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Abstract

Contemporary business process management systems manage their processes based
on the activity-centric paradigm. However, many business processes are un- or semi-
structured and cannot be represented adequately by the activity-centric paradigm. The
fundamental reason for this insufficiency is the lack of cohesion between processes on
one hand and data on the other.

Object-aware process management provides a solution for this issue by tightly integrating
processes with data. Data is represented as structured object types with complex
data dependencies. This is mirrored in the concepts of object behavior and object
interactions. Object behavior is captured in micro processes, whereas object interactions
are represented by macro processes. Both micro and macro processes are integral
parts of the runtime of an object-aware process management system. Furthermore, the
execution of micro and macro processes is governed by process rules. The process rules
advance the process state depending on the available data, react to user interactions or
perform error handling.

PHILharmonicFlows is a framework that aims at the proper support of object-aware
processes. A prototype implementing the framework is currently under development.
This thesis contributes to the prototype by describing concepts concerning process rules
and by providing implementations as well.

In detail, the contributions are as follows.

The ongoing development of the prototype requires process rules to be easily created
and altered, i.e. to enable a high maintainability. Therefore, a high level of abstraction
for the process rule definitions is necessary. The Process Rule Framework enables the
creation and alteration of process rules and satisfies the high maintainability requirement
by leveraging functional programming devices. Using the Process Rule Framework, a
high productivity can be achieved when handling process rules. Moreover, the Process
Rule Framework has the possibility to be extended to a general-purpose rule engine in
which rules may be created, compiled and executed during runtime.

At runtime, process rules provide one of the cornerstones to object-aware process
execution. This requires complex interactions between process rules, as they can
trigger each other and therefore chain together. The challenge is to enable these
interactions while keeping the individual process rules independent from each other and
only loosely coupled. The Process Rule Manager enables the complex interactions
between process rules by providing the means to coordinate and control process rule
interactions. Additionally, the Process Rule Manager abstracts from the inner workings of
process execution and provides a well-defined interface to interact with a micro process.
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Introduction

1.1. Motivation

Every business on the market has at least one process to manufacture a product or
deliver a service. Additionally, many more processes exist to deal with other vital
requirements of a business, for example acquiring new personnel, ordering raw materials
or shipping the goods to the customers. In order to stay competitive, a company has to
find ways to improve itself. Processes are an obvious choice to look for improvements,
leading to an edge over the competitors [13].

Since its beginning, information technology has been able to improve and streamline
processes. However, the approach was mostly to digitize and improve a single aspect or
a small part of a process with specialized software. To improve and support processes
as a whole, computer science has dedicated a branch to researching, describing and
optimizing business processes. This branch is called Business Process Management.
So far, the research resulted in various paradigms for describing, modeling, executing,
monitoring and optimizing processes. This lead to software called process management
systems to manage a company’s processes according to those paradigms [39].

The most common way of modeling processes is the activity-centric paradigm [39].
Examples include the AristaFlow BPM Suite [15, 24], YAWL [50, 48] and the Activiti
BPM Platform [38]. According to this paradigm, a process can be split into activities.
An example for an activity would be writing a letter or interviewing an applicant, which
also have a certain order, modeled by so called sequence flow. Domain languages
like the business process model and notation (BPMN) [36] have been developed to
describe activity-centric processes adequately. The most successful commercial process
management systems are also based on an activity centric process model. However,
using these process management systems in practice has revealed serious drawbacks,
like the rigidness of activity-centric processes [52]. Deviating from the predefined
execution path is at least difficult and often impossible. To provide the necessary
flexibility for real-world processes, concepts like ADEPT [40] have been built on top of
the activity-centric paradigm. Others have developed new paradigms like case handling
[43, 51], declarative activity-centric processes [37, 53, 49] and artifact-centric processes
[9, 2] to increase flexibility.
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Another major drawback of current process management systems is the insufficient
integration of data into processes [21, 19]. On the one hand, this comprises the lack of
structured data types and the lack of an explicit view on the data involved in process
execution. For example person involves a name, his or her age, an address and many
data types, depending on the context the person data type is used in. On the other,
relations of objects can at most be expressed inadequately, if at all. For example, a
company can have multiple applications for a job position. In order for an applicant to get
the job, his or her application must receive at least three positive reviews and at least
one interview with him or her must be conducted [18]. For most process management
systems, the relation “at least three reviews” between applicant and reviews is impossible
to express. Many of the new approaches like case handling or the artifact-centric
paradigm in addition to increasing process flexibility also enable a tighter integration of
data. However, these concepts are still unsatisfactory for some knowledge-intensive
applications.

PHILharmonicFlows [3, 6, 18, 16, 17, 42] addresses and solves issues like modeling
object relations by providing a well defined framework for integrating processes and
data. It defines the characteristics of an object-aware process [19] and creates tools
and specifications to model, execute and monitor such object-aware processes. Since
object-aware processes are fundamentally different from activity-centric processes, a
new way of of business process modeling is introduced [4]. PHILharmonicFlows also
provides a runtime component for executing object-aware processes [17].

This master’s thesis describes the part of the prototypical runtime of PHILharmonicFlows
which executes object-aware processes, in particular micro processes [20]. Most of the
execution logic of micro processes relies on process rules. A framework for creating
process rules is presented, as well as a concept to establish the complex interactions
between individual process rules. For all concepts, a corresponding implementation is
provided as well.

1.2. Contribution

The concepts presented in this thesis form a significant contribution to the runtime of
PHILharmonicFlows. In detail, the contributions are as follows

e Process rules can be created and altered with a concise and high-level syntax.
With the design of the Process Rule Framework, special focus was placed on the
maintainability of the rules.

e A precise coordination of process rules is provided by the Process Rule Manager.
Supported by the Process Rule Framework, clear separation and independence of
individual process rules is achieved.

¢ A testing suite consisting of exemplary micro process execution templates, indi-
vidual process rule tests and process model verifications to verify the functionality
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of process rules, the proper coordination of the process rules and the structural
soundness of new process models. The testing suite is not described in this thesis.

All concepts have been prototypically implemented and tested. Also, all process rules
concerning micro processes have been implemented. As of Christmas 2014, a micro
process with backwards transitions was for the first time successfully executed, satisfying
all requirements detailed in Chapter 8 of [17]. As an additional feature, the Process Rule
Framework laid the basis for a business rule engine which is able to define, compile and
execute business rules entirely at runtime.

1.3. Outline

The remainder of this thesis is structured as follows: Chapter 2 gives an overview of
the PHILharmonicFlows framework, defines object-aware processes and introduces
the necessary concepts for understanding the thesis. Of particular interest are micro
processes and process rules. These concepts form the base for the implementation
described in Chapters 4 and 5. Chapter 3 explains the programming fundamentals
used in the implementation of the PHILharmonicFlows runtime environment. These
fundamentals are necessary for understanding the Process Rule Framework and the
Process Rule Manager. Chapter 4 presents the requirements for a Process Rule
Framework, followed by a discussion on how these requirements are achieved. The
Process Rule Manager enables micro process execution by applying process rules in an
event-driven manner. The details are explained in Chapter 5. Chapter 6 describes other
approaches to implement rules. Chapter 7 concludes the thesis with a summary and an
outlook.






The PHILharmonicFlows Framework

PHILharmonicFlows' is a framework for modeling, executing and monitoring object-
aware business processes [17, 19, 16]. Among the features of PHILharmonicFlows
are a modeling tool for graphically modeling processes, automatic work list generation
and generic form generation based on the underlying process data. It also supports an
authorization policy that may be adjusted at a fine level of granularity.

2.1. Object-Aware Processes

In order for a process or framework to be classified as object-aware, a set of requirements
must be met. These requirements are described in [17, 22, 21, 41]. First, definitions of
terms used in the description of PHILharmonicFlows and object-aware processes are
given. Afterwards, the five requirements are presented for classifying an object-aware
process.

