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ABSTRACT 
Process management technology constitutes a fundamental component of any service-driven computing 
environment. Process management facilitates both the composition of services at design time and their 
orchestration at run time. In particular, when applying the service paradigm to enterprise integration 
management, high flexibility is required. In this context, atomic as well as composite services 
representing the business functions should be quickly adaptable to cope with dynamic business changes. 
Furthermore, they should enable mobile and quick access to enterprise information. The growing maturity 
of smart mobile devices has fostered their prevalence in knowledge-intensive areas in the enterprise as 
well. As a consequence, process management technology needs to be enhanced with mobile task support. 
However, tasks hitherto executed stationarily, cannot be simply transferred in order to run on smart 
mobile devices. Many research groups focus on the partitioning of processes and the distributed execution 
of the resulting fragments on smart mobile devices. Opposed to this fragmentation concept, this chapter 
proposes an approach to enable the robust and flexible execution of single process tasks on smart mobile 
devices by provisioning self-healing techniques to address the smooth integration of mobile tasks with 
business processes.  
 
INTRODUCTION 
Daily business routines increasingly demand a mobile and flexible access to information systems. 
However, the integration of smart mobile devices into existing IT infrastructures is laborious and error-
prone. In particular, the IT infrastructure must cope with ad hoc events, various errors (e.g., connectivity 
problems), physical limitations of smart mobile devices (e.g., limited battery capacity), misbehavior of 
users (e.g., instant shutdowns), and environmental data collected by mobile sensors (Schobel et al., 2013). 
In general, proper exception handling constitutes a prerequisite for any mobile task support. In this 
context, adaptive and flexible process management technology offers promising perspectives based on a 
wide range of techniques (Reichert & Weber, 2012; Reichert & Weber, 2013; Kolb & Reichert, 2013; 
Lanz et al., 2013; Weber et al., 2008). In particular, it allows for the proper handling of run time 
exceptions. However, executing tasks on smart mobile devices in the same way as on stationary 
computers is not appropriate when taking these specific challenges of mobile environments into account 
as well. 
Any service-oriented environment should allow for mobile task support during business process 
execution. This chapter presents an approach developed in the MARPLE (Managing Robust Mobile 
Processes in a Complex World) project. In particular, this approach enables the robust execution of single 
process tasks on smart mobile devices. Basically, it relies on two fundamental services, a backup and a 
delegation service. These services ensure that mobile tasks do not harm overall process execution in case 
task failures occur. Finally, a service-oriented architecture is presented that integrates the backup and 
delegation services with an existing process engine.  
Note that implementing a process engine, which provides all functions for creating and executing mobile 
tasks, from scratch would constitute another option. However, if a process management system is already 
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in use in an enterprise, the introduction of another process engine might not be acceptable, due to the high 
efforts needed for transferring process models and their configurations to the new engine. Therefore, the 
presented approach provides an engine-independent interface for executing mobile tasks and services. For 
this purpose, the services are implemented in a layer between the process engine and the smart mobile 
devices. In particular, this service layer enables the instantiation, activation, and robust execution of 
mobile tasks (including error handling). 
Furthermore, the mobile task execution approach presented in this chapter allows handling run time errors 
without need for any manual involvement of users. Generally, the provisioning of respective self-healing 
techniques is crucial for executing mobile tasks in the large scale as well as for achieving higher user 
acceptance for mobile business processes. 
We first discuss fundamental issues relevant in the context of mobile environments. Their understanding 
is required for developing the delegation and backup services as well as for designing the overall system 
architecture. In particular, this architecture addresses the challenges (e.g., device failures) to be tackled in 
order to enable robust mobile task execution. Furthermore, these challenges must be considered in the 
context of business process execution; i.e., they must cover aspects beyond the characteristics of a mobile 
environment. In detail, the chapter addresses challenges posed by the mobile environment itself (e.g., a 
mobile device loses its connectivity), challenges related to process execution (e.g., missing data due to 
task failures), and challenges caused by the behavior of mobile users (e.g., instant shutdowns).  
 
BACKGROUND  
Many domains crave for the integration of smart mobile devices into business process execution (Pryss et 
al., 2012; Lenz & Reichert, 2007). Figure 1 shows a simplified healthcare example illustrating this. It 
depicts a ward round process for which mobile assistance is required (Pryss et al., 2012; Pryss et al., 
2014). For instance, Prepare Ward Round constitutes a task whose mobile support would ease daily work 
of healthcare professionals. 
 

 
 
Figure 1. Adding smart mobile devices to process execution (mobile activities are flagged with an icon) 
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The use of smart mobile devices during process execution raises several challenges with respect to mobile 
task support. For example, if the smart mobile device running the task Determine Vital Signs (see Figure 
1) encounters physical problems, overall process execution might be affected; or if tasks succeeding a 
mobile task in the flow of control require data usually provided by this mobile task, standard exception 
handling strategies (e.g., to skip the mobile task) are not appropriate if the mobile task fails. As shown in 
Figure 1, task Finish Ward Round is data-dependent on mobile task Determine Vital Signs. If task 
Determine Vital Signs fails at run time, the respective process instance cannot terminate properly since 
task Finish Ward Round cannot be properly executed due to the missing value of data element D1.  
 
Challenges for Executing Processes with Mobile Tasks 
To be able to run selected process tasks on smart mobile devices during process execution, the challenges 
imposed by mobile environments need to be properly addressed. These challenges concern the state of 
smart mobile devices as well as the behavior of mobile users. In addition, the specific challenges relating 
to process execution must be considered as well; e.g., dealing with missing process data due to run time 
failures of mobile tasks.  
This section presents backgrounds on the elicitation of these challenges and categorizes them into 
process-, environment- and user-related ones. 
 
Elicitating Challenges Relevant for Executing Processes with Mobile Tasks 
 
In the following, three advanced mobile application scenarios will be discussed. The first scenario refers 
to the healthcare domain, the second one to the field of mobile augmented reality, and the last one to the 
psychological domain. The different scenarios focus on the challenges that emerge when executing 
mobile tasks. More precisely, only one scenario is directly related to business process execution, whereas 
the other two scenarios are not specific to business process execution; i.e., they refer to mobile application 
development in general and reveal fundamental challenges for mobile task execution. In particular, in all 
scenarios, two aspects are crucial: robustness and user acceptance.  
 
Supporting Medical Ward Rounds with Mobile Task and Process Management 
 
In hospitals, ward rounds are crucial for decision-making in the context of patient treatment processes. In 
the course of a ward round, new tasks emerge and need to be allocated to healthcare professionals. In 
current clinical practice, however, task management is not properly handled. Tasks emerging during a 
ward round are jotted down using pen & paper and their later processing is prone to errors. Furthermore, 
healthcare professionals must keep track of the processing status of their tasks and processes respectively 
(e.g., medical orders). To relieve healthcare professionals from such a manual task management, we 
developed the MEDo (MedicalDo) approach (Pryss et al., 2012; Pryss et al., 2014). It supports medical 
ward rounds by transforming the pen & paper worksheet to a smart mobile user interface on a tablet, 
integrating healthcare process support, mobile task management, and access to the electronic patient 
record. A number of user experiments has proven that MEDo puts task acquisition on a level comparable 
to that of pen & paper. Overall, physicians may create, monitor and share tasks based on the smart mobile 
and user-friendly platform provided by MEDo. 
Prior to the development of MEDo, a case study was conducted in order to gain detailed insights into how 
ward rounds and task management look like in clinical practice. Based on the lessons learned, 
requirements for enabling a mobile task support in the context of medical ward rounds were derived. We 
further learned that current approaches, targeting at task and process support in hospitals, often neglect 
the way healthcare professionals organize their daily routine work. In addition, they do not provide the 
flexibility required by healthcare professionals to deal with exceptional situations (e.g., the health status 
of a patient changes from one moment to another) and they do also not allow for mobile task 
management.  
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In general, any mobile task assistance of physicians and nurses must cope with a number of challenging 
issues, e.g., frequent changes of a user’s work location or connected network, mindless shutdowns of 
smart mobile devices, or non-observance of the battery charge level of a smart mobile device by its user. 
In turn, if a mobile task is interrupted and not properly resumed later, severe errors (e.g., omissive or 
missing data) might occur. Apart from this, tasks often have to be accomplished within a certain period of 
time, which is particularly challenging in a mobile environment. Table 1 summarizes the major challenges 
for executing processes with mobile tasks as identified in the context of the described mobile application 
scenario.   
 
