be

considered. Formalized process models are validated by simulating certain scenarios (cf.

Section 2.2).

4

2.2 Business Process Modeling

Execution: The process model is deployed in a PAIS (cf. Section 2.4). Afterwards, technical

details are added in order to achieve the ability to execute the process model. Implementa-

tions can be performed with a process notation like BPMN 2.0 and programming languages

to develop automatically executed tasks (i.e., script and service tasks) within a process

model (cf. Section 2.3).

Monitoring: At this time the implemented and executed process model is monitored against

defined business goals. Therefore, often so-called key performance indicators (KPIs) are

defined to gain convincing facts about efficiency.

Optimization Every preceding step, especially through experiences made by executions,

creates suggestions or optimizations, that can be applied to a process model in order to

increase its performance. Additional new aspects can show up, which are not covered before.

As new requirements are carved out, the BPM lifecycle re-enters the design phase.

2.2 Business Process Modeling

A business process describes the rationale of how an organization creates, delivers, and

captures value [62]. A process model documents a business process and describes which

tasks have to be done to create a product or service. To build a process model thus it is

necessary to be aware of what should be achieved and which participants are involved.

Freund et al. constitute four questions to create a process model [29]:

• Which information is necessary?

• Which detail of information should be chosen?

• How can required information be acquired?

• Which modeling methodology should be used?

To decide which information is necessary a business process can be seen at different

point of perspectives. From an organizational perspective collaborations between process

participants of a business process are considered, while a functional perspective focuses

on which tasks have to be done and in what way these tasks can be organized (e.g. dividing

5

2 Fundamentals on Business Process Management

tasks into subtasks). The behavioral perspective defines the order in which these tasks

have to be executed to achieve the goal of a business process. Finally, the informational

perspective describes resources and their production and consumption during the execution

of tasks, as well as the informational flow between these tasks. Especially, the question

which degree of detail should be chosen, is difficult to answer. Plenty of research exist,

trying to give assistance to solve this question [13, 20, 29].

Process models are one possibility to simplify the process of formalizing certain structured

tasks. Today they even take care of technical aspects and, if a particular maturity level

of detail is reached, process models simply can be transformed into executable business

process instances (cf. Section 2.3).

2.2.1 Process Model

A process model is represented by a set of process nodes and the control flow between

them. It is a single directed graph, which describes a business process. Process nodes,

for example, represent tasks, which have to be done, to comply with the process model.

The control flow itself concerns about in which temporal chronology these tasks have to be

executed.

Further, a process model may include additional process elements, like process data el-

ements. Every process element has various attributes describing its properties (e.g., its

name).

2.2.2 Process Modeling Notation

To describe a process model a notation is necessary. While the term notation is broadly

defined, even a textual document explaining a certain procedure can be seen as process

model notation. Therefore, restrictions and guidelines are necessary to define, what exactly

has to be the extend of a process model. To achieve the ability for executing a defined

process model as process instance, additional information is required.

6

2.2 Business Process Modeling

An example for a simple process model notation are petri nets [64]. Particularly, process

nodes or tasks refer to transitions and edges—described as control flow—refer to places.

Further, process model notations exist having different scopes, goals, and expressiveness.

Examples to be mentioned are ADEPT2 [68], Event Process Chains (EPC) [78] and Unified

Modeling Language (UML) Activity Diagrams [24]. Generally, the expressiveness of a

notation may be determined by applying workflow patterns (cf. Section 2.2.4).

In the context of this thesis, we apply the BPMN 2.0 as business process notation, a

de-facto standard for graphical process model notation. A central goal of BPMN 2.0 is

to be easily understandable by all process participants (i.e., business analysts, technical

developers, and end-users) [30]. Thus, BPMN 2.0 creates a standardized bridge for the gap

between business process design and process implementation. Particularly, BPMN 2.0 is

an unstructured, graph-oriented process modeling notation. It consists of three different

specification sub-classes:

• Descriptive Conformance Sub-Class (DCS): high-level process modeling comprising

a subset of all existing BPMN elements

• Analytic Conformance Sub-Class (ACS): detailed modeling, including exception han-

dling and events

• Common Executable Conformance Sub-Class (CECS): all elements

The CECS uses the whole expressiveness of BPMN 2.0. Such BPMN 2.0 defined process

models are fully deployable to a PAIS supporting BPMN 2.0 (cf. Section 2.3). CECS

consists of the following element types: Flow Objects, Data Objects, Connecting Objects,

Swimlanes, and Artifacts.

Figure 2.1 shows a BPMN 2.0 process model consisting of selected BPMN 2.0 process

elements described in the following.

Flow Objects can be further categorized in tasks, gateways, or events. These elements

describe the functional nodes of a process model.

Tasks describe actions, a human or system should perform in a business process. Table 2.1

shows different types of tasks and their necessary technical attributes.

7

2 Fundamentals on Business Process Management

S
w
im
la
ne

P
oo
l

S
w
im
la
ne

Start
Event

End
Event

User Task Task

Script Task

Exclusive
Gateway

Exclusive
Gateway

Parallel
Gateway

Parallel
Gateway

Conditional
Sequence Flow

Data Object

Data FlowSequence Flow

Service Task

TextAnnotation

Figure 2.1: BPMN 2.0 Process Model

Element Description Attributes
Task Generic task, which has to be executed

by a process participant. This can be
either a user or a system component.

id, name

User Task A user task indicates, that a specified
user has to interact with the business
process. This can be achieved, for ex-
ample, by providing a user form.

id, name, renderings, implementation,
resources, ioSpecification, dataInputAs-
sociations, dataOutputAssociations,
loopCharacteristics, boundaryEven-
tRefs

Script Task Script tasks are assigned to specified
programming code, which can be auto-
matically executed by a PAIS.

id, name, implementation, operationRef,
ioSpecification, dataInputAssociations,
dataOutputAssociations, loopCharacter-
istics, boundaryEventRefs

Service Task Service tasks represent interfaces for
interactions with other computer appli-
cations and services.

id, name, implementation, operationRef,
ioSpecification, dataInputAssociations,
dataOutputAssociations, loopCharacter-
istics, boundaryEventRefs

Table 2.1: BPMN 2.0 Task Types

Gateways describe points, where the control flow is split up by a split gateway into two or

more branches or the latter is joined together by a join gateway. A gateway may express

either parallel control flows (i.e., all branches are considered), exclusive control flows

(i.e., only one branch is selected for execution), or inclusive control flows (i.e., one or

more branches are selected). Exclusive and inclusive gateways need defined decisions to

determine the onward progress. Inclusive gateways are not used in this thesis, thus, they

are not further discussed (cf. Table 2.2).

Events in BPMN 2.0 consist of message, timer, and error events (cf. Table 2.3). Message

events indicate, that an external message is sent or received somewhere. Another business

process or an intermediate message catch event is able to capture these messages taking

8

2.2 Business Process Modeling

Element Description Attributes
Parallel Gateway A parallel gateway indicates a control

flow split up. Hence all branches are
executed simultaneously.

id, name, gatewayDirection (only con-
verging and diverging)

Exclusive Gateway In contrast to parallel gateways an exclu-
sive split gateway activates only one out-
going branch. Each branch has a con-
dition attribute splitting each activation
into a disjunct activation set. Conditions
can refer process data that is available
during execution.

id, name, gatewayDirection (only con-
verging and diverging), default

Table 2.2: BPMN 2.0 Gateway Types

Element Description Attributes
Start Event A start event triggers the start of a new

process instance.
id, name
(also conditionalStartEvent, which has
an additional
conditionalEventDefinition)

End Event An end event is the last element of a
process model. It indicates the end of a
process path.

id, name

Table 2.3: BPMN 2.0 Event Types

further actions. An intermediate message catch event stops further execution of a process

instance, until an expected message has arrived. Timer events indicate a delay in the

process execution. This can be useful, when further steps of a business process, like

sending a dunning letter in domain of accounting, first need a particular interruption.

BPMN 2.0 allows for data flows between tasks. Therefore, Data Objects may be used. A

data flow is a process edge indicating a data flow between a Data Object and a certain task.

[84] explains, that data flows are not frequently used during process modeling, thus, they

are not further discussed in this thesis.

Connecting Objects link above described flow objects to indicate a certain relationship or

interaction between them. Control flow objects describe the temporal aspects between

flow objects, while message flow objects and data association objects outline a data flow.

Associations are used to link artifacts, like text annotations, to other flow objects in order to

highlight their affinity.

Pools and Swimlanes are used to define process participants. Pools often represent or-

ganizations. Swimlanes again subdivide pools to organize them in smaller units. To give

9

2 Fundamentals on Business Process Management

Element Description Attributes
Sequence Flow A sequence flow connects two nodes to

indicate a control flow.
id, name, sourceRef, targetRef, default

Conditional Sequence
Flow A conditional sequence flow is only acti-

vated, when additional condition expres-
sion returns true.

id, name, sourceRef, targetRef, condi-
tionExpression
ConditionExpression, allowed only for
sequence flow out of gateways, may be
null

Table 2.4: BPMN 2.0 Connecting Objects

an example, a pool could represent an Order Service. This pool can consists of two lanes,

Callcenter and Delivery Department.

Artifacts (i.e., Associations, Groups, TextAnnotations) show additional information to the

user, which are not directly related to a sequence or message flow. They offer a possibility to

document process models more precisely. Artifacts are not further discussed in this thesis,

as Section 6 introduces concepts implementing them differently.

2.2.3 Block-Structured Process Models

Block structures known from programming languages are used to capsulate code fragments

[51]. In particular, block structures must not overlap, but they can be nested arbitrary deeply.

Figure 2.2a shows an example of a process model. The latter is not block-structured, as

SESE1 does overlap with SESE2. In turn, Figure 2.2b is an example of a block-structured

process model.

Block SESE1 and block SESE2 in Figure 2.2b are so-called Single-Entry, Single-Exit

(SESE) blocks. A SESE defines a subgraph of a process model, where every process

node tuple A,B conforms three characteristics: A dominates B, B post-dominates A, and

every cycle containing A also contains B and vice versa [37]. In other words, process node

A dominates process node B in a process model, if every path from start to A includes

B. Further, process node A post-dominate process node B, if every path from B to end

includes A. How to determine SESE blocks efficiently is described in [37].

A minimal SESE of a set of process nodes N is a tuple of two process nodes (n1, n2), where

n1 denotes the entry of the SESE, n2 the exit and describes the minimal SESE to surround

all process nodes in N . If a process model has to be block-structured, all constraints have to

10

2.2 Business Process Modeling

be regarded (cf. Section 2.2.3). Figure 2.3 shows a process model with its different, nested

SESE blocks and a minimal SESE of three nodes (B,C,D).

A

D

B C

SESE 1

SESE 2

a) Process Model with Overlapping SESE Blocks

b) Block-structured Process Model

A

D

B C

SESE 1

SESE 2

Figure 2.2: Comparism of an Unstructured and Block-Structured Process Model

Block-structured process models are applied in the context of this thesis, because they are

the basis for all presented process view operations.

2.2.4 Workflow Patterns and Change Patterns

Process model notations have different cardinality concerning their expressiveness. For

example, the BPEL process notation is not able to express an arbitrary cycle, while BPMN

2.0 supports them. Arbitrary cycles are cycles, that have more than one entry and exit point.

Thus, BPEL is not able to express arbitrary cycles, because it is a block-structured process

notation. In [79] so-called workflow patterns are introduced, which describe a collection

of patterns describing common aspects of process modeling. The latter is divided into

different categories (e.g., control flow patterns or advanced branching and synchronization

patterns).

11

2 Fundamentals on Business Process Management

A GB

C D

E F

Process Model

minimalSESE(B,C,D)

SESE Block 1
SESE Block 2
SESE Block 3 / 4

with respect to block-structure: without respect to block-structure:

minimalSESE(B,C,D) = (B,Y) minimalSESE(B,C,D) = (B,D)

X Y

Figure 2.3: SESE Blocks of a Process Model

In order to classify the cardinality of PAIS concerning their ability to change process models,

change patterns are introduced [81]. Change patterns describe and classify common control

flow changes, like the insertion of a new task into a process model.

2.3 Executing Process Models

PAIS offer the ability to execute process models (cf. Section 2.4). Therefore, certain

executable code (i.e., the logic of a task) can be attached to tasks, that, in turn, can be

executed by a PAIS.

Particularly, BPMN 2.0 offers the ability to model and execute process models. Therefore,

several PAIS, like Activiti [67] or jBPM [17], allow for the direct execution of BPMN 2.0

defined process models.

Thereby, a process instance represents a concrete case in the operational business of a

company, for example, invoicing a service. From a technical point of view, it is a executable

copy of a process model. It contains additional run-time information like an execution state

12

2.4 Process-Aware Information Systems

map of all present executable tasks and a log of already executed tasks. PAIS represent

process instances highly memory optimized to handle hundreds or even thousands of

process instances. Every business process instance has a business process instance

lifecycle with different states [70].

2.4 Process-Aware Information Systems

A Process-Aware Information System (PAIS) is a software application platform mapping

business processes on a software basis offering the ability to support the BPM lifecycle. As

illustrated in Section 2.2, there are different perspectives on business process management.

A PAIS takes account of several perspectives, like operation, time, organization, behavior,

information, and function, as well as offers different services to support them [70]. It also

concerns about a separation of process logic and application code to be run by tasks in a

process model.

Process Repository

Process Engine

State Machine Execution Component
Manager

User Interface

Process Editor Monitoring

Execution Component
EditorWorklist Manager

Configuration
Editor

API Modeling Service

Services

[….]

Build-time component Run-time component

Figure 2.4: Components of a PAIS

13

2 Fundamentals on Business Process Management

A PAIS consists of several components [48]. These are separated logically into build-time

and run-time services (cf. Figure 2.4). At build-time of a process model, a PAIS provides

a process editor, with which a user is able to define and configure a process model by

using a graphical user interface. Resulting process models can then be stored in a process

repository, as well as its application service components. An execution component is a

type of software to either execute certain programming code or provide interfaces to other

software applications and services to map business logic. Stored process models can be

deployed to a process engine for creation and execution of process instances. At run-time

the process engine takes care of all business process instances with different services. It

includes, for example, services for service invocation, time management, access control,

escalation, logging, and persistence.

2.5 Summary

Business process management describes how companies can reach their business goals

by capturing business processes, executing, and managing them. Therefore, processes

are described using process models with specific notations. Every notation sets different

priorities concerning its representation, cardinality, and purpose. Some process notations,

like BPMN 2.0, enable automatic executions on process-aware information systems (PAIS).

A PAIS consists of different components to manage and optimize process models. A concept

to describe necessary management operations is the BPM lifecycle.

14

3
Overview on Abstracting Process

Models by Applying Process Views

Process models usually comprise tasks from different departments in a company. Further-

more, such process models involve different participants. Particularly, process models often

comprise hundreds of tasks, and are hard to understand by non-technical users. Next,

changing or evolving process models is challenging and error-prone.

One possibility to reduce complexity of a process model are different process model visual-

izations, which may change the appearance of process elements. For example, in [42] an

approach to transform a process model into a verbalized process description is presented.

Hence, a process model in BPMN 2.0 may be transformed into written text comprising a

rich english grammar and vocabulary description of all process elements. Furthermore,

15

3 Overview on Abstracting Process Models by Applying Process Views

there exist other approaches to transform a process models visualization in order to reduce

complexity [49, 45].

Another possibility to reduce complexity of process models is process abstraction, i.e., only

information needed for a specific use case is provided [12, 43]. This can be achieved

by applying algorithms to hide parts of the control flow, which are not relevant for the

respective process participant. Such process models are also called process views [12, 43].

Figure 3.1 shows a process model, which involves five groups of participants: assistance of

photographers, photographers, copywriters, graphic designers and layouter. In particular, a

photographer may not interested in tasks of the other participants. Therefore, a personalized

process view can be created only showing tasks of the photographer, i.e., tasks, which are

located on his pool [9, 10, 11, 69]. However, process views can be arbitrary adjusted to fit

a participants needs: an assistant of a photographer should have knowledge of his own

and the photographers tasks: its process view would consist of his and the photographers

pool. To be more precise, every process element, rather than just complete pools, can

be depicted by operations creating a process view. Showing only relevant tasks can also

ensure privacy. Process views can be adjusted to participants in a way, only showing such

process information they are allowed to see.

Process elements in a process view can also be grouped by so-called virtual nodes. The

latter represents multiple tasks and may be used to arrange tasks in order to increase

clearness of process models. In addition, not only tasks as part of a process model control

flow can be hidden, but other process elements, like attributes of tasks, gateways or process

data elements. Process view algorithms may also be applied on process instances.

Additionally, it is required to perform changes on process views [41]. Particularly, users

must be enabled to modify their own process views. Subsequently, associated process

models should be automatically updated in order to keep process view and process model

consistent.

In the following, we introduce an approach to enable parametrization of process views

allowing for user-specific adjustments and automatic creation.

Therefore, Section 3.1 introduces fundamentals and basic notions. Section 3.1.5 explains

how a process view can be generated out of an arbitrary process model. Section 3.1.3

describes advanced techniques enabling updates on process views and propagating them to

16

3.1 Fundamentals on Process Views

C
op

yw
rit

er
P

ho
to

gr
ap

he
r

G
ra

ph
ic

D

es
ig

ne
r

Write Text

Choose Scene

Brainstorm
Illustrations

Receive Order

Develop
Illustrations

Investigate Topic

Take Photo
Shoot

Post Process
Photos

La
yo

ut
er

Choose
Ttypefaces

Typeset
Elements

Notify Manager

P
ho

to
gr

ap
he

r
A

ss
is

ta
nt

Brew Coffee

N
ew

sp
ap

er

Figure 3.1: Process Model for Article Creation

the linked process model, on which a process view is based on. The last section illustrates

the automatic application of process view generation and modification algorithms.

3.1 Fundamentals on Process Views

In the following basic notions, as well as elementary operations to create process views -

reduction and aggregation - are outlined, which reduce and aggregate process elements.

3.1.1 Process View

A process view is an abstracted process model or process instance, in which not necessary

process elements, like control flow elements, are reduced. Further approaches suggest

modification or reduction of additional attributes and data elements [44]. However, this thesis

focuses on control flow abstraction.

17

3 Overview on Abstracting Process Models by Applying Process Views

The following definitions are based on the proView project, which enables updating process

models as well as all attached process views by applying view update operations on a

process view [41]. One essential pre-condition to apply view update operations are block-

structured process models or process instances (cf. Section 2.2.3).

Process views are created using a creation set (CS). The latter specifies the schema and

appearance of a process view. It consists of a central process model (CPM), a view-specific

change set, and a parameter set.

A CPM is a process model on which process views are created on.

A change set is a set of view creation operations, that are applied on a CPM to calculate

a process view out of it. Every view creation operation is described by a view creation

algorithm and a node set, which contains a set of all process nodes involved in a view

creation operation. Every view creation operation in a change set has to affect different

process nodes than other view creation operations (cf. Section 3.1.4). As a consequence,

all view creation operations can be applied in arbitrary order without resulting in differing

process views.

The parameter set is a set of parameters to control automatic propagation and resolution

of ambiguities during process view updates. An automatic propagation is executed after

a process view is changed and applied changes affect the associated CPM as well (cf.

Section 3.1.3). Ambiguities can occur, when inserting a process node in a process view,

where adjacent process nodes are reduced (cf. Figure 3.4). A newly inserted process node

D can be set left or right of the reduced process node B. In the example, the parameter

InsertSerialMode resolves this ambiguity by defining whether the process node is

inserted EARLY (i.e., before B), LATE (i.e., after B), or parallel to process node B.

A parameter set can be defined globally for a set of users, locally for a specific CPM, or

individually for every view update operation. By doing so, individual parameter sets have

the highest priority and override local and global parameter sets.

If a process model is changed, all attached process views have to be updated as well. There-

fore, additional parameters for reduction and aggregation are defined to support automatic

updates on attached process views. This procedure is described in Section 3.1.3.

18

3.1 Fundamentals on Process Views

Operation Description Operation Type
RedTask(V, n) Reduces a specific process node n in a view V atomic
RedSESE(V,N) Reduces a set of process nodes N in a view V compound
AggrSESE(V,N, v) Aggregates a coherent set of tasks N to a virtual node v in view

V . All tasks in N have to be part of the same SESE block
atomic

Table 3.1: Control Flow View Creation Operations

An example for a creation set of process view V 1 in Figure 3.2 is: CS = {CPM,ChangeSet =

{RedTask{B}}, ParameterSet = {}}. Thereby, CPM describes the CPM, where all view

creation operations in set ChangeSet have to be applied on. Set ChangeSet contains view

creation operation RedTask (cf. Section 3.1.5), which hides task B in process view V 1, set

ParameterSet is empty, because reduction operations do not require parameters.

3.1.2 Control Flow View Creation Operations

Creating process views one or more control flow view creation operations are applied on a

copy of the CPM. Such operations act locally, i.e., they do not modify the associated CPM

or affect other process views. Table 3.1 shows an overview of control flow view creation

operations.

Control flow view creation operations have different characteristics concerning their mod-

ification of control flow dependencies between process nodes, like tasks. Control flow

dependencies describe temporal and conditional behaviors between process nodes (e.g.,

the execution order and required conditions to execute a task). Every task has control flow

dependencies to any other process node defined in a process model. The simplest case

describes, whether a task A has to be executed before, after or parallel to task B.