2.1.1. Definitions

In an object-aware process, data is represented as object types. An object type consists
of a set of object attributes and a set of object relations to other object types [22, 16].
Object attributes are atomic data, e.g. a name or an account balance. Object relations
define the relationship of an object type to other object types. For example, a company
worker must plan and coordinate tasks for the company. For this purpose, he or she has
a task planning sheet that comprises task name, duration and assigned workers. “Task
name” and “duration” are both object attributes. “Assigned workers” is an object relation,
as “worker” is another object type. The empty task planning sheet is the object type.
For each task, a new task planning sheet needs to be filled out, which are instances of
the object type “task planning sheet”. For each task, a minimum of three workers and a
maximum of seven need to be assigned, which is a cardinality constraint on the object
relation. Otherwise, a task can not be worked efficiently. For example, task “A”, with a
duration of five hours, is assigned four people. For another task “B”, which lasts a whole
week, there might be five people assigned. The actual number of assigned workers can

' “Process, Humans and Information Linkage for harmonic Business Flows”
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differ from task to task, respectively the planning sheet for the task. But for each task,
the number of workers must be within the cardinality constraints. Object attributes and
object relations directly relate to different levels of process granularity: object behavior
and object interactions.

An activity in PHILharmonicFlows is the provision of values to object attributes or the
creation of object instances [4]. This is done with a form that comprises input fields for
writing object attributes or data fields for displaying object attribute values.

2.1.2. Requirement 1: Object Behavior

Object behavior is the first level of granularity and represents processing a single
object instance [20]. Basically, it is about providing values to the object attributes and
subsequently reading those values. However, a certain processing order of the object
attributes may be required. In addition, not every worker may have reading or writing
permissions for an object attribute, so authorizations must be taken into account. For
this purpose, for every object instance that is created, a corresponding micro process
[20] is instantiated as well that ensures a correct processing order of attribute and the
validity of reading and writing permissions.

2.1.3. Requirement 2: Object Interactions

It must be possible to create and delete object instances at any point in time during
process execution. Each of these object instances may have relations to other object
instances, with different cardinality constraints. To complicate matters, object instances
may be in different processing states, which can affect other instances, e.g. if certain
data is not (yet) present.

This leads to the emergence of a complex process structure? at runtime [16, 17]. By
principle, an object instance is independent from another instance and can be processed
concurrently. However, at certain points they may interact with other instances and thus
need to be synchronized. These object interactions form the second level of granularity.
For example, a company can only hire an applicant if he or she has been recommended
by at least two people who have reviewed the application. Unless at least two reviews
are present, the application process cannot continue. To manage all interactions, a
macro process is instantiated together with the object type.

Object interactions and macro processes are not the focus of this thesis. Thereby, an
in-depth explanation of the challenges and the solution concepts involved with macro
processes can be found in [17].

2Miiller et al. introduced this notion in the COREPRO framework [34, 35], which allows for the data-driven
creation, enactment and monitoring of large process structures that may consist of hundreds of object
life cycles at runtime. As opposed to PHILharmonicFlows, COREPRQO does not consider the cardinality
constraints of object relations.
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2.1.4. Requirement 3: Data-Driven Execution

A data-driven process is a type of process where the state of a process execution relies
solely on the available data. A process execution progresses further when particular data
becomes available. To ensure that certain required object attribute values are set, they
can be flagged as mandatorily required. If an attribute is mandatorily required, process
execution halts until a proper value is available. Flexibility is possible by providing values
up front or changing values after process execution. Changing values requires a (partial)
re-execution of the process and explicit user commitments for approving object attribute
values, e.g. when validity is in question due to a changed context. In context of object
interactions, “coordination of multiple micro process instances should be supported in a
data-driven way” [41, 22], as progression may depend on data values from other objects
instances.

2.1.5. Requirement 4: Variable Activity Granularity

Activities should accommodate users with their preference in work practice [22]. In
Instance-specific activities, all input and data fields refer to the same object instance.
Context-sensitive activities have fields that refer to semantically related object instances.
For example, the task planning sheet is related to the task object instance itself. When
editing object attributes of the task planning sheet, it is possible to alter attribute values
of the task instance as well. Batch activities allow writing one object attribute value to
the attributes of multiple object instances of the same type. For example, several tasks
last two hours, so a batch activity can assign each task instance the value in one go, so
the task instances do not need to be changed individually. Activity granularity is not to
be confused with process granularity, i.e., object behavior and object interactions.

2.1.6. Requirement 5: Integrated Access to Business Processes and
Objects

A process-oriented view allows providing object attribute values in a structured, pre-
defined way. However, this view lacks flexibility. For users to be able to add object
instances, delete object instances or manipulate object attributes at any point in time, a
data-oriented view is required. This view should also allow access to selected activities
for usually uninvolved users . For this purpose, a permission system is required to grant
respective authorizations for creating, manipulating and deleting object instances and
to ensure user without these permissions are denied access [18]. Permissions are not
limited to an object type, but can be granted in respect to a specific instance of an object
type. For example, a user might only execute process instances which he or she created.
When providing data with the data-oriented view, it must be ensured that the specified
object behavior is not violated.
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2.2. Micro Processes

The topic of this thesis is centered on object behavior, in particular the execution of the
micro processes specifying object behavior [20, 17]. The following gives an explanation
of micro processes and how such a process is executed. A graphical representation of a
micro process is given in Figure 2.1.

Micro processes determine the order in which object attributes need to be provided and
check if any of the attributes are mandatory. It is also involved in specifying which user
can access a specific attribute at which point in time, however this has been omitted for
simplicity reasons. Micro processes are represented as a graph. Object attributes are
represented as micro steps and are connected by micro transitions which determine the
order of the micro steps. Micro steps are logically grouped into states. A state shows
the progress of a micro process execution. A micro process instance has a start state
that determines where process execution begins. Several end states terminate micro
process execution when reached. A backward transition enables a user to redo previous
work, e.g. for correcting errors. A backward transition originates from a state and targets
a state, which means a redo operation involves a state as a whole, even if only one
object attribute’s value needs to be changed. Unchanged values must have an approving
commitment by the user to ensure they are still correct.

There are different variants of micro steps, each for a different purpose. Empty micro
steps do not correspond to an object attribute. Empty micro steps are used among other
things to denote the start step and the end steps of a process. Normal micro steps are
used to write an object attribute with an unlimited range of values (only restricted by
the data type). To impose restrictions on values for object attributes a user can provide,
value-specific micro steps have been introduced. Its predefined, finite set of attribute
values is mapped to a set of value steps. A decision, for example a Yes/No-Question, is
modeled a value-specific micro step with one value step corresponding to ’Yes’, another
value step to 'No’. Another example can be found in Figure 2.1, where a value-specific
micro step represents a start date. It has the value steps “later” and “now”. Mapping
predefined values is one application of a value step’s predicate. A predicate is an
expression that has a Boolean value as a result. It can use comparative operators
(e.g. >,=, <), use system resources like the current date and allows using previously
provided attribute values for complex decision making.

Figure 2.1 shows a micro process for a very simplistic job application object. Micro
steps are rectangles with rounded corners, states are rectangles with sharp corners.
Transitions are represented as arrows, for simplicity the micro process does not have
backward transitions. The job application consists of first name and surname of the
applicant. Then, the applicant has to make a decision when he or she wants to start the
job. If the option “later” is chosen, the applicant must provide a date when he or she
wants to start instead.

The micro process comprises three states: “personal data”, “job beginning” and an end
state to terminate the process. The start state is “personal data”. The state consists of
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State marking Waiting
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Figure 2.1.: Example Micro Process

an empty micro step that serves as start step. A start step represents the entry point to
begin micro process execution. Each micro process can only have one start step. Micro
transitions connect the start step to the micro steps for writing the object attributes “first
name” and “surname”. A transition connects micro step “surname” with value-specific
micro step “start date”.

Value-specific micro steps can be recognized by looking at the value steps inside the
micro step. The value steps represent a decision option. In the example, option one is
starting to work in the job now, option two for the applicant is to start the job later. He
or she then has to provide a date when he or she is able to start. Therefore, a value
step “later” is connected by a transition to micro step “date”, which in turn concludes the
process by connecting to an end step in an end state. The value step “now” connects
directly to the end step as no additional information is required.

By the looks of the process graph, one might get the impression that the execution of a
micro process is a rigid and inflexible endeavor. However, PHILharmonicFlows allows
writing every object attribute at any point in time. For this purpose, every element of a
micro process graph is enhanced by a Marking. Markings provide additional information
about the current process state and are an essential part to provide flexibility. Based
on process structure and markings, process rules govern the execution flow of a micro
process and provide support for every conceivable user interaction [20, 17]. Both
markings and process rules are introduced in detail in Section 2.2.2.

