
Contents lists available at ScienceDirect
Information Systems

Information Systems 49 (2015) 1–24
http://d
0306-43
(http://c

☆ The
I743 fu
Forschu

n Corr
E-m

conrad.
stefanie
manfred
journal homepage: www.elsevier.com/locate/infosys
Dealing with change in process choreographies: Design
and implementation of propagation algorithms$

Walid Fdhila a,n, Conrad Indiono a, Stefanie Rinderle-Ma a, Manfred Reichert b

a Faculty of Computer Science, University of Vienna, Austria
b Institute of Databases and Information Systems, University of Ulm, Germany
a r t i c l e i n f o

Article history:
Received 25 February 2014
Received in revised form
23 October 2014
Accepted 27 October 2014
Available online 5 November 2014

Keywords:
Process-aware information system
Process choreography
Change propagation
Process change
Business collaboration
x.doi.org/10.1016/j.is.2014.10.004
79/& 2014 The Authors. Published by Elsevi
reativecommons.org/licenses/by/3.0/).

presented work has been conducted with
nded by the Austrian Science Fund (FWF
ngsgemeinschaft (DFG).
esponding author.
ail addresses: walid.fdhila@univie.ac.at (W. F
indiono@univie.ac.at (C. Indiono),
.rinderle-ma@univie.ac.at (S. Rinderle-Ma),
.reichert@uni-ulm.de (M. Reichert).
a b s t r a c t

Enabling process changes constitutes a major challenge for any process-aware information
system. This not only holds for processes running within a single enterprise, but also for
collaborative scenarios involving distributed and autonomous partners. In particular, if one
partner adapts its private process, the changemight affect the processes of the other partners as
well. Accordingly, it might have to be propagated to concerned partners in a transitive way. A
fundamental challenge in this context is to find ways of propagating the changes in a
decentralized manner. Existing approaches are limited with respect to the change operations
considered as well as their dependency on a particular process specification language. This
paper presents a generic change propagation approach that is based on the Refined Process
Structure Tree, i.e., the approach is independent of a specific process specification language.
Further, it considers a comprehensive set of change patterns. For all these change patterns, it is
shown that the provided change propagation algorithms preserve consistency and compat-
ibility of the process choreography. Finally, a proof-of-concept prototype of a change propaga-
tion framework for process choreographies is presented. Overall, comprehensive change
support in process choreographies will foster the implementation and operational support of
agile collaborative process scenarios.
& 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/3.0/).
1. Introduction

The optimal design and implementation of their business
processes is crucial for enterprises. This not only applies to
internal business processes, but also to collaborative processes
whose execution involves different partner enterprises. Exam-
ples include cross-organizational manufacturing [1] and
er Ltd. This is an open acce

in the C3Pro project
) and the Deutsche

dhila),
tourism [2]. The system-based support of such collaborative
processes is realized by process choreographies [3]. In particu-
lar, a choreography model describes the interactions between
the partner processes throughmessage exchanges. In a supply
chain process, for example, the Supplier interacts with the
Manufacturer and the Manufacturer with the Customer.
The Customer, for example, may place an order with the
Manufacturer by sending a corresponding order message.

In general, the interactions among the partners are visible
to the outside and described by so called public process models
(public model for short). In turn, the public models constitute
views on the underlying internal partner processes, the so-
called private processes. In particular, the models of the latter
(i.e., private models) are not visible to the other partners due
to confidentiality reasons. Altogether, a choreography model
ss article under the CC BY license

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2014.10.004
http://dx.doi.org/10.1016/j.is.2014.10.004
http://dx.doi.org/10.1016/j.is.2014.10.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.10.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.10.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.10.004&domain=pdf
mailto:walid.fdhila@univie.ac.at
mailto:conrad.indiono@univie.ac.at
mailto:stefanie.rinderle-ma@univie.ac.at
mailto:manfred.reichert@uni-ulm.de
http://dx.doi.org/10.1016/j.is.2014.10.004


W. Fdhila et al. / Information Systems 49 (2015) 1–242
consists of the participating partners, a global view on all
partner interactions, and the public as well as private models
of the partners.
1.1. Research challenges

Process change has been identified as crucial in most
application domains [4–6,58]. The demand for changing
business processes arises due to various reasons such as
the advent of new regulations or the emergence of new
competitors at the market. Research on this topic has been
extensive and led to flexible process management tech-
nology realized as mature commercial (e.g., AristaFlow1)
and prototypical systems (e.g., CPEE2). So far, however,
approaches dealing with process changes have focused on
scenarios in which a business process is entirely run
within a single enterprise. In turn, little attention has been
paid to changes of process choreographies, even though
the latter demand for agility and flexibility as well [7–9].

When applying changes to the processes supported by
an information systems, in general, it must be ensured that
neither structural nor behavioral soundness of the process
is violated after the change [6]. For process choreogra-
phies, additional properties must be guaranteed due to the
complexity introduced by the involvement of autonomous
partners as well as the interactions between them. For
example, assume that a particular partner applies a change
to its private process. In addition to ensuring structural
and behavioral soundness of this private process, it must
be determined whether its change affects other partners in
the choreography as well. Amongst others, this means that
it must be checked whether the change of the private
model affects the corresponding public model. In this case,
it must be further ensured that the private model remains
consistent with the public model. Note that this might
require adaptations of the public model as well.

In turn, changing the public model of a particular partner
might affect its interactions with other public models, e.g.,
when deleting an activity that sends a particular message
another partner is waiting for. In order to ensure compatibility
between the public models of the involved partners, there-
fore, one may have to propagate the changes from one
partner and its public model to the other partners and their
public models. After adapting the public models of the
partners, in turn, the consistency with the underlying private
models must be re-checked to ensure overall consistency.
Note that change propagation cannot always be restricted to
direct partners, but might spread transitively over the entire
process choreography.

In general, propagating changes must not infringe the
autonomy of the partners. In fact, adaptations becoming
necessary to maintain the consistency and compatibility of
the choreography should be suggested to partners, but the
decision whether or not to adopt these adaptations must be
left to them and may be subject to negotiations. In general,
such negotiations can be costly and time-consuming, particu-
larly in case of failure. This paper focuses on the fundamentals
1 www.aristaflow.com
2 cpee.org
of change propagations in process choreographies whereas
negotiation issues are discussed in [60,59]. Another challenge
concerns the non-availability of information about the private
processes of the partners. Hence, determining the adaptations
required for the public and private models of the partners
during change propagation is a difficult task.

Altogether, an approach enabling change propagation in
process choreographies must tackle the following research
challenges:
1.
 It must provide change propagation algorithms that ensure
consistency and compatibility for all affected partners.
2.
 It must handle transitive change propagation across
multiple partners.

In order to obtain an operational change propagation
framework, we must further deal with implementation
concepts required for realizing the change propagation
algorithms for process choreographies.
1.2. Contribution

This paper provides an extended and revised version of the
work we presented in [8]. First of all, [8] introduced funda-
mental notions as well as design decisions such as represent-
ing choreography processes as Refined Process Structure Trees
(RPST) [12] and restricting the set of change operations to the
insertion, replacement and deletion of process fragments (as
described in [13]). This paper adopts these design decisions.
Further on, [8] addressed Research Challenges 1 and 2 by
providing propagation algorithms for change operations
REPLACE and UPDATE, whereas other change operations were
not considered. Finally, [8] discussed how the propagation
algorithms ensure consistency and compatibility of the chor-
eography model and highlighted the problem of transitive
change propagation.

Compared to [8], this paper provides significant revisions
and extensions of the results related to Research Challenges 1
and 2. This includes (i) a fundamental revision of the previous
definitions using the mapping functions between the differ-
ent choreography models and – in the sequel – the propaga-
tion algorithms; (ii) the propagation algorithms for additional
change operations (i.e., Insert and Delete), (iii) extensive
illustrations of the algorithms, (iv) a revision of the Replace
algorithm, (v) an extended discussion on transitivity when
propagating changes in process choreographies, and (vi) an
extension of the formal evaluation of consistency and com-
patibility in the context of respective change. Furthermore,
this paper provides novel results regarding the technical
evaluation of our approach. We propose an architecture for
implementing a sophisticated change propagation frame-
work for process choreographies. This architecture consists
of three layers for defining, executing and changing pro-
cesses. The core component of the change layer, which is
realized as a proof-of-concept prototype, is the C3Editor. The
latter allows for the import of private, public and choreo-
graphy models from tools such as Signavio and jBPM. The
C3Pro Editor visualizes the different models and enables the
definition and application of changes to the private models.
Furthermore, it determines and visualizes the partners

www.aristaflow.com
cpee.org


W. Fdhila et al. / Information Systems 49 (2015) 1–24 3
affected by a change and the updates required for change
propagation. To the best of our knowledge, this is the first
prototype enabling change and change propagation in pro-
cess choreographies. This paper is organized as follows:
Section 2 introduces a motivating example, followed by
fundamental definitions in Section 3. Section 4 then presents
the change propagation algorithms we developed. Section 5
discusses the handling of transitivity when propagating
changes in process choreographies. Our approach is evalu-
ated in Section 6 regarding the consistency and compatibility
of the choreography after change propagation. Section 7
provides the details on the architecture and proof-of-
concept implementation. In Section 8, we discuss related
work. Section 9 summarizes the paper.

2. Running example and model representation

From the perspective of a single partner, three different,
but overlapping viewpoints form a collaboration: the private
model, public model, and choreography model [16].
�
 The private model describes the internal business logic
as well as the message exchanges this partner is
engaged in; i.e., the private model corresponds to the
executable process of this partner. In general, the
internal logic is not visible to other partners.
�
 The public model sketches the message exchanges from the
perspective of this single partner as well as their sequen-
Fig. 1. Choreography model: simplifie
cing; i.e., it represents an abstraction of the private
activities corresponding to the private model. Compared
to the public model, the private model contains the
business process logic not visible to the other partners.
�
 The choreography model provides a global view on the
interactions of a collaboration; i.e., it captures all interac-
tions among the partners as well as the dependencies
between these interactions.

2.1. Running example

We illustrate change propagation issues along the
booking trip choreography example depicted in Fig. 1. This
example is part of the choreography model described in
[2]. It has been modeled using the choreography diagram
elements of BPMN 2.0 and the Signavio tool [14]. The
example describes a collaboration among four partners, i.
e., traveler, travel agency, acquirer, and airline. The traveler
sends booking information to the travel agency that, in
turn, contacts the acquirer to request a credit check. If the
traveler does not have enough credit, failure notifications
are sent to the travel agency and airline, which inform the
traveler about the reservation failure and purchase cancel-
lation, respectively. Otherwise, an approval is sent to the
travel agency and the airline is triggered to send the ticket
and the purchase confirmation.

Fig. 2 depicts a BPMN collaboration diagram listing the
public models of all partners involved in the choreo-
d book trip process [2].



W. Fdhila et al. / Information Systems 49 (2015) 1–244
graphy. Each public model includes the interactions the
corresponding partner is involved in as well as the control
flow between them. Note that Fig. 2 does not show the
private models of the partners, which contain their inter-
nal activities (cf. Fig. 3). Finally, merged together, the
public models lead to the choreography model.

As motivated, in many application scenarios, the part-
ners of a collaboration should be allowed to change their
private processes. The specific challenge compared to local
changes of a single process is to propagate change effects
from one partner to the others [8,9] if required. For
example, the TravelAgency might want to send a ques-
tionnaire about customer satisfaction to the Traveler

after booking the ticket. This could be accomplished by
inserting corresponding activities into the private model of
the TravelAgency; e.g., DevelopQuestionnaire,
which constitutes an internal activity not visible to other
partners, and SendQuestionnaire, which constitutes
the public activity to be added as well. Furthermore, a
respective change request needs to be sent to the Trave-

ler who should be able to receive the corresponding
message and respond to it.