In [43] a dependency set D is defined, which describes control flow dependencies, so-

called dependency relations, between any two tasks in a process model. A dependency

set of the process model in Figure 3.2 before applying view creation operation RedTask

is D = {(A,B), (A,C)}. After applying view creation operation RedTask(B) reducing task

B, the dependency set of process view V 1 shows as follows: D′ = {(A,C)}. Dependency

relation (A,B) was removed from D′ by view creation operation RedTask, this behavior is

called dependency-erasing. In turn, dependency-generating view creation operations insert

new dependency relations, dependency-preserving do not change the dependency set.

19

3 Overview on Abstracting Process Models by Applying Process Views

View creation operations reduce process elements in the resulting process view. Such

reductions can be seen as deleting a process element in a copy of the CPM. Figure 3.2

shows the reduction of task B. Reductions are dependency-erasing operations. Operation

RedTask is an atomic operation and reduces a single task. Atomic operations only affect one

process element at once and cannot be further split up. In contrast, compound operations

combine two or more atomic view creation operations. Compound operation RedSESE

reduces a complete SESE block and is a combination of several RedTask operations (cf.

Table 3.1). RedSESE is dependency-erasing as well.

A

B

C

A

C

Apply RedTask(V1, B)

Process View V1

Process View V1

Figure 3.2: Reduction of a Task

Aggregation view creation operations combine a set of process nodes to a single node. The

latter is called virtual node and can be seen as Sub-process including all nodes aggregated.

If process nodes to be aggregated are not in the same SESE block, a least common

SESE has to be determined. Otherwise an aggregation would break up the required block-

structuredness of the process view. Figure 3.3 shows an example, in which process nodes

B and D are aggregated to a virtual node V in the resulting process view. Both nodes are

not part of the same SESE block. To be able to aggregate them, a least common SESE

block has to be determined by applying operation minimalSESE(B,D). The latter results in

process nodes {X,Y }. Aggregation operations are dependency-generating.

Atomic view creation operations comprise a node set containing every process node by the

view creation operation. Such a node set is called dedicated node set. In contrast, node

sets of compound view creation operations, like operation RedSESE, only contain the entry

20

3.1 Fundamentals on Process Views

and exit node of a SESE block, which is called abstract node set. Applying such operations

on the CPM requires to calculate all process nodes described by the abstract node set.

A

B C

Apply
AggrSESE(V,{B,D})

D E

1. without application of operation minimalSESE

2. with application of operation minimalSESE

Application of operation AggrSESE(V,{B,D}) not possible, because nodes
B and D are part of different SESE blocks (i.e., SESE1 and SESE2)

minimalSESE({B,D}) = {X,Y}

X Y

SESE1

SESE2

A V

SESE3

Figure 3.3: Aggregation of Tasks

Applying view creation operations may result in unnecessary process fragments, like empty

branches or a completely empty branching block. Such process fragments can be removed

by executing refactoring operations (cf. Section 3.1.5).

3.1.3 Control Flow View Update Operations

Process models have to be changed often as a result of amended business goals or business

situations (e.g., by optimizing internal working steps). Changing large process models with

dozens of tasks is complex, and thus error-prone. Process views personalized for a process

participant reduce complexity. In order to allow changes on process views directly, update

operations for process views, so-called view update operations, are described subsequently

[41].

21

3 Overview on Abstracting Process Models by Applying Process Views

Control flow changes (e.g., inserting a task) can be applied on a CPM or on an associated

process view. Every associated process view has to be adapted after changing a CPM.

Thereby, it has to be decided, whether control flow changes, except deletions, on a process

model are shown or not adducing the parameters AggrComplMode, AggrPartlyMode,

RedComplMode and RedPartlyMode. Figure 5.2.3 shows an example illustrating all four

parameters. If an updated process node is completely surrounded by already aggregated pro-

cess nodes, parameter AggrComplMode defines, if the aggregated SESE remains reduced

(i.e., parameter is set to value AGGR) or will be revealed (i.e., AggrComplMode-SHOW).

Parameter AggrPartlyMode further proceeding, when only one adjacent flow node is

aggregated. Corresponding parameters can be set for reduction operations (i.e., parameters

RedComplMode and RedPartlyMode).

Additionally, updates can be executed on process views directly, which, in contrast to view

creation operations, also propagate changes to associated CPMs. This enables participants

to alter a process view, while keeping the underlying CPM and all associated process views

up-to-date.

One necessity is the ability to propagate process view updates to the underlying CPM as

well as to propagate updates automatically. One problem to be solved is, that changes on

process views may generate ambiguities in relation to the associated CPM, which also have

to be resolved automatically.

Table 3.2 describes basic control flow update operations for process views. Column Param-

eter describes respective parameters, which may be defined in a parameter set in order to

resolve ambiguities for the specific update operation.

To demonstrate arising ambiguities, Figure 3.4 demonstrates a task insertion. InsertSerial-

(V,D,A,C) adds a task D between task A and task C in a process view V 1. Propagating this

change to the associated CPM results in a decision problem: task B, which was reduced in

process view V , is present in the CPM. Thus, InsertSerial(V,D,A,C) has to be translated

in either inserting task D between task A and task B, or between task B and task C. To be

able to solve this ambiguity parameter InsertSerialMode decides, if inserting a task is

executed in immediate vicinity to the most left (EARLY) or most right aligned process nodes

(LATE).

If a complete block shall be inserted by using InsertParallel / InsertConditional / Insert-

22

3.1 Fundamentals on Process Views

Loop, two decisions (for every split gateway) have to be solved. Therefore, InsertBlock-

Mode offers four values indicating the correct insertion point for the split gateway (EARLY_,

LATE_) and join gateway (_EARLY,_LATE).

After all, associated views V 2 and V 3 are updated according to their parameters. Automatic

process model change propagation to other process views is determined by different pa-

rameters to decide, whether the incoming process model change is shown in other process

views or aggregated / reduced accordingly. These parameters also differentiate between

partial (i.e., parameters AggrPartlyMode, RedPartlyMode) and complete intersection

(i.e., parameters AggrComplMode, RedComplMode). The latter can be set to either show

or hide propagated process model changes in other process views associated with the

changed CPM.

A B C

CPM

A C

Process View V1

A

B

C

D

InsertSerialMode.EARLY A CD

A

B

C

D

InsertSerial(V,A,C,D)

propagate InsertSerial(V,A,C,D)

InsertSerialMode.LATE

A C

Process View V2 with RedComplMode.SHOW

A CD

A B-C

Process View V3 with AggrComplMode.AGGR

A B-C-D

CPM

1

2

3

1 2 3InsertSerial(V,A,C,D)
on process view V1

propagation from process view
V1 to CPM

migration of process view V2
and process view V3

OR

Figure 3.4: InsertSerial Update Operation

23

3 Overview on Abstracting Process Models by Applying Process Views

Operation Parameter Description
InsertSerial(V, n, np, ns,
InsertSerialMode)

InsertSerialMode =
{EARLY,
LATE,
PARALLEL }

A new node is inserted as early or
late as possible—or parallel to re-
duced nodes

InsertParallel(V, n, np, ns,
InsertBlockMode)

InsertConditional(V, n, np, ns,
InsertBlockMode)

InsertLoop(V, n, np, ns,
InsertBlockMode)

InsertBlockMode =
{EARLY_EARLY,
EARLY_LATE,
LATE_EARLY,
LATE_EARLY }

Similar to InsertSerialNode, but con-
sists of four parameters to adjust an
insertion of every gateway (split and
join) detached

InsertBranch(V, e, np, ns) Inserts a new branch
DeleteTask(V, n) DeleteTaskMode =

{LOCAL,
GLOBAL}

Deletes a task only in a view (se-
mantically equivalent to RedTask)
or in its corresponding CPM

DeleteBranch(V, e) Deletes a branch
DeleteBlock(V, nstart, nend,
DeleteBlockMode)

DeleteBlockMode=
{INLINE,
DELETE}

Deletes a block by deleting its sur-
rounding gateway nodes and serial-
izing all branches in series (INLINE)
or deleting the block with all nested
nodes

Table 3.2: Control Flow View Update Operations

3.1.4 Migration of Process View Change Sets

All view creation operations in a change set have to be disjunct, i.e., a process node has to

be present in no or exactly one node set. One advantage is, that view creation operations

can be applied on a process model in arbitrary order.

Change set migrations become necessary, if any two view creation operations show inter-

secting node sets, or if control flow changes on a CPM are propagated to associated views.

A need for migration can be determined by processing all node sets in a change set.

Intersecting node sets can be divided into four scenarios:

• Reduction of a virtual node (i.e., RedOnAggr scenario)

• Further aggregation of one or more virtual nodes (i.e., AggrOnAggr scenario)

• Aggregation of process nodes surrounding one or more reduced process nodes (i.e.,

AggrOnRed scenario)

24

3.1 Fundamentals on Process Views

• Reduction of process nodes surrounding one or more reduced process nodes (i.e.,

RedOnRed scenario)

Solving cut sets of reduced or aggregated process nodes depends on the available view

creation operations (cf. Section 3.1.2) and node set type (i.e. dedicated or atomic node sets,

cf. Section 3.1.1), because node sets either contain all affected nodes (dedicated node set,

used by atomic view create operations) or just entry and exit nodes of an affected SESE

block (abstract node set).

RedOnAggr can always be solved by removing the interfering aggregation operation and mi-

grating all flow nodes contained in the aggregation node set to separate reduction operations.

All other scenarios are node set type dependent.

When using dedicated node sets with atomic view creation operations, all overlapping

view creation operations can be easily migrated. Scenario AggrOnAggr can be solved

by removing all interfering aggregation operations and include their node set to the new

aggregation operation. When scenario AggrOnRed occurs, all involved reduction operation

have to be removed and their node set has to be migrated to the new aggregation operation.

Scenario RedOnRed is not possible when using dedicated node sets, because atomic

creation operations do not cover such case.

Migration on abstract node sets with compound view creation operations works similar to

dedicated node sets, but every intersection has to be computed by analyzing a node set

SESE block and either adjustment of a SESE blocks border nodes (i.e., partial intersection)

or deletion of a complete view creation operation (i.e., complete intersection). Partial

intersections occur, if an affected SESE block of one view creation operation is not fully

covered by the other view creation operation’s affected SESE block. If a SESE block

completely surrounds another SESE block, the latter is called complete intersection.

If a change set migration results in an empty node set, the whole view creation operation is

deleted, as its application would show no effect.

25

3 Overview on Abstracting Process Models by Applying Process Views

3.1.5 Process View Refactoring Operations

Applying a creation set on the CPM may create redundant or not necessary control flow

elements, which may be removed by refactoring operations. Refactoring operations are

semantic-preserving, thus, an application on a process model (e.g., a CPM or a process

view) does only remove control flow elements beside the point [80]. For example, an

application of refactoring operations on a process model in Figure 3.2 has no effect on its

process elements, because conditional gateways in a control flow have to be preserved in

order to ensure behavioral equality. In the example, task C is executed conditionally - by

removing the surrounding gateway block we would create the impression, that task C has to

be executed on any account.

We focus on three refactoring operations: SimplifyEmptyBranches, SimplifyEmptyBlocks,

and SimplifyMultipleBlocks (cf. Table 3.3).

A

B

C

A

C

Process View with Reduced Tasks *

D E

SimplifyMultipleBlocks

SimplifyEmptyBranches &
SimplifyEmptyBlocks

A C

b)

a)

* Reduced tasks
are marked dotted

b1

b2
b3

b4

b2

b1

Figure 3.5: Refactoring Operations

Refactoring operation SimplifyEmptyBranches removes empty branches of parallel branch-

ing gateways. Refactoring operation SimplifyEmptyBlocks removes empty blocks from

26

3.1 Fundamentals on Process Views

Operation Description
SimplifyEmptyBranches(P) Removes empty branches of parallel branching gateways in a process

model P .
SimplifyEmptyBlocks(P) Removes SESE blocks only consisting of a split and a join gateway in a

process model P .
SimplifyMultipleBlocks(P) Simplifies multiple SESE blocks by condensing nested, directly adjacent

gateway nodes of the same type to a SESE block with only two appropriate
gateways (i.e., split and join gateway) in process model P .

Table 3.3: Process View Refactoring Operations

a process model. An empty block is a process fragment of a process model consist-

ing of two gateway nodes and their corresponding control flows. Refactoring operation

SimplifyMultipleBlocks reduces nested, directly adjacent gateway nodes of the same

type to a fragment with only one gateway block.

Figure 3.5 illustrates the application of the three refactoring operations on a process view with

reduced tasks: by applying SimplifyEmptyBranches in combination with SimplifyEmpty

−Blocks, first, empty branches b1 and b4, then the outer gateways are removed (cf. Fig-

ure 3.5a). The application of SimplifyMultipleBlocks leads to a removal of the inner

gateway block, consisting of two parallel gateways, branch b4 and task C, is removed, while

task C is preserved (cf. Figure 3.5b).

Attention should be paid to branch conditions used with conditional gateways [10]. The

latter splits up a process models control flow by conditions assigned to each branch. At

run-time, the branch to be activated has to be decidable. Therefore, all condition dimen-

sions (i.e., dimension of a variable in a condition) are usually covered. An application of

SimplifyEmptyBranches may remove empty, conditional branches resulting in a loss of a

complete dimension coverage. Hence, all remaining branch conditions have to be adjusted

to the effect, that the latter cover all condition dimensions.

A software architecture for creating process views is proposed in [40]. It consists of a

visualization engine and a change engine. The visualization engine is responsible for

creating process views, while changes on process views are processed by the change

engine. Figure 3.6 is divided into a view client, a view server and an underlying PAIS. The

client is responsible to render and show process views, while the server manages creation

sets and dispatches incoming updates from process view clients. If a view update operation

is applied on a process view, first the CPM is updated. Therefore, a process modeling

component applies process model changes on the CPM. Second, refactoring operations are

27

3 Overview on Abstracting Process Models by Applying Process Views

applied on the CPM (cf. Section 3.1.5). Then, all change sets are migrated by a change set

component (cf. Section 3.1.4). Finally, changes on the CPM are propagated to all associated

views, either by only processing changes, or recreating all views. Different parameters

can be set to either process, or discard incoming process model changes (i.e., parameter

{Aggr,Red}PartlyMode, cf. Section 3.1.3). In order to create a process view, the CPM to

be associated is duplicated. Next, the creation set is applied on the process model. Finally,

refactoring operations are executed on the process view (cf. Section 3.1.5).

View Client

View Server

PAIS

Visualization

Vi
su

al
iza

tio
n

En
gi

ne

C
ha

ng
e

En
gi

ne

Process
Modeling

Component

Refactoring
Component

Creation Set
Component

View Client

Visualization
[…]

Update
CPM

Refactoring

Migration of
CS

Creation of
Process
Model

Application
of CS

Refactoring

ComponentProcessing Step

visualize change

Figure 3.6: Application Schema for Process Views

3.2 Discussion

Process views, as presented in this section, allow to hide and condense process nodes

based on the creation operations reduction and aggregation. Additionally, process views may

be updated by respective view update operations (e.g., view creation operation RedTask).

View update operations, in combination with parameter sets and process view migrations,

28

3.3 Requirements for a BPM-Specific Language

allow process participants to create and update their own process view, while the associated

CPM and other process views are held up-to-date.

The approach presented in this section lacks of a CPM-independent description of process

views to decouple a creation set from a specific CPM. Instead, a creation set is valid for one

specific process model. Additionally, process views are created using a creation set, whose

definition follows by dedicating view creation operations. As a consequence, it is not possible

to define process views based on an abstract definition (e.g., show only tasks a particular

process participant is involved). Additionally, change set migrations are costly, because

every time a view operation is executed, their necessity has to be determined by considering

all node sets in a change set. Summarizing, there is a need for process view definitions,

that may be applicable on arbitrary process models and allow for defining view creation

operations based on aspects (i.e., show only tasks matching particular conditions).

Furthermore, there is a lack of a comprehensive software implementation for process views

supporting CPM-independent definitions. In order to address these issues, the next section

shows up requirements for such a CPM-independent language.

3.3 Requirements for a BPM-Specific Language

As discussed in Section 3.2, no approach exists to define process views independently from

a specific process model. In addition, process model changes are dependent on a process

modeling notation and a PAIS. Hence, they cannot be easily exchanged between them.

Other domains, like relational database management systems (RDBMS), provide dedicated

languages for data definition and data manipulation (e.g., Structured Query Language (SQL)

[36]). In particular, SQL is a system independent language for creation, modification, and

deletion of data stored in a RDBMS. SQL is able to define new data structures imperatively

or refer to existing data by describing changes relational to existing data. In particular, SQL

is independent from technical implementations.

SQL is a so-called domain-specific language (DSL). In contrast to a general-purpose lan-

guage, like the programming language Java, a DSL has limited expressiveness to support

one aspect of a domain. If proper implemented, a DSL often offers a higher run-time

29

3 Overview on Abstracting Process Models by Applying Process Views

efficiency, since it can be implemented more efficiently utilizing specialized optimizations

than a general-purpose language [76].

There are two types of DSLs: an internal DSL is a subset of a general-purpose language

and uses its expression structures. One example is Rails1 for Ruby. In contrast, an external

DSL is a separate language from the main language of the application it is based on. Thus,

it offers a custom syntax. SQL is an example for an external DSL.

A DSL for business process management may solve discussed issues. In the following,

requirements for a BPM-specific DSL are outlined (cf. Table 3.4).

A goal of a DSL for process models is to be able to support the BPM lifecycle (cf. Requirement

GRQ-1). A generic process modeling notation is required by a DSL to support typical graph-

based process modeling notations (cf. Requirement GRQ-2). The DSL should be able

to find and retrieve process models stored in a process repository. Therefore, search

expressions offer the ability to find process models (cf. Requirement GRQ-3). A resulting

requirement for process data discovery are dependency representations defining, how

search expressions may define relations between different process models and process

elements (cf. Requirement MRQ-2).

In order to ensure a mapping between any process modeling notation and the DSL’s process

modeling notation, an underlying meta-model of the DSL has to be able to describe any

type of business process (cf. Requirement MRQ-1). A modular concept should enable

extensibility of supported process modeling notations, process model change operations,

and the DSL’s internal processing (cf. Requirement GRQ-5).

Process elements discovered by the DSL should be updatable. Therefore, operations to

change and store an updated process model should be provided by the DSL (cf. Require-

ments MRQ-3 and MRQ-6). Provided operations should only apply changes supported by

the initial process modeling notation. Therefore, the DSL has to be able examining their

expressiveness (cf. Requirement MRQ-4). Often companies with large process models

require complex operations managing these models, which should also be definable and

applicable by the DSL (cf. Requirement MRQ-5). The DSL should support process views

based on view creation operations and custom process view definitions to simplify managing

1open-source web framework based on the Ruby programming language

30

3.4 Summary

and displaying those large process models (cf. Requirements VRQ-1 and VRQ-2). Updates

on created process views further simplify their handling and, thus, should also be supported

(cf. Requirement VRQ-3).

3.4 Summary

This section introduces process views, which abstract process models by only showing

necessary process elements in order to simplify the handling of large business processes

with dozen of process elements. Hence, process nodes may be aggregated or reduced.

Arising problems, when applying these view creation operations, are solved by utilizing

refactoring operations and change set migrations. Additionally, process views may be

changed by applying view update operations. Process models related to a process view are

automatically adjusted to keep these models consistent.

Currently, no approach exists for a process model independent definition of process views.

Furthermore, a creation and update of process models is dependent from a process modeling

notation and PAIS. In this section requirements for a BPM-specific language were verbalized.

These include proposals to enable process data discovery, generic process model definitions,

process views, and interoperability with any PAIS.

31

3 Overview on Abstracting Process Models by Applying Process Views

Requirement Description
General Requirements
GRQ-1 Support Complete BPM Lifecycle The DSL should enable full support for every BPM lifecycle

phase.
GRQ-2 Generic Process Modeling Notation Introduction of a generic process modeling notation, which is

able to represent ideally each graph-based process notation.
GRQ-3 Process Data Discovery Find process models based on search expressions, like

process similarities.
GRQ-4 Correctness The DSL should provide correctness checks and abilities to

define conditions process models have to comply with. Addi-
tionally, arising ambiguities during process model changes
should be solved automatically, the application of change
operations corrupting a process model should be prevented.

GRQ-5 Modularity The DSL’s expressiveness has to be extensible, which com-
prises the internal processing, supported process modeling
notations, search and process model change operations.

GRQ-6 Interoperability The DSL should be defined independently from a specific
PAIS.

GRQ-7 Graph Processing Operations The DSL should provide graph processing operations ap-
plicable on its meta-model implementing common graph
algorithms (e.g., calculation of predecessors and succes-
sors of a process node). Graph processing operations may
be used by all DSL-provided operations (cf. Requirement
MRQ-3) or supplied extensions (cf. Requirement GRQ-5).

Process Modeling Requirements
MRQ-1 Process Model Definition The DSL should be able to declare process landscapes,

process models, process fragments, and process elements.
MRQ-2 Dependency Representation The DSL should allow to express dependencies between

different process models, fragments and process elements.
This functionality is, for example, a condition for requirement
GRQ-5.

MRQ-3 Process Model Change Changes on process models should be supported by the
DSL.

MRQ-4 Process Model Expressiveness An approach to describe a process notations cardinality
has to be provided by the DSL. This requirement is needed
to check for compatibility with process model changes (cf.
Requirement MRQ-3).

MRQ-5 Custom Process Model Change Definition The DSL should allow for custom process model change def-
initions. Therefore, custom process model changes should
be able to utilize all DSL-supplied operations.

MRQ-6 Persistence Behavior Manipulation Allow to modify processing between the PQL framework and
any PAIS.

Process View Requirements
VRQ-1 Process View Creation Process view creation operations have to be supported by

the DSL (cf. Section 3.1.2).
VRQ-2 Custom View Creation Definition The DSL should allow for custom view creation operations.