2.21. Forms

The states of a micro process instance directly relate to user forms in a graphical user
interface. Each object attribute and therefore micro step is related to a respective form
field. Depending on the object attribute type and the micro step type, a different graphical
input element is displayed (e.g., text box for String, check box for Booleans, drop-down
menu for value-specific decision making, etc). These form are automatically generated
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Personal data:

First name Enter Text

Surname Enter Text

Job beginning:

Start date

<
1

Date Enter Text

Figure 2.2.: Example of a Form Representation

based on the micro process. Figure 2.2 shows a form representation of the micro
process depicted in Figure 2.1. Although the micro process comprises two states, which
would normally translate to two different forms, both states are depicted in one form,
since both states only contain two micro steps each.

There exist two possibilities for providing data to an object instance. In the process-
oriented view data is entered sequentially into forms according to the flow of the micro
process. It represents a traditional approach, similar to current workflow system. The
data-oriented view allows users to enter data at any point in time (cf. Section 2.1.6).
It gives a complete overview over all object attributes and relations, which can be
manipulated directly. This flexibility is supported by the underlying micro process, as it
can react accordingly to data values which were already provided.

A detailed example from the healthcare domain, specifying a data model, related micro
processes and user forms can be found in [5].

10
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2.2.2. Markings

Markings convey state information about the process instance during execution. They
determine if and which user actions are required. Changes in Markings represent
process progression. Each Marking has a specified semantics, which in turn determines
what actions are available to progress further in process execution. Table 2.1 contains
all Markings for a micro step with a simplified explanation of the Marking semantics. An
example execution with Markings displayed can be found in Section 2.3.

Marking | Description
Waiting \ The step has not yet been processed, but may be processed later
Ready The step belongs to the currently activated state and is ready to be

processed. Opposite to bypassed.

Enabled The object attribute value is required and must be mandatorily written.
Activated An attribute value has been provided.

Blocked For value specific micro steps: A value step has been provided that
does not correspond to any value step predicate. Therefore process
execution is halted.

Unconfirmed | The micro step has been provided with a value, but the state itis in is
still being processed.

Confirmed The micro step has been provided with a value and the processing of
the state is concluded.

Bypassed The micro step is in a branch that was not taken during a previous
decision. The state, in which the micro step is in, is still processed.
Same as bypassed, but state processing is concluded.

Skipped

Table 2.1.: Markings of a Micro Step

Micro transitions, micro states, backward transitions, value steps and the micro process
instance each have their own set of Markings with their own semantics. Since the list of
Markings is substantial, Markings which do not belong to micro steps are not displayed
in a table. If such a Marking is needed, an explanation will be given when it is first used.

2.2.3. Process Rules

The execution of a micro process instance is driven by process rules. Process rules are
responsible for reacting to changes and assigning appropriate Markings to elements
of the process graph. Some process rules send messages to the user, who can or
must perform an action. Another sort of process rules react to the user input and set
appropriate Markings. These three rule types are called Marking Rules, Execution Rules
and Reaction Rules. Marking Rules are for internal processing of the Markings and

11
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do not affect the outside. Execution Rules trigger on specific Markings, which means
the user has to perform an action, e.g., provide a value for an object attribute or make
a commitment. Once such action has been performed, a Reaction Rule applies the
corresponding Markings to the process instances so that execution can continue. A
tabular summary of the process rule types can be found in Table 2.2.

Abbreviation Input Output Color
Marking Rule MR markings markings
Execution Rule ER markings user input requests
Reaction Rule RR user input markings

Table 2.2.: Process Rule Types, taken from [17]

Process rules are not isolated from each other, but work in concert. Process rules can
trigger each other iteratively in a cascading fashion. The interactions are diverse and
complex, for a graphical representation of all interactions refer to [17].

2.3. Micro Process Execution

To illustrate the use of Markings and process rules, the execution of the process shown
in Figure 2.1 is used as an example. For reasons of clarity, micro transition Markings
have been omitted unless relevant to the current processing step. Also, some aspects
of process execution have been simplified or left out in order to concentrate on the
essentials. First, a normal, sequential process execution is demonstrated. Afterward, it
is demonstrated how values can be provided up front at any point in time for any object
attribute. PHILharmonic Flows provides this flexibility and considers these values during
sequential process execution.

Waiting

job beginning

Activated Waiting

personal data

start date Waiting

1 >
first name sumame >
J now g

Unconfirmed Ready Ready

Waiting

Figure 2.3.: Initialization of a Micro Process Instance
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When an object instance is created, a corresponding micro process is instantiated as
well. Initially, all object attributes have not been assigned a value and the micro process
instance has no Markings. To prepare the process instance for execution, Reaction Rule
RRO1 sets initial Markings. Initially all micro steps, value steps and states are marked as
Waiting. An exception is the start state, which is marked as Activated, which means the
state is currently processed. All micro steps in the start state receive the Marking Ready
instead of Waiting. The start step is marked unconfirmed. The Markings of the micro
process instance after the application of Reaction Rule RR01 is depicted in Figure 2.3.
Micro step Markings are depicted below the corresponding step, state Markings above
the corresponding state. The rule also marks the process instance itself as Running to
indicate it is being processed. The process Marking is not displayed.

Waiting

job beginning

Waiting
aae: .
Waiting En
Waiting ]

Waiting

Activated

personal data

Ready w
first name sumame J >

Unconfirmed Enabled Ready

start date:

Con D

Waiting

A 2 4

Waiting

Figure 2.4.: Starting Micro Process Execution

Marking the start step as Unconfirmed triggers Marking Rule MRO1, which states when
a step is marked as Unconfirmed, its outgoing transitions are marked as Ready. The
Marking Ready expresses that a transition has been reached and the target steps of
the transition can be processed. Therefore, Marking Rule MR0O2 marks the target steps
of transitions that are Ready as Enabled, as illustrated in Figure 2.4, where micro step
“first name” is now marked as Enabled. The Marking Enabled for micro steps means
that a value for the corresponding attribute is now mandatorily required. Without the
value, process execution cannot continue. Once micro step “first name” is marked as
Enabled, Execution Rule EROZ2 is applied. It tells the user interface that attribute “first
name” is mandatorily required. As soon as the user supplies the object attribute with a
value, Reaction Rule RR0Z2 is triggered.

Reaction Rule RR02 states that when a micro step marked as Enabled is supplied a
value for its corresponding attribute, it becomes marked as Activated. The user now fills
in the corresponding form field with the value “John” and the micro process instance is
notified. Since a value is now available, the Reaction Rule triggers and marks the micro
step as Activated. The current processing state is presented in Figure 2.5.
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Figure 2.5.: Supplying a Value to a an Attribute
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Figure 2.6.: Advancing to the Next Micro Step

After the step has been marked as Activated, the incoming transition is processed. The
new Marking for the transition signifies that process execution has progressed past the
transition. After the incoming transition has been remarked, the step currently marked
as Activated is marked as Unconfirmed by Marking Rule MRO5 (cf. Figure 2.6). In turn,
this triggers Marking Rules MRO1 and MRO02 again. As a result, the next micro step
“surname” is marked as Enabled. Once the user supplies a value for surname (e.g.
“Doe”), the same rules as in micro step “first name” are executed.

At the end of this chain, the micro step “surname” is marked as Unconfirmed and Marking
Rule MRO1 is triggered, setting the the Marking of the outgoing transitions of the step
“surname” to Ready. The transition between step “surname” and value-specific micro step
“start date” is external, which means its source and target micro steps belong to different
states. In the example, “surname” belongs to state “personal data”, value-specific micro
step “start date” to state “job beginning”. According to Marking Rule MRO01, the external
transition is now marked as Ready (cf. Figure 2.7).
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Figure 2.7.: State Change

Since the transition is external, a state change is triggered. The old state “personal
data”, which was previously marked as Activated, is now marked as Confirmed. The
target state “job beginning” becomes marked as Activated instead. Marking a state as
Confirmed triggers additional Marking Rules. Each micro step in the Confirmed state,
which has the Marking Unconfirmed, is remarked as Confirmed. And as before, Marking
Rule MR0O2 marks the target step of the external transition, value-specific micro step
“start date”, as Enabled. The current state is presented in Figure 2.7.
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Figure 2.8.: Providing Data to Attribute “date” up front

For demonstration purposes, the sequential execution of the micro process is stopped
for the moment. PHILharmonicFlows allows providing data at any point in time while
ensuring a correct process execution. To demonstrate this flexibility, a value is provided
up front for a step that is not currently processed. The micro step “date” in Figure 2.7 is
marked as Ready and has not yet been processed. It also currently has no value. The
user now provides a value to the date attribute, e.g. “11/27/2014”. This can be seen in
Figure 2.8. Since the Marking of the step is Ready, Reaction Rule RR02 is not triggered
and the step is not marked Activated. As of this moment, the value is present but not
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relevant to the current state of process execution. Once process execution progresses to
micro step date, the value will be considered accordingly. The details are explained later.