In general, change propagation in process choreographies
might become quite complex [8]. Consider the above example
and assume that it is not the TravelAgency which initiates
the collection of customer feedback, but the Airline through
the Acquirer and TravelAgency. In this case, the initial
change will cause transitive effects across multiple partners. To
overcome this problem, the effects of this local change in the
private model of one partner need to be propagated to the
concerned partners. As a consequence, the interactions must
be restructured accordingly.
Fig. 2. Book trip proces
2.2. Model representation

As a prerequisite for precisely defining the notions of
private, public and choreography model, we need to be
able to represent the control-flow relations between
activities and interactions. With the Refined Process Struc-
ture Tree (RPST) [12], this paper adopts a structured
representation for this. An RPST model corresponds to a
decomposition of a process model into a set of single-
entry, single-exit (SESE) fragments. Thereby, each node of
an RPST represents a SESE fragment of the underlying
process model. Consequently, the root node corresponds
to the entire process model, whereas the child nodes of a
node N correspond to the SESE fragments directly con-
tained under N; i.e., the RPST parent–child relation corre-
sponds to the containment relation between SESE
fragments. As a key characteristic, the RPST can be con-
structed for any process model captured in a graph-
oriented notation [17].

We choose the RPST for various reasons. Besides being
generic and language-independent, the RPST is indeed a
structured tree representation of a given model. Note that
structured process models are close to BPEL and are simpler to
analyze and easier to comprehend than unstructured models.
However, recent work has shown that most unstructured
process models can be automatically translated into structured
ones [18]. Additionally, computing and propagating changes
for unstructured processes is rather complex andmight violate
the soundness of the choreography. Transforming unstruc-
tured processes into structured ones, therefore, eases the
propagation of changes and ensures a more sound propaga-
tion. Furthermore, using tree structures instead of usual graph
s: public models.



Fig. 3. Book trip process: acquirer private model.

3 We use the type definition syntax of the ML language [19].

W. Fdhila et al. / Information Systems 49 (2015) 1–24 5
representations significantly reduces the complexity for calcu-
lating the impacts of a change (e.g. parsing, identifying
fragments). Indeed, high-level change operations (cf. Section
3) refer to entire process fragments (i.e., sets of activities and
gateways) instead of single nodes. As process models are block
structured in RPSTs, in turn, this makes it easier to identify the
fragments to be modified in the processes of the partners
involved in a change. Finally, in [12] it was proven that the
translation of the process models to block-structured lan-
guages (e.g. BPEL) becomes easier through their decomposi-
tion into RPST. The transformation of graph models to RPST is
linear, idempotent and modular [12].

Fig. 4 depicts the tree model of the choreography scenario
from Fig. 1. In essence, the interaction nodes of the original
graph are mapped to leaves in the tree model and represent
the Trivial nodes, whereas the control nodes (i.e., sequence
(SEQ), choice (CHC), parallel (PAR), or loop (RPT)) are mapped
to internal nodes (for more details see [12]).

3. Fundamental definitions

This section introduces the main definitions used through-
out the paper. Section 3.1 provides the formal definitions
related to the various models a choreography is composed of.
In turn, Section 3.2 presents basic definitions related to
change, change propagation, and change operations.

3.1. Process choreography

A choreography includes three types of models: (i) the
private model representing the executable process and
including private activities as well as interactions with
other partners, (ii) the public model (also called the
interface of the process) highlighting solely the interac-
tions of a given partner, and (iii) the choreography model
giving a global view on the interactions between all
partners. In the following we sketch the corresponding
definitions.

Definition 1 ((Structured) Private Model). A private model
πp of partner p corresponds to a tree with the following
structure3:

Process::¼ PNode
PNode::¼ ActivityjControlNodejEvent

Activity::¼ PrivateActivityjInteractionActivity
InteractionActivity::¼ SendðMessage;ReceiverÞj

ReceiveðMessage; SenderÞ
ControlNode::¼ SEQ ðfPNodegÞjCHCðfPNodegÞj

PARðfPNodegÞjRPTðPNodeÞ
Event::¼ StartjEnd

SEQ corresponds to a sequence of fragments, CHC to a choice
between two or more fragments, PAR to a parallel execution
of several fragments, and RPT to an iteration over a fragment.

Example 1. In the private process model depicted in Fig. 3,
fragment F is represented as follows:

SEQ ðPARðSendðpayment_ok; airlineÞ; pr_activ2; Sendðapproval;
travelAge_ncyÞÞ;XORðpr_activ3; pr_activ4ÞÞ

Definition 2 ((Structured) Public Model). The public model
lp of a partner p reflects the external behavior of p; i.e., it
includes the interactions with other partners as well as the



Fig. 4. Process structure tree of the book trip operation.

W. Fdhila et al. / Information Systems 49 (2015) 1–246
constraints between them from the viewpoint of p:

LocalModel::¼ LNode

LNode::¼ InteractionActivityjControlNodejEvent
InteractionActivity::¼ SendðMessage;ReceiverÞ

jReceiveðMessage; SenderÞ
ControlNode::¼ SEQ ðfLNodegÞjCHCðfLNodegÞj

PARðfLNodegÞjRPTðLNodeÞ

Event::¼ StartjEnd

Fig. 2 represents a collaboration diagram that illustrates
the different public models of the book trip choreography
example. Note that each panel defines the public model of
one single partner.

Definition 3 ((Structured) Choreography Model). A global
choreography model G represents a global view on the
interactions between collaborating partners.

ChoreographyModel::¼ CNode
CNode::¼ IðSender;Receiver;MessageÞj

ControlNodejEvent
ControlNode::¼ SEQ ðfCNodegÞjCHCðfCNodegÞj

PARðfCNodegÞjRPTðCNodeÞ
Event::¼ StartjEnd

I corresponds to an interaction between partners Source
and Destination (i.e., the exchange of message Message).

An example of a choreography model is illustrated in
Fig. 1. We define a fragment F as a non-empty subtree of a
private model, public model or choreography model with
single entry and single exit edge (SESE). Regarding
Definitions 1–3, a tree model fragment is represented by
elements PNode, LNode and CNode, respectively. Next, we
define a choreography as the aggregation of all elements
necessary for ensuring a sound collaboration between the
participating partners.
Definition 4 (Choreography). We define a choreography C
as a tuple (G, P, Π, L, ψ, φ, ξ) where,
�
 G is the choreography model (cf. Definition 3).

�
 P is the set of all participating partners.

�
 Π ¼ fπpgpAP is the set of all private models (cf. Defini-

tion 3).

�
 L¼ flpgpAP is the set of all public models (cf. Definition 2).

�
 ψ ¼ fψp: lp2πpgpAP is a partial mapping function

between nodes of the public and private models.

�
 φ: l2l0 is a partial mapping function between nodes of

different public models.

�
 ξ:G2l is a partial mapping function between nodes of

the choreography model and the public models.

Functions ψ and φ can be used to check the consistency

between public and private models (i.e., each private mo-
del must be consistent with the respective public model)
as well as the compatibility between public models.

3.2. Change and change propagation

In order to represent changes of a choreography, we con-
sider four basic change patterns: REPLACE, DELETE, INSERT,
and UPDATE (cf. Fig. 5).

Definition 5 (Change Patterns).

ChangePattern:≔REPLACEðoldFragment;newFragmentÞj
DELETEðfragmentÞj
INSERTðfragment;how; pred; succÞj
UPDATEðactivity; attribute;newValueÞ

how::¼ ParalleljChoicejSequence
attribute::¼ partnerjrolejInputjOutput

REPLACE allows replacing an existing fragment with a

new one. DELETE removes an existing fragment, whereas
INSERT adds a new fragment to the process model
between a predecessor node pred and a successor node
succ. Finally, UPDATE allows modifying an attribute of a
single activity as illustrated in Fig. 5. Note that more



Fig. 5. Change patterns.

W. Fdhila et al. / Information Systems 49 (2015) 1–24 7
complex changes can be expressed by combining these
four patterns. Change patterns are defined as follows:

Definition 6 (Change Operation). A change operation is a
tuple (δ,σ) where σ is either the private, public or choreo-
graphy model to be changed, and δ:σ↦σ0 corresponds to
the change that transforms σ into σ0.

Example 2. Consider Fig. 3: DELETEðcheck_and_cash
; πAcquirerÞ deletes the activity check_and_cash from the
private model of the Acquirer.

Definition 7 (Abstraction Function). An abstraction func-
tion abstrλ: σ↦σ0 is a projection of a model σ according to
criterion λ. The following holds:
�
 8nAσ with n satisfies λ, ⟹nAσ0 (n refers to node).

�
 8n;n0Aσ with n;n0 satisfying λ and n precedes n0 in

σ;⟹n;n0Aσ04n precedes n0 in σ0.

Function abstrλðσÞ transforms a source model σ into a
0
target model σ that solely contains activities satisfying λ;

e.g., a public model corresponds to an abstraction of
a private model with respect to interactionactivities
(cf. Definitions 1 and 2). The abstraction of a private model
may further contain structures not contributing to process
execution (e.g., “empty” branches in a parallel branching).
In this case, refactorings may be applied [20]. Next, we
assume that λ¼ p0 refers to the interactions with p0. Hence,
abstrp0 ðlpÞ corresponds to the abstraction of lp according to
the interactions of p with p0. As result, we obtain a view on
all interactions p has with p0. The abstraction function
allows calculating the propagation effects; e.g., by identi-
fying the effects a change of a private model has on its
corresponding public model.

Example 3. The result of abstracting fragment F
(cf. Example 1) according to its interactions is as follows:

PARðSendðpayment_ok; airlineÞ; Sendðapproval; travelAge_ncyÞÞ

Definition 8 (Complement Function). Assume that aAp
corresponds to an interaction activity with a partner p0.
Then: The complement of a, which is denoted as aAp0,
corresponds to the opposite of a, i.e.,
� sendðmessage; p0Þ ¼ receiveðmessage; pÞ.

�
 receiveðmessage;p0Þ ¼ sendðmessage; pÞ.
If F corresponds to a fragment solely consisting of inter-
action activities, F corresponds to a fragment having the
same structure as F and replacing each activity of F with
its complement. This function is required to maintain the
compatibility between process partners when propagating
changes.

Given an arbitrary set of nodes of a model σ, we define
α as the function returning the smallest fragment in σ
containing all these nodes. This function allows keeping
the effects of a change as local as possible.

Definition 9 (Smallest fragment α). Let σ be a model and S
be a set of corresponding nodes. Then: ασðSÞ returns the
smallest fragment in σ containing all nodes from S.
Formally: ασðSÞ ¼ argminsizeðF ÞfFAσ∣8nAS;nAF g.

Example 4. In Fig. 1, αGðfpayment_ok; approvalgÞ ¼ F3
holds.

Usually, determining the changes to be propagated to
the partner processes requires knowledge about the activ-
ities executed before or after the changed fragment. In this
context, the following definitions are useful.

Definition 10 (Preset (Postset)). The preset (postset) of a
node n in model σ corresponds to the set of nodes in σ that
can be executed directly before (after) n. Formally:
�
 presetðn; σÞ ¼ fn0Aσj(SEQ ðn0;nÞAσg

�
 postsetðn; σÞ ¼ fn0Aσj(SEQ ðn;n0ÞAσg
We further define the preset (postset) of a fragment F in a
given model σ as the fragment of σ that can be executed
directly before (after) F .

Example 5. Consider Fig. 1. We obtain presetðcheck_and
_cash;GÞ ¼ fbook_tripg and postsetðg1;GÞ ¼ fg2; g4g.

Definition 11 (T_presetλ (T_postsetλ)). In a model σ, the
transitive preset (postset) of a node n, according to
criterion λ, represents the set of nodes that satisfy λ and
can be executed directly before (after) n.