Therefore, the latter should be able to utilize all DSL-supplied
process view creation operations.

VRQ-3 Updates on Process Views Process view update operations have to be supported by the
DSL (cf. Section 3.1.3).

Table 3.4: Requirements for a BPM-specific DSL

32

4
Process Query and Modification

Language

Companies often have dozen of process models, which have to be up-to-date. Various

PAISs across a companies IT infrastructure complicate changes on process models, which

may be shared across different PAIS. Furthermore, every PAIS supports different sets of

process modeling notations and implements methods changing process models in a different

manner.

In the following the Process Query Language (PQL), a simple data definition and data

manipulation language "for BPM needs" is introduced, based on requirements verbalized in

section 3.3. PQL supports the definition of process models and process views, changes

on process models and process views and is able to discover and retrieve process models

from process repositories. PQL may be used as query language embedded in a request-

33

4 Process Query and Modification Language

response1 protocol, as configuration language to define process model changes or as

generic interchange format for process models.

Section 4.1 describes the PQL meta-model required to support process modeling notation-

independent changes on process models. Furthermore, concepts to ensure a process

models correctness are presented. Section 4.2 describes concepts of PQL including the

PQL meta-model, operations to change process models, concepts enabling discovery of

process models in a process repository, or the definition of process views. Section 4.3

introduces a software architecture supporting PQL. Section 4.4 concludes this chapter.

4.1 PQL Process Meta-Model

To comply with requirement GRQ-2 (i.e., generic process model representation), process

models may be either described by a generic process model or by a pre-processed data

structure, like a process structure tree.

In [75] a generic meta-model is proposed, which divides a process model in the perspectives:

functional, behavioral, organizational and informational (cf. Table 4.2). A process definition

PD based on such a meta-model is defined by a tuple PD = (Elements, ControlF low,

ProcessLogic). Set Elements consists of process elements describing a non-behavioral

perspective (i.e., tasks, process participants, or process data elements). Furthermore,

set ControlF low comprises behavioral process elements, i.e., operators and connections.

Operators denote process elements influencing a control flow (i.e., gateways), while con-

nections describe control and data flow edges. Finally, set ProcessLogic defines relations

between behavioral and non-behavioral elements.

Converting process models of different process modeling notations into a generic process

modeling notation and vice versa might be complicated due to different process elements

[38]. For example, exclusive split gateways of a control flow are described by different

process elements. Furthermore, exclusive gateway conditions may also have different

representations depending on the process modeling notation. Particularly, the latter can

be described by different script languages, i.e., UEL or JavaScript. However, automatic

1message exchange pattern [35]

34

4.1 PQL Process Meta-Model

Attribute Description
Generic Attributes
identifier Identifies a particular process element from others, has to be unique (e.g., identifier="nid4").
name* Name of a process element presented to a process participant (e.g., name="Store Invoice").
extensions* Set of attributes to store additional information, for example, process data values (i.e., if a

process node class is INFORMATIONAL) or a human-readable documentation for a task (e.g.,
extensions={documentation="Stores the created invoice in the database."}).

Node Attributes
nodeClass Distinguishes between tasks, control flow modifying nodes and additional entities (like process

participants and process data elements). Send and receive events are distinguished based on
LINK edge directions. Possible values are:
FUNCTIONAL: process tasks
BEHAVIORAL: gateway and event representation
ORGANIZATIONAL: process participants
INFORMATIONAL: process data element representation

nodeType Further distinguishes a node class into different node types. Attribute nodeType is dependent
from nodeClass. Possible values are:
FUNCTIONAL: USER (involves a human), SERVICE (executed by a external service), SYSTEM
(executed by the PAIS)
BEHAVIORAL: AND,OR,XOR,EVENT
ORGANIZATIONAL: ENTITY, GROUP
INFORMATIONAL: not applicable

Edge Attributes
edgeClass An edge class defines, whether edges are behavioral-relevant (control flow) or denote relations

between entities (organizational, informational nodes). Possible values are:
FLOW: connects FUNCTIONAL and/or BEHAVIORAL nodes
LINK: connects ORGANIZATIONAL and/or INFORMATIONAL nodes with FUNCTIONAL and/or
BEHAVIORAL nodes

edgeType* Classifies edges more precisely. Attribute edgeType is implementation-dependent.
* Attribute is optional

Table 4.1: PQL Meta-Model Element Attributes

conversion of semantical meanings is a far complex topic and is not further discussed in this

thesis.

The PQL process meta-model is a directed graph consisting of nodes and edges. Each

node and each edge has respective attributes, which describe, for example, its functional

behavior. Each node has a set of element attributes, which can be mapped to a certain

process models notation (cf. Table 4.1). Element attributes are mandatory in order to ensure,

that changes on process models defined by PQL have sufficient information to be executed

unambiguously. Furthermore, the set of element attributes must be extendable to cover

the complete cardinality of a process modeling notation. Custom element attributes are

PAIS-specific and can only be covered by providing operations to define and modify these

additional attributes.

35

4 Process Query and Modification Language

Table 4.1 shows PQL element attributes comprising all perspectives presented in Table 4.2.

Additional perspectives, like time, error, or operation (e.g., process instance behavior), are

not considered.

Every instantiation of a meta-model element is assigned to generic attributes, which are

mandatory in order to identify nodes and edges unambiguously. Node-specific attributes

comprise attributes node class and node type. Attribute node class offers a high-level

classification of process nodes, which is necessary to identify nodes by their functionality

(e.g., BPMN 2.0 tasks are represented by FUNCTIONAL nodes). Node types are used, for

example, to distinguish between different task types (e.g., user and service tasks). Edges

are divided into classes and types as well: edge class FLOW denotes a control flow, edge

class LINK describes data or message flows between process nodes. Edges are directed

and may influence the semantics of a node: a LINK edge leaving a BEHAVIORAL node with

node type EVENT denotes the process node as message-throwing event.

Process participants are representable by nodes having attribute value ORGANIZATIONAL

for attribute node class. To define dependencies between process participants and nodes of

type FUNCTIONAL, an organizational node can be linked to a functional node by an edge

with edge class LINK. This method does not differentiate between process participants

allowed to execute a task or designated participants. In order to define a fine granular

relationship between participants and tasks, attribute edge type may be used. This attribute

is PAIS-specific, standard operations provided by PQL only take edge classes into account,

but can be overwritten or extended accordingly (cf. Section 4.2.4).

Organizational and informational perspectives are represented by nodes to avoid redundan-

cies and ambiguous identification of such elements. These nodes may be also represented

by adding additional attributes to functional and behavioral nodes, e.g., an attribute of a

process participant designated to execute a specific task. However, this increases, for

example, the effort to identify a process participant’s designated tasks, because each node

defining this attribute has to be considered. Additionally, view creation algorithms can be

implemented more efficiently, as affected nodes are identified by following all links instead of

exploring a process model’s whole set of process nodes. For example, if we want to reduce

all tasks in a process view where a specific process participant is not involved in, every task

in a process model’s node set has to be treated and checked (i.e., if this task contains an

attribute describing the process participants involvement). By defining a process participant

36

4.1 PQL Process Meta-Model

Perspective Description Meta-Model Elements
Functional Describes all elements, that execute a certain

task
Event, Task, Sub-Process

Behavioral Defines the order, in which functional elements
have to be executed

Control flow elements, divided into operator and
connection. An operator defines control-flow
conditions, a connection represents a link be-
tween two meta-model elements

Organizational This perspective describes participants involved
in a process

Participant

Informational Resources, that are produced or consumed dur-
ing an activity execution

Resource

Table 4.2: Perspectives of a Process Model

as separate process element linked to its involved tasks, a participant’s tasks can be simply

identified by analyzing on which tasks the element is linked to.

Additionally, our meta-model is able to exchange process models between different PAIS.

In particular, there exist plenty of process model exchange formats [55], whereas different

PAISs support only a subset. When transferring a process model from one PAIS to another,

it often has to be re-modeled in the target PAIS due to poor support of such process model

exchange formats. By using our meta-model as exchange format, only implementation-

specific process data has to be re-modeled. In addition, parts of the specific process data,

like branch conditions may be translated automatically, which further minimizes adaption

effort. Particularly, cross compilers, for example, are able to convert Java into JavaScript

code.

4.1.1 Process Model Correctness and Expressiveness

Process model notations have different cardinality concerning their expressiveness. The

expressiveness of a process model may be determined by the amount of supported workflow

patterns (cf. Section 2.2.4). In order to distinguish different cardinalities, PQL offers ex-

pressiveness descriptions for process model notations and restrictions for specific process

models.

Expressiveness descriptions are used by change or view creation operations of PQL to

decide, whether the latter can be applied or not. An expressiveness description contains

a list of workflow patterns supported by a specific process model notation and how they

may be applied (cf. Section 2.2.4). For example, workflow pattern exclusive choice is

37

4 Process Query and Modification Language

supported by BPMN 2.0 and may be mapped by a conditional split gateway. Thus, the

expressiveness description for BPMN 2.0 contains a tuple SupportedPattern(P,M) consist-

ing of the workflow pattern P = CFPatternExclusiveChoice and a mapping description M

(cf. Section 4.1.2). In the example, M is a description to convert a BPMN 2.0 conditional

split gateway into the corresponding PQL process element (i.e., a PQL process node with

nodeClass=BEHAVIORAL and nodeType=XOR).

Restrictions limit operations applicable on specific process models. One example for a

restriction is a block-structured layout to be able to apply process view update operations

(cf. Section 3). Both, expressiveness descriptions and restrictions, are essential for change

and process view update operations, because not supported changes would potentially

invalidate a process model.

4.1.2 PQL Process Model Mapping

In order to support different process model notations (cf. Requirement GRQ-2), PQL has

to provide concepts to map a process model represented by a dedicated process model

notation into PQLs meta-model and vice versa. Basically, such a mapping can be conducted

with a limited set of expressiveness, because process model notations are mainly based on

directed graphs. However, if a semantical behavior of process elements has to be described

(i.e., exclusive gateways splitting up a control flow based on defined conditions), each

element of a notation has to be mapped to the PQL meta-model representation, because

each process model notation differs in its representation.

PQLs meta-model, therefore, offers predefined constructs to describe functional, behavioral,

organizational, and informational perspectives. Process element properties describing

semantical behaviors of different perspectives are a fundamental requirement in order to

execute PQL-supplied process model change operations correctly.

Mappings between dedicated process model notations and the PQL meta-model may be

described by using a mapping description (MD). It consists of a PQL process fragment

and another process model notations fragment describing the same in order to support a

conversion between them.

38

4.2 Process Query Language

Figure 4.1 illustrates a mapping between a BPMN 2.0 process model and its corresponding

PQL process model. The start event in the BPMN 2.0 process model with identifier=1

is mapped as process node with node class attribute value BEHAVIORAL and node type

attribute value STARTEVENT. Tasks are mapped as node class attribute value BEHAVIORAL

with node type attribute values userTask (e.g., node with identifier=2) or serviceTask

(e.g., nodes with identifier=3 and identifier=5). Typically, technical implementation details in

process models are described by String values, which either contain scripts or references

to methods to be invoked in order to execute each task. As the PQL meta-model supports

notation-dependent node attributes modifiable by PQLs change operations, these details

can be easily added and managed. Mappings for other notations can be performed the

same way as featured in Figure 4.1.

4.2 Process Query Language

This section describes different concepts considered by PQL. First, an approach to discover

process models from process repositories is presented. Subsequently, process model

change operations supported by PQL are described. Furthermore, an approach to enable

process views on arbitrary process models is described. Finally, the PQL modularity concept

is explained, which offers capabilities to extend various functionalities of PQL.

Figure 4.2 shows an overview of different PQL concepts. PQL is able to discover process

models in a PAIS process repository. After retrieval a process model represented by a

different process modeling notation can be mapped by PQL’s meta-model (cf. Section 4.1). A

PQL process model, thus, may be changed by change operations described in section 4.2.2

and further abstracted by view creation concepts explained in section 4.2.3. PQL’s modularity

concept allows for extending all components, which is described in section 4.2.4.

4.2.1 Process Model Discovery Representation

Discovering process models in process repositories requires the definition of search con-

ditions. Search conditions, in turn, require the ability to express dependencies between

39

4 Process Query and Modification Language

Collect
information

Store
information

Collect
Information

Store
Information

Send
E-Mail

Send
E-Mail

StartEvent

EndEvent

identifier=1
nodeClass=BEHAVIORAL
nodeType=EVENT

identifier=2
name=Collect Information
nodeClass=FUNCTIONAL
nodeType=userTask

identifier=3
name=Store Information
nodeClass=FUNCTIONAL
nodeType=serviceTask

identifier=4
nodeClass=BEHAVIORAL
nodeType=XOR

identifier=5
name= Send E-Mail
nodeClass=FUNCTIONAL
nodeType=serviceTask

identifier=6
nodeClass=BEHAVIORAL
nodeType=XOR

identifier=7
nodeClass=BEHAVIORAL
nodeType=EVENT

identifier=1

identifier=7

identifier=2

identifier=3

identifier=4

identifier=5

identifier=6

identifier=8
name=Peter Maier
nodeClass=ORGANIZATIONAL
nodeType=ENTITY

identifier=9
name=PAIS
nodeClass=ORGANIZATIONAL
nodeType=ENTITY

BPMN 2.0 Process Model PQL Process Model

Functional node class Behavioral node class Organizational node class

Figure 4.1: Mapping between a BPMN 2.0 Model and the PQL Process Model

different process models and between process elements. These dependencies may be also

used to describe SESE blocks, where process model change operations may take place.

A dependency may exist between different process models, process fragments or process

element attributes within process models. A process fragment is a sub-graph of a process

40

4.2 Process Query Language

Process Model
Mapping

PQL Process Model

Process Model
Discovery

Process Views

Process Model
Change Operations

Process Model
Modularity Concept

maps

retriev
es

uses uses

extends

abstrac
ts

changes

Figure 4.2: Overview on PQL Concepts

model and consists of a SESE block comprising a single node, a set of process nodes or a

complete process model. Process nodes and edges in a process fragment contain attributes

to differentiate between different process perspectives (cf. Section 4.1).

In order to discover process models in a process repository (cf. Section 2.4), it is necessary

to outline information, which the desired process model has to contain. This information is

either concerning the graph of a process model (i.e., structural perspective), or properties of

process elements, like a name or identifier (i.e., informational or functional perspective).

Discovery based on a structural perspective may be described by defining process frag-

ments and searching for exact matches between these process fragments and other process

models. In practice, process models often contain process fragments consisting of tasks,

which describe a domain functionality, but distinguish themselves by minor changes. For

example, tasks within delivery departments have to handle containers and parcels in a differ-

ent way, but basically perform the same abstract tasks: picking, packing, and dispatching

products. Therefore, it is reasonable to define a discovery based on process model graphs

by similarities, rather than just on exact matches.

Searching for process model similarities is a wide research field, in which different ap-

proaches exist to define such similarities. In [50] algorithms to describe similarities by

calculating a set of necessary atomic process model change operations to convert a process

fragment into another fragment are proposed. The fewer process model change operations

are necessary, the higher is the similarity between these two process models. This approach

takes similarities on a structural perspective as well as on other perspectives of a process

41

4 Process Query and Modification Language

model into account (e.g., a similarity between two tasks with different name attributes can

be described using a process model change operation renaming tasks).

Other approaches exist relying on edit distances [22, 58]. Edit distance is a measurement to

quantify the similarity between two objects (e.g., strings or trees) by counting the minimum

number of operations required to transform one object into another. There exist different

definitions of edit distances [54, 83]. The Levenshtein distance between the strings "mark"

and "parc", for example, is 2, because two substitution operations (i.e., from "mark" to "park"

and "park" to "parc") are necessary. Process model similarity discovery is a far complex

topic and cannot be discussed in detail within this thesis.

In order to enable discovering of process models by PQL, similarities on a structural per-

spective of a process model are described by process fragments. Therefore, a PQL process

fragment based on the PQL meta-model uses an additional edge type indicating, that two

process nodes are not direct neighbors and, thus, other nodes may exist in between the two

nodes. Similarity between a PQL process fragment and a real process model is described

by different metrics, in order to differentiate between exact matching and similarity matching.

One example for such a metric could be the above mentioned edit distance realizing similarity

matching.

Exact matching of process fragments is necessary to describe process model changes

unambiguously. Therefore, the discovered process fragment contains the exact area on

which process model change operations are applied. The next section illustrates these

operations.

In order to outline a set of process nodes across a process model, that are not necessarily

grouped together, comparisons on an attribute level are used. This type of dependency

representation is necessary for PQL to support abstract process view descriptions (cf.

Section 4.2.3), which do not necessarily need coherent fragments, but sets of process nodes

to be processed (i.e., a node set of a view creation operation).

42

4.2 Process Query Language

4.2.2 PQL Process Model Change Operations

Process model change operations defined in PQL have to be implemented supporting

arbitrary process modeling notations (cf. Requirements GRQ-2 and GRQ-4). Hence, it is

necessary to define a standard set of process model change operations, that are applicable

on every process model notation [81]. A process model is initially transformed to a meta-

model (cf. Section 4.1.2). Thus, all change operations do not modify a process model

directly, but its meta-model representation. PQL provides a standard set of process model

change operations, that on the one hand offer a best possible coverage of process model

notation change cardinality, on the other hand still remain notation independent.

Standard process model change operations do not take the defined behavior of a process

model into account (e.g., in order to define a process participant designated to execute a

tasks two process elements have to be added to a process model: an ORGANIZATIONAL

node representing the process participant and a LINK edge to describe the affiliation between

both). Instead, they just modify single nodes and edges separately and, thus, are defined

as atomic change operation. In order to support further process model change operations,

for example to define a process participant as designated to execute tasks, these process

model change operations may be combined to compound operations. Some compound

operations, like moving sets of tasks in a process model, should be also implemented in

order to simplify handling of change operations.

The standard set of process model change operations should include operations to change

all described perspectives in Section 4.1 (cf. Requirement MRQ-3). Behavioral change

operations modify the control flow of a process model. They can insert, modify, move,

or delete process nodes and change attributes of process elements. Functional change

operations are highly implementation-dependent and cannot be described further (e.g.,

functions in Event-driven Process Chains correspond to a variety of task types in BPMN

2.0, for example service and script tasks [74, 59]). They have to be defined notation and

implementation-specific as a modular concept instead to be able to extend PQLs process

model notation support (cf. Section 4.2.4). Organizational change operations are able to

define process participants and their relation to tasks. Informational change operations

insert, delete, and modify informational nodes.

43

4 Process Query and Modification Language

Again, a separation between organizational and informational related nodes is necessary,

because algorithms must be able to determine, whether process elements describe a certain

perspective or not. Process abstraction algorithms, for example, must be able to decide, if a

functional node has to be abstracted based on a given set of organizational constraints (e.g.,

reduce all tasks, that are executed by a specific user).

Behavioral change operations need a process fragment of a process model, which should

be modified. In case a process model contains no gateways and thus no branches, an

operation to insert a new node could be defined by the tuple (X, successor(X)). Therefore,

node X references a node in the process model. Otherwise, when inserting more than

one node not in sequence (i.e., surrounding nodes with two gateways) or insertions around

control flow splits, every insert position has to be defined by a fragment consisting of exactly

two process nodes. Alternatively, just one exact identifier attribute (i.e., definition of a specific

node) has to be supplied as well as a parameter to define, whether a change operation

should take place prior or after the defined node (cf. Figure 4.3).

X

X

insertNode(X,B,succ(B))

A B

C

D

A B

insertNode(X,B,C)

C

D
?

?

X

D

A B

C

Figure 4.3: Ambiguities Occuring During Node Insertion

A limitation of this behavior is, for example, an insertion of a node after a gateway, which

has more than one outgoing branch. Particularly, a specific branch is not defined and

44

4.2 Process Query Language

the operation may directly affect any of the outgoing branches. Hence, a distinct process

fragment definition should be preferred. The goal of PQL is to support change operations

based on dynamically discovered process models. Therefore, ambiguity solving parameter

sets can be used as described in the context of process view updates (cf. Section 3.1.4).

4.2.3 PQL Process Views

PQL should allow for creating process views. Therefore, a description on how to create

process views out of CPMs is necessary.

The approach presented in section 3 describes the creation of process views by applying a

creation set on a CPM. A creation set includes view creation operations, which either reduce

or aggregate a set of nodes. Node sets are dependent from a specific CPM, because they

may only contain process nodes uniquely present in a CPM. As a consequence, creation

sets describing a process view are not applicable on arbitrary CPMs and, thus, have to be

defined discretely for each CPM.

For certain use cases it is preferable to define an abstract process view definition. Show

only a process participants tasks is an example for an abstract process view definition:

process nodes affected by view creation operations are not chosen based on dedicated

node sets, but on a process elements attributes (e.g., the process element attribute defining

the process participant designated to execute a task). The latter may contain multiple

conditions (e.g., show only a process participants tasks, and, additionally, show all tasks

automatically executed by a PAIS as aggregated process nodes).

Hence, abstract process view definitions in PQL are based on an abstract creation set (ACS).

An ACS consists of tuples T = (Priority, Condition, V iewCreationOperation) comprising

an application priority Priority, a view creation condition Condition, and a view creation

operation V iewCreationOperation (cf. Section 3.1.2).