The only remaining attribute that has not yet received a value is “start date”, which is the
next processing step for sequential execution. Therefore, sequential process execution
resumes with the value-specific micro step “start date”. The difference between a normal
and a value-specific micro step is that an attribute value represented by a value-specific
micro step is restricted to a predefined, finite set of values. A normal micro step’s
attribute value is not restricted. The predefined values are represented as value steps,
e.g. “later” and “now” in Figure 2.8. For value-specific micro steps, there exists a set
of rules governing the relationship between value steps and their parent value-specific
micro step.

Activated

job beginning

Confirmed

personal N s
11/27/2014
Activated End
first name: surmame: 1 »| start date: later Ready
John Doe J [ ]

Yy v

Cr

Bypassed

Confirmed Confirmed Confirmed

Waiting

Activated

Figure 2.9.: Example Micro Process Execution

One of these rules states that when a value-specific micro step becomes enabled, its
value steps become enabled as well. Then, Execution Rule ER02 sends a message to
the user interface to request a value for the attribute. However, once a value is set, the
value-specific micro step is not immediately marked as Activated. The supplied value
must correspond to at least one of the value steps. In the example, the value must either
be “later” or “now”. In Figure 2.9, the user has supplied value “later”, which matches
to the top value step named “later”. In this case, the matching value step is marked as
Activated, which in turn marks the parent value-specific micro step as Activated as well.
The other, non-matching value steps are marked as Bypassed. The current status of the
process can be seen in Figure 2.9.

The value-specific micro step is re-marked from Activated to Unconfirmed by the same
mechanism as for micro steps. A value-specific rule then marks the values steps which
are Activated also as Unconfirmed. Marking Rules MRO1 and MRO02 are also used
with value steps, so the outgoing transition from value step “later” is marked as Ready
and then micro step “date” as Enabled. However, as the value was provided before, no
Execution Rule requesting a value is executed. Instead, a Marking Rule immediately
marks micro step “date” as Activated. This is seen in Figure 2.10.
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Figure 2.11.: Example Micro Process Execution

The micro step “date” being marked as Activated triggers the rule chain that marks “date
as Unconfirmed. This, in turn, marks the external transition between “date” and the
end micro step as Ready. It causes state “job beginning” to be marked as Confirmed,
switching the Marking of micro steps in the state from Unconfirmed to Confirmed. All
micro steps marked as Bypassed are remarked as Skipped. The “End” state is marked
as Activated, which concludes the entire process execution. Therefore, the process
instance is marked as Finished. The final markings can be observed in Figure 2.11. As
a final remark: Normally, a micro step with an incoming transition marked as Ready
should be marked as Enabled. However, the end step is an empty micro step, which
causes a rule to remark it immediately as Activated.
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2. The PHILharmonicFlows Framework
2.4. Prototype Architecture

PHILharmonicFlows’ prototype implementation [3] consists of three parts, depicted in
Figure 2.12. The Modeling Environment allows creating object types and model their
behavior and interactions with micro and macro processes. The objects and process
models are stored in a modeling database. The Runtime Environment consists of a
runtime server that handles all incoming or outgoing communication and the actual
runtime.

The runtime itself executes micro and macro processes and handles user authorizations
and permissions. Process models created in the Modeling Environment need to be
deployed to the runtime in order to make them executable. The runtime shares a
common database with the Runtime User Interface, which is responsible for automatic
form generation and displaying work lists.

All three parts can be hosted independently from each other, as all communication is
managed by web services (cf. Section 3.2). Connections to the database are managed
by Entity Framework, which is an object-relational mapping framework for .NET.
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2. The PHILharmonicFlows Framework
2.5. Summary

This Chapter has presented the concepts of an object-aware process management
system. Of particular interest in the context of this thesis is object behavior, which is
captured by micro processes. An example provided insight into object behavior at runtime
by executing such a micro process. The driving force behind the execution are process
rules and Markings, which let process execution progress. Process rules and micro
process execution are essential parts of the runtime of PHILharmonicFlows. To provide
context, a complete overview over the architecture of the prototype implementation was
given in Section 2.4.
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Programming Concepts

This chapter gives a basic explanation of advanced programming devices as well as C#
[28] specific concepts used in the implementation of PHILharmonicFlows. It is assumed
that the reader has an understanding of object-oriented programming and the related
concepts of information hiding, encapsulation, inheritance and parametric polymorphism
(commonly known as generics in object-oriented languages). As C# allows for a more
functional programming style, readers with a basic knowledge of functional programming
are at an advantage. However, functional concepts are explained as it is necessary for
the understanding of the code. Throughout this thesis, programming related identifiers
like class names are written in CamelCase, also when object instances are meant
(plural-s).

3.1. C#in general

Microsoft’s C# [28] is a multi-paradigm programming language with full object-orientation,
meaning everything is an object, including primitives like int/float and functions, with
strong typing. It includes the functional paradigm, supporting higher-order functions and
closures. Its syntax resembles that of the C programming language with curly braces
to group statements and semicolons to denote the end of a statement. Objects are
declared in a class and instantiated by calling a constructor function. Objects can inherit
from other objects, although multiple inheritance is not supported. Instead, interfaces
are used to offer some of the functionality of true multiple inheritance.

As part of the .NET-Framework [26], C# is compiled into Common Intermediate Lan-
guage(CIL), a language that is the foundation of all .NET languages and enables
language interoperability. The CIL code together with the required resources is stored
in an assembly. Upon execution, an assembly is loaded into the Common Language
Runtime(CLR) and is then just-in-time-compiled to the native machine code of the oper-
ating system. The implementation of the PHILharmonicFlows runtime uses version 4.5
of the .NET Framework. Unfortunately this prohibits the use of Mono, an open source
.NET Framework implementation on Linux, to run PHILharmonicFlows on a Linux oper-
ating system. The reason is that Mono only supports .NET features up to Version 4.0,
excluding WPF and with incomplete support for WCF (cf. Section 3.2). On November
12, 2014, Microsoft has announced that they will publish the .NET Framework under an
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3. Programming Concepts

open source license and will work with the Mono project to port .NET to Linux and Mac
OS [283]. Hence, it may become possible in the near future to host PHILharmonicFlows
on a Linux OS.

The development environment used for this thesis is Visual Studio 2013 with Team
Foundation Server (TFS) as a version control system. Visual Studio provides intelligent
code completion with IntelliSense [27] and other useful features for a .NET/C# Developer.

3.2. Windows Presentation Foundation and Windows
Communication Foundation

Windows Presentation Foundation (WPF) [31] is a Graphical User Interface framework
for Windows using an XML-based language called XAML [29] . PHILharmonicFlows’
modeling environment utilizes WPF as graphical front end. The communication among
the different modules of PHILharmonicFlows (modeling, runtime and user interface) is
realized with the Windows Communications Foundation (WCF) [30]. It enables creating
Webservices specified by WSDL [7]. This allows establishing loosely coupled clients
and servers. Loose coupling allows deploying all components of PHILharmonicFlows
flexibly each on a different machine or all on the same machine or any combination in
between. Developers can also rewrite the user interface in other, non .NET languages
as long as these languages or frameworks understand WSDL.

Both WPF and WCF are only of minor importance to the topic of the thesis directly, but
are needed to understand the big picture of PHILharmonicFlows. The interface of the
runtime to the modeling environment and to the Ul is implemented as a WCF service.