Location-based Mobile Augmented Reality Applications 
 
Another challenging mobile application scenario is mobile augmented reality. In the AREA (Augmented 
Reality Engine Application) project (Geiger et al., 2013), we developed an advanced mobile application, 
which enables location-based mobile augmented reality on two different mobile operating systems (i.e., 
iOS and Android). In particular, this kind of mobile application is characterized by high resource 
demands since various sensors must be queried at run time and numerous virtual objects may have to be 
drawn in real-time on the screen of the smart mobile device. Therefore, as a particular challenge, AREA 
has focused on the efficient implementation of a robust mobile augmented reality engine, which provides 
location-based functionality. In turn, based on this engine sophisticated mobile business applications can 
be implemented. For example, one company uses AREA for its application LiveGuide1. A LiveGuide can 
be used to provide residents and tourists of a city with the opportunity to explore their surrounding by 
displaying points of interests stored for that city (e.g., public buildings, parks, places of events, or 
companies). In the latter context, we got detailed insights into the challenges related mobile application 
development in general (see Table 1). 
 
Enabling Mobile Questionnaires and Data Collection in Psychological Studies 
 
In psychology, many tasks and studies are performed with specifically tailored paper & pencil	
questionnaires. Usually, such a paper‐based approach is accompanied by a massive workload when 
evaluating and analyzing the collected data afterwards, e.g., to transfer the data to electronic worksheets 
or statistics software. To relieve psychologists from such manual tasks and to improve the efficiency of 
data collection, we have developed smart mobile device applications in the QuestionSys2 project for  
several psychological questionnaires (Ruf-Leuschner et al., 2013), (Isele et al., 2013), (Crombach et al., 
2013). In this context, we were able to demonstrate the usefulness of smart mobile devices (e.g., 
smartphones or tablets) and mobile applications with respect to data collection in the psychological field. 
However, the smart mobile applications we developed have not been applicable to support psychological 
studies in the large scale yet. Moreover, during both their development and practical use in real-world 
psychological studies, we were able to identify numerous challenges. For example, certain psychological 
surveys might be performed in rural areas in developing countries (Crombach et al., 2013), which raises 
additional challenges regarding smart mobile applications and mobile (see Table 1).  
 
Major Challenges for Executing Processes with Mobile Tasks 
 
Regarding the execution of mobile tasks in the context of business processes, we consider the challenges 
discussed in the following. Thereby, we categorize them into challenges related to the environment, to the 
user behavior and process execution. Finally, Table 1 indicates in which of the presented mobile 
application scenarios these challenges could be identified. 
 

                                                 
1 Further information to the project can be found at: http://www.liveguide.de or www.area-project.info 
2 Further information to the project can be found at: http://www.dbis.info/questionsys 
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Challenge 1: Connectivity (Environment related) 
Connectivity refers to the availability of users as well as the smart mobile devices assigned to them. Non-
availability might be caused by an undesired status of a device (e.g., broken device) or a particular 
personal status (e.g., user on vacation). In general, only if a smart mobile device is connected to a 
network, it should be considered as a target device for executing mobile tasks. 
 
Challenge 2: Low Battery (Environment related) 
A smart mobile device having a low battery status should not be considered as target platform for 
executing a mobile task until its battery is recharged, i.e., a low battery status indicates that the device 
(and its user) shall not be considered at the moment.  
 
Challenge 3: Instant Shutdown (User behavior related) 
In practice, users might instantly shut down their smart mobile device without reflecting on the 
consequences. Usually, this constitutes a short-term problem and the device will be restarted soon in most 
cases. However, if a user exhibits many instant shutdowns, this misbehavior should be taken into account. 
Note that instant shutdowns can be determined as follows: if a mobile device gets offline and then 
recovers, it is determined whether or not an instant shutdown has been the reason for this. For example, 
regarding Android devices, the shutdown action3 has to be determined in this context.  
 
Challenge 4: User Location (User behavior related) 
At run time, a user might execute a mobile task at different locations. To improve mobile task execution, 
the location information is used for optimizing task assignment; i.e., assigning tasks, if possible, only to 
those mobile users, whose location match with the location defined for mobile tasks (see Challenge 6). 
 
Challenge 5: Data Consistency (Process related) 
Data dependencies between the different tasks of a process result from the order in which the respective 
process steps (i.e., activities) read and write process data elements. In particular, an activity might be 
data-dependent on another one that is realized as a mobile task.  
 
Challenge 6: Location (Process related) 
Data or physical objects needed to accomplish a mobile task might be only available at certain locations. 
If users are accomplishing their work, while continuously moving, it cannot be guaranteed that they will 
be at the right spot to gather the data needed.  
 
Challenge 7: Urgency (Process related) 
The urgency (i.e., priority) of mobile tasks needs to be considered as well. For example, if a lab test is 
required in the context of an emergency surgery, the urgency of the task performing this lab test will be 
high and the mobile task must be finished within a specified period of time after allocating the task to a 
mobile user. 
 
 Project C1 C2 C3 C4 C5 C6 C7 

MEDo         

AREA       

QuestionSys       

|  (): relevant | (): not relevant |       

Table 1. Considered mobile application scenarios revealing challenges for executing processes with mobile 
tasks 
 
                                                 
3 <action android:name="android.intent.action.ACTION_SHUTDOWN"/> 
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In the following, we present three alternatives for realizing processes with mobile tasks together with 
respective process models (see Figure 2): 
 
Approach 1 (Physical Process Fragmentation aka Process Partitioning):  
A process (i.e., process schema) is physically partitioned at design time. The resulting process fragments 
and their activities (i.e. tasks) are then assigned to different smart mobile devices before process instance 
creation time (and on an instance-per-instance basis, see Approach 1 in Figure 2). As a consequence, the 
execution of process fragments is spread over several smart mobile devices and hence must be 
synchronized during run time. In general, this raises specific challenges. For example, if the same data 
element is written by tasks from different process fragments, synchronization techniques are required to 
hand over data between the fragments and to ensure data consistency. In this context, a particular 
challenge emerges if a device encounters physical problems (e.g., a lost connection).  