Process nodes affected by a view creation operation are assessed based on a view creation

condition valid for each CPM. View creation conditions are logic conditions identifying sets

of nodes based on process element attributes (e.g., on a process element type, i.e., service

45

4 Process Query and Modification Language

Process Element Attribute Description Applicable
BPMN 2.0 Pro-
cess Elements

Example Value

Identifier Identifier to recognize a
process node. Every iden-
tifier is unique in every
process model

All identifier="5"

Name Name of a process ele-
ment shown to a user

All name="Retrieve mes-
sage"

Process element type Element type of a process
node

All processElementType=
user task

Candidate organizational entity Organizational entity (i.e.,
users, roles, organiza-
tional units, or organiza-
tions) designated to exe-
cute a task

Tasks candidateEntity= peter-
Mueller

Gateway direction Direction of a gateway Gateways gatewayDirection=
converging

Table 4.3: Valid Process Element Attributes for View Creation Conditions

tasks, or user tasks). Table 4.3 shows process element attributes, a view creation condition

may rest upon (cf. Section 2.2.2).

A view creation condition compares a process element attribute with a dedicated value in

a predicate-like manner. Example show only a process participants tasks consists of one

view creation condition validating, if a process node attribute candidate organizational entity

defines the process participant as execution candidate for a process node.

Hence, view creation conditions have to be interpreted depending on the CPM on which

an abstract process view definition should be applied on—meaning, that a view creation

condition is translated into a node set, which, in turn, can be further processed by a view

creation operation.

Example show only my tasks and, additionally, aggregate all tasks executed by a PAIS

for process participant Julia illustrated in Figure 4.4 contains two view creation conditions

combined by a logical AND operator. The first view creation condition defines, that all process

nodes are reduced, whose process element attribute candidate organizational entity does

not contain Julia (c.f. Figure 4.4a). The second view creation condition expresses, that all

process nodes with process element type service task are aggregated (c.f. Figure 4.4b).

The application of view creation condition a) prior b) results in process view c) and differs

from the result, when applying b) prior to a) (c.f. Figure 4.4cd).

46

4.2 Process Query Language

Pack Parcel Label Parcel Ship Parcel

Pick Order

Create Invoice Send Invoice
via E-Mail

Candidate User = Marcel

Candidate User = Julia Candidate User = Julia Candidate User = Julia

Candidate User = Ellen System task

Pack Parcel Label Parcel Ship Parcel

Candidate User = Julia Candidate User = Julia Candidate User = Julia

a) Application of View Creation Condition „Show only my tasks“ for process participant „Julia“

Archive Invoice

Pack Parcel Label Parcel Ship Parcel

Pick Order

Create Invoice Send and
Archive Invoice

Candidate User = Marcel

Candidate User = Julia Candidate User = Julia Candidate User = Julia

Candidate User = Ellen System task
b) Application of View Creation Condition „Aggregate all tasks executed by a PAIS“

CPM

c) Application of View Creation Conditions a) and b), a) has higher priority

Pack Parcel Label Parcel Ship Parcel

Candidate User = Julia Candidate User = Julia Candidate User = Julia

d) Application of View Creation Conditions a) and b), b) has higher priority

Pack Parcel Label Parcel Ship Parcel

Send and
Archive Invoice

Candidate User = Julia Candidate User = Julia Candidate User = Julia

System task

Figure 4.4: Application Priority for Abstract Process Views

47

4 Process Query and Modification Language

Hence, view creation operations defined in an abstract process view definition have to

be ordered by an application priority. Application priorities are necessary to solve arising

intersections between different view creation operation node sets. Intersections of node

sets may occur, because view creation conditions may affect the same process nodes and,

thus, their node sets are not disjunct (c.f. Section 3.1.4). Therefore, the node sets of an

applied view creation operation has to be excluded for all further view creation operations.

In other words, process nodes already part of a view creation operation’s node set are not

considered for further view creation conditions to be applied on a process view.

Additionally, a correct application of aggregation operations has to ensured. Aggregations

may only be applied on SESE blocks. As view creation conditions may define sets of

nodes, that are not coherent in their control flow, an application of aggregations has to be

ensured by first splitting node sets identified by a view creation condition into valid SESE

blocks with the minimalSESE algorithm (cf. Section 2.2.3). For example, if the CPM

in Figure 4.4 contains an additional service task "Collect Information" before user task

"Create Invoice", an application of view creation condition aggregate all tasks executed by a

PAIS may only be executed, if the additional service task is excluded from the aggregation

node set consisting of service task "Send Invoice via E-Mail" and service task "Archive

Invoice". As a result, view creation condition aggregate all tasks executed by a PAIS is

split up into two aggregation operations with node sets N1 = {”CollectInformation”} and

N2 = {”SendInvoice”, ”ArchiveInvoice”}.

4.2.4 PQL Modularity Concept

PQL has to be built modular to support various process model notations and PAIS imple-

mentation-specific constructs, like conditions for conditional branches. All operations and

algorithms supplied by PQL are organized hierarchical. Therefore, PQL operations are di-

vided into notation-independent and notation-dependent operations. Notation-independent

operations only require information provided by the meta-model without any extensions

to attributes (for example, node insertions). Notation-dependent operations are built as

compound operations on top of notation-independent operations. For instance, a BPMN

2.0-specific operation to insert a service task first inserts a functional node and then inserts

an additional attribute, which describes the functional node as service task.

48

4.3 Software Architecture Supporting PQL

Additional support for other process model notations is achieved by adding a module, that

consists of a transformation description (cf. Section 4.1.2), definitions for implementation-

specific constructs, change and abstraction operations, that are necessary to achieve a

notations complete cardinality.

4.3 Software Architecture Supporting PQL

This section shows an architectural proposal for PQL, which meets all requirements pre-

sented in Section 3.3. First, PQL requests are explained. Then, all components of the

software architecture supporting PQL are illustrated on a technical prospect. Lateron,

the PQL processing pipeline with different processing steps is introduced. In this Section

operations to be executed by the proposed software architecture are described as PQL

requests intentionally. A PQL request is treated as protocol-like interaction between a

client component requesting PQL actions and the PQL software component dispatching the

latter.

Figure 4.5 shows, how a PQL request is being processed (cf. Section 4.3.3):

1. A user sends a PQL request (cf. Section 4.3.1).

2. A discovery component searches for process models requested in the PQL request

(cf. Section 4.2.1)

3. Process model change operations, defined in the PQL request, are applied on a

discovered process model (cf. Section 4.2.2)

4. Additionally, view creation operations are applied on a process model (cf. Section 4.2.3)

5. Additionally, a process model is transformed into different exchange formats, like XML

or JSON

6. The final process model—or process view, if view creation operations are applied—is

sent to the user

49

4 Process Query and Modification Language

M
ap
pi
ng

Changes on Process Models

Process Model Retrieval

D
is
co
ve
ry

PQL Software Architecture

PAIS
Process

Repository

Generic
Process

Repository

Change

Abstract

Transform

PQL

B

A

Process Model / Process View

1

2

3

4

5

6

Figure 4.5: Overview on PQL Processing

4.3.1 PQL Request

A PQL request as part of a request-reply2 is a message sent by a user or system containing

a PQL string. The latter first has to be converted into an intermediate representation by a

parser. Further, a parser is a computer program, that analyzes a string in order to associate

strings with syntactic units of a grammar (i.e., a pre-defined rule-set), and transforms these

groups into an intermediate, machine-readable representation.

A PQL request consists of the following parts: Definitions, Discovery, Actions, and Trans-

formations (cf. Figure 4.6). Process models and process fragments are defined in part

definitions. A discovery of process models may be manipulated by part discovery. Further-

2Message Exchange Pattern [35]

50

4.3 Software Architecture Supporting PQL

more, part actions defines process model change operations, view creation operations and

the persistence behavior. Finally, transformations of a process model’s exchange format

may be defined in part transformations.

PQL Request

Definitions

Discovery

Actions

Transformations

Figure 4.6: PQL Request

The PQL request is denoted as internal DSL based on

the Extensible Markup Language (XML). XML is a widely

supported, open standard markup language, and thus

first choice for PQL [25].

This section gives an example of a PQL request. List-

ing 4.1 shows a PQL request, where three fragments

are specified (inside tag definition). Process fragments

fragment1 and fragment2 are used to find two process

models, where the two process fragments are present

with a similarity value of 2 (fictional value for illustration)

and process fragment fragment1 occurs before process fragment fragment2. The result-

ing process models are transformed into a JSON-container respectively retrieved as PQL

meta-model. The third process fragment defines the position and reference to the process

model with id=specificModel1, where the fourth process fragment fragInsert is inserted. The

resulting process model is stored in its origin process repository and updates the existing

process model. Note, that the store-action defines an attribute with another namespace

activiti. Changing the namespace and adding additional attributes for actions is one way to

extend actions by implementation-specific constructs.

1 <pql>

<errorhandler stage="modification" type="omit"/>

3 <definition>

<fragment refId="fragment1">

5 <node id="user" type="userTask"/>

<node id="script" type="scriptTask"/>

7 <edge class="flow" srcId="user" trgId="script"/>

</fragment>

9 <fragment id="fragment2">

<node id="script1" type="scriptTask"/>

11 <node id="script2" type="scriptTask" name="generate thesis"/>

<edge class="flow" srcId="one" trgId="endNode"/>

13 </fragment>

<model id="specificModel1">

15 <node id="one" type="userTask"/>

<node id="end" type="endEvent"/>

51

4 Process Query and Modification Language

17 <edge class="flow" srcId="one" trgId="endNode"/>

</model>

19 <fragment id="fragInsert">

<node id="newNode" class="functional"/>

21 </fragment>

</definition>

23

<discovery>

25 <discover type="similarity" dId="discoverFragment1">

<condition type="changePatternSimilarity" value="2"/>

27 <rel refId="fragment1"/>

</condition>

29 </discover>

<discover type="similarity" dId="discoverFragment12proximity">

31 <condition type="fragmentSimilarity" value="3">

<rel predRef="fragment1" succRef="fragment2"/>

33 </condition>

</discover>

35 </discovery>

37 <actions>

<action type="search" aId="searchfragment1similarity" dId="discoverFragment1"/>

39 <action type="search" aId="searchfragment12proximity" dId="discoverfragment12proximity"/>

<action type="change" aId="insertAction" refId="specificModel1">

41 <insertFragment refId="fragInsert"/>

</action>

43 <action type="store" option="updateExisting" aId="insertAction"

activiti:repository="repo1"/>

45 </actions>

<transformations>

47 <transform aId="searchfragment1similarity">

<format type="json"/>

49 </transform>

<transform aId="searchfragment12proximity">

51 <notation type="meta-model"/>

</transform>

53 </transformations>

</pql>

Listing 4.1: Example of a PQL Request

4.3.2 Architectural Components

In order to implement PQL different different components are necessary. The latter are orga-

nized by functionality and are required for the processing steps introduced in Section 4.3.3,

for example, to transform process models into PQL process models and vice versa.

52

4.3 Software Architecture Supporting PQL

The PQL controller is the core component of a PQL processing software architecture.

It handles calls between other components, manages the processing pipeline, and all

persistence connectors. It further allows for registering new process model notations and

custom operations to the notation transformation component and graph library.

Next, the interpreter is able to process a PQL request. Therefore, the latter has to be

converted into an intermediate representation. The interpreter checks the PQL syntax

against a PQL grammar, and parse tree (as intermediate representation) is generated. This

parse tree consists of process fragment and dependency descriptions, references to process

models stored in a process repository, and actions to influence the processing pipeline.

A persistence connector component retrieves and stores process models in a process repos-

itory. However, the process repository is not part of the PQL framework. Each persistence

connector is PAIS-dependent and connects the PQL processing software architecture to a

process repository. Pre-defined interfaces are required to be implemented, in order that all

methods to retrieve and store process models are available to the PQL controller.

Process models retrieved from the persistence connector are described in a specific notation.

The notation conversion component converts such process models with the help of so-

called conversion descriptions into PQL process models. Process models and conversion

descriptions can be handled by the conversion component to convert a process model into

a PQL meta-model.

PQL’s dependency engine manages dependencies between process fragments or process

models and change operations to be executed by PQL. Dependencies and change opera-

tions are defined in a PQL request and can contain discovery operations to find a process

model, change operations or abstraction operation. To be able to discover process models,

the dependency engine is able to access respective process repositories.

Discovering process models by similarity search massively utilizes CPU and memory re-

sources. As a result, all process models should be cached and optimized by the dependency

engine. A possible optimization could be process element indexing, where process elements

are organized by attributes or element types for a faster lookup.

The graph function component offers common graph algorithms, like calculating preceding

or succeeding nodes and SESE fragments, checks for cycles or calculation of paths in

53

4 Process Query and Modification Language

process models. These functions are provided for other components, or definitions within

PQL requests.

The process model modification component changes PQL process models based on change

operations, which are defined in a PQL request. It manages the structure, considers the

expressiveness level and constraints of process models and ensures, that all change

operations are applied correctly.

4.3.3 Processing Pipeline

Value

Analytical
Abstraction

Visualization
Abstraction

View

Data
Transformation

Visualization
Transformation

Visual Mapping
Transformation

Stage

Processing Step

Figure 4.7: Data State Model

The processing pipeline of a PQL request is similar to the

data state model [16].

The latter describes data transformation steps required

to visualize data. It is divided into stages and processing

steps (cf. Figure 4.7). Stages show a status of processed

data, while processing steps describe transformations of

processed data. Steps act as transition between stages.

The data state model describes four stages: value (raw

data), analytical abstraction (meta-data, preprocessed

data structure), visualization abstraction (visualizable in-

formation) and view (final visualization presented to a

user).

Between these stages there are three processing steps:

Data transformation converts raw data into a prepro-

cessed data structure, visualization transformation pro-

cesses this data to visualizable information and visual

mapping transformation takes this visualizable information and presents a graphical view.

Thus, every output created by a user interface can be described with the data state model.

Every PQL request has to pass the processing pipeline, in which actions defined in the PQL

request are processed (e.g., process model change operations). The processing pipeline

consists of five processing steps: discovery, modification, persistence, abstraction and

54

4.3 Software Architecture Supporting PQL

retrieval performed in different components. The behavior of every step can be adjusted (i.e.,

some steps may be executed optionally). Figure 4.8 shows the PQL processing pipeline.

PQL Request

PQL
Meta-Model

PQL
Meta-Model

PQL
Meta-Model

Discovery

Modification

Abstraction

Process Model

Retrieval

Interpreter
Component

Dependency
Engine

Component

Notation
Transformation

Component

Dependency
Engine

Component

Graph
Library

Component

Modification
ComponentPersistence

Notation
Transformation

Component

PQL
Meta-Model

Persistence
Connector

Component

Figure 4.8: PQL Processing Pipeline

Step discovery transforms a PQL request into

an intermediate representation required to be

interpretable by the PQL software architecture

and searches for process models in associated

process repositories. To be able to search

for process fragments, every process model is

transformed into the PQL meta-model and then

matched by the dependency engine.

If process model changes are defined in a PQL

request, the modification step executes change

operations on the PQL meta-model. A depen-

dency engine is required to determine relevant

positions for changes defined by process frag-

ments (in the PQL request).

Step persistence transforms a changed PQL pro-

cess model back to its original process model

notation and stores it in a process repository.

After discovering a process model and optionally

performing changes additional abstraction trans-

formations can be executed. Therefore, view

creation operations can be executed in the ab-

straction step (cf. Section 3.1.2).

Finally, the PQL meta-model is transformed back

into its original process model notation and con-

verted into a respective exchange format for pro-

cess models, like XML or JSON.

55

4 Process Query and Modification Language

4.4 Summary

This section introduced a theoretical approach for PQL based on requirements outlined in

Section 3.3). PQL is a DSL allowing for implementation-independent definition and manage-

ment of process models and process views. PQL consists of a meta-model incorporating

different process perspectives, change and process view creation functionalities altering

the PQL process model, modules to enable process notation-specific meta-model exten-

sions and operations, a dependency engine mapping relations between process models

or process fragments and a concept to map different process notations through the PQL

meta-model. The processing pipeline of PQL defines how PQL requests are handled.

The next section establishes the Activiti BPM platform and selected functionalities being the

basis for the Clavii BPM platform proof-of-concept implementing a PQL subset. Clavii, in

turn, is introduced afterwards.

56

5
Activiti BPM Platform

This Section introduces the Activiti BPM Platform (Activiti for short) used by the BPM platform

developed as part of this thesis (cf. Section 6).

Activiti is an open source, Java-based PAIS released under the Apache License 2.0 [67]. It

requires a Java Application Server (e.g., Apache Tomcat or JBoss). Activiti can be installed

as standalone or as embedded version. The standalone version consists of the complete

Activiti Toolstack (cf. Section 5.1), while the embedded version only contains the Activiti

Engine. The latter version maybe required for implementing into existing Java projects (cf.

Section 4). Activiti is very flexible and easy to integrate in various frameworks.

Section 5.1 gives an overview of all Activiti components, Section 5.2 introduces Activiti

functionalities used by the Clavii BPM platform. Finally, Section 5.3 describes the Activiti

Application Programming Interface (API) and presents some code examples.

57

5 Activiti BPM Platform

5.1 Activiti Toolstack

The Activiti BPM platform consists of several components. The Activiti Engine is the core

component. It provides process execution functionalities, like executing BPMN 2.0 process

models and instantiating tasks.

Component Activiti Modeler is a web-based modeling environment to create BPMN 2.0

process models. It is based on an early version of the Signavio Process Editor component

[67].

Component Activiti Designer can be used to enrich tasks of process models by executable

code. It is based on Eclipse and offers widespread functionalities to develop PAIS-executable

task components. Furthermore, it offers an integrated process modeling tool.

Finally, component Activiti Explorer (cf. Figure 5.1) provides users access to the process

repository and allows to control the Activiti Engine component. For example, it is possi-

ble to start new process instances, loading worklists of users, or monitor active process

instances.

Figure 5.1: Activiti Explorer User Interface

58

5.2 Process Modeling Support

Furthermore, a REST1-based [28] service API offers methods to manage functionalities of

the Activiti Engine. In general Activiti Engine uses a H22 database [1], but other databases

are supported as well. The following data is stored in a database:

• Users and groups for organizational models

• Process models

• Historic process instance data

Historic process instance data comprise, for example, execution time, execution results, and

execution states (e.g., a task was executed correctly or failed during execution) of tasks, or

values of process data elements.

5.2 Process Modeling Support

This Section explains important concepts used in this thesis, as Expressions and Custom

Extensions. For a comprehensive introduction into Activiti’s architecture please consider

[67].

5.2.1 Java Object Representation for Process Models

Activiti has defined its own Java representation of BPMN 2.0 process models, which is

described in the following. Please note: Subsequently, Java classes are written in italic font

style.

Class ProcessDefinition is a metadata container for BpmnModel. A BpmnModel class rep-

resents one executable BPMN 2.0 process model. ClassProcessDefinition comprises a

MainProcess class and additional Processes classes, which are linked to MainProcess

class by either a SubProcess class activity class or by OrchestrationObjects, like Swimlanes

and Pools. Class BpmnModel, optionally, stores classes of types Artifacts, ItemDefinitions,

Pools, Lanes, Messages, Problems, and additional graphic information to describe how a

1Representational State Transfer - a programming paradigm for web-applications
2Light-weight Java-based relational database

59

5 Activiti BPM Platform

process model is layouted. A process model contained in BpmnModel class is represented

by the Process object. It consists of a control flow elements set, attribute ioSpecifications,

attribute artifacts and attribute definitions for users and groups, which are eligible to start a

process model (i.e., candidateStarterUsers and candidateStarterGroups).

BPMN 2.0 elements introduced in Section 2.2.2 are designed as Java classes implementing

interface BaseElement. Figure A.1 gives a short overview about the class hierarchy. Class

BaseElement can be extended by an ExtensionAttribute class as described in Section 5.2.3.

Furthermore, all control flow relevant process elements extend class FlowElement. Class

FlowElement is divided into SequenceFlows and FlowNodes classes (i.e., DataObjects are

not used by the BPM platform introduced in Section 6, and therefore not treated in the

following). Thereby, a FlowNode represents either classEvent, Gateway, or Activity, which

are connected with SequenceFlow classes.

5.2.2 XML Representation for Process Models

Process models represented as Java object ProcessDefinition (cf. Section 5.2.1) may be

converted to a corresponding XML-based representation. Particularly, Activiti provides direct

conversion support.

ag
e

<
18

Answer Age

Show Disney®
Film Titles

ag
e

>=
 1

8

Show Action
Film Titles

Figure 5.2: BPMN 2.0 Process Model for Age Verification

Listing 5.1 shows a XML-based BPMN 2.0-compliant process model for age verification (cf.

Figure 5.2). Every process element consists of different attributes, like an id or a name (cf.

60

5.2 Process Modeling Support

Section 2.2). The process model starts with a start event, followed by a user task. The latter

defines a user form requesting the age of process participant Fury. The age is stored in

a variable with id=age and is used to decide, which branch is activated. The first branch

with id=splitflow1 is activated, if process participant Fury entered a number less than 18. In

this particular case, user task with id=userTask3 only shows Disney R© film titles. Otherwise,

user task with id=userTask2 is activated showing action film titles to process participant Fury.