3.3. Namespaces

Namespaces are used to group code with similar functionality. For example, everything
related to the String-class is found in namespace System.String. It is also used to
distinguish classes and methods with identical identifiers. Namespaces can be hierarchi-
cally organized, for example the namespace Runtime. ProcessRules contains the children
Runtime. ProcessRules. ExecutionRules and Runtime.ProcessRules. MarkingRules.

3.4. Partial Classes

Partial classes can be used to distribute the source code of a single class across multiple
files. This is indicated with the keyword partial in front of the class name. This feature is
particularly useful for large classes with hundreds of lines of code or to combine auto-
generated code with custom modifications. The auto-generated part can be replaced or
updated without losing the custom part. Files containing the partial class definitions can
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3.5. Interfaces

be named independently from the actual class name. For example, there is a class for
unit testing another class with a large number of different testing functions incorporated.
Since there exist numerous methods that must be tested and multiple tests that cover all
relevant cases for each of them, every group of tests can be put into its own file. The file
can be named accordingly without having to create separate test classes for each group
or a single file with hundreds of test methods.

3.5. Interfaces

Interfaces work similarly to interfaces in other object-oriented languages. However, in
C#, the programmer can also declare properties as part of the interface. By convention,
interfaces are prefixed with a capital i, for example IInterface.

3.6. Properties

Properties are members of a class that expose private fields for reading and writing
their values. Syntactically they are used like public fields, but in fact they are syntactic
sugar for getter and setter accessor functions. For simple properties, get and set can
be auto-implemented by the compiler. Properties with such get and set accessors are
called autoproperties. For more complex requirements the get and set accessors can be
customized. The customizations can include complex verification code, raising of events
and computations. However, to have customized setters and getters the property must
have a private backing field for storing the value.

The code in Listing 3.1 is taken from the MicroProcessInstance.cs file and shows the
declaration of an autoproperty and a custom property. Line 5 is a backing field called
_marking belonging to the custom property declared in Line 8. The get accessor is
default for custom properties, whereas set has custom code that raises an event if the
Marking is set to Waiting. The variable value in this context denotes the parameter value
that will be assigned to _marking. Together with methods, fields, constants and others,
properties are members of a class.
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//RAutoproperty
public int Id { get; set; }

//backing field
private MicroProcessMarkings _marking = MicroProcessMarkings.None;

//custom Property, raises an event if the marking changes
public MicroProcessMarkings Marking
{
get { return _marking; }
set {
if (_marking == value) return;
_marking = value;
switch (value)
{
case MicroProcessMarkings.Waiting:
RaiseProcessRuleEvent(ProcessRuleType.ProcesslnitiatedRr01);
break;

Listing 3.1: Autoproperty and custom property

3.7. Collections

Collections are used to store a group of objects which size shrinks or grows dynamically.
They reside in the System.Collections namespace. For groups of objects that all have
the same type, System.Collections. Generic provides strongly typed collections that are
type-safe, most notably the List<T'> collection. The type parameter 7' identifies the type
of the objects stored in the collection. Listing 3.2 shows how to use an object initializer
to create a List<string> and one possibility to iterate over its elements.

// Create a list of strings
var animals = new List<string>() { "monkey","elefant" };
animals.Add ("cow");
// Iterate through the list.
foreach (var animal in animals)
{
Console.Write(animal + " ");
} // Output: monkey elefant cow

Listing 3.2: Collection Example
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3.8. LINQ and Fluent Interfaces

The var keyword denotes an implicitly typed variable declaration, which aides in concise-
ness since there is no need to repeat the type List<string> that is already declared on
the right side.

3.8. LINQ and Fluent Interfaces

Language-Integrated Query (LINQ) is a feature, introduced in .NET 3.5, that extends C#
with query expressions. These queries can be used on objects, object collections, XML
documents, relational databases and other sources, providing a concise and efficient
way to retrieve data. It was influenced by SQL and the functional programming language
Haskell. LINQ has a query syntax similar to that of a standard SQL statement. The
change from “SELECT FROM WHERE” (SQL) to “FROM WHERE SELECT”(LINQ) was
done to provide better IntelliSense support in Visual Studio. Additionally, LINQ also
defines methods to filter, aggregate or project data, which are called standard query
operators. These methods can also be used in a fluent style to achieve the same result
as with a normal LINQ-Query. Most prominent among these methods are Where (filter)
and Select (projection) which are also used extensively in the Process Rule Framework
(cf. Section 4.2) and the Definition of the Process Rules (cf. Section 4.2.1).

Fluent Interfaces [12] are an implementation of an API that aims to provide more readable
code. Usually, this is achieved by chaining methods together. The example in Listing 3.3
presents a LINQ query performed twice in both SQL style (Line 1) and fluent style (Line
5) on an undefined collection of objects named SomeCollection.

var results = from c in SomeCollection
where c.SomeProperty < 10
select new {c.SomeProperty, c.OtherProperty};

var results = SomeCollection.Where(c => c.SomeProperty < 10).Select (c
=> new {c.SomeProperty, c.OtherProperty});

Listing 3.3: LINQ Queries

In the fluent-style query, the higher-order function Where first filters the collection based
on a predicate and then Select takes the values of SomeProperty and OtherProperty and
wraps them into a new object which is stored into the collection results. The designation
fluent interface is based on the fact that the query can be read much like a sentence in
a natural language. The Process Rule Framework uses a fluent interface to provide a
fast and easy way to create process rules. The specifics on how the fluent interface is
implemented and how a process rule works can be found in Section 4.2.
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3.9. Lambdas

Lambda functions (named for the A-calculus [8] by Alonzo Church), also called anony-
mous functions or just lambdas) are function definitions that do not have an identifier.
In C# they are declared as © => x *x xz. The => indicates the lambda function, z is
an input variable and z * x is the function body. Lambda functions can have an ar-
bitrary number of input variables and no or one return value. When used in context,
the type inferencer of .NET can usually infer the types of input and output. However,
lambda function declarations cannot be bound to an implicitly typed variable using var.
Instead, the function z => z * x is bound to the identifier f by the following declaration:
Func<int, int> f = x => z x x. The first type parameter of Func defines the type of the
only input parameter whereas the second one is the return type of the function.

Anonymous functions that do not have a return value (void or ()) are Actions. Their
declaration only incorporates the types of the input parameters. Lambda functions are no
different from named functions in functionality, since each lambda can be replaced with
an equal named function or method. Usually, anonymous functions are more convenient
to use, especially if the function declaration is very small.

In Listing 3.3, the arguments of Where and Select are lambda functions which either
define a predicate for the filtering operation or a projection to a new object. Lambdas are
very versatile and can even reference identifiers from the enclosing scope, for example
a List or a complex object, which makes a lambda function a closure. The body of a
lambda function is not limited to a single expression, multiple statements can be grouped
together with curly braces, similar to named functions.

3.10. Delegates and Events

Events in programming are actions or occurrences that are caused outside of the current
scope by an asynchronous external activity and may be handled by the program. Typical
examples for events are keystrokes or the click of a mouse button. In C#, an event
is nothing more than the invocation of a function, called event handler, which has a
specified signature.

In order to understand how events work, it is necessary to understand the concept of
delegates. Basically, a delegate is a pointer (or reference) to a function. A delegate
definition is introduced by using the keyword delegate and then defining a signature with
input types and return type that a function must have in order to be referenced by the
delegate.

Listing 3.4 shows an excerpt from the MicroProcessInstance.cs class that shows the
usage of events. Line 2 shows the signature that a function has to fulfill in order to serve
as a ProcessRuleEventHandler. Event handling functions always have return type void.
By contrast, input parameters may be defined freely. The Microsoft Developer Network
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(MSDN) [30], however, recommends always providing the sender as a first parameter.
If the event wants to pass additional data to the event handler, it encapsulates them in
an object derived from the EventArgs class. In the example, the ProcessRule EventType
class is derived from EventArgs. The event is declared in Line 5 with the keyword event,
followed by the signature definition for the handlers and then the identifier. An event can
only be raised inside the class where it was declared, called a Publisher class. The event
is raised by calling RaiseProcessRule Event with appropriate parameters. In particular,
each handler is invoked with a multicast and executes its code for handling the event.