  
Approach 2 (Logical Process Fragmentation aka Migrating Processes):  
A process schema is partitioned logically; i.e., it is split into logical process fragments that shall be 
executed on different smart mobile devices. As opposed to Approach 1, however, the original process 
schema is entirely known to each smart mobile device during run time (see Approach 2 in Figure 2). In 
the context of Approach 2, migration techniques are applied when completing the execution of a process 
fragment and handing over control to the next device (Zaplata et al., 2010(a); Zaplata et al., 2010(b)). In 
this context, the knowledge about the process schema is utilized to determine the next device and to 
transfer required data to it. Generally, it is determined at run time, which device shall execute which 
process fragments. In particular, this allows for dynamic exchanges of devices already assigned to a 
fragment. A specific challenge emerging in the context of Approach 2 concerns the synchronization of 
parallel process branches that may be concurrently executed on different smart mobile devices; i.e., a 
synchronization method is required to cope with data inconsistencies when joining the execution of the 
different branches.  

 
Approach 3 (Single Mobile Task Handling):  
Single process tasks are executed on smart mobile devices. For this purpose, a smart mobile device must 
cover a subset of the functionality of a stationary process client, e.g., a worklist component, which is 
continuously updated by the process engine (see Approach 3 in Figure 2).  
 
Comparing the Approaches 
Although all described approaches target at the support of mobile processes and tasks, respectively, they 
show subtle differences, which need to be carefully considered in the context of any implementation. In 
the following, we discuss and compare the three approaches. First, we discuss the differences between 
Approaches 1 and 2 and present work related to them. In particular, note that both approaches have been 
originally proposed without having a mobile application context in mind. Second, we discuss existing 
work on Approach 3. In the latter context, we do not relate Approach 3 to Approaches 1 and 2 due to their 
different goals.  
 
Comparing Approaches 1 and 2: The basic goal of both approaches is to distribute the execution of a 
business process over several server machines in order to increase overall scalability of the process-aware 
information system. In literature, a multitude of techniques have been proposed in this context. Regarding 
Approach 1, for example, (Alonso & Schek, 1996) showed how distributed process execution may benefit 
from results known from distributed databases. In the sequel, different techniques for partitioning process 
schemas as well as for executing the resulting process fragments in a distributed way were proposed. For 
example, respective techniques were based on Petri nets (Aalst & Weske, 2001), statecharts (Wodtke & 
Weikum, 1997), or transactional dependencies (Alonso et al., 1996). All these approaches have in 
common that the overall process schema is partitioned into several process fragments, and the latter are 
then deployed to different execution devices (i.e., execution environments). As a particular challenge, a 
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choreography protocol must be implemented to synchronize the execution of the different partitions (i.e., 
process fragments). In turn, to properly synchronize the partitions, the execution devices must be 
determined before process instance creation time. Furthermore, choreographies are complex to handle 
(Barros et al., 2005; Martin et al., 2008; Knuplesch et al., 2012; Knuplesch et al., 2013). Furthermore, the 
device executing a particular partition, only has knowledge about the schema of this specific partition. 
Hence, if changes of a partition become necessary, another protocol is needed to propagate these changes 
to other executing devices as well (at least if the change has effects on the synchronization of the 
distributed partitions).  
 
In general, solutions referring to Approach 1 pose several drawbacks. To address the latter, techniques for 
migrating process instances between different sites and executing machines respectively (i.e., Approach 
2) have been proposed (e.g., Cichocki & Rusinkiewicz, 1998). The respective sites, in turn, offer services 
that allow performing parts of the overall process model. These parts are often denoted as logical 
partitions. A process instance migrated between different sites carries all data produced by current or 
previous sites executing it (e.g., information about which site performed which tasks, about the data 
produced by the sites, and so forth). During process execution, the process instance is migrated from site 
to site. Thereby, each site executes parts of the process instance and gathers respective instance data. 
Since a site has always knowledge about the overall process schema and a process instance maintains all 
run time data related to it, coordination efforts in the context of process changes can be significantly 
reduced compared to Approach 1. As another benefit of Approach 2, the sites or execution devices can be 
determined and changed at run time. (Cichocki & Rusinkiewicz, 1998) discusses additional benefits of 
Approach 2; e.g., due to the rather small size of process schemas compared to the instance data 
determined at run time, migrating process instances between different sites causes less network traffic 
compared to Approach 1 (i.e., physically partitioned process schemas). As another benefit the process 
parts executed by the different sites (i.e., the granularity of distribution) may be determined during run 
time, i.e., after a site has finished its work, the subsequent site can dynamically determine what tasks it 
actually will execute. Note that in Approach 1 this has to be determined already at design time. 
Migrating a process instance between different sites also has some drawbacks. Since every site has full 
access to the entire instance data, privacy issues are more difficult to handle. Another shortcoming 
concerns tasks that have to be processed in parallel at different sites. In this context, a coordination 
protocol must be provided to properly synchronize the data concurrently produced at the different sites, 
i.e., for merging the data created concurrently at the different sites. Finally, ADEPTdistribution (Bauer et al., 
2003; Reichert et al., 2009) introduced advanced concepts for coping with the parallel execution of 
different process partitions at different sites, including the handling of dynamic process changes (Reichert 
& Bauer, 2007). Altogether, Approach 2 is promising in general and in the context of mobile process 
execution in particular. 
 
Applying Approach 1 in a mobile context: There exist several proposals which apply Approach 1 in order 
to enable mobile process support. Many of these proposals use BPEL as underlying process modeling 
language; i.e., they allow partitioning BPEL process schemas and executing the resulting partitions (i.e., 
process fragments) on smart mobile devices (e.g., Baresi et al., 2004; Baresi & Guinea, 2007; Baresi et 
al., 2007; Schmidt & Hauck, 2007). In turn, (Philips et al., 2013) discussed the limitations existing in this 
context; e.g., the services called by the BPEL process must be known before run time, which is not 
appropriate for mobile environments. Recent research related to Approach 1 is presented in (Wakholi & 
Chen, 2012). Furthermore, there exist process-aware approaches relying on Web services and running on 
mobile devices (Battista et al., 2008; Hahn & Schweppe, 2009). In particular, they enable Web service 
flows on smart mobile devices based on a mobile process engine (Kunze, 2005; Schmidt et al., 2007; 
Stürmer et al., 2009). However, none of these approaches considers the characteristics of a mobile 
environment as presented above. 
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Applying Approach 2 in a mobile context: Approach 2 and its application to distributed mobile process 
execution have received growing attention recently. Several proposals exist that provide logical models 
for mobile processes (Hahn & Schweppe, 2009; Zaplata et al., 2009). Furthermore, advanced 
architectures and implementations of light-weight process engines were proposed (Hackmann et al., 
2006). In previous work related to MARPLE (Pryss et al., 2010(a); Pryss et al., 2010(b)), for example, we 
showed how Approach 2 can be realized. More precisely, we implemented a light-weight process engine 
that can be run on smart mobile devices and is able to interact with backend processes if required. In 
particular, the implemented mobile engine can execute an entire process schema or selected process 
fragments (i.e., logical partitions) autonomously on a smart mobile device. When developing this engine, 
basic concepts and design principles of the ADEPT process management technology were reused (Dadam 
et al., 2009; Reichert et al., 2009(b)). In particular, the ADEPT process meta model has been adopted as 
well as its fundamental correctness notions and verification procedures. Overall, the developed mobile 
engine is able to execute process fragments on smart mobile devices. Furthermore, the engine is able to 
deal with dynamic structural adaptations of process fragment instances (logical partitions) running on the 
smart mobile device; e.g., to cope with contextual changes in the environment or to handle exceptional 
situations (Dadam & Reichert, 2009; Reichert & Weber, 2012). Despite these commonalities with 
ADEPT, it is noteworthy that a complete new implementation of the kernel of the mobile process engine 
was required in order to meet the performance requirements of mobile application scenarios and to cope 
with the issues specific to mobile processes (e.g., small screen size). In particular, the implementation 
framework on which the engine is based differs from the one used in the context of the ADEPT project - 
ADEPT relies on JAVA, while the described mobile engine is based on the Microsoft .NET Compact 
Framework. Apart from the ability to run (and dynamically change) the schema of a process or process 
fragment autonomously on the smart mobile device, a particular need we identified was to properly 
address the characteristics of mobile environments. For example, scenarios like shutting down a device 
from one moment to the other must be considered. The same applies to scenarios in which mobile tasks 
can be executed more properly if location information is additionally used (e.g., a particular task may 
have to be performed in the laboratory). The work presented in this chapter constitutes the first important 
step towards a more proper integration of single mobile tasks with business processes. In future work, the 
results described in this chapter will be integrated with the work on the mobile process engine. 
Altogether, the presented mobile engine, we developed in the context of the MARPLE project, as well as 
the other proposals related to Approach 2, often neglect the characteristics of smart mobile devices on one 
hand and user acceptance on the other. 
 