<definitions xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

2 xmlns:activiti="http://activiti.org/bpmn"

typeLanguage="http://www.w3.org/2001/XMLSchema"

4 expressionLanguage="http://www.w3.org/1999/XPath"

targetNamespace="http://www.activiti.org/test"

6 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL">

<!-- root element -->

8 <process id="ageVerification" name="Age verification" isExecutable="true">

<startEvent id="startEvent"/>

10 <sequenceFlow id="flow1" sourceRef="startEvent" targetRef="userTask1"/>

12 <userTask id="userTask1" name="Answer Age" activiti:assignee="Fury">

<extensionElements>

14 <activiti:formProperty id="age" name="Insert age" type="integer"/>

</extensionElements>

16 </userTask>

18 <sequenceFlow id="flow2" sourceRef="userTask1" targetRef="xorsplit"/>

<exclusiveGateway id="xorsplit" default="splitFlow1"/>

20

<sequenceFlow id="splitflow1" sourceRef="xorsplit" targetRef="userTask3">

22 <conditionExpression xsi:type="tFormalExpression">

<![CDATA[\${age < 18}]]>

24 </conditionExpression>

</sequenceFlow>

26

<userTask id="userTask3" name="Show Disney Film Titles" activiti:assignee="Fury"/>

28 <sequenceFlow id="joinflow1" sourceRef="userTask3" targetRef="xorjoin"/>

30 <sequenceFlow id="splitflow2" sourceRef="xorsplit" targetRef="userTask2">

<conditionExpression xsi:type="tFormalExpression">

32 <![CDATA[\${age >= 18}]]>

</conditionExpression>

34 </sequenceFlow>

36 <userTask id="userTask2" name="Show Action Film Titles" activiti:assignee="Fury"/>

38 <sequenceFlow id="joinflow2" sourceRef="userTask2" targetRef="xorjoin"/>

<exclusiveGateway id="xorjoin"/>

40 <sequenceFlow id="flow3" sourceRef="xorjoin" targetRef="endEvent"/>

61

5 Activiti BPM Platform

42 <endEvent id="endEvent"/>

</process>

44 </definitions>

Listing 5.1: Activiti BPMN 2.0 XML Representation

5.2.3 Custom Extensions of Process Models

All BPMN 2.0 elements are enhanceable by custom extensions (cf. element userTask1,

Line 12 in Listing 5.1). Extensions are necessary if, for instance, a graphical editor requires

more attributes; e.g., coloring. The basic class for extensions is class ExtensionElement,

which consists of one or more ExtensionAttributes classes. Class ExtensionElement can

be added to every class, which implements the HasExtensionAttributes interface. A class

ExtensionAttribute is a key-value object, similar to XML attributes within a XML tag.

5.2.4 Expression Language

Expressions in Activiti are used for service and script tasks, listeners, and conditional

sequence flows. Conditional control flows, for example, must have the ability to map

conditions in order to be evaluated by the Activiti Engine.

Particularly, Activiti supports the Unified Expression Language (UEL), which is part of the

Java JEE-specification [21]. To be more precise, it uses the Java UEL Implementation

(JUEL). Particularly, JUEL supports resolving Java Beans [71] and handles array, map,

and list objects. UEL defines two types of expressions: Value expressions and Method

expressions

Value expressions resolve to a String value. A value expression can contain variables, which

represent DataElements classes associated to the process model or registered Spring3

beans [46]. An example of a value expression is ${registeredBean.value} or

${variable}.

3open-source application framework for Java - http://www.spring.io/

62

5.3 Activiti Server Component and Java API

Method expressions invoke a Java method to return a specific value, for example, ${regis-

teredBean.getValues(’order-9’)}. Method expressions in the Activitis Process

Modeler component can be defined by free text.

5.3 Activiti Server Component and Java API

The Activiti server component running in a Java application container consists of different

components (cf. Figure 5.3): the Spring component consists of a Spring container, ex-

pressions, and beans, whereas, the Activiti Engine component consists of an Activiti Java

API, core services and the Process Virtual Machine (PVM). The PVM itself consists of a

state machine model and a persistence layer, which communicates directly with underlying

databases.

In order to develop a Java application embedding the Activiti Engine component, the Activiti

Java API can be used. The latter offers methods to invoke methods provided by the Activiti

Engine (i.e., starting a new process instance).

Validation

Application C
ontainer

DB Server

Activiti Engine
Component

LDAP Directory Activiti Database

Activiti Java API Core Services

Activiti Modeler

Activiti Designer

Activiti Explorer

Activiti Spring
Component Spring Container Expressions

Java Beans

State Machine Persistence

Process Virtual Machine

Figure 5.3: Activiti Architecture Overview

Hereinafter all core interfaces of

the Activiti Java API are intro-

duced.

Service FormService offers ac-

cess to the Activiti form engine

to define forms in process mod-

els. Service FormService is also

responsible for rendering these

forms in HTML.

Service HistoryService provides

information and metrics about

completed process instances. It

exposes mainly querying capabil-

ities.

63

5 Activiti BPM Platform

Service IdentityService is the authentication interface. Activiti handles authentications by

itself, because a close coupling between all Activiti components is needed.

Service ManagementService provides methods to access Activiti database tables directly

and execute asynchronous jobs. This is useful, if core service interfaces do not provide

methods for advanced use cases. Jobs are used, for example for timers and asynchronous

activity execution.

In order to deploy, query, delete and access process definitions, developers can use the

serviceRepositoryService, which is also responsible for versioning of those entities.

Service RuntimeService is able to start and query process instances and access process

data elements, which are defined in a process model (cf. Section 2.2.2).

Service TaskService represents a worklist manager. Using this service it is possible to

create, claim, execute, and cancel user tasks.

5.4 Summary

The Activiti BPM Platform is an open source, Java-based PAIS providing numerous managing

functionalities for process models and process instances. Activiti is divided into different

components (i.e., the Activiti Engine and a REST-based API). The Activiti Engine, in turn,

may be used as standalone component or may be embedded into other Java applications.

Therefore, it offers the Activiti Java API containing various services (i.e. a repository

service to be able to store process models or a run-time service to control process instance

execution). Process models in Activiti are represented by a Java object model and may be

transformed into a XML-based representation. Activiti process models may be extended by

custom extensions (e.g., to add additional attributes to process elements). The next section

introduces the Clavii BPM platform, utilizing technologies presented in this section.

64

6
The Clavii BPM Platform

Today, PAISs are very powerful and thus complex. In particular, they target at mid-sized

to large companies and need strong knowledge of business process management. Small

companies face BPM challenges with little or no BPM knowledge. Therefore, a PAIS should

support them by offering advanced methods and concepts reducing efforts on building and

managing a BPM-centric infrastructure.

As described in section 2.2, a BPM-centric infrastructure can be developed by following

a top-down approach [29]. This means, that business processes are first documented on

a high-level perspective, which result in coarse-grained process models. Subsequently,

the latter are more detailed by fine-grained process models. Typically, process models are

created by dedicated process designers. However, the top-down approach contradicts the

aim of process views to tighten integrate process participants in the BPM lifecycle.

65

6 The Clavii BPM Platform

In contrast, a bottom-up approach is required, which enables every employee to document

its own business processes by using a simple and easy to set up PAIS. Furthermore, they

should be able to easily execute their PAIS. In particular, a BPM-centric IT architecture has

not to be extensively planned.

Addressing these issues, we introduce the Clavii BPM platform (Clavii for short) in the

following. Clavii is developed for small companies, that do not have a lot of BPM knowl-

edge. In particular, Clavii should decrease the time to design and implement process

models by showing up various concepts, for example, the PQL query language presented in

Section 4.

Section 6.1 shows further aspects of the realization first, then the Clavii proof-of-concept

implementation is explained. Section 6.2 illustrates the software architecture for Clavii. Sec-

tion 6.3 explains functionalities provided by the proof-of-concept implementation. Section 6.4

describes, how process model management is implemented. Section 6.5 shows up the

proof-of-concept software architecture for PQL implemented in Clavii. Finally, Section 6.6

explains creating and updating process views.

6.1 Principles

The Clavii BPM platform follows three main design goals: simplicity, open standards, and

modularization.

Simplicity itself is a broadly defined term and maybe further categorized to: range of

functions, handling, and presentation.

Range of Functions: The main purpose is to develop a PAIS that is tailored for non-technical

users. Hence, it is reduced to common process elements. Block-structured process models

are applied since they are easier to understand [56]. Next, the correctness by construction

principle, similar to ADEPT, ensures control and control flow correctness at any time [68].

Advanced modeling constructs, like Events and synchronized concurrencies, are cut out

not to overexert users with limited BPM experience [84]. Branching Conditions are also

simplified: they can be defined in advance or decided at run-time.

66

6.2 Proof-of-Concept Implementation Architecture

Simplicity in Handling: As a web-based platform, no installation and configuration should be

required at client-side. Next one user interface, should provide functionalities of the BPM

lifecycle. Hence, each BPM lifecycle step can be done seamlessly without context switching

(i.e., application). Simplicity in Presentation: The user interface should be intuitive to use

[57]. Hence, no time consuming trainings for users are required. Open source frameworks

are applied for development, for example, Hibernate [47] and Activiti (cf. Section 5) [67].

Configurations (e.g., for persistence handling), as well as process models, are stored in

open XML-based documents. Third-party tasks may be implemented by plain Java POJO

(i.e., Plain old Java object) classes, a store enables users to extend task capabilities, buy

pre-developed process models for common purposes.

6.2 Proof-of-Concept Implementation Architecture

Brow
ser

Validation

Client Tier Clavii Web Application

Application Server
DB Server

Web Tier

Business Tier

Data Tier LDAP
Directory

Activiti
Database

Clavii Web Interface

Activiti Engine

Clavii Services

Clavii
Database

Hibernate

Figure 6.1: Clavii Architecture Overview

The Clavii proof-of-concept imple-

mentation architecture is built as

integrated Java EE container [33].

Its architecture and interface def-

initions allows to separate and

change each part of the platform.

This can be done, for example, by

moving the user interface logic to a

different Java EE container. In par-

ticular, central server components

do not have to be modified i.e., a

clear separation between the data

tier and business tier exists (cf. Fig-

ure 6.1).

Clavii is mainly divided into a MVC1-like architecture. A model module defines common-used

objects, like process models, user definitions or file container (cf. Section 6.2). The view

module contains all logic related to render the user interface and dispatch user interactions (cf.

Section 6.2). The business logic itself is defined in the controller module (cf. Section 6.2).

1Model-View-Controller architecture pattern

67

6 The Clavii BPM Platform

The Clavii Model module defines objects, like users, groups, process models, attachments,

or settings [4]. These objects are persistable using the Hibernate framework [47], i.e.,

storing and retrieving information from the Clavii database is transparent. Therefore, the

Data Access Objects (DAO) design pattern [61] provides an interface to abstract all Java

objects from the persistence layer (cf. Figure 6.2). Each object extends class DAO, which

offers access methods to change each entity.

Figure 6.2: DAO UML Class Diagram Excerpt

The Clavii View module comprises the user interface (UI). The UI is based on Google

GWT [53] and allows to access all functionalities with a single web-based application.

Figure 6.3 shows the Clavii interface with a process model in BPMN 2.0. Clavii allows for

rapid prototyping, every process model is executable from the start. Missing process data

elements or decisions for branches are requested upon execution.

Further information about the Clavii UI is available in [15].

The Controller module holds all server-based functionalities: Figure 6.4) shows the Clavii

controller architecture comprising packages for identity management, process instance

monitoring, the plugin architecture, persistence handling, run-time management, process

model and process view management (i.e., involving PQL, cf. Section 6.4, Section 4.3), and

Section 6.6), and validation management shortly described in Section 6.3.

68

6.3 Functionalities

Figure 6.3: User Interface of the Clavii BPM Platform

6.3 Functionalities

Clavii is divided into different components. Each component provides functionalities for

different domains and is represented by a Manager interface. Methods invoked on a

Manager interface are transaction-enabled, i.e., they may be automatically reverted, when

Java exceptions occured during execution.

Identity Management : Clavii offers identity management functionalities to identify and au-

thenticate users represented by two different services: the AuthenticationManager service

and OrgModelManager service. The AuthenticationManager service is used to authorize

a login, create, update, or delete an Agent (i.e., a user). OrgModelManager service of-

fers methods to manage organizations, organizational units and user roles. Clavii has a

69

6 The Clavii BPM Platform

Clavii Controller

Authentication
Manager

Identity

Monitoring

Administrative Service

Process Buildtime

Process Runtime

OrgModel
Manager

Persistence

Package name

History
Manager

Plugin

PluginCall
Dispatcher

File
Manager

Repository
Manager

Type
Manager

Validation

Validation
Manager

ProcessModel

ProcessModel
Manager

ProcessFilter
Manager

(PQL, Process
Views)

Run-time

Run-time
Manager

Task
Manager

Figure 6.4: Clavii Controller Overview

built-in LDAP-connector and allows for synchronization with LDAP-schemes stored in a

LDAP-directory.

Process Instance Monitoring: In order to recapitulate executed process instances, the

HistoryManager service offers access to historic execution data. The latter is used to show

finished process instances to users to check, if, for example, all containing tasks are executed

successfully. Figure 6.5 shows a terminated process instance, where task "Print 1" was

successfully executed, while task "Print 2" was not executed.

Persistence Handling: Clavii uses the RepositoryService of Activiti in order to store process

models to be executed [67]. Persistence handling for process model related objects is

encapsulated by the RepositoryManager service, while others, like attachments and icons

are stored directly to Data Access Objects (DAO) [61]), or utilizing FileManager service and

TypeManager service respectively.

70

6.3 Functionalities

Figure 6.5: Process Instance Monitoring in Clavii

The RepositoryManager service implements methods for deploying, importing, accessing,

updating, and deleting process models. If a process model is not deployed, which means that

it can not be accessed and executed by the Activiti Engine, it is stored in a BpmnModelEntity

object and persisted by a DAO. When a process model has to be executed, it is deployed to

the Activiti RepositoryService by the RuntimeManager (cf. Section 6.3).

The RepositoryManager service also implements convenience operations, for example, to

search for process models belonging to a specific organizational unit. These operations use

a CriteriaBuilder to search for defined attributes.

71

6 The Clavii BPM Platform

Process Model Management in Clavii is implemented by two services: ProcessModelMan-

ager service and ProcessFilterManager service. The ProcessModelManager service offers

methods to execute change operations on process models, while the ProcessFilterMan-

ager service implements methods to create and update process views (cf. Section 6.4) in

conjunction with PQL (cf. Section 4).

Run-time Management in Clavii is divided into managers: the RuntimeManager and Task-

Manager. Service RuntimeManager is responsible to interact with the embedded Activiti

Engine to enable the execution of process instances (cf. Section 5.3) . If a process

model should be executed it is deployed to Activiti RepositoryService. Subsequently the

RuntimeManager triggers the conversion of the process model to a process instance, which

is then executed by the Activiti Engine. Service TaskManager provides methods to retrieve

task lists of users and executes respectively modifies states of user tasks. The number of all

untreated tasks, as well as untreated tasks for a specific process instance, can be fetched

for every user. Both managers are used to separate business logic of Clavii from Activiti

Engine. Hence, Activiti Engine can be easily exchanged by another BPM engine.

Validation Management in Clavii is implemented by service ValidationManager and offers

methods to ensure a process model’s correctness. The service may check conditional

gateway expressions and PQL requests for their validity and returns a CheckReport object

containing detailed information.

Plugin Architecture: An OSGI2-based plugin architecture allows for extending the number

of available tasks, that may be executed by Clavii (i.e., ScriptTasks, ServiceTasks) [4].

Every plugin may be developed as POJO (i.e., Plain old Java object) and registered using

XML-based service descriptions.

Data Type Framework : Usually, a process modeling notation offers process data elements

to define a data flow between tasks. In Clavii, process data elements are not embedded into

a process model, but managed by Clavii. Process data elements are built hierarchically [4].

Therefore, strong type handling ensures interoperability between service tasks and process

data elements. The data type framework is easily configurable and expandable by end-users.

Figure 6.6 shows a process data element definition for a customer consisting of five process

data elements: "Name", "Age", "Birth Date", "Gender" and "Regular Customer".

2Component model based Service Delivery Platform [3]

72

6.4 Managing Process Models

Figure 6.6: Process Data Elements in Clavii

6.4 Managing Process Models

Process model changes are handled by service ProcessModelManager. The latter only

contains a few methods. Particularly, method updateModel(ClaviiBpmnModel, Model-

ChangeDescription) updates a process model based on an operation defined by class

ModelChangeDescription (cf. Section 6.4.5). Every operation, in turn, is dispatched by a

ProcessModelDispatcher, which routes it for processing to the service ClaviiFlowFactory.

The latter offers process model change operations (cf. Section 6.4.5), which finally change

the given process model.

73

6 The Clavii BPM Platform

In the following the process model representation is introduced (cf. Section 6.4.1), and its

logical restrictions (cf. Section 6.4.2). Afterwards, the structure of change operations is

introducted and its Clavii internal procedure (cf. Section 6.4.5). Finally, the process model

filter execution is explained (cf. Section 6.6).

6.4.1 Process Model Representation

Process models in Clavii are represented by class ClaviiBpmnModel - a container, which

includes an Activiti BpmnModel, a precalculated RPST (cf. Section 6.4.2) and a topological

map. Figure 6.7 shows such a process model in the Clavii modeler. Topological ordering

of a directed graph, or in this case a business process model, is a linear ordering of its

vertices [31]. There exist redundant information between the RPST and the topological map,

but this method saves run-time at minimal memory overhead for some graph operations.

Aditionally ClaviiBpmnModel offers helper methods for debugging, the process model and

the RPST for example can be converted into the DOT-format, which is a text-based graph

representation used by many applications [72]. RPST and map generation are executed

every time a process model is converted into a Clavii process model. A RPST of a process

model can be computed in linear time, local changes in a process model only result in local

changes of a RPST. Hence using a RPST for structural checks of a process model is very

efficient, even if a process model is changed and an already computed RPST of the model

has to be adapted.

In Clavii, it is possible to import existing process models in Activiti’s XML-format (cf. Sec-

tion 5.2.2). If block-structural ambiguities occur (cf. Section 6.4.2), it is possible to solve

these by adding BlockStructureExtensions manually. BlockStructureExtensions are a subset

of ExtensionsElements, which were developed to enhance the Activiti BpmnModel represen-

tation. Every BaseElement can be enhanced by an ExtensionsElement. In Clavii Extensions

can be easily written by extending the generic ExtensionManager class. Figure 6.1 shows

extensions for a conditional gateway. clavii:properties are a simple key-value storage

and can be used by any Clavii component. clavii:blockStructure is automatically

added to any gateway after importing an existing Activiti process model. Additionally every

gateway altering change operation keeps the Extension consistent.

[..]

74

6.4 Managing Process Models

2 <process id="simpleProcess" name="Simple process" isExecutable="true">

[..]

4 <exclusiveGateway id="xorsplit" default="splitFlow1">

<extensionElements>

6 <!-- Extension for generic properties -->

<clavii:properties xmlns:clavii="http://www.clavii.com/extensions">

8 <clavii:property clavii:key="mode" clavii:value="manual"/>

</clavii:properties>

10 <!-- Extension for Block Structure -->

<clavii:blockStructure

12 xmlns:clavii="http://www.clavii.com/extensions">

<clavii:correspondingId>exclusivegateway2</clavii:correspondingId>

14 <clavii:seseType>ENTRY</clavii:seseType>

</clavii:blockStructure>

16 </extensionElements>

</exclusiveGateway>

18 [..]

Listing 6.1: Process Model Extension Elements

Listing 6.2 shows ExtensionElements automatically added, if a ClaviiBpmnModel repre-

sents a process view. Therefore, the name and internal ID of the applied process filter (cf.

Section 6.6) is added, as well as the executed PQL-String. clavii:nodeSet references

to FlowElement IDs, which were modified by the process filter engine.

[..]

2 <process id="simpleProcess" name="Simple process" isExecutable="true">

[..]

4 <extensionElements>

<clavii:filter xmlns:clavii="http://www.clavii.com/extensions">

6 <clavii:filterId>42</clavii:filterId>

<clavii:filterName>User Tasks</clavii:filterName>

8 <clavii:pqlString>GET MODEL bla</clavii:pqlString>

<clavii:nodeSet>

10 <clavii:reducedNodes>124,14,15,465,43,32</clavii:reducedNodes>

<clavii:aggregatedNodes>34,11</clavii:aggregatedNodes>

12 </clavii:nodeSet>

</clavii:filter>

14 </extensionElements>

[..]

Listing 6.2: Process View Extension Elements

75

6 The Clavii BPM Platform

Figure 6.7: Clavii Process Model Excerpt

6.4.2 Block-Structural Constraints

Clavii is limited to block-structured process models enabling the use of process view creation

algorithms [9, 43] and supporting users at build-time [18]. In general, structured process

models are well defined by construction, easier to understand and allow for advanced

modeling support.

To determine SESE fragments (cf. Section 2.2.3) used by the Clavii GraphUtils library, a

RPST graph is used.

The RPST algorithm, that calculates a RPST graph, first decomposes process models into

fragments. A fragment is a subset of the process model graph, here representing a set of

edges. Every fragment has exactly one incoming and one outgoing edge. It is canonical : it

does not overlap with other fragments, but can contain them. Fragments, again, are based

on triconnected components, which have specific characteristics [77]. They can be obtained

by further applying split operations.

Bond fragments consist of 2 nodes and k ≥ 2 edges. A Polygon fragment is a graph with

k ≥ 3 nodes and k edges contained in a cycle. Rigid fragments can be further divided into

76

6.4 Managing Process Models

Polygons and Bonds, these again cannot be split further. A fragment is defined as Trivial, if

it contains one single edge.

Start End

debugPrint1

debugPrint2

P1

[exclusivegatewaysplit->debugPrint2]

P0

[Start->exclusivegatewaysplit] B0

[debugPrint1->exclusivegatewayjoin]

P2

[debugPrint2->exclusivegatewayjoin]

[exclusivegatewayjoin->End]

[exclusivegatewaysplit->debugPrint1]

Figure 6.8: Process Model and Corresponding RPST Graph

A RPST is a set of these canonical fragments. It can be represented hierarchically as tree.