//Event contract definition
public delegate void ProcessRuleEventHandler (object sender,
ProcessRuleEventType type);

public event ProcessRuleEventHandler ProcessRuleEvent;

//used to dispatch an event to the event handlers (basically invoke
them methods

protected virtual void RaiseProcessRuleEvent (ProcessRuleType type)

{
var handler = ProcessRuleEvent;
if (handler !'= null) handler(this, new ProcessRuleEventType (type));

Listing 3.4: Delegates and Events

In Listing 3.5, Line 8 shows a subscription to an event of a MicroProcessInstance. The
operator += adds a new delegate of type ProcessRule EventHandler to the event that
points to the handling function HandleProcessRule Event.

volid HandleProcessRuleEvent (object sender, ProcessRuleEventType type)

)

//Do something

//Creating a delegate (pointer) to HandleProcessruleEvent

//and add it to ProcessruleEvent’s list of "Event Handlers".

processInstance.ProcessRuleEvent += new ProcessruleEventHandler (
HandleProcessRuleEvent) ;

Listing 3.5: Subscribing Event Handlers

Essentially, an event in C# is a list of methods with the same signature. The list is stored
in the class which declares the event. When an event is raised, the list is iterated and
each method is called with the current parameter values. Assigning an event handler is
an easier, more elegant way of adding a method to that list, with delegates being the
glue to hold event and methods together.
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3.11. Extension Methods

Extension methods enable the programmer to add functionality to an existing type
without modifications; i.e. deriving a new subtype. This is especially useful for types
that have been sealed so they cannot be subclassed. Extension methods are static
methods, but a special syntax enables them to be called like nhormal instance meth-
ods. The standard LINQ query operators (Select, Where etc.) are extension methods,
extending the functionality of System.Collections.IEnumerable and the generic variant,
System. Collections. IEnumerable<T> . Various extension methods take lambdas as a
parameter, although this is not mandatory. Extension methods are used in the Process
Rule Framework of PHILharmonicFlows to provide easy extensibility. For further details
please refer to Section 4.2.4

3.12. Expressions and Expression Trees

Expressions are sequences which can be evaluated to a single value. Expressions con-
sist of one or more operands and zero or more operators . For example, lambda functions
in C# are expressions, hence they are mostly referred to as lambda expressions and not
lambda functions. Expressions can range from very simple to very complex. Complex
expressions are mainly produced by the nesting of other expressions. Evaluation of
such expressions is governed by associativity and operator precedence. For example
the arithmetic expression 4 x 5 + 3 evaluates to 23 since * takes precedence over +.
But 4 x (5 + 3) evaluates to 32, because the parentheses change the precedence of the
enclosed expression.

// The parameter for the lambda expression.
ParameterExpression parameterExpression = Expression.Parameter (typeof
(int), "x");

// This expression represents a lambda expression
//That multiplies its parameter with itself
. LambdaExpression lambdaExpression = Expression.Lambda (
Expression.Mult (
parameterExpression,
parameterExpression
)I
new List<ParameterExpression> () { parameterExpression}

)i

Listing 3.6: Creating a Lambda Expression with Expression Trees

Expressions can be represented using a tree data structure, in which each node is an
expression and edges represent the relationships between them. There are various types
of nodes, a non exhaustive example list would be ParameterEzpression for representing
a function parameter, BinaryEzpression for expressions with a binary operator and
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LoopExpression for creating loops. These expression trees can be compiled and the
resulting code executed at runtime.This allows the creation of dynamic queries by the
user to get data from queryable data structures. An expression tree also allows for code
to be persisted in a database. Such expressions can also be manipulated dynamically
by methods provided by the EzpressionTree class. Listing 3.6 shows the creation of the
lambda function = => = x = explicitly with expression trees.

Expression trees are a very powerful and versatile programming tool and are used in
the Process Rule Framework together with a fluent interface to provide a consistent and
easy-to-use way to create process rules.

3.13. Summary

This chapter explained the programming concepts and devices necessary to understand
the code-heavy chapters 4 and 5. Delegates and events are necessary to understand
the event-driven application of process rules with the Process Rule Manager, explained
in Chapter 5. Of particular importance are expressions and expressions trees, which
form the basis for the high-level abstraction of process rule definitions presented in
Chapter 4. These are provided by the Process Rule Framework. Both Process Rule
Framework and Process Rule Manager use lambdas to allow a concise and easy-to-read
programming style.
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The Process Rule Framework

This section analyzes the process rules presented in [17] and derives a common template
to all process rules. A process rule template consists of a target object, a set of
preconditions and a set of effects. Section 4.2.4 explains how a precondition is defined
and the inner workings to evaluate a precondition. The definition of effects is explained
in Section 4.2.6. The section also explains the technical details how an effect definition
is translated to a change of the state of a micro process. The process rule template and
the definition methods for preconditions and effects form the Process Rule Framework.

4.1. Runtime Model

The PHILharmonicFlows Model Editor [6] creates micro process models based on
design-time model classes. However, these micro process models can not directly
be executed. Execution requires an object instance, based on runtime model classes.
Deployment makes the micro process model known to the runtime server. Once a
model has been deployed, users can create object instances, and the server instantiates
a corresponding micro process instance. Micro process instances are composed of
runtime classes which resemble their design-time counterparts but contain additional
properties and methods necessary for the the process instance to be executable. Most
prominent among those additional properties are Markings [17]. Figure 4.1 shows a class
diagram of the most important runtime classes referring to micro processes along with
their essential properties. For reasons of succinctness and clarity, properties of minor
importance and methods altogether have been excluded, as well as UML associations
between the classes. The associations can be inferred fairly easily by looking at the
class properties.

These classes are used to represent the micro process graph which is used to execute
a micro process instance. The dotted horizontal line separates value properties from
reference properties. Reference properties are used to navigate the graph. For example,
from a micro step A it is possible to navigate to its successor micro step B via the
transition linking A and B. It is also possible to first navigate to the micro process
instance and then look for B in the MicrostepSet of the process instance. Some of the
references are mutual and form a reference cycle in graph. An example for a mutual
reference is in the transition which links A and B. The transition references its target step,
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4. The Process Rule Framework

which is B, and in turn micro step B references the transition as an incoming transition
(cf. classes MicroStep and MicroTransition in Figure 4.1) . The event-driven execution
model for the process rules requires that from every point in the graph, every other point
can be reached via at least one path (refer to Chapter 5 for details). To keep process
rule definitions succinct, in general a process rule developer has multiple options on how
to traverse the graph and can choose the shortest or clearest path.

In the source code, runtime classes differentiate themselves from design-time classes
by replacing the suffix -T'ype with -Instance in its class name. So the runtime class for
MicroProcess is actually called MicroProcessInstance, the design-time class is called
MicroProcess Type . However, this thesis focuses on the runtime of PHILharmonicFlows,
which naturally uses the runtime classes. So for reasons of brevity the -Instance is
omitted. Unless stated otherwise, throughout this thesis any class name mentioned in
Figure 4.1 always identifies a runtime class. Design-time classes are identified explicitly
by its suffix -Type .
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4.1. Runtime Model

Id :int Marking : BackwardTransitionMarking
Marking : MicroProcessMarking TargetState : MicroState
StartStep : MicroStep SourceState : MicroState

MicroStepSet : List<MicroStepBase>

ValueStepSet : List<ValueStep>
StateSet : List<MicroState> . e
MicroTransition

MicroBackwardTransitionSet : List<MicroBackwardTransition>

Id : int

Priority : int

State : MicroState
Id :int SourceStep : CommonStepBase
Marking : MicroStateMarking TargetStep : MicroStepBase
Name : string

IncomingBackwardTransitions : List<MicroBackwardTransition>
OutgoingBackwardTransitions : List<MicroBackwardTransition>
MicroStepSet : List<MicroStepBase>

ValueStepSet : List<ValueStep>

InternalMicroTransitionSet : List<MicroTransition>
IncomingExternalMicroTransitionSet : List<MicroTransition>
OutgoingExternalMicroTransitionSet : List<MicroTransition>

CommonStepBase

Id :int

Name : string

Marking : MicroStepMarking

State : MicroStatelnstance
OutgoingMicroTransitions : List<MicroTransition>

i

MicroStepBase ValueStep
DataMarking : DataMarkings Parentlnstance : ValueSpecificMicroStep
Reference : ReferenceBase Value : object

‘F

ValueSpecificMicroStep

ValueSteps : List<ValueStep>

Figure 4.1.: PHILharmonicFlows Runtime Classes, -Instance Omitted
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4.2. Implementation

Process Rules are the core part of micro and macro process execution. The Process
Rule Framework allows to easily create process rules, hiding away all common code
so the rule creator can focus on essential tasks while creating rules. Therefore a set of
specific goals for the framework was formulated.