Approach 3: Note that Approach 3 focuses on the mobile enactment of single tasks of a business process. 
Therefore, we only discuss proposals that focus on proper execution of single tasks on smart mobile 
devices properly. For example, (Alonso et al., 1995) discussed the challenges of disconnected clients in 
the context of business process execution. However, no mobile context was particularly considered. Since 
disconnections of a (smart mobile) device on which a particular task shall be performed constitute a 
fundamental aspect of any mobile task execution, this work can be regarded as first proposal dealing with 
particular challenges of mobile task execution in the context of a business process. However, only little 
work, for example, (Tuysuz et al., 2013), exists which considers the proper execution of mobile tasks on 
smart mobile devices. For example, the problem of missing or inconsistent data is a predominant subject 
discussed in this context. (Hahn & Schweppe, 2009) proposed to apply transaction techniques to mobile 
processes. In order to handle failures of smart mobile devices (e.g., a disconnected device), the execution 
of mobile tasks is embedded in transactions. Furthermore, transactional properties are defined in order to 
determine in what cases a transaction must be aborted. However, the techniques provided by this and 
similar proposals do not deal with more complex failures as described in this chapter. In particular, they 
do not allow compensating failures, while ensuring the same execution semantics as originally intended. 
Another proposal relevant in the given context was made by (Pryss et al., 2012; Pryss et al., 2014), which 
describes the already presented MEDo approach. The latter deals with mobile task handling in the context 
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of medical ward rounds, but does not consider the user-, process-, and environment challenges presented 
before. 
 
There exist other proposals, which are not related to Approaches 1-3, but that focus on specific challenges 
of mobile environments like broken connections or lack of communication facilities. Combining real-time 
data and domain knowledge raises additional challenges for mobile process support and has been an 
intensive subject of research as well. For example, MobiHealth (Jones et al., 2006) supports context-
aware services, which allow integrating sensor data. However, failure management of context-aware 
mobile processes is restricted in the sense that the execution of an instance may only be switched between 
pre-configured process variants in order to deal with contextual changes. Generally, approaches that allow 
switching between pre-configured process variants have been proposed by other authors as well 
(Hallerbach et al., 2010; Zaplata et al., 2009; Ayora et al., 2013). In particular, the handling of mobile task 
failures has not been considered by these proposals. 
 
Altogether, Approaches 1 and 2 are predominant regarding research on distributed processes in general 
and distributed mobile processes in particular. However, the robust execution of mobile tasks (i.e., 
Approach 3) has not been sufficiently addressed so far. Therefore, this chapter focuses on Approach 3 
and, in particular, on the robust execution of mobile tasks, while at the same time not burdening mobile 
users at the occurrence of any errors. Note that Approach 1 is not considered in the context of MARPLE 
due to its drawbacks (see above). In turn, Approach 2 is considered by MARPLE (see above), but will not 
be subject of this chapter. Figure 2 summarizes the presented approaches. 
 

 
 
Figure 2. Approaches for realizing mobile processes 
 
The next section presents basic concepts and services of the proposed MARPLE architecture enabling 
mobile task support.  
 
MOBILE PROCESS TASK INTEGRATION ARCHITECTURE  
This section presents an architecture for integrating mobile tasks with business process execution. 
Particular focus is on the realized delegation and backup concepts.  
 
A Run Time Architecture for Mobile Tasks 
Recall that the two fundamental concepts to deal with the above presented challenges are the backup 
service and a service for mobile delegation. During business process execution, the mobile delegation 
service ensures that already assigned mobile tasks are automatically re-delegated to another authorized 
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mobile user in case of errors. Finally, if no suitable mobile user can be determined, the backup service 
ensures that overall process execution will not be harmed. 
Note that the delegation and backup services allow for the robust execution of mobile tasks. In particular, 
the design of these services allows for their integration with existing process engines. 
Therefore, implementing a dedicated process engine that provides specific functions for creating and 
executing mobile tasks, constitutes one possible approach. However, if a process management system is 
already in use, usually, the introduction of another process engine will not be accepted (e.g., due to the 
high efforts required for transferring process models to the new engine). For this reason, the architecture 
presented in the following provides an engine-independent interface for executing mobile tasks. Since 
communication with Web services constitutes a core feature of any modern process engine, a service-
driven approach has been realized (see Figure 4). 
 
The core of the run time architecture for executing mobile tasks is denoted as mobile execution 
environment (see Figure 4). The mobile execution environment (MEE) extends existing business process 
environments that do not provide mobile task support. Thereby, it has components to manage mobile 
users (list management), to provide the delegation service as well as a component to provide the backup 
service. Furthermore, the MEE provides two important interfaces. First, an interface to integrate existing 
process engines with the MEE (see Figure 4, pm interface). Second, an interface to integrate mobile 
devices with the MEE (see Figure 4, md interface). Note that the pm interface is designed to integrate a 
wide range of existing process environments, e.g., Intalio (Bhandari et al., 2011), Activiti (Meister, 2011), 
or AristaFlow (Dadam et al., 2009).  
 
In the following, base functions of the pm interface and the md interface (including the mobile service 
client, see Figure 4) will be shortly introduced. Their understanding is required for the following sections. 
 
ProcessManagement Interface: 
The pm interface is designed to integrate the MEE with an existing business process engine. The main 
purpose of this interface is to exchange information with the process engine in order to execute mobile 
tasks. The MEE uses the interface to get a list of mobile tasks which shall be executed. These mobile 
tasks will be claimed by the MEE, which then takes the responsibility for them. Note that all actions 
(include failure handling; i.e., the delegation and backup services) to perform mobile tasks are handled by 
the MEE. Finally, after a mobile task has been finished, MEE uses the pm interface to return the 
computed data of the mobile task to the process engine.  
 
MobileDevice Interface: 
The md interface is designed to integrate smart mobile devices with the MEE. These devices will be used 
to execute mobile tasks the MEE is responsible for. Note that the md interface has a component called 
mobile service client. The client is software which is deployed to smart mobile devices and provides 
functions to perform mobile tasks on one hand and to read smart mobile device properties (e.g., battery 
status) on the other. At present, the md interface provides the mobile service client for Android smart 
mobile devices. In future work, the client will be provided on Apple iOS and Microsoft Windows Mobile 
OS. 
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Figure 4. Mobile task run time architecture (simplified)  
 
Task Delegation 
Recall that during business process execution, the task delegation service ensures that already assigned 
mobile tasks are automatically re-delegated to another authorized mobile user in case of errors. 
In the following, we introduce how task delegation is used during process execution in general and for 
our delegation service in particular (see Figure 5).  
 