The root node of a generated RPST tree represents the whole process model, whereas

a leaf represents a trivial fragment. Figure 6.8 shows a BPMN 2.0 process model and its

generated RPST graph. Nodes marked with P are polygon nodes, those node marked with

B are bonds. P1 is the root polygon and represents the whole process model. Note, that

each branch of the gateway has its own polygon.

A simplified algorithm of the RPST generation shows as follows [66]:

1. G is a directed multi-graph

2. Compute a normalized version of G

3. Generate a tree T of the triconnected components of G

77

6 The Clavii BPM Platform

4. Remove all trivial fragments of T , which are not contained in G

5. Remove all redundant fragments in G

6. T is the RPST of G

Step 4 is necessary, because process nodes with more than one incoming and coincidently

more than one outgoing edge (occurs, when a process model contains gateways) are split up

into two nodes. These either have more than one incoming edge and exactly one outgoing

edge, or vice versa. Additionally, virtual nodes were added, for example between the start

node and the end node, which then have to be removed.

Every generated RPST can differ due to the fact, that a process model is described by

unordered sets. Nevertheless, it describes the same hierarchy.

Clavii uses jBPT [65], an Open Source graph analysis framework, for the generation of a

RPST. Therefore, the Activiti BpmnModel is converted into jBPTs representation of a BPMN

2.0-based process model (Bpmn<BpmnControlFlow<FlowNode>). For further runtime

optimizations this conversion step can be bypassed by directly applying the RPST generation

algorithm on a process model.

6.4.3 Process Model Graph Utilities

The GraphUtils library in Clavii offers often used graph algorithms (cf. Table 6.1). The

development of own graph utilities was necessary, because Activiti does not offer any of

these methods.

The library uses a RPST, it is divided into GraphUtilsRPSTBase and GraphUtilsImpl. Gra-

phUtilsRPSTBase implemented methods to manage and query a RPST (e.g., calculate a

RPST for a ClaviiBpmnModel, find RPST node types, convert a RPST node into a process

model node set), while GraphUtilsImpl uses all these methods to execute higher-level al-

gorithms (e.g., method leastCommonSESE calculates a minimal SESE block for a set of

process nodes).

78

6.4 Managing Process Models

Method Description
getPredecessors(P, n) Returns a list of node IDs, which are precedent of

process node n in process model P .
getSuccessor(P, n) Returns a list of node IDs, which are successive of

process node n in process model P .
getCorrespondingGateway(P, n) Returns the node ID of the corresponding gateway

for gateway n in process model P .
getNodeDepth(P, n) Calculates the node depth of process node n in

block-structured process model P . Start events
and end events are on node depth 0.

getTopologicalId(P, n) Returns the topological ID of a process node n in
process model P , nested SESE blocks are sorted
by branch ID

getLeastCommonSESE(P,N, allowCommonSESE) Returns the least common SESE block of a
set of process nodes N in process model
P . If allowCommonSESE is set to false,
getLeastCommonSESE returns null, if pro-
cess nodes in N are not in the same minimal SESE
block.

isInSameBlock(P, n1, n2 Checks, if two process nodes n1, n2 reside in the
same minimal SESE block (i.e., the same branch)

Table 6.1: Clavii GraphUtils Methods Excerpt

6.4.4 Process Model Creation

A ClaviiBpmnModel can be created by invoking the method

ClaviiBpmnModelFactory.createClaviiBpmnModel(BpmnModel bpmnModel). This method

creates a new ClaviiBpmnModel object and executes the following sub-methods: cor-

rectInternalFlows, calculateRPST, checkBasicLayout, addBlockStructureExtensions, and

calculateTopologicalMap.

Method correctInternalFlows ensures a correct representation of an Activiti process model.

Every process node contains maps of incoming and outgoing control flows, which may

be wrong or incomplete due to a preceding change operation. Method calculateRPST

calculates the RPST as descibed in [66]. Method checkBasicLayout checks the following

conditions (with the help of the previously generated RPST):

• Process model contains exactly one start event

• Process model contains exactly one end event,

as multi-terminal process models are not allowed in Clavii

79

6 The Clavii BPM Platform

• It exists an even quantity of gateways,

because every gateway must have a corresponding gateway to be in conjunction with

the block-structural constraints

• All control flows are completely connected (i.e., attributes SourceReference and

TargetReference are set)

Otherwise, an exception will be thrown to indicate, that the process model to be converted

does not comply with the specified Clavii layout. Method addBlockStructureExtensions

creates ExtensionAttributes (cf. Section 5.2.3) containing information, like the ID of the

corresponding gateway, and adds them to all gateways. Finally, method calculateTopologi-

calMap creates a topological map with all process node IDs as key and the corresponding

topological ID as value.

6.4.5 Process Model Change Operations

Process model change operations in Clavii are divided into atomic and compound operations.

While atomic operations only insert, change or delete a single element of a process model,

compound operations are composed of two or more atomic operations. An example for

a compound operation is insertGatewayBlock(P, np, ns, BlockType), which creates two

new gateways with attribute BlockType (i.e., PARALLEL, EXCLUSIVE, LOOP), a control

flow between them and inserts all three process elements into process model P between

preceding process node np and succeeding process node ns.

Figure 6.9: Clavii Process Model Factories UML Class Diagram

80

6.4 Managing Process Models

Atomic operations are located in class ActivitiFlowFactory, compound operations in class

ClaviiFlowFactory. New process elements, like service tasks, may be created through class

ActivitiModelFactory (cf. Figure 6.9).

Atomic Operations

Atomic operations insert, update or delete a single FlowElement in a BpmnModel. These

are marked as unchecked, if the method does not contain any checks to ensure a correct ap-

plication. Unchecked atomic operations directly alter a set of FlowElements in a BpmnModel,

and therefore destroy structural consistencies (e.g., by adding a task without connecting it to

other process nodes). Checked atomic operations also take care of correcting the control

flow.

Insert operations are defined generic, such that insertFlowNode may insert every type of

FlowNode (i.e., UserTasks, ServiceTasks, SequenceFlows) in either sequence, parallel, or

in a new branch. This parameter is called SequenceMode in Clavii. Atomic operations are

not visible within Clavii’s API, as they do not implement correctness checking.

Compound Operations

Compound operations are higher-value operations invoking multiple atomic operations. They

need strong transaction management. Table 6.4 gives a brief overview of all available

compound operations. The latter are designed to be fail-safe and always create a correctly

updated process model. Compound operations are visible through Clavii’s API and may be

used within a ModelChangeDescription.

Compound operation deleteBlock can be executed with the ability to preserve containing

process nodes and just remove all gateway nodes instead of all process nodes containing

the block. Preservation is archived by serializing all branches considering each process

node’s topological ID.

Compound Operations are defined on a user’s expectation. However, certain compound

operations act differently. When applying compound operation deleteBlock on a process

model, a user may expect that this deletes a whole SESE block with its inherited process

81

6 The Clavii BPM Platform

nodes and a control flow between them. Clavii, in turn, only deletes the surrounding

gateways and serializes all originally defined branches. This offers the ability to delete only

surrounding process nodes, while inherited process nodes are preserved. If a user wants to

delete a complete SESE block with all process nodes, he has to select all process nodes to

be deleted. Internally, not method deleteBlock is executed, but method deleteProcessNode,

which again executes method deleteProcessElement for every selected process element.

ModelChangeDescription

Changes on process models executed via the API are described by class ModelChange-

Descriptions. A ModelChangeDescription consists of an ID referring the affected process

model, a ChangeOperation object, a NodeSet object, a ConfigurationMap object and

a PropertyMap. The ChangeOperation is a Java enumeration object, which defines an

atomic or compound operation to be applied. insertGatewayBlock is one example (cf.

Tables 6.3 and 6.4).

The NodeSet object is represented as list of Strings, whereas all Strings are IDs for a specific

FlowNode object in a process model. Class ConfigurationMap consists of FlowElement-

Attributes, represented as ElementAttribute enumeration value (cf. Table 6.2). Each atomic

or compound operation needs a different set of configuration values.

ModelChangeDescriptions are used, because they abstract updates of process models

within Clavii. Therefore, every ModelChangeDescription may be converted to XML and

used, regardless of which communication method is chosen between the Clavii Controller

and a Clavii Client (e.g., client communication based on REST or Java Beans).

6.4.6 Process Model Update Procedure

A process model in Clavii can be updated by creating a ModelChangeDescription (cf.

Section 6.4.5). A ModelChangeFactory exists to simplify creating the correct descrip-

tion, this factory also checks for parameter inconsistencies and a correct quantity of

ElementAttributes (cf. Table 6.2). Afterwards the method updateModel(BpmnModel,

ModelChangeDescription) at the ProcessModelManager is invoked (cf. Figure 6.10).

The ProcessModelManager is defined to process and return BpmnModels, after invoking a

method every model is converted into a ClaviiBpmnModel object (cf. Section 6.4.4).

82

6.4 Managing Process Models

Name Description Applicable
Super Class

ID Node ID BaseElement
NAME Item name visible for a user FlowElement
DOCUMENTATION Attribute representing a textual documentation of a element FlowElement
CONDITION_EXPRESSION Condition for a SequenceFlow after a ConditionalGateway.

The branch will only be activated, if resolving the condition
is true. Example for a condition in UEL: "$input == 1"

SequenceFlow

QUESTION Question shown to a user when using the manual gateway
mode

Gateway

ANSWER Answer shown for a specific SequenceFlow Gateway
DEFAULT_FLOW Definition of the default SequenceFlow, referencing a se-

quenceFlowId
Gateway

TASK_TYPE Defines a TaskType (userTask, scriptTask,
manualTask, scriptTask). Switch for insertFlowNode
method

Activity

SCRIPT Script definition, which is executed when a ScriptTask is
executed

ScriptTask

SCRIPT_FORMAT Indicates the format of a stored Script, must be compatible
with JSR-223 [32]

ScriptTask

RESULT_VARIABLE Name of the variable in which a execution result will be
stored

ScriptTask

AUTO_STORE_VARIABLE Indicates, whether variable values will be stored automati-
cally in the process model, currently not used by Clavii

ScriptTask

IMPLEMENTATION Indicates a set of attributes containing a delegateExpres-
sion to invoke a Clavii plugin. Attributes must include plug-
inName, pluginVersion and methodName

ServiceTask

IMPLEMENTATION_TYPE Defines, which invocation type is used for a service (class,
expression, delegateExpression). Clavii usually invokes
plugins with a delegateExpression

ServiceTask

RESULT_VARIABLE_NAME Name of the variable in which the execution result will be
stored

ServiceTask

ASYNCHRONOUS Indicates, if a ServiceTask can be executed asyn-
chronously. A succeeding Task will be executed, even
if a ServiceTask did not finished, when ASYNCHRONOUS is
true

ServiceTask

CANDIDATE_USERS Set of users allowed to execute the Task UserTask
CANDIDATE_GROUPS Set of groups and roles allowed to execute the Task UserTask

Table 6.2: Clavii ElementAttributes

83

6 The Clavii BPM Platform

Name Description Required Parameters and
Element Attributes

insertProcessNode(P, n, np, ns,
SequenceMode)

Inserts process node n between
process nodes np and ns into
process model P .

ElementAttributes according to the
type of process node.

insertGateway(P,BlockType) Inserts a new gateway into pro-
cess model P . ID and name of
the gateway are assigned auto-
matically. Automatic naming is a
legacy result, because Clavii’s UI
layouting algorithms depend on
gateway names.

BlockType.{PARALLEL,
EXCLUSIVE, LOOP}.

insertControlF low(P, e, name,
nsource, ntarget)

Inserts a new control flow edge
e with optional name name into
process model P .

ElementAttribute.NAME

insertEvent(P, name,EventType) Inserts a new event with event
type EventType and name
name into process model P .
The ID of the event is assigned
automatically.

ElementAttribute.NAME
Parameter EventType.{START,
END, BOUNDARY, THROW}.

updateProcessElement(P, n,E) Applies a set of process element
attributes E on process element
n in process model P .

Allowed ElementAttributes for the
class FlowElement.

deleteProcessElement(P, n) Deletes process element n in
process model P .

Table 6.3: Clavii Atomic Operations

Every ModelChangeDescription contains a ChangeOperation Enum, which includes a ab-

stract method triggerUpdate(ModelChangeDescriptionDispatcher, Clavii-

BpmnModel, ModelChangeDescription). This method is implemented by every Enum

value and called by the ProcessModelManager with a new instance of a ModelChange-

DescriptionDispatcher implementation (there are two different for ProcessModel and

ProcessFilter operations). The ModelChangeOperationDispatcher reads all required

ElementAttributes from the ModelChangeDescription and invokes the correct

method in ClaviiFlowFactory.

6.5 PQL Proof-of-Concept Implementation

In order to set a focus the proof-of-concept implementation realizes a subset of the PQL

functionality (cf. Section 6.5.2). Furthermore, instead of using the PQL meta-model, the

PQL implementation works directly on Activiti’s process model notation. The conversion of a

PQL request into intermediate representation class PQLDescription (cf. Section 6.5.2) is

independent from the Clavii BPM platform, while the business logic (with process model

84

6.5 PQL Proof-of-Concept Implementation

Name Description Required Parameters
and Element
Attributes

aggregateProcessNodes(P,N,
name)

Aggregates a set of process nodes N as vir-
tual node with element name name in pro-
cess model P

ElementAttribute.NAME

insertProcessNodeWith-
Gateways(P, np, ns, BlockType)

Inserts a new process node with two sur-
rounding gateways between process nodes
np and ns into process model P . Parameter
BlockType defines, whether the gateways to
be inserted are either parallel, or exclusive
gateways—or define a loop with two exclusive
gateways.

Parameter
BlockType.{PARALLEL,
EXCLUSIVE, LOOP}.

insertBranch(P, np, ns, name) Inserts a new branch with name name be-
tween two gateway nodes np and ns into
process model P .

ElementAttribute.NAME.

insertGatewayBlock(P, np, ns,
BlockType)

Inserts two gateways and a control flow in be-
tween into process model P . Process nodes
np and ns confine the insertion area of the
gateway block.

Parameter
BlockType.{PARALLEL,
EXCLUSIVE, LOOP}.

moveProcessNodeIntoNew-
Branch (P, nmove, np, ns)

Moves a single process node nmove into a
new branch between two gateway nodes in
process model P . Therefore, attribute np

defines the split gateway—the corresponding
join gateway is calculated accordingly.

moveProcessNodeParallel-
ToNode(P, nmove, np, ns)

Moves a single process node nmove parallel
to a surrounding node ns in process model
P . Therefore, two new parallel gateways are
inserted to surround the particular node.

moveProcessNode(P, nmove,
np, ns)

Moves a process node nmove between pro-
cess nodes np and ns in process model P .

moveProcessNodes(P,Nmove,
np, ns)

Same behavior as moveProcessNode, but
moves a complete SESE block described by
a set of process nodes Nmove between pro-
cess nodes np and ns.

toggleGateway(P, ntoggle) Changes a gateway type of a gateway
ntoggle from EXCLUSIVE to PARALLEL and
vice versa. Control flow conditions will be
removed, if the compound operation tog-
gles the gateway type from EXCLUSIVE to
PARALLEL. Missing Conditions (i.e., when
toggling PARALLEL gateways) is retained by
executing the gateway in MANUAL execution
mode by default.

updateControlF low-
Conditions(P, e, condition)

Applies control flow condition condition on a
process edge e in process model P .

ElementAttribute.
CONDITION_EXPRES-
SION.

deleteProcessNode(P, n) Deletes a process node n in a process model
P .

deleteBlock(P, np, ns,
DeleteMode)

Deletes a complete SESE block defined by
preceding process node np and succeeding
process node ns in a process model P , if at-
tribute DeleteMode is set to value REMOVE.
Otherwise, only two gateways (i.e., denot-
ing entry and exit process node of the SESE
block) are deleted.

Parameter
DeleteMode.
{INLINE, REMOVE}.

deleteBranch(P, e) Deletes a single, empty branch e in process
model P .

Table 6.4: Clavii Compound Operations

85

6 The Clavii BPM Platform

ProcessModel
Manager

updateModel(bpmnModel,
modelChangeDescription)

convertToClaviiBpmnModel

dispatchUpdateOperation(claviiBpmnModel,
 modelChangeDescription)

ModelChange
Operation
Dispatcher

triggerUpdate(modelChangeDescriptionDispatcher,
 claviiModel,
 modelChangeDescription)

Change
Operation

changeOperation
Dispatcher.operation(
BlockType or
SequenceMode) *

* each Enum calls its referring method
(i.e. INSERT_FLOWNODE calls changeOperationDispatcher.insertFlowNode(SequenceMode.INLINE))

claviiBpmnModel

ClaviiFlow
Factory

operation(
BlockType or
SequenceMode) *

claviiBpmnModel
claviiBpmnModel

boolean

Figure 6.10: UML Sequence for Process Model Change Dispatching

change and view creation operations) is based on Clavii classes. Discovery step as de-

scribed in Section 4.2.1 is implemented in a way, that a PQL request has either a defined

reference on a process model identifier, or PQL requests are executed with reference on a

Java process model object.

Section 6.5.1 gives a short introduction into the ANTLR parser generator, which is used

to transform a PQL request into a PQLDescription, a machine-usable format. The format

and all other elements are described in Section 6.5.2, while section 6.5.3 takes a look at

the transformation procedure of a PQL request. Business logic applied in Clavii is topic of

section 6.6.

86

6.5 PQL Proof-of-Concept Implementation

6.5.1 Generating a Parser for Domain Specific Languages

Lexer and parser are necessary to convert a PQL request into a machine-readable format.

A lexer or lexical analyzer is a software component, that creates tokens out of a sequence of

characters (String) based on specified rules. This text must have a specific syntax in order

to correctly create tokens. Tokens are grouped strings with a special meaning. A parser, in

turn, converts these tokens to a semantic model (so-called intermediate representation).

The proof-of-concept implementation uses ANTLR (ANother Tool for Language Recognition),

a parser generator [63]. The latter offers the ability to dynamically generate lexers and

parsers based on a grammar, instead of developing them from scratch. ANTLR is written in

Java and generates recursive descent parsers: parsing is executed from the root element

of a parseable string to the leaves (tokens). Generally, an ANTLR grammar consists

of four abstract computer language patterns: sequence, choice, token dependence and

nested phrases [63]. A sequence (of characters) is a token (e.g., reserved identifier like

GET, POST, PUT, or DELETE in the HTTP-Protocol [27]). Sequences are grouped by

rules. methodPost:’POST’; describes a phrase, consisting of a rule methodPost and an

assigned token POST. The rule has to be executed, when the token occurs in the parsed

String.

Furthermore, a rule may include choices between multiple, alternative phrases. By using

phrase methodPost:’POST’|’PUT’;, the rule methodPost has to be executed, when

one out of the two tokens is present. Tokens may have dependent tokens. This oc-

curs, for example, in case a grammar requires that both the opening bracket and closing

bracket have to be present in a sequence. This dependency can be expressed by phrase

methodList:’(’(method)+’)’;, where method is another rule, that must occur be-

tween two tokens ’(’ and ’)’. Phrase ’(method)+’ expresses, that rule method may occur

exactly once or more. Finally, rules can refer to themselves. The latter is called a nested

phrase. Phrase expr:’a”(’expr+’)’|INT; defines a nested phrase, that allows for

recursive definitions. Sequence a(5) or even sequence a(a(a(5))) are valid expressions and

match rule expr.

1 // Main Context

pqlStatement

3 : (modelGetContext filterDeclarationModel? formatDeclaration? SEMICOLON)+ EOF

87

6 The Clavii BPM Platform

;

5 // 0 Context Declarations

modelGetContext

7 : GET MODEL sourceDeclaration

;

9 // [...]

// 1 Source Declaration

11 sourceDeclaration

: Identifier

13 ;

// [...]

15 // 3 Filter Declaration

filterDeclarationModel

17 : FILTER (aggregationContext | reductionContext)+

;

19 reductionContext

: REDUCE LEFT_PAREN nodeAttribute RIGHT_PAREN exclusion?

21 | REDUCE LEFT_PAREN nodeAttribute (COMMA nodeAttribute)? RIGHT_PAREN exclusion?

;

23 // [...]

// 4 Format Declaration

25 formatDeclaration

: FORMAT formatType

27 ;

formatType

29 : (JSON

| XML

31)

;

33 // [...]

// X Reserved Keyword Tokens (Lexer Part)

35 Identifier

: Simple_Latin_Upper_Case_Letter

37 // [...]

;

39 // 3.12 Operators

ASSIGN : ’=’;

41 GT : ’>’;

LT : ’<’;

43 // [...]

// a fragment is an abstract phrase, that must be defined in a phrase again

45 fragment Simple_Latin_Upper_Case_Letter

: ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ | ’G’ | ’H’ // [...]

47 ;

Listing 6.3: PQL ANTLR Grammar Excerpt

With the help of a generated ANTLR parser based on a grammar, every parseable string

is converted into a parse tree. Figure 6.11 shows such a parse tree for the grammar in

88

6.5 PQL Proof-of-Concept Implementation

Listing 6.3. All uncapitalized nodes (except for leafs) of the parse tree represent rules. In

contrast, capitalized nodes and leafs are tokens. This parse tree is interpreted by either a

parse tree walker or parse tree visitor, ANTLR is able to generate both. Walkers and visitors

are interfaces used to separate parser code from business logic. A walker fires events

when a node in a parse tree is entered or left. These events can be caught to execute own

methods, similar to a XML SAX parser [14].