W. Fdhila et al. / Information Systems 49 (2015) 1–248
�
 T_presetλðn; σÞ ¼ presetðn; abstrλðσÞÞ
�
 T_postsetλðn; σÞ ¼ postsetðn; abstrλðσÞÞ
The transitive preset (postset) T_presetλ (T_postsetλ) of
fragment F , according to criterion λ, represents the smal-
lest fragment F 0 of σ that contains all nodes satisfying λ
and being executable directly before (after) F .

Example 6. Consider Fig. 1. We obtain
�
 T_presetAcquirerðcheck_and_cash;GÞ ¼ fstartg, and

�
 T_postsetTravelerðg2;GÞ ¼ fcredit_card_not_approvedg.
4. Change propagation

Our goal is to enable change propagation in choreo-
graphies with multiple interacting partner processes.
Our approach is based on six major steps: (i) checking
whether a change needs to be propagated or is isolated
(i.e., the change is local), (ii) computing the private-to-
public effects; i.e., propagating changes from the private
model of the change initiator to its public model, (iii)
computing the public-to-public effects; i.e., propagating
changes to the partners involved, (iv) negotiating the
changes with the concerned partners, (v) computing
public-to-private effects (if negotiations have succeeded);
i.e., each partner calculates internally the effects of
Fig. 6. Change propagation—majo
the public changes on its private model, and finally
(vi) checking the compatibility and consistency of the
choreography and implementing the changes. Fig. 6
details these steps and outlines the different actions
required to achieve a sound propagation.

When applying a change operation to a partner's private
model, we extract all interaction activities concerned by the
change–interaction activities are message exchanges with
other partners (i.e., sending and receiving messages). If the
list is empty (i.e., the change is restricted to the internal
behavior), the other partners are not affected by the change.
Hence, there is no need for any new agreement on the global
choreography. Otherwise, the list of affected interactions is
analyzed to identify all partners involved. Then, for each
of these partners, a relative change computation is accom-
plished to determine the changes to be propagated. The latter
are computed according to the change operation type. Then, a
negotiation phase is launched with each affected partner. If all
negotiations succeed, we apply consistency and compatibility
checks to ensure the soundness of the obtained models. In
turn, if these models are sound, we update the public models
affected by the change as well as the choreography model
and, if necessary, adapt concerned private models to their new
public models. If negotiations do not succeed, either the
change is canceled or it is tried to circumvent those partners
with whom negotiations failed in the past. Note that this
propagation strongly depends on the change pattern applied
(i.e., INSERT, DELETE, REPLACE, or UPDATE). We sketch the
different algorithms needed for propagating changes
r steps (adopted from [8]).



W. Fdhila et al. / Information Systems 49 (2015) 1–24 9
depending on the change pattern used. The propagation of
change pattern UPDATE is not considered in this paper, but
can be found in [8]. According to Fig. 6, the focus is on
determining the public propagation effects of a single change
(i.e., the parts in dark gray). In particular, we want to identify
whether or not a change is isolated, and compute private-to-
public and public-to-public effects. Negotiation and comput-
ing public-to-private-effects (i.e., effects of changing a part-
ner's public model on its private model) are out of the scope
of this paper

4.1. Propagation of fragment insertions

The INSERT pattern is used to add a new fragment F to
the private model πp of a partner p between two consecutive
nodes pred and succ. In the following, we use the example
depicted in Fig. 7 to explain and illustrate the main propaga-
tion steps for propagating fragment insertions. Given a
change operation δ of type INSERT applied to a partner's
private model πp, and F being the fragment to be inserted in
πp between two nodes pred and succ (cf. Step 1 in Fig. 7), the
ripple effects of δ can be computed asfollows:
1.
 Isolated or propagating changes: We first check whether
F contains additional interactions or solely private
activities by abstracting F with respect to interactions
(cf. Step 2 in Fig. 7). If F 0 ¼ abstrinteractionðF Þ is not empty
(i.e., F contains at least one node), new interactions
have been added and a change propagation becomes
necessary. Otherwise, the change is considered as
isolated; i.e., no propagation is needed.
Fig. 7. Major steps for propaga
2.
ting
Private-to-Public effects: In order to compute the impacts
on the public model of the change initiator, we proceed
as follows:
� If F 0 is not empty, we calculate the corresponding

fragment to be added to the public model lp of
change initiator p. The latter is the partner that
initiated the change propagation. For this purpose,
we use private-to-public mapping function ψ that
transforms the elements of F 0 into elements of lp.
Note that this will be crucial if the private and public
models are defined in terms of different modeling
languages; e.g., in Fig. 7 the elements of πp and F
might be defined with BPEL, whereas the ones of F″
and lp are defined in BPMN (cf. Step 3 in Fig. 7).

� When inserting F between pred and succ in πp, this
results in an insertion of F ″ in lp. To maintain the
consistency between πp and lp, F ″ should maintain
the precedence relationship with pred and succ.
Since pred and succ in πp may be private activities
without corresponding elements in lp, however, it
becomes challenging to identify the insertion posi-
tions pred0 and succ0 of F ″ in lp (cf. Step 4 in Fig. 7).
Therefore, we first check whether pred and succ
constitute interaction activities or have correspond-
ing elements in lp (ψðpredÞa∅). In this case, we
consider the corresponding positions in lp;
i.e., pred0 ¼ ψðpredÞ and succ0 ¼ ψðsuccÞ respectively.
Otherwise, we look at the elements of πp having
corresponding elements in lp and directly preceding
pred (i.e., T_presetinteractionðpredÞ) and following succ
(i.e., T_postsetinteractionðsuccÞ). Then, F ″ is inserted
an
 insert operation.



3.

W. Fdhila et al. / Information Systems 49 (2015) 1–2410
between the corresponding elements in lp as follows
(cf. Step 5 in Fig. 7):
○ pred0 ¼ ψ○T_presetinteractionðpredÞ
○ succ0 ¼ ψ○T_postsetinteractionsuccÞ
3.
Public-to-Public effects: In order to calculate the change
impacts on the other partners, we proceed as follows:
� We analyze F ″ in respect to the list of partners

involved in the change. For each of these partners,
we identify the interactions this partner is involved
in. Given a partner p1, this induces the calculation of
abstrp1 ðF ″Þ (cf. Step 6 in Fig. 7). In turn, abstraction
function abstrp1 returns a connected component
including all interactions with p1; i.e., F‴.

� F‴ represents the fragment to be inserted into the
public model lp1 of p1. To preserve the compatibility
of the collaboration, however, we must calculate the
complement of F‴ (i.e., F p1 ¼F‴) and update the
public-to-public mapping function φ (cf. Step 7 in
Fig. 7). The latter maintains the correlation between
nodes of different public models.

� Given the fragment F″ to be inserted between pred0

and succ0 in lp (cf. Step 5 in Fig. 7), how can we identify
the insertion positions of the corresponding fragment
F p1 in lp1 ; i.e., PosIn and PosOut (cf. Step 10 in Fig. 7).
This becomes challenging if pred0 and succ0 of lp have no
corresponding elements in lp1 , or p has no interactions
with p1. Utilizing the choreography model G then
becomes primordial since it provides a global view on
the interactions of all partners. Further, it contributes to
identify the relationships between the elements pred0

and succ0 of p, and the interaction activities of p1. The
problem is shifted to finding the corresponding ele-
ments of pred0 and succ0 in G (i.e., ξðpred0Þ and ξðsucc0Þ
respectively), using the public-to-choreography map-
ping ξ. Then, we analyze the interactions in G, p1 is
involved in, and which precede ξðpred0Þ and follow
ξðsucc0Þ; i.e., pred″¼ T_presetp1 ðξðpred

0ÞÞ and succ″¼
T_postsetp1 ðξðsucc0ÞÞ respectively. Again, using the
public-to-choreography mapping ξ:G-lp1, we identify
the insertion positions in lp1 with PosIn¼ ξðpred″Þ and
PosOut ¼ ξðsucc″Þ. We distinguish two possible scenar-
ios when inserting F p1 :
○ Scenario 1: There exist no interaction activities

between PosIn and PosOut in lp1 . In this case, F p1
should simply be inserted between PosIn and
PosOut.

○ Scenario 2: There exists a set S of interaction
activities PosIn and PosOut in lp1 . In this case, F p1
is merged with all elements of S.
4.2. Propagation of fragment deletions

The DELETE change pattern allows removing an exist-
ing fragment from a process model. This becomes challen-
ging if the fragment contains interaction activities
referring to other partners. If we do not update the
processes of these partners when deleting the interaction
activities, incompatibilities in the choreography are intro-
duced. For example, a partner might then wait for a
message that will never arrive or send a message that will
never be consumed. To avoid such errors, a propagation
mechanism should be adopted that keeps the processes
(i.e., the public models of the partners) compatible with
each other. Further note that the deletion of an interaction
might have transitive (i.e. indirect) effects that cannot be
solely handled based on the process structure; i.e., knowl-
edge about semantics is required.

Example 7. We consider a supply chain scenario. Assume
that a local city council starts a new construction project
and hence collaborates with a city planner being in charge
of the project execution. In turn, the city planner interacts
with several third party partners responsible for designing,
supplying and building tasks. Therefore, if the city council
cancels the project, the city planner must cancel his
contracts with the other partners as well.

This section does not consider the transitive effects of an
interaction activity deletion, but only its direct structural
effects. A non-exhaustive list of transitive scenarios as well as
corresponding solutions are presented in Section 5. In the
following, we use the example from Fig. 8 to illustrate the
most important steps for propagating activity deletions.
Given a partner process πp and the fragment FAπp to be
deleted, we proceed as follows:
1.
 Isolated or propagating changes: We check whether F
solely consists of private activities. In this case, the
change can be considered as isolated and there is no
need for any change propagation. If fragment F con-
tains interaction activities, in turn, change propagation
becomes necessary.
2.
 Private-to-Public effects: To determine the impact the
deletion of the interaction activity has on the public model
of the change initiator, we apply the following steps:
� We identify all interaction activities to be deleted by

abstracting F with respect to interactions; i.e.
F 0 ¼ abstrinteractionðF Þ (cf. Step 2 in Fig. 8).

� We identify the corresponding elements of F 0 in the
respective public model lp of p. To this end, we use
private-to-public mapping function ψ and delete all
elements of F″¼ ψðF Þ in lp (cf. Steps 3–4 in Fig. 8).
Public-to-Public effects: To determine the change effects
on the public models of the other partners, the follow-
ing is applied: For each partner p1 involved in F ″, we
identify all interactions this partner is involved in by
applying abstraction function F‴¼ abstrp1 ðF ″Þ. For
each element of F‴, we determine the corresponding
element in lp1 using the public-to-public mapping
function φ (i.e., F p1 ¼ φðF‴Þ). Note that the elements
of F p1 are not necessarily directly connected in lp1 ; they
could be separated by other activities or gateways
instead. To handle this case, for each of these elements
we generate a separate delete operation. Finally, after
each deletion, model refactorings may be applied
(cf. Steps 5–7 in Fig. 8).
It is noteworthy that the interactions between two
partners are often accomplished synchronously in the
sense that the partner process who sends a message to
another partner process may wait for a response from the



W. Fdhila et al. / Information Systems 49 (2015) 1–24 11
latter before proceeding with its execution. In certain
scenarios, it might happen that the response is deleted
due to a transitive effect of the first deletion. We will
discuss these transitivity issues in Section 5.