  
Figure 5. Delegation concepts 
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Using Delegation to Transfer Rights: 
Delegation permits a user to assign all or a subset of their authorization rights to other users not 
possessing these rights at the present moment (see the functionality of Transfer rights in Figure 5). 
Thereby, a user may assign these rights either in the context of a particular process instance or for all 
process instances. (Schaad, 2003; Crampton & Khambhammettu, 2008; Gaaloul & Charoy, 2009) provide 
various reasons for delegating respective rights; e.g., a user may not possess required documents, or an 
entailment constraint like separation of duties has to be enforced (Pryss et al., 2013).  
 
Authorization rights for a particular task may be delegated either when a user is processing this task or 
before the task is assigned to any user. Usually, the first alternative is applied if delegation shall increase 
flexibility (e.g., another user has the required resources, but misses respective rights) or efficiency (e.g., 
another user is more efficient in performing the task) with respect to process execution. Applying the 
second alternative (i.e., delegating the task before assigning it to any user) will be useful if the authorized 
user who is usually performing the task is not available. Then, a delegation may have to be applied in 
order to determine other potential users processing the task.  
 
In the given context, delegation is accomplished based on two techniques: First, delegation may be 
applied based on user-defined rules stored in a repository. Second, users may delegate their rights 
dynamically during run time. The two techniques can be summarized as user-to-user interaction pattern: 
A user determines the context in which a delegation may be applied. Finally, delegations only take place 
when a task is in a desired state. Note that delegation is usually used to transfer rights. 
 
Using Delegation for Error Handling:  
Delegation might also become necessary to handle errors; e.g., when mobile users or their devices 
encounter problems. This pattern is supported in the proposed architecture as well. Note that the 
delegation of a task may only be allowed if the target mobile user possesses the same rights as the mobile 
user who has encountered the problem. The delegation will then be performed based on a system-to-user 
interaction pattern. The mobile user being the target of the delegation is not allowed to decline the 
delegation request. In future work, we will optimize this pattern in order to also allow mobile users to 
decline delegation requests.  
 
User List Management for Delegation and Backup 
To foster robust execution of mobile tasks, three different user lists are maintained: an initial user list 
ulinit, a user list ulmob comprising mobile users that match the criteria shown in Table 2 best for executing a 
mobile tmob, and a delegation list dlmob (see Figure 6). Note that these lists except ulinit are maintained by 
the MEE. ulinit is provided by a process engine and contains all mobile users umob authorized to perform a 
mobile task tmob. Furthermore, ulinit constitutes the basis for creating the two other lists, which are 
determined based on an analysis of ulinit. Thereby, ulinit is created by considering the following properties: 
 

Property Description 
Connectivity Indicates whether a user umob is online or offline.
Low Battery Status Indicates whether the user’s device has a low battery status.
User Location 
(umob.location) vs. 
Task Location 
(tmob.location) 

The user’s current location will be compared to the task location. For 
example, if the location attribute of a mobile task has value 
emergency unit and a mobile user is currently staying at another ward, 
he will not be considered for ulinit .

Pre-filter Indicates whether umob has been excluded from ulmob by a pre-filter. 
 
Table 2. Properties for determining ulinit 
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As soon as mobile task tmob becomes activated, ulmob will be calculated by the delegation service as 
follows:  
 
ulmob ← {} 

FOREACH umob IN ulinit 

IF (umob.connectivity) AND (¬ umob.low.battery.status) AND (¬ umob.pre-filter) 

  IF (umob.location = tmob.location) or (umob.location = {} and tmob.location=0)   

THEN  

ulmob.append(umob) 

 
According to this procedure, all mobile users from ulinit being online, having a smart mobile device with 
sufficient battery status, not being pre-filtered (i.e., not being manually excluded for the process or an 
instance of the process), and located close to the required location of the task, will be appended to ulmob. 
Finally, users contained in ulmob will be notified about the mobile task that is ready for execution. As a 
result, this task will be added to their work list on the smart mobile device. After one mobile user has 
claimed the task, all other mobile users will be informed and, finally, the task be assigned. For this 
purpose, the work lists of all other users will be refreshed and the task be removed from these work lists.  
 
Algorithm ulmob : optional attributes umob.location and tmob.location 
Note that attributes umob.location and tmob.location are optional. If the mobile task tmob has no location (i.e. 
umob.location = ) and the mobile user umob is not assigned to a location (i.e., tmob.location=0), the 
algorithm to determine ulmob does not add this mobile user to ulmob. Note that the purpose of ulmob is to 
assign tasks only to those mobile users being at the same location as defined for the respective mobile 
task. The remaining mobile users will added to the fallback delegation list dlfb. The purpose of this list is 
explained in the following. 
 

 
Figure 6. User list management 
 
When a mobile task tmob needs to be delegated, the delegation service first calculates dlmob. Since this list 
shall allow for an automated delegation, it is sorted according to user priorities. The latter are determined 
based on the battery status of the users’ devices as well as the number of the instant shutdowns they 
applied in the past (i.e., each instant shutdown of a user is recorded). Furthermore, dlmob is split into two 
sub lists: a matching delegation list dlmatch, which contains all users from ulmob fulfilling the desired 
properties (i.e., connectivity, pre-filter, and location), and a fall-back delegation list dlfb containing all 
users from ulmob whose location differs from the one required by the task. Accordingly, users contained in 
dlmatch are used as main target in the context of automated delegations. However, if no user from this list is 
available, users from dlfb will be involved in future delegations as well. In particular, this approach uses 
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the backup service at the latest possible time. In summary, the procedure for creating user list dlmob works 
as follows: 
 
dlmob ← (dlmatch, dlfb) 

FOREACH umob IN ulmob 

 umob.priority ← (–1 * umob.instant.shutdown.counter) 

IF (umob.low.battery.status) 

  umob.priority – – 

IF (umob.connectivity) AND (¬ umob.pre-filter) 

  IF (umob.location = tmob.location) 

   dlmatch.put(umob)  

ELSE  

dlfb.put(umob) 

 
Altogether, using multiple user lists reduces the need for invoking the backup service during run time. 
Finally, the algorithm determining dlmob uses the same weight for battery status and the shutdown counter 
to prioritize mobile users in dlmob. To equally weight these two criteria is derived by the three mobile 
application scenarios discussed earlier in this chapter. In future work this will be further evaluated.  
 
User Assignment and Race Conditions 
The different lists maintained and presented above for the delegation and backup services prevent race 
conditions with respect to user assignments. Hence, only one mobile user can perform a mobile task 
during run time. To ensure this, the different lists are maintained as follows: 
 

 The work lists maintained on the smart mobile devices to claim a mobile task are synchronized. 
 Delegation management only prioritizes mobile users in ulmob according to the presented aspects 

(e.g., battery status). As a result, the assignment of users is an atomic operation since it is 
performed similar to user assignments in existing business process engines (e.g., Dadam et al., 
2009). 