Figure 6.11: PQL ParseTree Example

In contrast, a visitor has the ability to control the parse tree walk. As a result, it is possible to

call child nodes in a parent, similar to a XML DOM parser [60]. The latter emphasized as

very useful for PQL (cf. Section 6.5.3).

6.5.2 PQL Request Representation

The PQL proof-of-concept consists of different components. It is divided into contexts to

decide, which operations should be executed. Each context has a unique set of change

operations described in the following.

Context

The PQL proof-of-concept earmarks more than the process modeling context. It can be

used to manage run-time aspects as required by Requirement GRQ-1 (cf. Section 3.3).

There are four different contexts: repository, modeling, instance and monitoring. Context

repository is used to load and store process models based on a process model id. Context

modeling offers methods to execute process model update operations implemented in

89

6 The Clavii BPM Platform

Clavii (cf. Section 6.4.5). The instance context allows to start new process instances while

monitoring context is planed to deliver instance execution information, like the number of

finished tasks or an execution trace log.

PQL Syntax

The proof-of-concept external DSL is defined by an ANTLR grammar, which describes

lexer and parser definitions combined (cf. Section 6.5.1). A PQL request is a string,

which has to be in conjunction with the PQL grammar. The PQL parser supports more

than one PQL string per request. This feature is required to retrieve a set of process

models by one PQL request. The PQL grammar is built hierarchically and starts with

a root parser rule pqlStatement, which is built with the following schema: <Context>

<ChangeDescription> <FilterDescription> <FormatDescription>;

The context consists of methods to retrieve, update, or delete a process model or al-

ter a process instance. PQL request GET MODEL id244, for example, returns a pro-

cess model with id=id244 from the process repository. PQL request UPDATE MODEL id

INSERTNODE(id,name,pred,succ) inserts a new task with id, name between process

nodes with id=pred and id=succ.

Class FilterDescription denotes reduction and aggregation operations based on process

node attributes, to define on which process nodes these reductions should take place. An

PQL example for the retrieval of a process model with applied process view creation op-

erations is: GET MODEL id FILTER REDUCE(id=3,id=4) AGGREGATE(user=${my-

self}). Thereby, "${myself}" is a variable, that is replaced by the id of the executing

user automatically. There are more organizational variables, like the organizational unit or

organization of the user. Possible process node attributes are listed in Table 6.5.

Finally, class FormatDescription defines the return type of a process model, which may be

either XML, or JSON (i.e., GET MODEL id FORMAT JSON). This feature may be used by

web applications executed in a JavaScript engine. The latter is implemented in web browsers

to provide a highly optimized environment for JSON format processing.

90

6.5 PQL Proof-of-Concept Implementation

PQL Description

For easy processing of PQL requests within computer languages another representation

of a PQL string is necessary. Class PQLDescription is an intermediate, object-oriented

representation that represents exactly one PQL request.

Change operations are referred to process node IDs, whereas view creation operations are

defined by process node attribute constraints.

Class PQLDescription consists of a model ID, the original PQL string, the context (as

enumeration data type), the desired output format (enumeration data type, and values XML

or JSON) and two lists of PQLFilterDescription and PQLChangeDescription objects.

A PQLFilterDescription consists of a FilterType (i.e., values REDUCE, AGGREGATE), a

set of filter attributes and a list of node IDs to be excluded from abstraction. Excluded nodes

are, for example, nodes, that are changed by a preceding change operation. Otherwise,

newly inserted nodes may be reduced and, thus, not shown to a user. If defined, filter

attributes match these newly inserted nodes.

A filter attribute contains of a FilterAttributeType attribute, a FilterAttribute-

ComparatorType attribute and a value to be compared against. Both are enumeration

types and describe, on which node attribute (i.e., attribute type in Table 6.5) and with

which comparator function (i.e, attribute comparator: EQUALS, NEQUALS, LIKE) a node

attribute should be checked against the value. FilterAttribute(NODE_USER, LIKE,

"Peter") expresses for example, that an abstraction will be applied on every node, whose

assigned user attribute contains value "Peter". The Clavii implementation, therefore, looks

up all registered users in service OrgModelManager, that contain value "Peter" and also

checks against their IDs. This is necessary, since Activiti stores only user and group IDs as

assignment attribute values in a node.

6.5.3 Parsing and Conversion Procedure

In order to convert a PQL request into a PQLDescription object, four different classes

are involved: PQLExecutor, PQLVisitor, ParseTree and an instantiated PQLDescription

91

6 The Clavii BPM Platform

Variable Node Attribute
NODE_ID ID of a process node.
NODE_NAME Visible name of a process node.
NODE_TYPE Node type of a process node(i.e., user task, service task).
NODE_PRED Predecessor process node ID, filter actions are applied on the succeeding process node.
NODE_SUCC Successor process node ID, filter actions are applied on the preceding process node.
NODE_USER Assigned process participant of a process node, implementation supports a process partici-

pant’s ID as well as its common name as value.
NODE_GROUP Assigned group of a process node, implementation supports group ID and group name as

value.

Table 6.5: PQL FilterAttributeType

(cf. Figure 6.12). Class PQLExecutor is responsible for calling methods in the ANTLR

framework to convert a PQL request into an intermediate representation, called parse

tree. A parse tree is a undirected graph tree, in which every node represents a pre-

viously parsed rule (as defined in the PQL grammar). Each detected parse tree node

calls method visit(ParseTree), that executes methods, depending from the parse tree

node type, implemented in class PQLVisitor to modify the PQLDescription object. Fig-

ure 6.11 shows an example parse tree for the PQL request GET MODEL id2133 FILTER

REDUCE(node.type != userTask).

The Clavii BPM platform makes use of class PQLExecutor and converts the declarative

PQLDescription class into process model change operations (cf. Section 6.6).

6.6 Process View Implementation

Process views (cf. Section 3) are named Process Filters in Clavii and are executable with the

ProcessFilterManager. A Process Filter can be either a PQL request String or a predefined

request, called FilterDefinition. This FilterDefinition consists of a PQL request, a custom

name and information used by the UI (i.e., icons). FilterDefinitions are stored by Clavii’s

persistence manager (cf. Section 6.3).

6.6.1 Creating a Process View

Creating a process view the ProcessFilterManager requires a reference on a process model.

This may either be commited by a PQL request containing such reference ("GET MODEL

92

6.6 Process View Implementation

PQLExecutor

executePQLStatement
 (String pqlStatement)

addErrorListener()

ParseTreePQLVisitor

* each Context performs specific operations

PQLDescription

operation() *

PQLDescription
PQLDescription

getPQLDescription()

visit(ParseTree)

accept(PQLVisitor)

loop for each ParseTree child

Figure 6.12: UML Sequence Diagram for converting a PQLDescription Object

<id>", cf. Section 6.5.2) or a method call with a reference on the respective process model

object.

Figure 6.13 shows the conversion procedure by an UML sequence diagram. A genera-

tion is started with the method call executeFilter(BpmnModel, FilterDefinition,

Agent) on the ProcessFilterManager. The PQL request (embedded in a FilterDefinition) is

first converted into a PQLDescription object. Subsequently, filter variables are set on the

PQLDescription, which are necessary to consider a users context for filter application (which

user is logged in, what organization does he belong to). Table 6.6 shows available variables

and their description.

Afterwards, the PQLDescription object is converted into a ViewDefinition object containing

a set of ChangeOperation objects. Every reduction or aggregation request is converted

93

6 The Clavii BPM Platform

ProcessFilter
Manager

executeFilter(BpmnModel,
 FilterDefinition, Agent)

convertToClaviiBpmnModel

ProcessModel
Manager

executePQLStatement(filterDefinition.getPqlQuery())

PQLExecutor

* see Section Process Model Management

claviiBpmnModel

PQLDescription

BpmnModel

setFilterVariables

convertPQLDescription()
: ViewDefinition

processModelChangeDescriptions
(claviiModel, viewDefinition)

updateModel(claviiModel, Set<ModelChangeDescription>)

applyRefactoringOperations

setFilterExtensions

*

Figure 6.13: UML Sequence of a Process Filter Execution

into one ChangeOperation object. The required node sets are generated by logically

concatenating PQLFilterAttributes and parsing the process model for process nodes these

attributes fit on. Node identifiers, names and types are linked by a logical OR-every process

node must comprise at least one attribute to be added to the node set.

94

6.6 Process View Implementation

Name Description
${model} The ${model} filter variable is replaced

by the ClaviiBpmnModel.Id the filter is
executed on.

${myself} The ${myself} filter variable is replaced
by the id of the executing process partici-
pant.

${mygroup} The ${mygroup} filter variable is replaced
by the group id of the executing process
participant.

${myorg} The ${myorg} filter variable is replaced
by the organization id of the executing
process participant.

Table 6.6: Clavii Process Filter Variables

Subsequently, the ViewDefinition is applied to the process model with the ProcessModel-

Manager (cf. Section 6.4.6), the require call contains the ClaviiBpmnModel and the set of

ProcessModelChangeDescriptions (cf. Section 6.4.5).

Refactoring operations are applied on the generated process view to reduce empty blocks or

multiple branches. Finally, FilterExtensions are added to the process view. These extensions

enable other components to comprehend executed view operations (cf. Listing 6.2).

Figure 6.14 and Figure 6.15 show applied FilterDefinitions on the process model in Figure 6.7.

The FilterDefinition in Figure 6.14 reduces all process tasks, except technical, like service or

script tasks, while the filter in Figure 6.15 preserves user tasks. As we can see, the original

process model is much larger and difficult to understand.

The next section illustrates updates on a process view, for which FilterExtensions are

assessed.

6.6.2 Updates on Process Views

Updates applied on process views in Clavii are based on the algorithms described in

Section 3.1.3 and run as characterized in Section 3.1.3.

First, method updateOnFilter(ClaviiBpmnModel, FilterDefinition, Agent,

ModelChangeDescription) in class ProcessFilterManager is called. ModelChange-

Description contains update ChangeOperations to be executed on the CPM ClaviiBpmn-

Model. These process model change operations contain node sets, which could include

95

6 The Clavii BPM Platform

Figure 6.14: Clavii Technical Task Process View

Figure 6.15: Clavii User Task Process View

virtual nodes or insert operations not regarding surrounding reduced nodes. Thus, every

ModelChangeDescription is corrected by calculating and comparing node sets out of the

FilterDefinition. Hence, virtual nodes may be resolved to their comprising process nodes.

96

6.7 Summary

Arising ambiguities are solved by parameter ParameterMode (cf. Section 3.1.1). Param-

eter ParameterMode is set to default values in the proof-of-concept implementation, but

may be customized by users. Parameter ParameterMode is a Java interface. The latter is

implemented by other parameters (e.g., parameter InsertSerialMode, cf. Figure 6.16).

Figure 6.16: ParameterMode Type Hierarchy

Furthermore, after correction of all ModelChangeDescriptions, view update operations

are executed on the CPM (i.e., implemented as ClaviiBpmnModel) like common process

model change operations (cf. Section 6.4.6). Hence, the CPM has been changed, the

FilterDefinition has to be recalculated to create an updated process view. To prevent the

view creation from reducing newly inserted nodes and, thus, not showing changes of a

process view, every updated node ID is added to an exclusion node set, which is present in

every PQLDescription. Finally, the updated view is created according to section 6.6.1 and

returned to the method caller.

6.7 Summary

In this section the Clavii BPM platform proof-of-concept implementation was introduced.

It is built with a MVC-like architecture running as a JEE Application. Clavii offers various

functionalities, for example identity management, process instance monitoring, validation

management for process models, or a plugin architecture to be able to use additional service

tasks. Each is described by a manager interface.

Section 6.4 delineated, how process models are represented, stored and changed. Process

model changes in Clavii are built hierarchically to avoid code redundancies and are based

on the GraphUtils library. The latter utilizes a RPST to determine block-structures, which

97

6 The Clavii BPM Platform

are required by Clavii’s process model. The PQL proof-of-concept implementation enables

Clavii to define process views declaratively. Pre-defined PQL requests can be applied on

arbitrary process models and, thus, are process model independent. Furthermore, updates

on process views are supported by Clavii, as well as refactoring operations removing not

necessary process nodes after creating a process view.

The next Section takes a look at work related to process views and PQL.

98

7
Related Work

Proviado is an approach to create process views enabling personalized views on process

models and process instances [9, 69]. It offers methods for structural and graphical adap-

tions of process models. Structural adaptations in Proviado involve process view creation

algorithms to manipulate representations of control flow, process element attributes, or

process data elements. Figure 7.1 shows an example of view operation AggrShiftOut

Aggregate(B,C,H,K).

Graphical adaptions comprise template mechanisms to configure the graphical representa-

tion of process models.

The proView approach is based on emerged results of Proviado and offers additional support

to update process views and related CPMs directly eventuating in control-flow and view

creation limitations [40, 41, 44]. In particular, process models have to be block-structured,

arising ambiguities during process view modifications require additional parameters.

99

7 Related Work

Figure 7.1: Proviado Process View Example (Source: [69])

Figure 7.2: ProView Multi-Layer View Operations (Source: [69])

The proposed concepts for PQL-based process views and its implementation in the Clavii

BPM platform are based on both approaches. Dynamic process views result from high-level

view operations described in Proviado and proView (cf. Figure 7.2). However, PQL enables

the ability to define process views in a declarative way, rather than strictly relating to a

specific process model (cf. Section 3.1.3). During view creation, mappings between virtual

100

nodes (to be created) and process nodes can be determined and adjusted dynamically by

evaluating PQL queries. Process views defined with PQL are not referring to a specific

CPM. Instead, abstract properties, like task types or relations between nodes, are used. As

a result, PQL queries allow to apply view operations on multiple, dynamically discovered

models. Explicit view definitions are also possible with PQL, as sets of node IDs can be

defined.

Sakr et al. proposed a framework for querying process models [73]. BPMN-Q uses parts of

the BPMN 2.0 meta-model, its queries are built as fragments with specialized objects. Its

language meta-model offers different elements divided into meta-classes (cf. Figure 7.3).

The Connectivity meta-class, for example, contains paths and sequence flows. Sequence

flows connect two adjacent process nodes, while a path only denotes a path between two

nodes, i.e., there might be other nodes in between. The Activity meta-class describes

generic process activities. Abstract events differentiate between start, intermediate and end

events and are summarized in the Event meta-class. Finally, gateway nodes in another

meta-class distinguish between split and join parallel, conditional and OR gateways.

Figure 7.3: UML Class Diagram for BPMN-Q Meta-Model (Source: [5])

101

7 Related Work

Furthermore, BPMN-Q offers a visual interface to define queries, which consist of the above

described elements. In addition, such a query may contain other elements to describe

variables to be discovered.

Matching a query against process models is done by path discovery. Therefore, every

searchable process model has to be preprocessed and stored in a RDBMS with a fixed-

mapping storage scheme. Graphical queries are converted into semantical expanded queries

using a Semantic Query Expander. The SQL-based Query Processor then executes SQL

scripts based on the semantical expanded queries to discover the RDBMS for matching

fragments.

Figure 7.4: BPMN-Q Framework Architecture (Source: [73])

BPMN-Q’s meta-model only supports a behavioral perspective, other process elements like

data elements are not discoverable. Process node attributes are not considerable as well.

BPMN-Q targets only queries to search for-updates on process models and abstractions are

not supported. A discovery is based on variables, which have to be defined in a query. Thus,

process similarity search approaches (i.e., by edit-distance) useful for process variants are

not supported.

102

BP-QL is a GUI-based language allowing for querying process models [7, 8]. Its graphical

notation is based on state charts. Hence, a query is defined by state chart patterns.

Additional state chart elements are used to define data flows between process activities.

BP-QL uses pattern matching on node attributes and control flows to search for process

models matching a query fragment. Control flows can also be designed to allow place

holders. Therefore, edges with one arrow may not have additional nodes inbetween a

search fragment, while two arrows describe, that a correct search result may have additional

nodes in between two nodes of the search fragment. Dashed edges and nodes of a query

fragment denote a negation as constraint, a negated path may not exist in a process model.

Figure 7.5 illustrates a BP-QL query requireing the search component to be reached without

prior login.

Figure 7.5: BP-QL Query Example (Source: [8])

The proof-of-concept implementation is implemented in Active XML intended to query BPEL

process models and returning data from embedded web service calls. Therefore, Active

XML offers to define data explicitly, as usual for XML, and intentionally to be able to obtain

data dynamically [2]. Intentional data definitions are useful for BPEL, because embedded

web service calls may return a variety of not explicitly defined data types.

When searching for process models, first BP-QL queries are translated into XQuery queries,

which are then executed on BPEL definitions.

103

7 Related Work

BP-QL also treats some kind of process abstraction, it offers "different levels of granularity"

either showing "fine-grained" or "coarse-grained" process models for higher level abstraction.

"Fine-grained" granularity zooms into process models and shows additional information,

"coarse-grained" granularity depicts process nodes expressing external web service calls as

"black boxes" [8].

104

8
Conclusion

This thesis presents PQL, an approach for a process query language to simplify business

process modeling. It features a processing pipeline offering business process discovery

based on exact matching or similarity matching, process modeling capabilities to update

process models and process abstractions. The PQL meta-model is able to map arbitrary

graph-based process modeling notations. Thus, common tasks, like process model changes

or process abstractions do not have to be implemented discretely for every notation, but may

be executed by functionalities supplied by PQL.

Next steps for PQL are the development of a technical standard and a reference implemen-

tation to show interoperability features between different PAIS implementations. Additionally,

open issues about process model similarity discovery exist, like how to transform process

models for efficient process discovery.

105

8 Conclusion

The Clavii BPM platform is a web-based and integrated PAIS. It simplifies the BPM lifecycle

and enables rapid development of executable process models. The Activiti BPM platform

proves to be very flexible - during the development of Clavii various components of Activiti

are extended. This involves process gateway logic and adding ad-hoc changes for manual

decisioning of branches during execution, just to mention two extensions.

Beside Clavii a component is created, where common graph algorithms are implemented

based on the RPST. It allows to calculate standard tasks used for process modeling and

process abstraction, which Activiti and other PAIS do not support out of the box. A simplified

creation and management approach of process views is implemented based on this graph

utility component and the proof-of-concept implementation of PQL. Process views described

by PQL are more flexible and easier to implement, while enabling high-level process view

operations.

Clavii’s approach shows a new way to simplify the workload in the context of BPM. It may be

extended to support distributed process engine instances [52] and execution flexibility for

process tasks, as well as dynamic load balancing required to build a flexible, scalable, and

simple to use BPM cloud platform [23].

106

A
Appendix

This appendix contains source codes written in Java.

A.1 Activiti Code Examples

Listing A.1 shows a simple example, where the Activiti engine is configured and started

(Lines 1-3), required services instanciated (Lines 5-8), a process model imported (Lines 10-

13) and instantiated (Lines 15f).

1 public void startEngine() {

ProcessEngine processEngine = ProcessEngineConfiguration

3 .createStandaloneInMemProcessEngineConfiguration()

.buildProcessEngine();

5 // instantiate services

RuntimeService runtimeService =

7 processEngine.getRuntimeService();

107

A Appendix

RepositoryService repositoryService =

9 processEngine.getRepositoryService();

// import process model from XML file

11 repositoryService.createDeployment()

.addClasspathResource(

13 "newProcessDef.bpmn20.xml")

.deploy();

15 // start process instance for previously imported process model

ProcessInstance processInstance =

17 runtimeService.startProcessInstanceByKey("newProcessDefName");

System.out.println("id " + processInstance.getId() + " " +

19 processInstance.getProcessDefinitionId());

}

Listing A.1: Activiti Code Sample Engine Initialization

Listing A.2 shows a code example on how to create a new Task, save it to the TaskService,

create a new User with the IdentityService, define users allowed to execute the newly

created task and finally execute it.

@Autowired

2 TaskService taskService; // TaskService is Autowired by Spring

@Autowired

4 IdentityService identityService;

6 public void createAndExecuteTask() {

// create and save generic Task

8 Task task = taskService.newTask();

task.setName("New Task");

10 taskService.saveTask(task);

12 // create, save and assign User

User user = identityService.newUser("FrancisUnderwood");

14 // it is also possible to create a group

// Group newGroup = identityService.newGroup("marketing");

16

identityService.saveUser(user);

18 taskService.addCandidateUser(task.getId(), "FrancisUnderwood");

20 // claim and complete Task as User

taskService.claim(task.getId(), "FrancisUnderwood");

22 taskService.complete(task.getId());

}

Listing A.2: Activiti Code Sample Creation and Execution of a Task

In order to execute a service task, Activiti offers four possibilities:

108

A.1 Activiti Code Examples

• POJO1 Java Service Task Class

◦ with or without field extensions

◦ with method or value expressions

• Java Delegate (resolves to a registered Java Bean)

The first possibility uses a simple Java class, which has to implement the JavaDelegate

interface provided by Activiti. This interface defines a method called void execute

(DelegateExecution execution), in which the business logic may be implemented.

1Plain Old Java Object

109

A Appendix

Figure A.1: Activiti BaseElement UML Class Diagram Excerpt

110

Glossary

API Application Programming Interface. Specifies interfaces between software components.

BPM Business process management. Systematical approach to capture, execute, docu-

ment, measure, monitore and control automated and non-automated processes to

reach goals defined by a business strategy.

BPMN 2.0 Business Process Model and Notation. Graphical representation to specify

business processes by process models.

Business Intelligence Theories and technologies to convert raw data into meaningful

information. Business Intelligence is used to handle huge amounts of process data to

identify and optimize business opportunities.

Business Process A set of tasks, that have to be done in a predefined order to achieve a

particular target.

Business Rule Description for operations, definitions, and constraints that apply to an

organization.