4.3. Propagation of fragment replacement

Change pattern REPLACE modifies the structure and ele-
ments of a given fragment in a process model. This pattern is
particularly useful when the redesign of the entire process or
a part of it becomes necessary; e.g. to optimize the flow
between the activities; e.g., in the book trip example from
Fig. 1, one might want to replace fragment PAR(Airline_-
notification_failure, TravelAgency_notifica-
tion_failure)by changing this parallel branching into a
choice CHC(Airline_notification_failure, TravelA-
gency_notification_failure). In the following, we refer
to the change scenario from Fig. 9 to illustrate the most
relevant steps towards the propagation of the resulting
changes. Given a fragment FAπp to be replaced by a new
fragment F 0, change propagation can be accomplished as
follows:
1.
 Isolated or propagating changes: We first need to deter-
mine whether the fragment replacement constitutes a
local change or needs to be propagated to other
partners as well. For this purpose, we check whether
F or F 0 contain any interaction activities. In this case, a
propagation becomes necessary to maintain the com-
patibility between the partner processes. When repla-
cing a fragment by another one, new interaction
activities may be added, existing ones be removed, or
the sequencing between interaction activities be chan-
ged. Accordingly, the partners directly affected by the
fragment replacement are those interacting with p in
the scope of both F and F 0 (i.e., p1, p2 and p3 in the
scenario from Fig. 9).
Fig. 8. Major steps of propagat
2.
ing
Private-to-Public effects: To identify the effects of a
fragment replacement on the public model lp of p, we first
abstract fragments F and F 0 with respect to interaction
activities. Then, we identify the corresponding elements to
be replaced in lp using the private-to-public mapping
function ψ; i.e. F 1 ¼ ψ○abstrinteractionðF Þ and F 2 ¼ ψ○
abstrinteractionðF 0Þ. The initial replace request is then trans-
formed into a REPLACElp ðF1;F2Þ operation that, in turn,
needs to be propagated since it affects the interactions
with other partners (cf. Steps 2–4 in Fig. 9).
3.
 Public-to-Public effects: To determine the change effects
on the public models of the other partners, we do the
following:
� When replacing F1 by F2 (cf. Step 5 in Fig. 9), three

scenarios are possible: (i) a partner involved in the
original fragment F1 is no longer present in the new
fragment F 2 (i.e., the interaction with this partner is
deleted), (ii) a partner involved in F 2 was not
present in F 1 (i.e., a new interaction activity is
added), and (iii) a partner is present in both frag-
ments F 1 and F 2, but with different structure. Note
that for one and the same replacement, we may
have to deal with various scenarios of which each is
related to a particular partner. Accordingly, we
abstract both the new and the old fragments F 1

and F2 with respect to each partner involved in the
change. Accordingly, the REPLACE pattern is trans-
lated into a concatenation Δ of change patterns to be
propagated to the concerned partners.
(i) Deletion scenario: If a partner p0 interacts with
partner p in the context of the original fragment F 1

and is not engaged in any interaction with p in the
new fragment F2, we delete the respective interac-
tion activities from the public model of p0 (cf. Step 6a
in Fig. 9). The deletion scenario is handled similarly
as described in Section 4.2. (ii) Insertion scenario: If a
particular partner p0 has no interactions with p in
a fra
gment deletion.



Fig. 9. Major steps of propagating a fragment replacement.

W. Fdhila et al. / Information Systems 49 (2015) 1–2412
the context of old fragment F 1, but interacts with p
in the new fragment F 2, we must insert the new
interactions in the public model of p0 (cf. Steps
6b–8b in Fig. 9). The insertion scenario is propa-
gated similarly as described in Section 4.1.
(iii) Replacement scenario: The last scenario we con-
sider is as follows: both fragments F1 and F 2 involve
interactions with partner p0, but with different struc-
ture. The latter means that the control flow dependen-
cies between the interactions have changed and,
therefore, the public model of p0 shall be updated to
preserve compatibility between all public models
(cf. Steps 6c–7c in Fig. 9). For example, in the change
scenario from Fig. 9 and in comparison with F 1, F2

keeps the same interaction activities with partner p1 for
sending and receiving the messagesm andm0, but with
different structure; i.e., message m is not always sent
due to the exclusive choice. Consequently, the public
model of p1 should be updated and, in turn, the private
model of p1 be adapted to the latter if needed. Formally,
given F 1 and F2, we apply an abstraction with respect
to each partner involved in the change and compare
both results. If abstrp0 ðF 1Þ ¼ abstrp0 ðF 2Þ holds, no pro-
pagation to p0 is needed since the interactions with p0

remain invariant. Otherwise, a propagation is needed
and the current interactions in lp0 must be changed to
ensure compatibility with the new fragment F 2.
When propagating the changes to p0, first of all,
we need to fetch the matching elements of F1 in lp0 .
In general, the interactions between p and p0 in
the scope of the old fragment F 1A lp do not always
have the same structure or distribution in lp0 (but
the same behavior instead). This is due to the applied
refactorings as well as the different interactions p0 has
with the other partners; i.e., two interaction activities,
which are directly connected in sequence in lp, are
not necessarily directly connected in sequence in lp0 ,
but could be separated by an interaction activity
not involving p instead. The same holds for an interac-
tion activity surrounded by a parallel branch (i.e.,
AND) in lp0 , which could be refactored to a sequence
in lp.
Consider Fig. 9. If we look at F 0

1 and F 0
2 as the

abstractions of F1 and F 2 in respect to p1, matching
activities of F 0

1 ¼ SeqðψðSðm;p1ÞÞ, ψðRðm0; p1ÞÞÞA lp are
Rðm;pÞ and Sðm0; pÞA lp1 . Note that these are separated
by another interaction activity referring to p2. To
integrate the change we must transform F 0

2, using
the public-to-public mapping F p1 ¼ φðF 0

2Þ, and merge
it with the smallest fragment containing Rðm; pÞ and
Sðm0; pÞA lp1 (i.e., the gray box in lp1 in Fig. 9).
In general, we must consider the smallest fragment
containing all interaction activities of F 0

1 in l0p. Then, we
must merge it with the corresponding elements of F 0

2.
For this, we must adopt an algorithm that merges two
process models or fragments. Note that merging pro-
cess models has been widely studied in literature
[22,23]. The key idea is to merge different (and over-
lapping) process models into a single model without
restricting the behavior represented in the original
models. Formally, if we consider γas a merge function,
the problem can be solved by merging F p1 ¼ φðF 0

2Þ
with αlp1 ðφðF

0
1ÞÞ. It is noteworthy that such a merge

might result in different scenarios among which the



W. Fdhila et al. / Information Systems 49 (2015) 1–24 13
corresponding partner should chose the most appro-
priate one.
4.4. Further steps and discussion

This section discusses the change propagation
approach and highlights the main steps that follow the
public-to-public change propagation. Note that the follow-
ing steps are outside the focus of this paper, but can be
considered as complementary to our work.

Negotiation: Computing change effects on the public
models of the partners is automatic, relying on the pre-
sented algorithms. As shown in Fig. 6, after this step, a
negotiation phase is required to approve or reject the
intended changes. In general, such a negotiation cannot
be fully automated, but requires an agreement among the
partners. In particular, negotiations may involve human
actors, e.g., through phone, e-mail, or meetings. Various
approaches [60,59] exist that have dealt with negotiations
in the context of process choreographies (e.g., based on
service level agreements). Finally, note that negotiations
might result in a redefinition of the initial change.

Public-to-private propagation: The propagation of a pro-
cess change to the partners' public models might require
adaptations of their private models as well. In general,
these adaptations cannot be determined by the partner
that initiated the change. Accordingly, once all partners
involved in the change have agreed on the public changes,
each of them must determine the required changes of its
private model. In particular, the new private model must
be consistent with the changed public model. Note that
changes of the partners' private processes, in turn, might
lead to new changes that need to be propagated to other
partners (i.e., transitivity). Since a change initiator must
not access the private process of other partners, the
partners affected by the change themselves are responsi-
ble for adapting their private processes to the requested
change. In turn, this might lead to cascading effects or
even the multiple involvement of a partner during change
propagation.

Change implementation: After all public and private
changes are determined and agreed on, the soundness of
the corresponding models is checked, the changes are
implemented, and the public, private and choreography
models are updated.

In [35], a multitude of composite change operations are
described of which not all are considered in this paper. In
general, most change operations can be realized using the basic
DELETE and INSERToperations; e.g., REPLACE can be considered
as a combination of a DELETE followed by an INSERT. However,
change propagation complexity varies significantly. Worst case,
for example, the complexity of directly propagating a REPLACE
is equal to the one of a DELETE followed by an INSERT. Indeed,
the REPLACE operation refers to a fragment instead of a single
node. Accordingly, replacing a fragment by a new one not
means that all nodes of the old fragment are changed. Taking
the nodes that remain unchanged into account significantly
improves the propagation process and reduces the number of
operations to be propagated. Regarding the REPLACE algorithm
(cf. Algorithm 2), the three possible scenarios (i.e., deletion,
insertion and replacement) are solely generated for parts that
have changed. By contrast, unchanged parts do not require any
propagation. However, a DELETE followed by an INSERT will
first delete those parts, which entails a propagation to con-
cerned partners, and then re-insert the same parts (entailing
another propagation).

5. Transitivity of change propagation

This section presents a non-exhaustive list of use cases
demonstrating the transitivity effects of the DELETE change
pattern and the solutions to cope with them. Note that this is
a semantic issue that cannot be resolved based on the
propagation algorithms presented so far, which solely focus
on structural issues. As example consider a scenario with
three partners p1, p2 and p3. Assume that p1 invokes p2 and p2
invokes p3. The latter returns the intermediary result to p2,
which then applies data transformations before sending the
final result to p1. If now p1 decides to delete its interaction
with p2, one must further delete the subsequent interaction
between p2 and p3, which is solely used to deliver the final
result. If a partner deletes an interaction, semantically, this
means he is unable to afford this service anymore or he does
not need the data anymore. Then, the challenge is to
determine whether an interaction has transitive effects on
other interactions, and if yes, to identify and resolve these
transitive effects.

Case 1. Partner p is the final consumer of a data element,
and it launches an interaction that requires a response.
Accordingly, p contains related interaction activities send and
receive. Thereby, send is used to request the data from another
partner, whereas the corresponding receive is used to receive
the response to this request from another partner.
�
 Case 1.1 p deletes the send/receive interaction activities;
i.e., it does not need the data anymore (since p is the
final consumer). Accordingly, we delete send and
receive. In case all subsequent interactions with other
partners are solely used to deliver this data, these
interactions are deleted as well (e.g. supply chain
scenarios). Of course, it is also possible that only a
subset of the subsequent interactions are used to
deliver this data. These interactions are then deleted
only if they do not have any other role in the choreo-
graphy; i.e., they are not required to calculate any other
data (cf. Scenario 1 in Fig. 10). If they play another role
in the choreography, in turn, the subsequent interac-
tions are kept (cf. Scenario 2 in Fig. 10).

Example 8. Assume that there are two concurrent
requests from partners A and B to partner C. Further
assume that C is involved in subsequent interactions and
then replies to A and B. If A deletes its interaction with C,
we must not delete the subsequent interactions of C since
they are still required to reply to B.
�
 Case 1.2 p solely deletes the send pattern. We distin-
guish two scenarios:
(i) Another partner starts the communication instead

of p. Accordingly, we just update the corresponding
send with the new partner.



W. Fdhila et al. / Information Systems 49 (2015) 1–2414
(ii) p is not responsible anymore for triggering the
other partner to deliver the response; i.e., the latter
is provided automatically or under certain con-
straints. Hence, we delete the corresponding send
(cf. Scenario 3 in Fig. 10).
� Case 1.3 p solely deletes the receive pattern. This means
either p does not need the data anymore or the latter is
transferred to another partner. In the first case, we just
delete the corresponding receive and look for other
interactions correlated with this response (used solely
for delivering the response, cf. Scenario 4 in Fig. 10). In
the second case, we update the corresponding receive
with the new partner.

Case 2. Partner p corresponds to the final consumer of
the data, but is not responsible for launching the first
interaction; i.e., p has only the receive. If p deletes the
receive (i.e., p does not need the data anymore), we delete
the corresponding receive as well as all subsequent inter-
actions that are solely used to deliver this data. All
interactions participating in the delivery of this data, but
having another role in the choreography, are kept.