 
Adding Mobile Tasks to Process Execution 
For adding a mobile task to a process model and hence for integrating it with process execution, two 
fundamental solutions exist. These will be presented in this section. In particular, it will be shown how 
the challenges summarized in Table 3 are addressed by these solution approaches: 

 
 Challenge Design Time Instantiation Time Activation Time Delegation Time

Connectivity      

Low Battery    

Instant Shut-Off    

Location    

UserLocation    

Data Dependencies    

Urgency    

|  (): is evaluated | (): is not evaluated | 
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Table 3. Challenges for processes with mobile tasks 
 
First, a backup service will be introduced, which changes the process model structure and adds a backup 
task to enable a robust execution of mobile tasks. Second, a delegation service will be defined that 
automatically delegates the execution of mobile tasks among available mobile users, if required. Before 
presenting these two services in detail, this section illustrates the basic steps required to add a mobile task 
to process execution. Overall, the procedure comprises four phases. Figure 7 shows in which of these 
phases manual (i.e., user interaction) and automated operations (i.e., delegation and backup service 
executions) are performed. Note that after creating an instance of a process model with mobile tasks, 
errors (e.g., connection loss of a smart mobile device) are handled automatically. This behavior can be 
ensured since delegation and backup services as well as the user list management are performed 
automatically. 
 

 
 
Figure 7. Procedure for integrating mobile tasks into process execution 
 
Design Time 
The design of a process model with mobile tasks consists of two phases. During the first one, which is 
called mobile process transformation phase (see Figure 7(1)), a process designer flags selected tasks of 
the given process model as mobile, i.e., these tasks shall be executed by mobile users on their respective 
smart mobile device during run time. In this context, the process designer may optionally assign a 
location, urgency, and threshold to each mobile task (see Figure 7(1)). The latter defines the minimum 
number of users that shall be available at run time in order to execute this task, i.e., the threshold allows 
controlling the delegation depending on the specific needs of the respective mobile process. For all 
mobile tasks, for which such a threshold is defined during this phase, the list of users who may perform 
this task is determined (see Figure 7(1), validateThreshold) based on information stored in the user 
repository. Finally, tasks whose threshold value lies beyond the number of currently available users are 
highlighted to the process designer who may then alter this value.  
 
The second design time phase is the dependency check (see Figure 7(2)). In this phase, it is determined 
for which mobile tasks the backup service shall be provided. While the mobile process transformation is 
done manually (except the validation of the threshold), the dependency check can be performed 
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automatically. First, all mobile tasks are analyzed with respect to the data elements they provide for 
subsequent process tasks. If a mobile task writes such data, the backup service will be added for this 
mobile task (see Figure 7(2), addBackup). If this does not apply, the mobile task may be skipped during 
run time without need for additional exception handling, i.e., operation setSkippable may be applied to 
such a mobile task (see Figure 7(2)). Accordingly, attribute IS_SKIPPABLE of this mobile task is set to 
true. While the backup service (or setSkippable operation) is automatically added to a mobile task, the 
third operation of this phase (see Figure 7(2), addValidationTask) is performed manually, i.e., the process 
designer must decide whether or not the execution of backup tasks must be manually confirmed during 
run time. In order to enforce this behavior, the process designer activates the validation tasks set by the 
backup service, i.e., the sync flag read by the validation tasks will be set to true. 
 
Instantiation Time  
When creating a process instance, a service is provided to change the run time configuration of this 
instance (see Figure 7(3), addFilterList). This service shall cope with the dynamics of mobile 
environments. To perform such a change, the following steps are applied: First, for all mobile tasks, user 
lists are computed. Thereby, only currently online users are considered. Second, for each mobile task, it 
must be decided whether to change its location or urgency. In addition, users authorized to execute other 
tasks may be removed. The latter option allows covering different kinds of mobile business scenarios 
properly. For example, the mobile device of a physician who needs to deal with an emergency should not 
be the target of upcoming mobile tasks. 
 
During run time, the activation and delegation of mobile tasks are of particular interest for mobile task 
execution. Therefore, Figure 8 presents the lifecycle of a mobile task and relates these two particular run 
time phases with the entire run time lifecycle of mobile tasks (see 3 & 4 in Figure 7). 
 

Figure 8. Mobile task lifecycle 
 
Activation Time 
When activating a mobile task, the following steps are performed automatically by the delegation service 
(see Figure 7(4)). First, the users who may perform the mobile task are determined (see Figure 7(4), user 
list). A mobile user must meet the following criteria to be allowed to perform the mobile task (see Figure 
7(4), user's mobile status): First, a mobile user must be connected and the battery status of his mobile 
device must not be too low. Second, the mobile user should not have performed too many instant 
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shutdowns previously. Third, if required, it will be automatically checked whether the mobile user is 
situated at the right location, i.e., whether attributes UserLocation and Location match (see Table 2). 
 
Delegation Time 
When delegating a mobile task at run time, it is automatically delegated to another user possessing the 
same rights. Further, for each mobile task, a delegation list is managed. This list will be created after the 
first delegation becomes necessary. It also stores a history of all delegations for this mobile task. 
 
Generally, the following issues are crucial with respect to mobile task execution (see Figure 8):  
 

 A failure of a mobile task, which produces data that is consumed by subsequent process steps, 
may cause severe run time errors (Reichert & Weber, 2012) (see missing data in Figure 9).  

 An execution error of a mobile task might cause a deadlock (see deadlock in Figure 9), i.e., if a 
mobile task cannot be properly completed, succeeding tasks might not become activated. 

 Regarding mobile task execution, usually, a time period is specified indicating the maximum 
duration of this task. For example, it might be required that a blood test is finished within 5 
minutes (Lanz et al., 2013). Accordingly, any execution error of a mobile task should be handled 
in time in order to meet respective temporal constraints. 

 

 
 
Figure 9. Mobile task execution challenges 
 
SERVICE-ORIENTED SOLUTION APPROACH 
The solution approach for the robust execution of mobile tasks, which is presented in this section, tackles 
the challenges discussed before. Table 4 gives an overview. For each service (i.e., mobile process 
transformation (MPT), backup service (BS), list management (LM), and mobile delegation service (MDS)) 
it shows which of these challenges it addresses. 
 

Challenge Component Description 
Connectivity LM 

MDS 
Only connected devices will be added to the user and delegation lists. The 
MDS refreshes these lists continuously and handles required delegations 
when a mobile device loses its connection. 

Low Battery LM Only devices having a sufficient battery status will be added to the user and 
delegation lists. 

Instant 
Shutdown 

LM 
MDS 

If a device is shut down, it will be removed from the user lists. Further, it 
will be re-added as soon as its status is online again. Moreover, the MDS 
only applies a delegation if the respective device will not be online for a 
longer period of time. 

User Location LM If a location X is explicitly assigned to mobile task, only users whose 
current location matches X are added to the respective user lists. 
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Data 
Dependencies 

BS The backup service ensures that failures during the execution of a mobile 
task do not harm overall process execution, e.g., if subsequent tasks are 
data-dependent on the failed mobile task, the latter will be replaced by a 
respective backup task added to the process model. 

Location MPT A mobile task may require a certain location for its execution. 
Urgency MPT 

MDS 
BS 

The urgency of a task may be set at design time. In turn, the MDS then 
utilizes this information as trigger for delegating the mobile task, i.e., a 
backup service ensures that the mobile task will be always executed within 
the specified time frame. 

 
Table 4. Challenges and solution components of mobile tasks 
 
Delegation Service 
During mobile task execution, the mobile delegation service (MDS) ensures that already assigned mobile 
tasks are automatically re-delegated to another authorized mobile user in case of errors. Since this 
delegation service maintains several user lists, the latter are first summarized before presenting the MDS. 
 