CPM Central process model. Process model used as base for process views.

Creation Set Specifies the schema and appearance of a process view.

DSL Domain-specific language. A computer programming language with focus on a specific

problem domain.

111

Glossary

Framework A universal, reusable software component to develop software applications

providing generic functionality easily expanded by application-specific logic.

Java Bean Serializable and reusable Java class with public methods, that encapsulates

many Java objects. Used in a Java EE environment.

Java Class Extensible template, that defines initial variable states and programming behav-

iors.

JEE Java Platform, Enterprise Edition. A software programming framework for developing

and running distributed enterprise applications.

JUEL Java implementation of UEL.

Open Source Product or system, whose ideas and design are freely available to the public.

PAIS Process-aware information system.

Process Designer Component of a PAIS to analyze and model a business process.

Process Fragment Sub-graph of a process model.

Process Model Schematic description of a business process.

Process Node Type of process element included in a process model. A node can either

represent a task, gateway, event, or entity, like a process participant or document.

Process View Simplified process model abstracted by different process perspectives.

REST REpresentational State Transfer. Architectural style consisting of architectural con-

straints applied to components, connectors and data elements within a distributed

hypermedia system.

Sequence Flow Directed edges connecting process nodes to express an execution order.

112

Glossary

SESE Single-Entry, Single-Exit. A fragment of a process model, that has exactly one

incoming and one outgoing edge.

Syntax Grammatical rules and structural patterns for an ordered use of words and symbols

to express software methods and data.

UEL Unified Expression Language. A special purpose programming language, that simpli-

fies access to data objects by an easy syntax.

View Creation Operation Operation, which transforms a process model into a process

view.

View Update Operation Operation to update a process view and its associated CPM.

XML eXtensible Markup Language. Markup language, that defines a set of rules to encode

documents in a format, that is human- and machine-readable.

113

List of Figures

2.1 BPMN 2.0 Process Model . 8

2.2 Comparism of an Unstructured and Block-Structured Process Model 11

2.3 SESE Blocks of a Process Model . 12

2.4 Components of a PAIS . 13

3.1 Process Model for Article Creation . 17

3.2 Reduction of a Task . 20

3.3 Aggregation of Tasks . 21

3.4 InsertSerial Update Operation . 23

3.5 Refactoring Operations . 26

3.6 Application Schema for Process Views . 28

4.1 Mapping between a BPMN 2.0 Model and the PQL Process Model 40

4.2 Overview on PQL Concepts . 41

4.3 Ambiguities Occuring During Node Insertion 44

4.4 Application Priority for Abstract Process Views 47

4.5 Overview on PQL Processing . 50

4.6 PQL Request . 51

4.7 Data State Model . 54

4.8 PQL Processing Pipeline . 55

5.1 Activiti Explorer User Interface . 58

5.2 BPMN 2.0 Process Model for Age Verification 60

5.3 Activiti Architecture Overview . 63

6.1 Clavii Architecture Overview . 67

6.2 DAO UML Class Diagram Excerpt . 68

115

List of Figures

6.3 User Interface of the Clavii BPM Platform . 69

6.4 Clavii Controller Overview . 70

6.5 Process Instance Monitoring in Clavii . 71

6.6 Process Data Elements in Clavii . 73

6.7 Clavii Process Model Excerpt . 76

6.8 Process Model and Corresponding RPST Graph 77

6.9 Clavii Process Model Factories UML Class Diagram 80

6.10 UML Sequence for Process Model Change Dispatching 86

6.11 PQL ParseTree Example . 89

6.12 UML Sequence Diagram for converting a PQLDescription Object 93

6.13 UML Sequence of a Process Filter Execution 94

6.14 Clavii Technical Task Process View . 96

6.15 Clavii User Task Process View . 96

6.16 ParameterMode Type Hierarchy . 97

7.1 Proviado Process View Example . 100

7.2 ProView Multi-Layer View Operations . 100

7.3 UML Class Diagram for BPMN-Q Meta-Model 101

7.4 BPMN-Q Framework Architecture . 102

7.5 BP-QL Query Example . 103

A.1 Activiti BaseElement UML Class Diagram Excerpt 110

116

List of Tables

2.1 BPMN 2.0 Task Types . 8

2.2 BPMN 2.0 Gateway Types . 9

2.3 BPMN 2.0 Event Types . 9

2.4 BPMN 2.0 Connecting Objects . 10

3.1 Control Flow View Creation Operations . 19

3.2 Control Flow View Update Operations . 24

3.3 Process View Refactoring Operations . 27

3.4 Requirements for a BPM-specific DSL . 32

4.1 PQL Meta-Model Element Attributes . 35

4.2 Perspectives of a Process Model . 37

4.3 Valid Process Element Attributes for View Creation Conditions 46

6.1 Clavii GraphUtils Methods Excerpt . 79

6.2 Clavii ElementAttributes . 83

6.3 Clavii Atomic Operations . 84

6.4 Clavii Compound Operations . 85

6.5 PQL FilterAttributeType . 92

6.6 Clavii Process Filter Variables . 95

117

Listings

4.1 Example of a PQL Request . 51

5.1 Activiti BPMN 2.0 XML Representation . 61

6.1 Process Model Extension Elements . 74

6.2 Process View Extension Elements . 75

6.3 PQL ANTLR Grammar Excerpt . 87

A.1 Activiti Code Sample Engine Initialization . 107

A.2 Activiti Code Sample Creation and Execution of a Task 108

119

Bibliography

[1] H2 Database Engine. http://www.h2database.com/, last visited: 08-26-2014, 2014.

[2] S. Abitrboul, O. Benjellourn, I. Manolescu, T. Milo, and R. Weber. Active XML: Peer-

to-peer Data and Web Services Integration. In Proceedings of 28th International

Conference on Very Large Data Bases, pages 1087–1090. VLDB, 2002.

[3] O. Alliance. OSGI Service Platform, Release 3. IOS Press, Inc., 2003.

[4] K. Andrews. Design and Development of a Run-time Object Design and Instantiation

Framework for BPM Systems. Master’s thesis, Ulm University, 2014.

[5] A. Awad. BPMN-Q: A Language to Query Business Processes. In EMISA, volume 119,

pages 115–128, 2007.

[6] F. Bayer and H. Kühn. Prozessmanagement für Experten: Impulse für aktuelle und

wiederkehrende Themen. Springer, 2013.

[7] C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying Business Processes. In

Proceedings of the 32nd International Conference on Very Large Data Bases, pages

343–354. (VLDB) Endowment, 2006.

[8] C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying Business Processes with

BP-QL. Information Systems, 33(6):477–507, 2008.

[9] R. Bobrik. Konfigurierbare Visualisierung komplexer Prozessmodelle. PhD thesis,

University of Ulm, 2008.

121

Bibliography

[10] R. Bobrik, T. Bauer, and M. Reichert. Proviado – Personalized and Configurable

Visualizations of Business Processes. E-Commerce and Web Technologies, 4082:61–

71, 2006.

[11] R. Bobrik, M. Reichert, and T. Bauer. Parameterizable Views for Process Visualization.

Technical report, University of Twente, 2007.

[12] R. Bobrik, M. Reichert, and T. Bauer. View-Based Process Visualization. In 5th Int’l

Conf. on Business Process Management (BPM’07), LNCS, pages 88–95. Springer,

2007.

[13] Brooks, R.J. and Tobias, A.M. Choosing the Best Model: Level of Detail, Complexity,

and Model Performance. Mathematical and Computer Modelling, 24(4):1–14, 1996.

[14] D. Brownell. SAX2. O’Reilly Media, 2002.

[15] S. Büringer. Development of a Cloud Platform for Business Process Administration,

Modeling and Execution. Master’s thesis, Ulm University, 2014.

[16] E. H. Chi. A Taxonomy of Visualization Techniques using the Data State Reference

Model. In Information Visualization, 2000. InfoVis 2000. IEEE Symposium on, volume

94301, pages 69–75, 2000.

[17] M. Cumberlidge. Business Process Management with Jboss Jbpm. From Technologies

to Solutions. Packt Publishing, 2007.

[18] P. Dadam and M. Reichert. The ADEPT Project: a Decade of Research and Devel-

opment for Robust and Flexible Process Support. Computer Science-Research and

Development, 23(2):81–97, 2009.

[19] T. H. Davenport and J. E. Short. The new Industrial Engineering: Information Tech-

nology and Business Process Redesign. Sloan Management Review, 31(4):11–27,

1990.

[20] T. De Bruin and M. Rosemann. Towards a Business Process Management Matu-

rity Model. In ECIS 2005 Proceedings of the Thirteenth European Conference on

122

Bibliography

Information Systems, pages 1–12, Germany, Regensburg, 2005. London School of

Economics.

[21] L. DeMichiel and B. Shannon. JSR 342: JavaTM Platform, Enterprise Edition 7 (Java

EE 7) Specification, 2013.

[22] R. Dijkman, M. Dumas, and L. García-Bañuelos. Graph Matching Algorithms for

Business Process Model Similarity Search. In Business Process Management, volume

5701 of LNCS, pages 48–63. Springer, 2009.

[23] E. F. Duipmans, L. F. Pires, and L. O. B. da Silva Santos. Towards a BPM Cloud

Architecture with Data and Activity Distribution. 2012 IEEE 16th International Enterprise

Distributed Object Computing Conference Workshops, pages 165–171, 2012.

[24] H. E. Eriksson and M. Penker. Business Modeling with UML: Business Patterns at

Work. OMG. Wiley, 1998.

[25] J. Fawcett, D. Ayers, and L. Quin. Beginning XML, 5th Edition. ITPro collection. Wiley,

2012.

[26] P. Feldbacher, P. Suppan, C. Schweiger, and R. Singer. Business Process Management:

A Survey among Small and Medium Sized Enterprises. In W. Schmidt, editor, S-BPM

ONE - Learning by Doing - Doing by Learning, volume 213 of Communications in

Computer and Information Science, pages 296–312. Springer, 2011.

[27] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.

RFC 2616-HTTP/1.1, the Hypertext Transfer Protocol, 1999.

[28] R. T. Fielding. Architectural Styles and the Design of Network-based Software Archi-

tectures. PhD thesis, University of California, Irvine, 2000.

[29] J. Freund and K. Götzer. Vom Geschäftsprozess zum Workflow: Ein Leitfaden für die

Praxis. Hanser, 2008.

[30] J. Freund and B. Rücker. Praxishandbuch BPMN 2.0. Carl Hanser Verlag GmbH &

Company KG, 2012.

123

Bibliography

[31] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic, New York,

1980.

[32] M. Grogan. JSR-223 Scripting for the Java TM Platform, 2006.

[33] A. Gupta. Java EE 7 Essentials. O’Reilly Media, 2013.

[34] J. N. Gupta, S. K. Sharma, M. A. Rashid, and I. Global. Handbook of Research on

Enterprise Systems. Information Science Reference, 2009.

[35] G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Building, and

Deploying Messaging Solutions. Addison-Wesley, 2004.

[36] Information Technology – Database Languages – SQL – Part 11: Information and

Definition Schemas (SQL/Schemata), 2011.

[37] R. Johnson, D. Pearson, and K. Pingali. The Program Structure Tree: Computing Con-

trol Regions in Linear Time. In Proceedings of the ACM SIGPLAN 1994 Conference on

Programming Language Design and Implementation, PLDI ’94, pages 171–185. ACM,

1994.

[38] D. Karagiannis and P. Höfferer. Metamodels in Action: An Overview. ICSOFT, pages

11–14, 2006.

[39] U. Kargl. Change Management im Business Process Management: BPM initiierte

Veränderungsprozesse. Diplomica Verlag, 2013.

[40] J. Kolb, K. Kammerer, and M. Reichert. Updatable Process Views for Adapting Large

Process Models: The proView Demonstrator. In Demo Track of the 10th Int’l Conf on

Business Process Management (BPM’12), number 940 in CEUR Workshop Proceed-

ings, pages 6–11, 2012.

[41] J. Kolb, K. Kammerer, and M. Reichert. Updatable Process Views for User-centered

Adaption of Large Process Models. In 10th Int’l Conference on Service Oriented

Computing (ICSOC’12), number 7636 in LNCS, pages 484–498. Springer, 2012.

124

Bibliography

[42] J. Kolb, H. Leopold, J. Mendling, and M. Reichert. Creating and Updating Personalized

and Verbalized Business Process Descriptions. In 6th IFIP WG 8.1 Working Confer-

ence on the Practice of Enterprise Modeling (PoEM’13), number 165 in LNBIB, pages

191–205. Springer, November 2013.

[43] J. Kolb and M. Reichert. A Flexible Approach for Abstracting and Personalizing Large

Business Process Models. ACM SIGAPP Applied Computing Review, 13(1):6–17,

March 2013.

[44] J. Kolb and M. Reichert. Data Flow Abstractions and Adaptations through Updatable

Process Views. In Proceedings of 28th Annual ACM Symposium on Applied Comput-

ing (SAC 2013), pages 1447–1453, 2013.

[45] J. Kolb, M. Reichert, and B. Weber. Using Concurrent Task Trees for Stakeholder-

centered Modeling and Visualization of Business Processes. In S-BPM ONE 2012,

number 284 in CCIS, pages 237–251. Springer, 2012.

[46] M. Konda. Just Spring. O’Reilly Media, 2011.

[47] M. Konda. Just Hibernate. O’Reilly Media, 2014.

[48] U. Kreher. Concepts, Architecture and Implementation of an Adaptive Process Man-

agement System. PhD thesis, University of Ulm, 2014.

[49] A. Lanz, J. Kolb, and M. Reichert. Enabling Personalized Process Schedules with

Time-aware Process Views. In CAiSE 2013 Workshops, 2nd Int’l Workshop on Human-

Centric Information Systems (HCIS 2013), number 148 in Lecture Notes in Business

Information Processing (LNBIP), pages 205–216. Springer, 2013.

[50] C. Li, M. Reichert, and A. Wombacher. On Measuring Process Model Similarity Based

on High-Level Change Operations. In Conceptual Modeling-ER 2008, pages 248–264.

Springer, 2008.

[51] O. L. Madsen. Block Structure and Object Oriented Languages, volume 21. ACM,

1986.

125

Bibliography

[52] J. Mangler and S. Rinderle-Ma. Rule-Based Synchronization of Process Activities.

2011 IEEE 13th Conference on Commerce and Enterprise Computing, pages 121–

128, 2011.

[53] J. Marinacci. Building Mobile Applications with Java: Using the Google Web Toolkit

and PhoneGap. O’Reilly Media, 2012.

[54] A. Marzal and E. Vidal. Computation of Normalized Edit Distance and Applications. Pat-

tern Analysis and Machine Intelligence, IEEE Transactions on, 15(9):926–932, 1993.

[55] J. Mendling, G. Neumann, and M. Nüttgens. A Comparison of XML Interchange

Formats for Business Process Modelling. Workflow Handbook, pages 185–198, 2005.

[56] J. Mendling, H. A. Reijers, and W. M. van der Aalst. Seven Process Modeling Guidelines

(7PMG). Information and Software Technology, 52(2):127–136, 2010.

[57] B. Meyer. Conception, Design, and Evaluation of a Graphical User Interface for a Cloud

Platform for Business Process Management. Master’s thesis, Ulm University, 2014.

[58] M. Minor, A. Tartakovski, and R. Bergmann. Representation and Structure-Based

Similarity Assessment for Agile Workflows. In Case-Based Reasoning Research and

Development, pages 224–238. Springer, 2007.

[59] B. P. Model. Notation (BPMN) Version 2.0. OMG Specification, Object Management

Group, 2011.

[60] G. Nicol, L. Wood, M. Champion, and S. Byrne. Document Object Model (DOM) Level

3 Core Specification. 2001.

[61] C. Nock. Data Access Patterns: Database Interactions in Object-Oriented Applications.

Addison-Wesley Boston, 2004.

[62] A. Osterwalder and Y. Pigneur. Business Model Generation: A Handbook for Visionar-

ies, Game Changers, and Challengers. Wiley, 2013.

[63] T. Parr. The Definitive ANTLR 4 Reference. 2013.

[64] J. L. Peterson. Petri Nets. ACM Computing Surveys (CSUR), 9(3):223–252, 1977.

126

Bibliography

[65] A. Polyvyanyy. jbpt - A Compendium of Process Technologies.

https://code.google.com/p/jbpt/, last visited: 08-26-2014. Online; accessed 20-

Jul-2014.

[66] A. Polyvyanyy, J. Vanhatalo, and H. Völzer. Simplified Computation and Generalization

of the Refined Process Structure Tree. In Web Services and Formal Methods, volume

6551 of LNCS, pages 25–41. Springer, 2011.

[67] T. Rademakers. Activiti in Action: Executable Business Processes in BPMN 2.0. Man-

ning Pubs Co Series. Manning Publications Company, 2012.

[68] M. Reichert and P. Dadam. Enabling Adaptive Process-Aware Information Systems with

ADEPT2. In Handbook of Research on Business Process Modeling, pages 173–203.

Hershey, New York, 2009.

[69] M. Reichert, J. Kolb, R. Bobrik, D. Ag, and T. Bauer. Enabling Personalized Visualization

of Large Business Processes through Parameterizable Views. In 27th ACM Symposium

On Applied Computing (SAC’12), 2012.

[70] M. Reichert and B. Weber. Enabling Flexibility in Process-Aware Information Systems:

Challenges, Methods, Technologies. Springer, 2012.

[71] A. Rubinger and B. Burke. Enterprise JavaBeans 3.1. O’Reilly Media, 2010.

[72] J. Russell and R. Cohn. Graphviz. Book on Demand Ltd., 2012.

[73] S. Sakr and A. Awad. A Framework for Querying Graph-Based Business Process

Models. In Proceedings of the 19th International Conference on World Wide Web,

pages 1297–1300. ACM, 2010.

[74] A.-W. Scheer and M. Nüttgens. ARIS Architecture and Reference Models for Business

Process Management. Springer, 2000.

[75] K. Shahzad, M. Elias, and P. Johannesson. Towards Cross Language Process Model

Reuse – A Language Independent Representation of Process Models. The Practice of

Enterprise Modeling, 39:176–190, 2009.

127

Bibliography

[76] D. Spinellis. Notable Design Patterns for Domain-Specific Languages. Journal of

Systems and Software, 56(1):91–99, 2001.

[77] R. E. Tarjan and J. Valdes. Prime Subprogram Parsing of a Program. In Proceed-

ings of the 7th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 95–105. ACM, 1980.

[78] W. M. P. van der Aalst. Formalization and Verification of Event-Driven Process Chains.

Information and Software technology, 41(10):639–650, 1999.

[79] W. M. P. van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and A. P. Barros.

Workflow Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

[80] B. Weber, M. Reichert, J. Mendling, and H. Reijers. Refactoring Large Process Model

Repositories. Computers in Industry, 62(5):467–486, 2011.

[81] B. Weber, M. Reichert, and S. Rinderle-Ma. Change Patterns and Change Support

Features–Enhancing Flexibility in Process-Aware Information Systems. Data and

Knowledge Engineering, 66(3):438–466, 2008.

[82] M. Weske. Business Process Management: Concepts, Languages, Architectures,

volume 14. Springer, 2012.

[83] L. Yujian and L. Bo. A Normalized Levenshtein Distance Metric. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 29(6):1091–1095, 2007.

[84] M. Zur Muehlen and J. Recker. How Much Language Is Enough? Theoretical and

Practical Use of the Business Process Modeling Notation. In Advanced Information

Systems Engineering, pages 465–479. Springer, 2008.

128

Name: Klaus Kammerer Matrikelnummer: 650769

Erklärung

Ich erkläre, dass ich die Arbeit selbstständig verfasst und keine anderen als die angegebenen

Quellen und Hilfsmittel verwendet habe.

Ulm, den .

Klaus Kammerer

	Introduction
	Fundamentals on Business Process Management
	Business Process Management
	BPM Lifecycle

	Business Process Modeling
	Process Model
	Process Modeling Notation
	Block-Structured Process Models
	Workflow Patterns and Change Patterns

	Executing Process Models
	Process-Aware Information Systems
	Summary

	Overview on Abstracting Process Models by Applying Process Views
	Fundamentals on Process Views
	Process View
	Control Flow View Creation Operations
	Control Flow View Update Operations
	Migration of Process View Change Sets
	Process View Refactoring Operations

	Discussion
	Requirements for a BPM-Specific Language
	Summary

	Process Query and Modification Language
	PQL Process Meta-Model
	Process Model Correctness and Expressiveness
	PQL Process Model Mapping

	Process Query Language
	Process Model Discovery Representation
	PQL Process Model Change Operations
	PQL Process Views
	PQL Modularity Concept

	Software Architecture Supporting PQL
	PQL Request
	Architectural Components
	Processing Pipeline

	Summary

	Activiti BPM Platform
	Activiti Toolstack
	Process Modeling Support
	Java Object Representation for Process Models
	XML Representation for Process Models
	Custom Extensions of Process Models
	Expression Language

	Activiti Server Component and Java API
	Summary

	The Clavii BPM Platform
	Principles
	Proof-of-Concept Implementation Architecture
	Functionalities
	Managing Process Models
	Process Model Representation
	Block-Structural Constraints
	Process Model Graph Utilities
	Process Model Creation
	Process Model Change Operations
	Process Model Update Procedure

	PQL Proof-of-Concept Implementation
	Generating a Parser for Domain Specific Languages
	PQL Request Representation
	Parsing and Conversion Procedure

	Process View Implementation
	Creating a Process View
	Updates on Process Views

	Summary

	Related Work
	Conclusion
	Appendix
	Activiti Code Examples

	Bibliography