4.2.1. Process Rule Analysis

A thorough analysis revealed that for the most part, the process rules formulated in
Chapter 8 of [17] had a common template to them. Figure 4.2 shows a Marking Rule as
presented in [17] which will serve as an example for extracting the template. Initially the
process instance, its properties and sets are defined. Then a statement is made, defining
to which part of the process instance the rule refers (e.g., state, transition or micro step).
In this case it is a micro step. Usually, a condition follows narrowing the scope even
more, in this case, for instance, the micro step must not belong to the currently activated
state. This condition applies to all parts of the rule defined in the next part. The next part
consists of one or more statements that describe the effects the process rule has on
elements of the process graph. In this case it affects Micro Transitions and ValueSteps.

Marking Rule (MR17: Resetting micro steps and value steps):
Let micProclnstance = (micProc, 0id, Mstate, Micstep:MmicTrans, MBackrans) o€ @ micro process instance of type micProc =
(oType, MicStepSet, MicTransSet, StateSet, BackTransSet); i.e., micProclnstance € micprocinstances(micProc). Then:

V micStep=(ref, ValueSteps) € MicStepSet with state € StateSet A Mgiate (State) # ACTIVATED:

1. V micTrans € intrans(micStep) with Myictrans(micTrans) = WAITING; Myicstep(micStep) := WAITING;
i.e., if all incoming micro transitions of a micro step, which do not belong to the currently activated state, are
marked as WAITING, the micro step will be marked as WAITING.

2. VvalueStep € ValueSteps with Myjctrans(micTrans) = WAITING; Myicstep (MicStep) := WAITING;
i.e., if a micro step is marked as WAITING, all corresponding value steps will also be marked as WAITING.

Figure 4.2.: Marking Rule (adapted from [17])

The pattern is that a certain type (in the example, MicroTransition and ValueStep) has
to meet a set of preconditions in order for a set of effects to be applied. A typical
precondition is that something must have a specific Marking. A typical effect is changing
that Marking. Please note that preconditions and effects are not restricted to the initial
type, but can be for any type referenced by the initial type, which will be detailed later
on. In statement 1) of Marking Rule MR17 the type MicroTransition must meet the
preconditions “Is marked as Waiting” and “does not belong to the state marked as
Activated”. Thereby, an effect on its target MicroStep can be applied. The effect is that
the target micro step will be marked Waiting if all of its incoming transitions are marked
as Waiting. The effect description contains another precondition indirectly related to
the MicroTransition. In order for the target micro step to be marked as Waiting, all
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4.2. Implementation

three preconditions must evaluate to true at runtime. A similar analysis is valid also for
statement 2), but will not be discussed here, as no new information is gained from it.

Based on these observations a generic rule template for a Marking Rule, that captures
the observed pattern, is as follows: An implicit precondition for any rule would be that it
is only applicable to a certain type(i.e., MicroTransition in the example case). In order
for a set of effects to be applied, a set of preconditions must be met, including the type
restriction. Figure 4.3 illustrates the structure of the process rule template.

Rule for Type:

<Type>
e.g. <MicroSteplnstance>

Preconditions

Precondition 1 Precondition 2

If all preconditions evaluate to true, apply the effects

Effects

Figure 4.3.: Process Rule Template
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This template is valid for Reaction Rules and Execution Rules as well. However, the
nature of the precondition is different with Reaction Rules, as is the nature of the
effect with Execution Rules. A precondition for a Reaction Rule is an event raised by
the process instance when data or a user commitment is available. The effect for an
Execution Rule is an event that requests data from the user interface.

Both effects and preconditions need not to point directly to the type, but can also point
to other parts of the process instance. Regarding the example, this can be observed
in "the micro step does not belong to the state marked as Activated” and “target step of
the transition is marked as Waiting”, where the preconditions refer to a MicroState and a
MicroStep respectively.

As an entry point into the process graph, the template receives only a reference to an
instance of its type, i.e, MicroTransition in the example. In order to navigate to the
state to evaluate if the precondition are true, there are two options (cf. Figure 4.1. First,
the process graph must have a path from micro step to state via reference properties.
The second option is to take the StateSet of the micro process and search it for the
appropriate state. Searching requires iterating over all states and possibly over all steps
in the respective states, to determine if the step belongs to the state. Both options are
also valid for the general case, not just for the given example.

Out of these two possibilities, the former one presents more advantages. Having a lot
of rules that constantly iterate over every set of a micro process instance is not a good
idea, considering that the set size and the amount of micro process instances can go up
into the hundreds or even more. Furthermore, choosing the first option allows for a very
efficient event-driven rule application. If, for example, the Marking of a Micro Transition
changes, an event is raised and the Process Rule Manager can look up the appropriate
rule and apply it. Details on event-driven rule application and the Process Rule Manager
are explained in Chapter 5.

4.2.2. Goals

For the Process Rule Framework, the following design goals have been formulated.

¢ Maintainability: Process rules should be easy to create and to alter. The addition
of new features to PHILharmonicFlows might require new rules and during the
current development practical problems might arise that make a rule alteration
necessary.

e High Abstraction Level: Process rules should be definable on a fairly high
abstraction level, with scarce to no use of low-level code. It should be obvious at a
glance what a rule does and what its purpose is, even without documentation.

o Extensibility: New process rules might require new features currently not imple-
mented in the framework. It should be possible to easily modify the framework to
provide those new features.
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e Good Object-Oriented Design: Process rules should be objects, not functions.
This helps to avoid redundant code and increases abstraction. A single method
per rule with a lot of if-then-elses repeated for every rule would be a maintainability
nightmare.

e Consistency: Designing rules with the framework should be consistent in syntax
and behavior of the tools.

4.2.3. Example Rule

The Marking Rule depicted in Listing 4.1 shows two possibilities for defining either a pre-
condition or an effect. A Marking Rule is a class that inherits from AbstractEffect Rule<T>
(Line 1). The type parameter T, called the target type, specifies the type the Marking
Rule refers to, a MicroStep in case of the example. Generics ensure that everything
is type-safe and additionally provide IntelliSense support when programming in Visual
Studio. Reaction and Marking Rules both inherit from AbstractEffectRule<T>, though
an Execution Rule inherits from AbstractExecutionRule< T> due to the different nature of
effects. A target object is an object of type T to which the rule is applied in context of
this explanation.

public class ExampleMarkingRule : AbstractEffectRule<
MicroStepInstance>
{
public ExampleMarkingRule ()
{
PreconditionFor (step => step.Marking) .IsMarked (
MicroStepMarkings.Activated);

PreconditionForEach (step =>
step.OutgoingTransitions.Select (x => x.Marking))
.IsMarked (MicroTransitionMarkings.Activated);

EffectFor (step => step.Marking) .AssignMarking (MicroStepMarkings.
Confirmed) ;

EffectForEach<MicroTransitionInstance,MicroTransitionMarkings> (
step =>
step.OutgoingTransitions.Select (trans=>trans.Marking))
.AssignMarking (MicroTransitionMarkings.Confirmable);

Listing 4.1: Example Marking Rule

There are four different creation expressions, two for each precondition and effect. Due
to technical reasons preconditions and effects are split into a version for single value
and one for collections. In Line 5 and 7, where the Fach-suffix identifies the expression
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for collections. In the following section, precondition and effect creation is explained in
detail.

4.2.4. Preconditions

When discussing preconditions (and effects) in the context of the Process Rule Frame-
work, it is important to distinguish between the front end and the back end of a process
rule. The front end consists of creation methods like PreconditionFor and EffectFor. A
creation method is the high level abstraction of a precondition or effect definition. Upon
instantiation of a process rule, the creation methods are evaluated and the defined
preconditions and effects are converted to objects which provide the actual functionality.
These objects form the back end of the process rule. At first the syntax and semantics
of a creation expression are explained, then the workings in the back end. Figure 4.4
shows an overview of all classes used for the Preconditions.