User List Management  
To enable a flexible delegation and hence to foster robust execution of a mobile task t, three user lists are 
maintained for t: ulinit, ulmob, and dlmob. User list ulinit contains all mobile users that are, in principle, 
authorized to perform mobile task t. Based on ulinit the mobile user list ulmob is determined. Thereby, a 
mobile user from ulinit is only added to ulmob, if the user is currently online, the user’s location complies 
with the one of t, and the user is not excluded by any filter defined at instantiation time (see Figure 8). 
Based on ulmob, t is assigned to available mobile users. Furthermore, if t shall be delegated, a mobile 
delegation list dlmob is determined. First of all, all users contained in ulmob are added to dlmob. Then, dlmob is 
ordered by taking the battery status, the number of instant shutdowns, and the locations of users into 
account. A low priority is assigned to a mobile user if the battery status of his mobile device is low or the 
respective instant shutdown counter is high. Both lists ulmob and dlmob are re-calculated when the 
connectivity status of a user from list ulinit changes.  
 
Overall, when considering these three lists, the mobile delegation service may enter six different states 
(see Figure 10). The latter are denoted as t(<STATE>) and respective state transitions as Ti. Note that the 
delegation service starts when a mobile task t becomes activated. The delegation service will be activated 
before executing the respective task only if the mobile task has a value set for urgency and no authorized 
mobile user will promptly execute the task: Then, the latter will be delegated to an authorized mobile 
user, i.e., delegation is used for changing task state to running. 
 

 

 
Figure 10. Mobile delegation service flow during run time   
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The scenarios shown in Table 5 are relevant when taking urgency4 tou (tou = 0 denotes a timeout), user 
list threshold thmul, and the ability to skip a mobile task t into account. 
 

Scenario Description State Chain 
Normal 
task 
execution 

a mobuser ul starts mobile task t and performs it. 

 

t(PENDING)  T3  
t(STARTED)  T4  
t(FINISHED) 

Delegate
d task 
execution 

a mobuser ul starts mobile task t. Then user state changes to offline or tou = 0 

holds, such that t will be automatically delegated to another user 

b mobuser ul  who finishes the mobile task. 

T3  t(STARTED)  
T5.1  
t(DELEGATED)  
T6.1  t(FINISHED) 
 

Forced 
delegatio
n 

A forced delegation becomes necessary if the following holds: 

( ) (| | 0)mob mul ut PENDING ul th to                                                      

( ) ( 0 ( ) )u bt DELEGATED to State user changes to offline     

t must be delegated to another user n mobuser ul . 

T5.2  
t(DELEGATED)   
T6.2  
t(DELEGATED) 

Skip or 
Backup 

Skip or backup will be performed if the following holds: 

If 
 

( ( ) 0 | | 0)u mobt DELEGATED to dl    .  

Furthermore, if IS_SKIPPABLE(T)=true, t will transit to SKIP,  
otherwise to BACKUP 

t(PENDING)  T5.3 
 t(SKIP)   
t(BACKUP)/ 
t(DELEGATED)T6

.3  t(SKIP)   
t(BACKUP) 

 
Table 5. Scenarios in which mobile delegation service is applied  
 
Backup Service 
A particular challenge arises if no mobile user is available for processing an activated mobile task that 
produces data during run time, i.e., if no delegation is possible anymore. In order to ensure that these 
mobile tasks can still be processed, a backup service is provided. Basically, it consists of two operations, 
which are added to a process fragment replacing the mobile task in case of exceptional situations. The 
first one is called simple backup operation, while the second one is denoted as complex backup operation. 
Before presenting the backup service in detail, the following issue is briefly discussed with respect to the 
backup service: How are skipping of mobile tasks and the backup service are related to each other?  
Regarding the latter question, consider Figure 11. The depicted backup service is only applied to mobile 
tasks that produce data. As shown in Figure 11, at best and delegation cases, a normal execution or 
delegation contributes to avoid the use of the backup service. Note that only in case no further delegation 
is possible (i.e., no more authorized mobile user for performing this task are available), the backup 
operation becomes necessary. Hence, the question can be answered as follows: Skipping a task and the 
backup service are not related. 
  

 
Figure 11. Use case of backup operation   
                                                 
4 i.e., the specified period of time during which the task must be finished 

( ( ) 0 | | 0)u mobt PENDING to ul    
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In the following, the two backup operations as well as the context in which they are applied will be 
discussed. 
 
Simple Backup Operation 
During design time, all mobile tasks producing data for other tasks are determined. In turn, each of these 
tasks is then automatically equipped with a simple backup operation by applying the following steps: If a 
backup operation is needed for mobile task B1, the latter is substituted by the process fragment depicted 
in Figure 12. During run time, the execution of backup task B2 on a stationary computer (see Figure 12) 
will then guarantee that subsequent tasks of B1 will not be affected by any failure of this mobile task, i.e., 
backup task B2 will provide the same data as mobile task B1.  
 
In this context, a sync flag guarantees that B2 will be executed only if mobile task B1 fails (see Figure 
12). Thereby, B1 writes the sync flag according to its execution state. If B1 has been executed correctly, 
the sync flag will be set to true, otherwise it will be set to false. Depending on the respective value, the 
succeeding XOR process fragment is then executed as follows: If the sync flag is “false”, the upper 
branch will be chosen and B2 be executed. In turn, if the sync flag is “true”, the lower branch will be 
chosen and nothing happens; i.e., B2 will only be executed if B1 fails. As shown in Figure 12, the simple 
backup operation comprises another task, i.e., the validation task. The latter is used to manually confirm 
the execution of B2. If the sync flag is set to true and assigned to the validation task during design time, 
the following action will be performed during run time for confirming the task properly: The mobile user 
responsible for handling the failed mobile task must confirm that the backup task has completed correctly. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. Simple backup operation and simplified validation task appearance during run time 
 
Regarding the validation task of the backup operation, the following issue must be discussed: Does the 
validation task lead to an unfavorable behavior? Consider the following: If the validation task is not 
confirmed within a short period of time, the execution of the backup operation extends overall process 
execution time. In such case, for example, the backup operation may have the same bad impact as a 
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mobile user who is offline, which extends overall process execution time as well. In turn, in the MEDo 
project presented above, it turned out that exactly in this context most users demanded to confirm the 
execution of the mobile task if the backup operation has been applied instead. Furthermore, since the 
validation task is an optional task, the backup operation can be applied without using the validation task 
while ensuring the same robustness for overall process execution. 
Finally, the following issue will be shortly discussed: Since the backup operation is performed on a 
stationary computer and hence failures are more unlikely than using a smart mobile device, the question 
arises, why trying to perform the respective task on a smart mobile device first? One can argue that in this 
case the mobile device is not necessary and affects overall robustness. 
Regarding the latter question, recall that a mobile task shall be performed in a mobile manner. As a result, 
we want to provide mobile execution of a mobile task as long as authorized mobile users are available. 
Further recall that this behavior is provided by the delegation service. Then, only in case that no more 
mobile users are authorized that may execute the mobile task, the backup operation will be applied. As a 
result, on one hand, executing mobile tasks in a non-mobile manner if errors occur is actually not required 
in most cases. On the other, execution semantics will be preserved either when delegating the mobile task 
or applying the backup operation instead of it. For example, consider the following situation: Two ward 
physicians work on urgent mobile tasks with their mobile devices. Then, both devices run out of battery 
(frequently observed in the context of the above presented MEDo project). Further, no other physicians 
are able to perform these mobile tasks (frequently observed in the above mentioned MEDo project as 
well). In this case, using stationary computers to complete the tasks are highly welcome. Exactly, for this 
purpose, the backup operation will be used. 
 