Case 3. Partner p is the starting point, responsible for
starting an interaction that results in a response to another
partner; i.e., p has the send. Either (i) another partner is
responsible for starting this interaction; then, we update
the send with the new partner, or (ii) the interaction starts
automatically or under other constraints on the target
partner; then we delete the corresponding send. Subse-
quent interactions are not deleted since we still need the
final data to be delivered to the final consumer.

Case 4. Partner p is an intermediary partner, and has
correlated interaction activities receive and send. p receives
Fig. 10. Transitivit
a request and starts a subsequent interaction necessary for
delivering the final response to the requester.
�

y sc
Case 4.1 Partner p deletes both the send and the receive
interaction activities and is unable to provide the data
anymore. However, still the final response to the requestor
is needed. In this case, two choices exist: (i) Looking for
another partner that can take over the task of p to deliver
this response. Then, we update the subsequent interac-
tions as well as the ones of the root partner (i.e., the
partner that invoked p and the one to whom p shall send
the result) with this new partner. (ii) Deleting send and
receive as well as all subsequent interactions solely used in
the context of this intermediary data, and looking for
another partner or set of partners that can provide this
data. Then, we update the interactions with the root
partners or p. As example consider Scenario 5 in Fig. 10.
If Partner3 is able to accomplish the data transformation
(d¼ f ðd1Þ) of Partner2, the interactions of Partner1 with
Partner2, which serve to deliver data d, are replaced by
new ones with Partner3.
�
 Case 4.2 If p solely deletes the send interaction activity,
another partner is responsible for starting this inter-
mediary interaction or the subsequent interactions
start automatically or under other constraints. In the
first case, we update the corresponding receive with the
new partner, otherwise we just delete it.
�
 Case 4.3 If p solely deletes the receive pattern, this
means that p cannot take over the tasks necessary to
deliver the final data. (i) If other operations are neces-
sary to deliver the final data, we look for another
enarios.



□

W. Fdhila et al. / Information Systems 49 (2015) 1–24 15
partner that can accomplish the same tasks. (ii) If not,
we update the Send to link it directly with the root
partner (cf. Scenario 6 in Fig. 10).

Conclusion. We presented a non-exhaustive list of
possible scenarios of transitivity when dealing with
change propagation. Clearly, transitivity is a semantic issue
and requires a data model defining the relationships
between the exchanged data objects (e.g., an ontology).
Due to privacy issues, in addition, not all data correlations
are always known, and therefore calculating the transitiv-
ity effects remains problematic and cannot be fully auto-
mated. Several proposals exist to predict the transitive
effects in process choreographies based on prediction
metrics (e.g. social graphs) [10].
6. Compatibility and consistency

This section discusses soundness issues of a process
choreography in the context of change propagation. In
particular, we check whether the compatibility and con-
sistency properties of the collaborating business partners
are kept. Accordingly, we assume that the initial public
models of the collaborative processes are compatible with
each other and that each private model is consistent with
its corresponding public model. We further assume well-
behavedness of the change operation in terms of structure
and semantics. Recently, several proposals were made on
checking the soundness of choreographies in terms of
compatibility and consistency [15,24–28].

Before discussing the compatibility and consistency of
the process choreography in the context of change propa-
gation, first of all, we introduce useful properties. Thereby,
Property 1 states that for each node of the public model of
a partner p, there should be a matching element in the
corresponding private model of p, but not vice versa.
Furthermore, Property 2 expresses that for each node of
the public model of a partner p, there should be a
matching node in a different public model of another
partner. Note that this is a necessary, but not yet sufficient
condition for ensuring compatibility between public mod-
els. Finally, Property 3 states that for each node in a public
model, there should be a matching node in the choreo-
graphy model. In particular, for each interaction in the
choreography model, there should be exactly two match-
ing interaction activities in the public models. Formally:

Property 1.
8 l_nodeA lp; (p_nodeAπp with ψðl_nodeÞ ¼ p_node.

Property 2. 8 l_nodeA lp with type (l_node)¼ Interactio-
nActivity: (p0ap: ( l_node0A lp0 with type ðl_node0Þ ¼
InteractionActivity4φðl_nodeÞ ¼ l_node0.

Property 3. 8 l_nodeA lp: (c_nodeAG such that ξðl_nodeÞ ¼
c_node.

Lemma 1. abstrp0 ðF ÞALp⟹abstrp0 ðF ÞAabstrpðLp0 Þ. The
complement of the abstraction of a fragment FALp from
the perspective of a participant p0 is a fragment of the
abstraction of Lp0 according to p.
Proof. The proof of this lemma can be based on the following
compatibility properties of choreographies. (c.f. [15]).
�
 If aALp corresponds to an activity that interacts with
partner p0, the following holds: (bALp0 with b¼ a.
�
 If ai, ajALp are two activities interacting with the same
partner p0 and βðai; ajÞ is a function returning the
minimal precedence relation (i.e., control flow path)
between ai and aj [21], the following property (also
denoted as bi-simulation property [15,18]) holds:
(bi; bjALp0 with bi ¼ ai ; bj ¼ aj 4βðai; ajÞ ¼ βðbi; bjÞ

6.1. Consistency checking
In our context, consistencymeans that the implementation
of a business process (i.e., a private model) is consistent with
its observable behavior (i.e., public model). This ensures that
implementations of private processes satisfy the interaction
constraints defined in the public models [15]. In our change
propagation approach, the public model is defined as an
abstraction of the private model by deleting all model
elements not related to any interaction (e.g., Property 1).
Accordingly, an insertion, deletion or replacement of a frag-
ment in a private model needs to be transformed into an
insertion, deletion or replacement of the fragment abstraction
in the public model (if required). Since any abstraction
preserves the consistency between the original and abstracted
model (cf. [29,30]), the propagation from private-to-public
does not affect consistency. Regarding deletion or replacement
scenarios, refactorings may be applied. In turn, this eliminates
unnecessary synchronization elements (e.g. a parallel branch-
ing between an activity and an empty branch is reduced to a
sequence), but does not affect the consistency between the
original and abstracted model. Change propagation might also
result in the insertion, replacement or deletion of a fragment
from a public model of a partner target. If the change is
accepted by the latter, the change requester cannot check for
the consistency between the public and private model of that
partner since the private model of the latter is not visible. Our
approach assumes that any partner affected by the change
should update his private model locally if he accepts the
change request. In turn, this update must be consistent with
the new version of his public model.

6.2. Compatibility checking

Compatibility is a soundness criteria that checks whether
the interacting partners are able to communicate with each
other in a proper way (e.g., no deadlocks or livelocks will
occur). In this context, [15] distinguishes between structural
and behavioral compatibility:

Structural compatibility: It requires that for every message
that may be sent, the corresponding partner is able to receive
it. In turn, for every message that can be received, the
corresponding partner must be able to send a respective
message. Regarding our propagation mechanism, structural
compatibility is always preserved. Depending on the change
operation type, for each affected partner we add, update, or
remove the complement of what has been changed in the
process of the change initiator. In particular, for each interac-
tion activity send in one process partner source, we insert or



W. Fdhila et al. / Information Systems 49 (2015) 1–2416
delete the corresponding receive interaction activity with the
expected attributes (e.g. message) in the process of the
partner target (i.e., affected by the change) and vice versa
(cf. Properties 2 and 3, and Lemma 1).

Behavioral compatibility. It considers behavioral depen-
dencies (i.e., control flow) between message exchanges,
i.e, it deals with the ordering of the partners' interactions.
For example, a Receive encapsulated by a Sequence in one
partner process should not be linked to a Send encapsu-
lated by a Choice in the process of a different partner.
Indeed, this might lead to a deadlock in case the path
containing the Send in the Choice is not executed during
runtime.

Assume that ðδ; πpÞ is the change operation to be applied to
process model πp and ðδ;LpÞ corresponds to the inferred
change to be applied to the public model of p. Further, let Δ
be the set of changes inferred from ðδ;Lp) to be propagated to
its directly affected partners. For each affected partner pi,
ðδi;LiÞ represents the inferred change operation to be propa-
gated to its public model; i.e., Δ¼ 4 i ¼ 1‥nðδi;LiÞ, where n
corresponds to the number of affected partners. Note that the
number of inferred changes is finite since we only consider
propagations to direct partners. In turn, changes that might
have structural effects on other partners (due to transitive
relations) are propagated to them through their direct part-
ners recursively.

If ðδ;LpÞ is invariant (i.e., it does not affect the public
model of p), consistency and compatibility are preserved
over the collaborative partners. In addition, since both
processes and changed fragments are structured, consis-
tency and compatibility relations can be reduced to those
existing between the fragments affected by the change.
�
 The INSERT pattern augments the process models of the
partners affected by the change with new activities and
gateways respectively. Further, it does not affect the
structural or behavioral dependencies (i.e., control flow)
between the existing activities. However, some direct
Fig. 11. Architecture of the change p
precedence relations between activities may be trans-
formed into transitive ones (due to the insertion of new
activities and gateways). The propagation of a change
operation of type INSERT results solely in change opera-
tions of type INSERT in the public models of the affected
partners. According to a particular partner, the insertion is
done with respect to the direct and transitive dependen-
cies with the activities of the same partner. As explained in
Section 4, if F corresponds to the fragment to be inserted
in Lp, abstriðF Þ is the fragment to be inserted in Li. Note
that the latter shows the same behavior (i.e., control flow)
as abstriðF Þ. In turn, the insertion position is computed
based on the transitive preset and postset of F i with
respect to partner i. Note that this preserves the order of
the fragments and ensures their behavioral compatibility
after propagating the INSERT operation. This propagation
might result in a merge of the fragment to be inserted with
an existing fragment as described in Algorithm 3. In
particular, if the partner affected by the change interacts
with different partners in the scope of the calculated
insertion positions (i.e., there exist others interactions
activities between the identified positions pred and succ),
the fragment to be inserted between these two positions
must be merged with the existing interaction activities in
between. Accordingly, we assume that merge function
gamma: ðF ;F 0Þ-F ″ preserves the behavior of F and F 0

in the result F ″ of the merge.

�
 The DELETE operation reduces the process models of the

partners affected by the change. This reduction is accom-
plished in a symmetric way on both sides; i.e., p and the
partners affected. The deletion of an activity on one side
results in the deletion of the corresponding a on the other.
Structural and behavioral compatibilities are kept. How-
ever, other issues emerge, e.g., an activity might wait for
data that will never arrive or send a message that might
not be consumed. The solution we proposed in Section 5
deals with typical use cases where the correlated interac-
tions are updated or deleted accordingly. Note that this
ropagation framework.



W. Fdhila et al. / Information Systems 49 (2015) 1–24 17
neither affects structural nor behavioral compatibility of
the propagation.
�
 The propagation of the REPLACE operation results in
three scenarios: insert, delete, or merge. Assume that
the merge function γ is correct and idempotent, pre-
serving the behavior of the merged fragments. We
consider F i and F 0

i as the fragments to be merged.
Then, the behavior of F i is reflected by the merge result
γðF i;F 0

iÞ (cf. Lemma 1).

The consistency between the public and private models
of the partners affected by the change will be checked if
negotiations succeed. Each of these partners must then
adapt its private model to the change of its public model.
Using consistency rules, each partner can check locally
whether or not its private model is consistent with its
public model. More details about consistency checking and
the validation of choreographies can be found in [5,2].
7. Proof-of-concept prototype and validation

This section outlines the architecture of our change
propagation framework for process choreographies and
presents the prototypical implementation of the C3Pro
Editor as one of its core components.

7.1. Framework architecture

Our architecture must provide functions for defining
and executing process choreographies. Further, it must
allow specifying, performing and propagating changes. To
meet these requirements, we propose a layered architec-
ture as depicted in Fig. 11. It consists of three layers:
Process Definition, Process Change, and Process Execution.