Complex Backup Operation 
In order to deal with urgent mobile tasks, the complex backup operation depicted in Figure 13 is 
provided. It allows performing backup task B2 more quickly based on two changes compared to the 
simple backup operation. First, a user list task is added. Second, the backup task is executed in parallel to 
the mobile task. In order to perform B2 more quickly, the complex backup operations work as follows: 
First, the user list task determines the lists of authorized users for B1 and B2 respectively (see Figure 13, 
on activation). Then, at the time B1 is started, B2 is started synchronously. Following this, B2 will be not 
executable (but visible) for all users from the user list of B2. After assigning B1 to a user (Figure 13, 
started by uMob A), the user list will be adapted for both tasks.  
 
Note that the user list for B2 assigns the task to the same user who has performed it on the smart mobile 
device as a mobile task. Applying this procedure offers advantages in several respects: First, all other 
users who may perform B2 are able to monitor which mobile user is currently working on this task. 
Second, if for B1 no more delegation to other authorized mobile users is possible, the user list for backup 
task B2 has been already determined concurrently. Compared to the simple backup operation, for which 
the user list of B2 is only determined when B1 has been finished, this procedure speeds up user 
assignment. 
 



 22

 
 
Figure 13. Complex backup operation  

 
 
Figure 14 illustrates the use of both the simple and complex backup operation for a mobile task B. 
 

 
 
Figure 14. (a) Simple and (b) complex backup operation for mobile task B 
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Optimizing the Simple Backup Operation 
This section discusses a potential optimization of the simple backup operation. This optimization was 
motivated by the fact that the use of a backup service might significantly extend the time required for 
executing a mobile task. This particularly applies to task sequences solely consisting of mobile tasks. An 
example of such a sequence is depicted in Figure 15 (i.e., process fragment C). Worst case, for all mobile 
tasks of this sequence (i.e., A1, B1, and C1), the backup service needs to be executed during run time. In 
turn, this is accompanied by several drawbacks: First, the overall execution time of A1, B1, and C1 is 
extended due to the additional time needed for executing the described backup and validation tasks. 
Second, the start of B1 is delayed when running the backup service of A1. The same applies to C1. 
Altogether, the backup service ensures proper run time behavior on one hand, but increases overall 
execution time on the other.  
 

 

 
Figure 15. Optimization of simple backup operation  
 
This section discusses a potential enhancement of the simple backup operation, which reduces the overall 
execution time required. The optimization is illustrated with respect to process fragment C as shown in 
Figure 15. It consists of a sequence of mobile tasks A1, B1, and C1 as well as their corresponding backup 
services. In the given scenario, none of the data elements written by the mobile tasks is read by any other 
mobile task of this sequence. In turn, this constitutes a prerequisite for applying the optimization 
described below. For example, this prerequisite is met by the process fragment depicted on the top left of 
Figure 15, while it is not satisfied by the process fragment shown on the top right.  

 
The simple backup operation of process fragment C can be optimized as follows: Instead of applying the 
backup operation to all mobile tasks A1, B1, and C1, only one aggregated backup operation is provided 
for all of them. Furthermore, this aggregated backup service will then be applied after having executed the 
last mobile task, i.e., C1 (see process fragment D in Figure 15). Note that this aggregation is only 
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applicable due to the fact that mobile tasks A1, B1, and C1 are not data-dependent on each other. If there 
had been data-dependencies between them, missing backup services of single tasks would harm further 
process execution. When applying this optimization to process fragment C, the benefit will be twofold: 
First, overall execution time is decreased since only one backup operation must be performed instead of 
three. Second, a mobile task succeeding another one for which the backup service shall be performed may 
be executed earlier since the required backup service is now applied afterwards. Finally, the aggregated 
backup service is applied like a normal backup service except for two aspects: 
 

1. The aggregated backup task must provide missing data of more than one mobile task. This 
requires a user being allowed to write all these data elements. Consequently, the optimization is 
only possible if such a user exists; i.e., it is restricted to certain application scenarios. 

 
2. If the validation tasks are set to true for all mobile tasks of the original task sequence, all mobile 

users must confirm the aggregated validation task. If less validation tasks are set to true, only 
these validation tasks must be confirmed. 

 
IMPLEMENTATION 
The sketched service-driven architectural approach (see Figure 4) has been implemented based on the 
AristaFlow process management technology (Dadam, et al., 2009; Reichert et al., 2009(b)). However, 
other process engines, like Intalio (Bhandari et al., 2011) or Activiti (Meister, 2011), meet the application 
programming interface requirements as well. Due to lack of space, we omit a detailed discussion of 
implementation issues. The MEE as well as pm and md interfaces (see Figure 4) are implemented in 
JAVA. The communication paradigm used for the two interfaces is based on REST Web services. 
Furthermore, only Android smart mobile devices can be used and integrated at the moment. In future 
implementations, we will add iOS and Windows mobile smart devices. It is noteworthy that the first 
prototype we implemented comprises all described services and functions, except the optimized backup 
operation (see above). In particular, the described delegation and backup services have been fully 
implemented. Finally, the functionality of smart mobile devices is restricted as follows: only simple user 
forms are provided on the smart mobile device for entering and changing task data. In future work, more 
sophisticated mobile task apps will be implemented (e.g., using sensors of the smart mobile device). 
 
FUTURE RESEARCH DIRECTIONS 
Amongst others, future research on mobile task support may consider the following issues: 
 
 The delegation service should be enhanced in order to allow users to decline a delegation, if desired.  
 
 In general, certain constraints may have to be obeyed when executing mobile tasks. For example, 

consider entailment constraints that may exist between different mobile tasks. When executing a 
mobile process, for example, it might be desirable that two mobile tasks are executed by the same 
user. Related research on integrating such constraints with business processes has received growing 
attention recently. However, realizing entailment constraints in the context of mobile processes and 
tasks raises additional issues, which must be integrated with our backup and delegation services.  

 
 Assume that a mobile task has been delegated by a mobile user A to another mobile user B. Assume 

further that before the respective mobile task is finished by B, A recovers its smart mobile device. If 
A has already produced results conflicting with the ones of B, a conflict resolution is required.  

 
 To provide aggregation for the backup service as presented by optimizing the simple backup 

operations is one possible approach of enhancing the entire backup service.  
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 A better location management is required for mobile tasks. For example, for a mobile task a 
surrounding area may be specified within which mobile users may execute mobile tasks. 

 
 An approach to specify rules for enhancing the delegation service must be developed; e.g., users 

should be allowed to specify their own delegation rules.  
 
 Finally, another area of interest for mobile task execution is cloud computing. Cloud spaces may be 

used to synchronize data written by smart mobile devices or to apply caching techniques more 
properly. 

 
CONCLUSION 
This chapter introduced an approach for enabling business processes with mobile task support. The 
presented backup service as well as mobile delegation service allow for a robust process execution. For 
this purpose, four fundamental issues need to be considered: First, the specific challenges of executing 
process tasks in a mobile environment must be well understood. Second, these challenges must be 
properly addressed at both design and run time. Third, mobile tasks must be executed in a robust way – 
the backup and mobile delegation services foster such robustness. Fourth, user acceptance is crucial in the 
context of mobile task support. Accordingly, the presented services do not involve mobile users in 
exception handling directly. Finally, a sophisticated architecture has been described showing how the 
presented approach has been realized in a service-oriented environment. 
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