The main change propagation functions are realized by
the Process Change layer. The C3Pro Editor is one of the core
components of this layer that realizes the change propaga-
tion algorithms presented in Section 4. Other functional-
ities provided by existing tools are delegated (e.g. process
modeling and execution); i.e., although we focus on the
functionalities of the Process Change layer, we communi-
cate with the other two layers as well.

In the Process Definition layer, process designers use
existing modeling tools (e.g., Signavio or jBPM) to create
process as well as choreography models. The latter are
serialized as XML or JSON files and serve as input for the
Process Change layer. In turn, the latter layer defines all
components related to change propagation in choreogra-
phies. Most prominently, the Change Management Service
implements Algorithms 3–2 as well as the internal repre-
sentation (IR) of private, public and choreography models.
The functions of the other components from the Process
Change layer are follows:
�
 Versioning capabilities are provided that allow undoing
as well as redoing changes.
�
 Dynamic adaptation is enabled to deal with the migra-
tion of running process instances.
�
 Model verification is supported to verify the soundness
of the models resulting after a change.
�
 Negotiation becomes necessary if a change is not
acceptable for a partner. This component deals with
strategies applicable if a negotiation is required (cf.
Fig. 6).

All functions provided by the Process Change layer are
exposed as a RESTful service, which allows for a unified
access from any client able to communicate via HTTP. The
Change Management Service can be accessed with the
C3Pro Editor serving as the connector to the Process
Definition layer. The C3Pro Editor provides functions for
importing and visualizing choreography models. More-
over, changes may be applied to the models and required
change propagations to partners be performed, allowing
for the simulation of change propagation. Altogether, the
C3Pro Editor serves as the front end for all components
defined in the Process Change layer.

The Change Management Service serves as a pluggable
middleware based on which process engines can be
integrated. In particular, this integration allows these
engines to access all components of the Process Change
layer. This implies that after a successful change propaga-
tion, which includes negotiation and soundness checks (cf.
Fig. 6), the updated choreography models are transformed
into an executable form being directly passed to the
process engine for enactment (Process Execution layer). In
other words, from the perspective of the Process Change
layer, the Process Execution layer serves as an execution
platform for the updated models. The process execution
engine we have chosen is the Cloud Process Execution
Engine (CPEE).
7.2. Tool support: C3Pro editor

In the following, all occurrences of nodes refer to PNode
(i.e., activities and control nodes) from Definition 3. We
implemented the C3Pro Editor as the first prototypical
client realizing the Change Management Service. In parti-
cular, this client component takes the role of a simulation
environment for manually stepping through the change
propagation process (cf. Fig. 6), which allows testing and
verifying change scenarios. Altogether, the C3Pro Editor
supports the visualization of
1.
 private, public and choreography models,

2.
 affected partners' nodes and fragments depending on

the change type (i.e., INSERT, DELETE or REPLACE), and

3.
 the models resulting after the application of the calcu-

lated changes.
A multitude of process modeling tools exist. For this

reason, we delegate the basic modeling functions to these

tools. In our case, we have used Signavio [14]. We export
the created models to BPMN 2.0 XML format. In turn, the
latter is directly supported by our change propagation
library for importing models. Once imported, models can
be visualized and all changes be performed with the C3Pro
Editor. The latter is accomplished by propagating the
changes to each affected partners. The C3Pro Editor not
only visualizes process models before and after a change, it
also displays auxiliary information such as the affected



W. Fdhila et al. / Information Systems 49 (2015) 1–2418
partners' nodes and fragments. We utilize the jBPT4 library for
handling the transformation of models (private, public and
choreography) to RPST.

We realized the Change Management Service as a Java
Library (JAR), which enables any language running on top
of the Java Virtual Machine (JVM) to access the underlying
public classes and static functions. This allowed us to
develop the C3Pro Editor in a rapid fashion, still treating
the Change Management library as a service. A frequently
changing API would have hindered the concurrent devel-
opment of the service and the editor. After finalizing the
API and identifying the required functionalities, we imple-
mented the REST infrastructure for the Change Manage-
ment Service the C3Pro Editor consumes.

We chose Clojure as programming language that is
amendable for rapid prototyping and iterative develop-
ment. Further, it has a rich Read Eval Print Loop (REPL)
environment. Its default runtime platform is JVM, enabling
seamless interoperability with the Change Management
service. Clojure follows a functional programming style
and provides concurrent functionalities; the latter are
important for GUI application development. Finally, it
allows changing the behavior of a running program with-
out restarting it and hence reducing development efforts
significantly.

Figs. 12 and 13 depict screenshots of the C3Pro Editor.
The Project Explorer on the left-hand side shows the
current choreography model as well as the public models
of all partners participating in the collaboration. Double
clicking on any one of these items will display the
corresponding model as a graph in the Graph Panel. In
turn, the Graph Panel visualizes the selected graph as
expected. Left-clicking on a node in the displayed graph
will bring up its detailed information in the Detail Panel
and show the related nodes in the Related Nodes Panel. The
related node depends on the currently selected one. For
each send message, the associated receive message is found
and displayed, and vice versa. If an interaction activity (i.e.,
a node of the choreography model) is selected, the actual
send and receive messages are picked from the appropriate
public models and displayed in the Related Nodes Panel. If
gateways (i.e., ControlNode of Definition 3) are selected, the
smallest fragment (see Definition 9) that surrounds the
selected gateway is displayed in the Related Nodes Panel.

Change operations are shown to the user by right-
clicking on a node within the Graph Panel as well as on the
left side below the Project Explorer (as buttons). When
clicking one of the provided operations, a dialog window
pops up prompting the user to specify the change. In the
scenario depicted in Fig. 12, the user is asked to load the
fragment for the INSERT operation. Afterwards, the C3Pro
Editor applies the change and triggers the change propa-
gation process required. Fig. 13 shows the screen after
applying an INSERT operation. Furthermore, the Graph
Panel allows for the display of a process model in terms
of an RPST. Finally, the Change Log shows the output
during the processing of a change propagation.
4 https://code.google.com/p/jbpt/
7.3. Implementation of the trip booking process

As we were unable to find publically available choreogra-
phy models that can serve as the basis for our simulation, we
opted to use the trip booking example (cf. Figs. 1–3). We used
the Signavio Process Editor to model both the choreography
models and the partner-specific public models of the choreo-
graphy. Note that it was ensured that all models are structu-
rally as well as behaviorally sound. Further on, we ensured
that the process models are block-structured, which, in turn,
allowed for their easy transformation into corresponding RPST
representations. In case unstructured models shall be
imported, the techniques described in [18] can be applied to
transform most of these models into structured ones.

Models are exported as XML files and then imported as
initial data set into the C3Pro Editor. In total, 17,068 change
operations of type INSERT, DELETE, and REPLACE were
created and tested on the prototype.

8. Related work

Change propagation has been an active research area in
software engineering. In particular, the analysis, evaluation
and propagation of changes have beenwidely studied in large
complex software systems [31–34,36–38]. However, respec-
tive approaches cannot be directly transferred to process
choreographies since the latter entail several particularities;
e.g., the distributed model structure, partly unavailable infor-
mation about partner processes, dynamic aspects, and specific
requirements (e.g., compliance, privacy and security). Note
that these particularities raise additional challenges for change
propagation algorithms, which have been partially addressed
by only few approaches so far.

In [39], four transfer rules for dealing with dynamic
changes of distributed processes are proposed. These rules
use projection/protocol and life cycle inheritance relations in
order to check whether a changed process corresponds to a
subclass of the original one. The suggested method solely
allows for changes preserving inheritance transformation
rules, i.e., changes having only internal effects. Particularly,
there is neither a need for change propagation nor for any
new agreements on the global protocols (i.e., the choreogra-
phy model) since only inheritance-conforming changes are
allowed. By contrast, our approach also supports changes that
affect the external behavior of a process by computing and
propagating them to the affected partners.

In [40,41], change propagation techniques for parti-
tioned processes are proposed, where a process model is
split into several distributed partitions. This approach
propagates changes applied to the original model to the
respective partitions. It uses a decentralization function to
compute the affected partitions and to infer the changes to
be propagated as well. Moreover, it is one organization
controlling the original as well as the derived partitions.
Hence, it becomes easier to exactly compute the affected
regions and the changes to be applied. Note that this
differs from our approach since changes are applied by one
partner participating in the choreography and are then
propagated to the others. In particular, our work considers
fully distributed processes; i.e., no partner holds informa-
tion about another partner's private model. Each partner

https://code.google.com/p/jbpt/


Fig. 12. C3Pro Editor—screenshot showing an INSERT operation being performed.

W. Fdhila et al. / Information Systems 49 (2015) 1–24 19
can only view the public models of the other partners. In
the context of changes, this requires a negotiation phase
between the affected partners and could have transitive
structural and semantical effects on other partners recur-
sively. As opposed to [40,41], our work considers transi-
tivity issues as well. Other approaches similar to [40] are
presented in [42,43].

The DYCHOR framework [9] addresses the challenge of
propagating changes in process choreographies as well.
Thereby, changes are classified into additive and subtractive
changes, which may have variant or invariant impact on the
interactions. DYCHOR uses annotated finite state automata to
model choreographies and employs a set of operators to
compute the changes to be propagated. In our work, we
propose four change patterns that deal with more complex
fragments instead of single activities solely. This leads to
particular challenges concerning semantical and structural
transitivity effects, and also requires negotiations with the
partners affected by the change. We sketched semantic
transitive effects as well as the solutions to deal with them.
The approach adopted in this paper makes change propaga-
tion easier since process models are structured and only
changed regions are affected. Hence, there is no need for
completely re-computing the public models of affected part-
ners entirely. Instead only the affected regions need to be
adapted.
In [44], the problem of dynamic changes and versioning of
process models is addressed. The same challenge is tackled in
[45], where an ontology-based framework for decentralized
workflow change management is presented and different
migration rules for dynamic change adaptation are defined. In
[46], change propagation between semantically overlapping
process models, whose elementary as well as complex
correspondences have been identified, is proposed. All these
approaches are complementary to our work.

In [47], a method for propagating changes applied to a
given software model is presented. In particular, it com-
putes the additional changes required to meet an emer-
ging change requirement. The approach proposes techni-
ques to deal with consistency constraints violation. Differ-
ent repair solutions (i.e., customizations) are introduced
using cost models. In this approach, UML (Unified Model-
ing Language) is employed to specify the software model;
further OCL (Object Constraint Language) is used to define
constraints. [48] represents an extension of [47] to support
SOA (Service Oriented Architecture); it is shown how
changes can be propagated across a number of models
using the Service-oriented Modeling language (SoaML).
The cost calculation is substituted by a minimal modifica-
tion strategy that helps selecting change options in such a
way that it accommodates both the structural and seman-
tic dimensions of SOA models.



Fig. 13. C3Pro Editor—screenshot showing a public model after an INSERT operation.

W. Fdhila et al. / Information Systems 49 (2015) 1–2420
Mafazi et al. [49] present an approach to propagate
changes between process views. This approach considers a
reference model from which several process views are
derived. Further, it uses Petri nets to represent the differ-
ent models, as well as means to check consistency after
change propagation. A similar approach is provided in
[50]. The models adopted by these approaches are differ-
ent from the one described in this paper, where we
distinguish between the private, public and choreography
models. Accordingly, we distinguish between the compat-
ibility public-to-public and the consistency private-to-
public. Further, [49] does not consider the transitive effects
of propagation. A similar approach is presented in [46],
which computes change propagation between process
views. However, the relationships between the activities
of the different process views and the corresponding
reference model are not explicit. This approach uses
behavioral profiles to identify changed regions.

Mahfouz et al. [51] present an approach towards the
customization of interactions in choreographies. It adopts
TROPOS [52] to represent organizational business require-
ments. A new business requirement of a partner leads to a
customization of the choreography model, which, in turn,
results in a customization of the public models of these
partners. Though [51] describes the general conceptual
approach of propagation, it is unclear how the affected
regions and changes to be propagated are determined.
Finally, neither the change patterns nor the transitivity
effects to be handled are discussed in [51].
In [53], an approach for aligning and propagating
changes between the business process model and the
corresponding service-component configuration model
(SCA) is presented. The purpose of this approach is
different from ours since it does not consider the change
propagation between different process models, but
between the business logic and its supporting software
architecture logic instead (i.e., its implementation).

Recently, approaches started to analyze propagation
effects when applying changes in process choreographies.
As after a propagation changes cannot be imposed on
affected partners, but are often subject to negotiations,
propagation failures might become expensive. First steps
towards the understanding of the ripple effects of change
propagation in choreographies are taken in [10,11], where
[10] operates on the choreography model structure and
[11] on change log information by applying memetic
mining.

Solutions to check the realizability of the choreography in
case a specific reconfiguration or a change is needed are
described in [54]. In particular, this allows avoiding changes
that affect the realizability of the choreography. For this
purpose, choreography models are translated into the FSP
process algebra. In [55,56], an approach to model and validate
compliant choreographies is presented, and techniques to check
compliance rules in the context of process choreographies are
defined. Note that these approaches, combined with change
propagation algorithms, can be complementary to our work
for ensuring sound propagations.



W. Fdhila et al. / Information Systems 49 (2015) 1–24 21
9. Summary and outlook

While business process management has reached a
mature level in respect to enterprise-wide processes, the
operational support of cross-organizational processes still
constitutes a big challenge. In many application domains,
however, any technology support will not be accepted if it is
unable to cope with process changes and the evolutionary
nature of business processes. This was confirmed in several
case studies we conducted in the automotive domain (e.g.,
cross-organizational processes for product change manage-
ment [61] and product release management [62]) as well as
in the healthcare domain (e.g., cross-organizational pro-
cesses coordinating the various healthcare partners involved
in the preparation and enactment of a complex surgery [63]).
Nevertheless, these case studies have also revealed the high
need for a flexible support of cross-organizational processes.

This paper provides algorithms for propagating process
changes in collaborative scenarios that involve multiple part-
ners. In order to stay independent from a particular process
specification language, RPST is used for defining public and
private models of the involved partners as well as the
choreography model. The proposed propagation algorithms
consider typical process change patterns such as INSERT,
DELETE, and REPLACE, and are evaluated based on their
structural as well as behavioral compatibility.

Certain assumptions are made in this paper. First, the
proposed algorithms consider the application of one
change operation at a time. However, in practical scenar-
ios, several change operations might be applied in a
combined manner within a change transaction. To incor-
porate such complex changes, optimizations on the change
transactions as suggested in [57] may be utilized. These
allow calculating the actual effects of the change transac-
tion. Second, change propagation might become necessary
in a transitive way, i.e., multiple partners might be
affected. This can be handled by applying the change
propagation procedure depicted in Fig. 6 iteratively. How-
ever, it must be considered whether the transitive propa-
gation becomes cyclic. In this case, mechanisms such as
upper bounds on the number of iterations of propagating
changes including rollback mechanisms are conceivable.

Currently, we are integrating the change propagation
algorithms proposed into our cloud-based process execu-
tion engine CPEE. Further, we aim to test and apply these
algorithms in future case studies with our partners from
the automotive domain. As future work, we will deal with
negotiation and public-to-private change propagation
issues as well. Although our approach is able to determine
the effects changes of a private model have on the public
models of the involved partners, the dynamic effects on
the running instances have not been considered yet.
Therefore, as a next step, we aim to explore the effects of
dynamic changes in the context of choreographies, as well
as their impact on already running instances. Furthermore,
the presented approach mainly deals with structural
changes of choreographies and the resulting effects. How-
ever, it will be also interesting to extend the choreography
models with data semantics (e.g., an ontology of the used
data objects) to better cope with the transitive effects of
changes. Finally, choreography version management as
well as semantic constraints for choreography changes
(i.e., to preserve global compliance rules in the context of
changes [55]) will be investigated.
Appendix A. Propagation of fragment deletions

This appendix describes Algorithm 1, which shows the steps required to determine the effects of a change request of type
DELETE has on a choreography.
1.
 Isolated or propagating changes (cf. Lines 4–5 in Algorithm 1).

2.
 Private-to-Public effects (cf. Line 9 in Algorithm 1).

3.
 Public-to-Public effects (cf. Lines 10–16 in Algorithm 1).

Algorithm 1. Delete operation propagation: DeletePropagπp ðF Þ.

1 In
put: - A Choreography C

2
 - The fragment F∈πp to be deleted

3 b

�

egin
4
5
6
7
8
9
10
11
12
13
14
15
16
17

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

if ðabstrðinteractionÞðF Þ≠∅Þ then
j updateπp // local change– no propagation is needed
else

Δ←∅ // decomposition result
PΔ← List of all business partners involved in F
F″←ψ○abstrðinteractionÞðF Þ
for each p′∈PΔ do

F p′←abstrp′ðF″Þ
for each n∈F p′ do
jΔ←Δ∧ðDeleteðφðnÞÞ; lp′Þ
end

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end
end
Output:Δ
18 e
nd



W. Fdhila et al. / Information Systems 49 (2015) 1–2422
Appendix B. Propagation of fragment replacements This appendix describes Algorithm 2, which shows the steps to
determine the propagation effects of a fragment replacement in choreographies.
1.
 Isolated or propagating changes (cf. Lines 7–8 in Algorithm 2).

2.
 Private-to-Public effects (cf. Lines 10–11 in Algorithm 2).

3.
 Public-to-Public effects (cf. Lines 12–33 in Algorithm 2).
Algorithm 2. Replace operation propagation: Replace_ Propagπp ðF ; F 0Þ.

1 Input: - Choreography C
2 - The old fragment to be replaced FAπp
3 - The new fragment F 0

4 begin
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Δ’∅ // decomposition result
PΔ’ List of all partners involved in F [ F 0

if ðF ¼∅ and F 0 ¼∅Þ then
j invariant change– no propagation needed
else
F 1’ψ○abstrðinteractionÞðF Þ
F 2’ψ○abstrðinteractionÞðF 0Þ
for each ðpartner p0APΔÞ do
if abstrp0 ðF 1Þaabstrp0 ðF 2Þ then
if abstrp0 ðF Þ ¼∅ then
=n Insertion Scenario: call for insert propagation algorithmn=

Δ’Δ4 Insert_Propagπp ðabstrp0 ðF 0Þ; PresetðF Þ; PostsetðF ÞÞ

�
�
�
�
�

else
if abstrp0 ðF 0Þ ¼∅ then
=n Deletion Scenario: call for delete propagation algorithmn=

Δ’Δ4Delete_Propagπp ðabstrp0 ðF ÞÞ

�
�
�
�
�

else
=n Replacement Scenarion=
F 0

1’abstrp0 ðF 1Þ
F 0

2’abstrp0 ðF 2Þ
F p0’γðαlp0 ðφðF 0

1ÞÞ;φðF 0
2ÞÞ=n γ is a merge functionn=

Δ’Δ4REPLACEðF 0
1 ;F p0 ; lp0 Þ

for each ðactivity aAF 0
1 such that a=2F 0Þ do

jΔ’Δ4DELETEpðaÞ=n model refactoring may be appliedn=
end

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end
Output Δ;

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

36 end
Appendix C. Propagation of fragment insertions

In this appendix, Algorithm 3 is presented, which summarizes the steps required for propagating a change operation of
type INSERT to a particular process partner.
1.
 Isolated or propagating changes(cf. Lines 5–6 in Algorithm 3):

2.
 Private-to-Public effects (cf. Lines 11–20 in Algorithm 3):

3.
 Public-to-Public effects (cf. Lines 23–46 in Algorithm 3):
Algorithm 3. Insert operation propagation: Insert_Propagπp ðF ;pred; succÞ.

1 Input: - A Choreography C (cf. Definition 4)
2 - The fragment F to be inserted in πp
3 - The insertion position pred and succAπp



W. Fdhila et al. / Information Systems 49 (2015) 1–24 23
4 begin
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

if ðabstrðinteractionÞðF Þa∅Þ then
jupdate πp // local change–no propagation is needed
else
Δ’∅ // The set of changes to be propagated
PΔ’ fSet of all business partners involved in F g
=nCalculating the insertion position in the public model of the change initiatorn=
if ψðpredÞa∅ then
j pred0’ψðpredÞ
else
j pred0’fψðnÞ=nAT_presetðinteractionÞðpredÞg
end
if ψðsuccÞa∅ then
jsucc0’ψðsuccÞ
else
jsucc0’fψðnÞ=nAT_postsetðinteractionÞðsuccÞ
end
Δ’Δ4 ðInsertðψ○abstrðinteractionÞðF Þ;pred0 ; succ0Þ; lpÞ
=nCalculating the insertion position in the public model of each partner involved in the changen=
for each p0APΔ do
for each nApred0 do
if φðnÞa∅ then
jpred″’pred″ [ fξðnÞg
else
jpred″’pred″ [ fξðn0Þ=n0AT_presetp0 ðnÞg
end

�
�
�
�
�
�
�
�
�
�
�
�

end
for each nAsucc0 do
if φðnÞa∅ then
jsucc″’succ″ [ fξðnÞg
else
jsucc″’succ″ [ fξðn0Þ=n0AT_postsetp0 ðnÞg
end

�
�
�
�
�
�
�
�
�
�
�
�

end
F p0’φ○abstrp0○ψ○abstrðinteractionÞðF Þ
posIn’ξðpred″Þ
jposOut’ξðsucc″Þ
ifð(nALp0 between posIn and posOutÞ then
jΔ’Δ4 ðInsertðF p0 ; Parallel;posIn; posOutÞ; lpÞ
else
jΔ’Δ4 ðInsertðF p0 ; Sequence;posIn;posOutÞ; lpÞ
end

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end
Output:Δ=nList of changes to be propagatedn=

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

49 end
References

[1] S. Schulte, D. Schuller, R. Steinmetz, S. Abels, Plug-and-play virtual
factories, IEEE Internet Comput. 16 (5) (2012) 78–82.

[2] F.M. Besson, P.M. Leal, F. Kon, Towards Verification and Validation of
Choreographies. Technical Report, Department of Computer Science,
University of Sao Paulo, 2011.

[3] C. Peltz, Web services orchestration and choreography, Computer
36 (10) (2003) 46–52.

[4] W. van der Aalst, A decade of business process management
conferences: personal reflections on a developing discipline, in:
International Conference on Business Process Management, 2012,
pp. 1–16.

[5] F. Casati, S. Ceri, B. Pernici, G. Pozzi, Workflow evolution, Data
Knowl. Eng. 24 (3) (1998) 211–238.

[6] S. Rinderle, M. Reichert, P. Dadam, Correctness criteria for dynamic
changes in workflow systems: a survey, Data Knowl. Eng. 50 (1) (2004)
9–34.

[7] R. Breu, et al., Towards living inter-organizational processes, in: IEEE
International Conference on Business Informatics, 2013, pp. 363–
366.
[8] W. Fdhila, S. Rinderle-Ma, M. Reichert, Change propagation in
collaborative processes scenarios, in: International Conference on
Collaborative Computing: Networking, Applications and Workshar-
ing, 2012, pp. 452–461.

[9] S. Rinderle, A. Wombacher, M. Reichert, Evolution of process
choreographies in DYCHOR, in: International Conference on Coop-
erative Information Systems, 2006, pp. 273–290.

[10] W. Fdhila, S. Rinderle-Ma, Predicting change propagation impacts in
collaborative business processes, in: ACM Symposium on Applied
Computing (SAC), 2014, pp. 1378–1385.

[11] W. Fdhila, S. Rinderle-Ma, C. Indiono, Memetic algorithms for mining
change logs in process choreographies, in: International Conference on
Service-Oriented Computing (ICSOC), 2014, pp. 47–62.

[12] J. Vanhatalo, H. Völzer, J. Koehler, The refined process structure tree,
Bus. Process Manag. (2008) 100–115.

[13] B. Weber, M. Reichert, S. Rinderle-Ma, Change patterns and change
support features—enhancing flexibility in process-aware informa-
tion systems, Data Knowl. Eng. 66 (3) (2008) 438–466.

[14] Signavio: Signavio process editor. 〈http://academic.signavio.com/〉
Accessed 2013-10-24.

http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref1
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref1
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref3
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref3
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref5
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref5
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref6
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref6
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref6
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref12
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref12
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref13
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref13
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref13
http://academic.signavio.com/


W. Fdhila et al. / Information Systems 49 (2015) 1–2424
[15] G. Decker, M. Weske, Behavioral consistency for B2B process
integration, in: International Conference on Advanced Information
Systems Engineering, 2007, pp. 81–95.

[16] A. Barros, M. Dumas, P. Oaks, Standards for web service choreogra-
phy and orchestration: status and perspectives, Bus. Process Manag.
Workshops (2006) 61–74.

[17] C.C. Ekanayake, M. Dumas, L. García-Bañuelos, M.L. Rosa, Slice, mine
and dice: complexity-aware automated discovery of business pro-
cess models, in: International Conference on Business Process
Management, 2013, pp. 49–64.

[18] A. Polyvyanyy, L. Garcia-Banuelos, M. Dumas, Structuring acyclic
process models, Inf. Syst. 37 (6) (2012) 518–538.

[19] R. Milner, M. Tofte, D. Macqueen, The Definition of Standard ML, MIT
Press, Cambridge, MA, USA, 1997.

[20] B. van Dongen, W. van der Aalst, H. Verbeek, Verification of EPCs:
using reduction rules and petri nets, in: International Conference on
Advanced Information Systems Engineering, 2005, pp. 372–386.

[21] W. Fdhila, U. Yildiz, C. Godart, A flexible approach for automatic
process decentralization using dependency tables, in: International
Conference on Web Services, 2009, pp. 847–855.

[22] M.L. Rosa, M. Dumas, R. Uba, R.M. Dijkman, Business process model
merging: an approach to business process consolidation, in: ACM
Transactions on Software Engineering and Methodology, 2012.

[23] F. Gottschalk, W. van der Aalst, M.H. Jansen-Vullers, Merging event-
driven process chains, On the Move to Meaningful Internet Systems
(2008) 418–426.

[24] F. Puhlmann, M. Weske, Interaction soundness for service orches-
trations, in: International Conference on Service-Oriented Comput-
ing, 2006, pp. 302–313.

[25] W. Fdhila, M. Rouached, C. Godart, Communications semantics for
WSBPEL processes, in: International Conference on Web Services,
2008, pp. 185–194.

[26] H. Foster, S. Uchitel, J. Magee, J. Kramer, Compatibility verification
for web service choreography, in: International Conference on Web
Services, 2004, pp. 738–741.

[27] M. Rouached, W. Fdhila, C. Godart, Web services compositions model-
ling and choreographies analysis, Int. J. Web Service Res. 7 (2) (2010)
87–110.

[28] M. Rouached, W. Fdhila, C. Godart, A semantical framework to
engineering WSBPEL processes, Inf. Syst. e-Bus. Manag. 7 (2) (2009)
223–250.

[29] W. van der Aalst, M. Weske, The P2P approach to interorganizational
workflows, in: International Conference on Advanced Information
Systems Engineering, 2001, pp. 140–156.

[30] W. van der Aalst, N. Lohmann, P. Massuthe, C. Stahl, K. Wolf, From
public views to private views—correctness-by-design for services,
Web Services Formal Methods (2008) 139–153.

[31] S.A. Bohner, R.S. Arnold, Software Change Impact Analysis, IEEE
Computer Society, 1996.

[32] M. Giffin, O. de Weck, G. Bounova, R. Keller, C. Eckert, P.J. Clarkson,
Change propagation analysis in complex technical systems, J. Mech.
Des. 131 (8) (2009).

[33] G.A. Oliva, G. de Maio Nogueira, L.F. Leite, M.A. Gerosa, Choreogra-
phy Dynamic Adaptation Prototype, Technical Report, Universidade
de Sao Paulo, 2012.

[34] P.J. Clarkson, C. Simons, C. Eckert, Predicting change propagation in
complex design, J. Mech. Des. 126 (5) (2004) 788–797.

[35] B. Weber, S. Rinderle-Ma, M. Reichert, Change patterns and change
support features in process-aware information systems, in: Interna-
tional Conference on Advanced Information Systems Engineering,
2007, pp. 574–588.

[36] L. Steffen, A Review of Software Change Impact Analysis, Technical
Report, Universitätsbibliothek Ilmenau, 2011.

[37] C.M. Eckert, R. Keller, C. Earl, P.J. Clarkson, Supporting change
processes in design: complexity, prediction and reliability, Reliab.
Eng. Syst. Saf. 91 (12) (2006) 1521–1534.

[38] C. Eckert, W. Zanker, P.J. Clarkson, Aspects of a Better Understanding
of Changes, vol. 1, ICED, 2001.

[39] W. van der Aalst, T. Basten, Inheritance of workflows: an approach to
tackling problems related to change, Theor. Comput. Sci. 270 (1–2)
(2002) 125–203.
[40] W. Fdhila, A. Baouab, K. Dahman, C. Godart, O. Perrin, F. Charoy, Change
propagation in decentralized composite web services, in: International
Conference on Collaborative Computing, 2011, pp. 508–511.

[41] W. Fdhila, S. Rinderle-Ma, A. Baouab, O. Perrin, C. Godart, On
evolving partitioned web service orchestrations, in: International
Conference on Service-Oriented Computing and Applications, 2012,
pp. 1–6.

[42] M. Reichert, T. Bauer, Supporting ad-hoc changes in distributed
workflow management systems, in: International Conference on
Cooperative Information Systems, 2007, pp. 150–168.

[43] P. Hens, M. Snoeck, M. De Backer, G. Poels, Verification of change in a
fragmented event-based process coordination environment, IEEE
Trans. Services Comput. 7 (3) (2014) 501–514.

[44] J.M. Küster, C. Gerth, G. Engels, Dynamic computation of change
operations in version management of business process models,
Model. Found. Appl. (2010) 201–216.

[45] V. Atluri, S.A. Chun, Handling dynamic changes in decentralized
workflow execution environments, Database Expert Syst. Appl.
(2003) 813–825.

[46] M. Weidlich, J. Mendling, M. Weske, Propagating changes between
aligned process models, J. Syst. Softw. 85 (8) (2012) 1885–1898.

[47] K.H. Dam, M. Winikoff, Cost-based BDI plan selection for change
propagation, in: International Joint Conference on Autonomous
Agents and Multiagent Systems, 2008, pp. 217–224.

[48] H.K. Dam, A. Ghose, Supporting change propagation in the main-
tenance and evolution of service-oriented architectures, in: Asia
Pacific Software Engineering Conference, 2010, pp. 156–165.

[49] S. Mafazi, G. Grossmann, W. Mayer, M. Stumptner, On-the-fly
change propagation for the co-evolution of business processes, On
the Move to Meaningful Internet Systems (2013) 75–93.

[50] J. Kolb, K. Kammerer, M. Reichert, Updatable process views for user-
centered adaption of large process models, in: International Con-
ference on Service Oriented Computing, 2012, pp. 484–498.

[51] A. Mahfouz, L. Barroca, R. Laney, B. Nuseibeh, Requirements-driven
collaborative choreography customization, in: International Confer-
ence on Service-Oriented Computing, 2009, pp. 144–158.

[52] A.U. Mallya, M.P. Singh, Incorporating commitment protocols into
tropos, Agent-Oriented Software Engineering VI (2006) 69–80.

[53] K. Dahman, F. Charoy, C. Godart, Alignment and change propagation
between business processes and service-oriented architectures, in:
International Conference on Service Computing, 2013, pp. 168–175.

[54] N. Roohi, G. Salaün, V. France, Realizability and dynamic reconfi-
guration of chor specifications, Informatica 35 (1) (2011) 39–49.

[55] D. Knuplesch, M. Reichert, R. Pryss, W. Fdhila, S. Rinderle-Ma,
Ensuring compliance of distributed and collaborative workflows,
in: International Conference on Collaborative Computing, 2013,
pp. 133–142.

[56] D. Knuplesch, M. Reichert, W. Fdhila, S. Rinderle-Ma, On enabling
compliance of cross-organizational business processes, in: Interna-
tional Conference on Business Process Management, 2013,
pp. 146–154.

[57] S. Rinderle, M. Reichert, M. Jurisch, U. Kreher, On representing,
purging, and utilizing change logs in process management systems,
in: International Conference on Business Process Management,
2006, pp. 241–256.

[58] R. Lenz, M. Reichert, IT support for healthcare processes—premises,
challenges, perspectives, Data Knowl. Eng. 61 (1) (2007) 39–58.

[59] S. Paurobally, V. Tamma, M. Wooldrdige, A framework for web
service negotiation, ACM Trans. Auton. Adap. Syst. 2 (4) (2007) 14.

[60] R. Vigne, J. Mangler, E. Schikuta, S. Rinderle-Ma, WS-agreement
based service negotiation in a heterogeneous service environment,
in: International Conference on Service-Oriented Computer and
Applications, 2012, pp. 1–8.

[61] VDA Recommendation 4965 T1: Engineering Change Management
(ECM)—Part 1: Engineering Change Request (ECR) Version 1.1, 2005.

[62] D. Müller, J. Herbst, M. Hammori, M. Reichert, IT support for release
management processes in the automotive industry, in: International
Conference on Business Process Management, 2006, pp. 368–377.

[63] B. Schultheiss, J. Meyer, R. Mangold, T. Zemmler, M. Reichert,
Designing the Processes for Ovarian Cancer Surgery, Technical
Report DBIS-6, University of Ulm, 1996.

http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref16
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref16
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref16
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref18
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref18
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref19
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref19
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref23
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref23
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref23
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref27
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref27
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref27
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref28
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref28
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref28
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref30
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref30
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref30
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref31
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref31
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref32
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref32
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref32
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref34
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref34
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref37
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref37
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref37
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref38
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref38
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref39
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref39
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref39
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref43
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref43
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref43
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref44
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref44
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref44
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref45
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref45
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref45
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref46
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref46
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref49
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref49
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref49
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref52
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref52
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref54
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref54
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref58
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref58
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref59
http://refhub.elsevier.com/S0306-4379(14)00155-0/sbref59

	Dealing with change in process choreographies: Design and implementation of propagation algorithms
	Introduction
	Research challenges
	Contribution

	Running example and model representation
	Running example
	Model representation

	Fundamental definitions
	Process choreography
	Change and change propagation

	Change propagation
	Propagation of fragment insertions
	Propagation of fragment deletions
	Propagation of fragment replacement
	Further steps and discussion

	Transitivity of change propagation
	Compatibility and consistency
	Consistency checking
	Compatibility checking

	Proof-of-concept prototype and validation
	Framework architecture
	Tool support: C3Pro editor
	Implementation of the trip booking process

	Related work
	Summary and outlook
	Propagation of fragment deletions
	Propagation of fragment replacements
	Propagation of fragment insertions
	References