The Process Rule Framework differentiates between a front end and a back end, and
most front end methods correspond to an an object in the back end. Table 4.1 shows
a mapping of front end to back end. The conversion happens when a process rule is
instantiated.

| Front end | corresponds to | Back end |
PreconditionFor -> Precondition
PropertyFunction == PropertyFunction
Predicate (e.g. IsMarked) -> IConditionItem
- PreconditionContext

Table 4.1.: Front-End to Back End Mapping

PreconditionFor is a static method that initiates a declaration of a precondition (cf. Listing
4.1). The method takes one parameter which is a lambda expression. The lambda
expression is called the PropertyFunction, since it specifies the property that should
satisfy a predicate. The predicate (e.g., IsMarked) is defined after the creation method.
The PropertyFunction takes the target object as argument and navigates the graph via
a path of reference properties and returns a property of type TProperty. For example,
the PropertyFunction in Line 5 of Listing 4.1 goes directly to the Marking property of the
step itself, where T'Property is the type MicroStepMarkings.

Once a property has been selected, it can be checked via predefined predicate expres-
sions, e.g., IsMarked. IsMarked is realized with an extension method that takes one
argument of type T'Property and checks whether the argument is equal to previously
selected property. Although T'Property is generic, the name IsMarked suggests it is only
for comparisons with Markings. The reason for the generics here is that Markings have
different categories. There are separate Marking enums for steps, transitions and other

38



4.2. Implementation

<<Interface>>

IPrecondition

-PropertyFunction : Func<>
-ConditionlList : List<IConditionltem>

i

bool Evaluate(...)

Precondition PreconditionCollection

-PropertyFunction : Func<> -PropertyFunction : Func<>

-ConditionList : List<IConditionltem> - -ConditionlList : List<IConditionltem> -
static Precondition Create (... static PreconditionCollection Create (...)

bool Evaluate(...) bool Evaluate(...)

<<interface>>

PreconditionContext IConditionltem

-PropertyValue : object I bool Evaluate(PreconditionContext context)
-InstanceToCheck : object [r

IsMarkedItem<TProperty> [l IsNotMarkedltem<TProperty>

bool Evaluate(Prec...) bool Evaluate(Prec...)

Figure 4.4.: Class Diagram of the Precondition Environment
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elements which all need to be compared. An extra method for each of them would make
the interface less clear.

The circumstance that it is named “IsMarked”, although it is capable of a generic Fquals,
is accounted for by usability. IsMarked resembles natural language very closely and spec-
ifies exactly what is intended. A more generic name like “Equals” might be interpreted
ambiguously, especially when used in conjunction with properties that are not Markings.
Also it prevents the framework to be used in the wrong way on a non-code level, although
deliberate sabotage by a malevolent user is not prevented by it.

As this is a fluent interface, predicate expressions can be chained together to pro-
vide complex checks. For example, if a person needs to be between age 18 and
25 to qualify for, e.g, a scholarship, a possible precondition expression could be
PreconditionFor(person => person.Age).OlderThan(18).YoungerThan(25). The pred-
icates chained together have an implicit AND semantic. Chaining is useful to check
complex objects (e.g., person) for different properties (e.g., age and height) with appro-
priate predicates. Another advantage of chaining predicates is to avoid defining a new
predicate like “between”, since it can be expressed with already existent ones.

The predicate IsMarked and others as the fictive “OlderThan” and “YoungerThan” predi-
cates are implemented using extension methods that reside in a single static class. This
allows for a very easy extensibility, as any required functionality can be added without
affecting anything else.

The expressions PreconditionFor and IsMarked create respective objects Precondition
and IsMarkedltem in the back end providing the functionality upon evaluation. The
objects created by the predicate expressions are called IConditionltem (because they
have to implement an interface of the same name) which represent a predicate for the
property specified in the PreconditionFor lambda expression argument. A Precondition
object can have multiple IConditionltems.

In Listing 4.2, Line 1 shows the return type of the extension method, IPreconditionBuilder.
It is an interface that enables the fluent declaration style. It is also used as an argument
in Line 2, together with the this keyword. This is the special syntax for extension methods,
which are static, enabling them to be used like normal methods using the dot operator.
The IPreconditionBuilder argument is the same object that is returned, which allows the
chaining of extension methods with the same properties.

public static IPreconditionBuilder<T, TProperty>
IsMarked<T, TProperty>(this IPreconditionBuilder<T, TProperty>
preconditionBuilder, TProperty marking)

return preconditionBuilder.Add (new IsMarkedItem<TProperty> (marking
)) i

Listing 4.2: Implementation of IsMarked
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In Line 4, the IConditionItem for the IsMarked-extension method is instantiated and
added to the precondition via the IPreconditionBuilder preconditionBuilder. The instanti-
ated IConditionItem stores the Marking in a property to be used when the Precondition
is evaluated.

The Precondition itself is created in the back end by the PreconditionFor expression
evaluation. The precondition obtains the lambda expression argument PropertyFunction
as a property and is added the IConditionltems defined by the predicates. A full,
operational precondition exists now on the front end.

When the rule is instantiated, the front end expressions create the necessary precondition
objects in the back end (cf. Table 4.1). The objects created are the Precondition itself,
the PropertyFunction and the predicates in form of IConditionltems. However, at the
moment the rule is instantiated, the PropertyFunction and the IConditionltems are
independent from each other. To be able to evaluate the whole precondition these parts
need to be brought together. Evaluation happens when a target object is passed to the
process rule.

To bring both parts together, a PreconditionContext is created with the target object
and the PropertyFunction as arguments. The context extracts the property from the
target object with the PropertyFunction and performs some basic validity checks. Each
IConditionltem takes the context and evaluates its condition, and then passes the result
to the Precondition. Using a context that performs the property extraction only once
instead of executing it for each IConditionltem individually benefits performance and
the encapsulation principle. The context allows the IConditionltems, where the actual
evaluation takes place, to be completely agnostic to any specific details about the target
object or the property, i.e., only the property type TProperty is known.

When an evaluation of the precondition is requested, the context is passed to all
IConditionltems.They perform an internal evaluation and return true or false based
on the result. The individual results are aggregated. If any IConditionItem returns false,
the whole precondition returns false (AND-semantic).

4.2.5. Preconditions for Collections

The preconditions presented in Section 4.2.4 are only for properties that are not col-
lections (cf. Section 3.7). Collections need to be handled slightly differently, using the
PreconditionForEach expression. The apparent difference in the declaration - apart from
the Each-suffix - is that the PropertyFunction requires a projection (Select, cf. Line 7
from Listing 4.1 ) for the desired property. In the PreconditionForFEach expression at Line
7, the PropertyFunction navigates to the Marking property of the outgoing transitions of
the step. The Select extension method is necessary because OutgoingTransitions is a
collection of Micro Transitions. From each of the transitions from the Marking property
is the desired property. The Select extension method of the PropertyFunction is used to
obtain a collection IEnumerable< T Property>.
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Each element of type TProperty is treated the same as with a non-collection property.
More specifically, for each element a context is created and passed to each of the
IConditionltems (cf. Figure 4.4). The results are taken and aggregated to obtain a single
true or false. A definitive advantage of this approach is that every extension method can
be reused for collections.

4.2.6. Effects

Effects represent the changes a process rule applies to a process instance. For example,
in Listing 4.1, Line 11, the Marking of the target object is altered to Confirmed. Technically,
an effect is the assignment of a value to the property by means of lambda expressions.
An overview in form of a class diagram of every class concerning effects can be found in
Figure 4.5.

Declaration-wise effects are basically the same as preconditions. There is again a
front end and back end, the associations are analogous to preconditions. The cre-
ation expression starts with EffectFor, which takes a lambda expression, again called
PropertyFExpression as an argument to select the property to have the effect for. What is
assigned is determined by an extension method which takes the value to be assigned
as an argument. Since the only effect currently required by the PHILharmonicFlows
runtime is the assignment of new Markings, the only extension methods implemented
is AssignMarking. However, using extension methods provides extensibility of effects if
needed and keeps consistency with preconditions. It is also possible to chain assign-
ments together, which will possibly be useful for future extensions or applications outside
the scope of the process rules of PHILharmonicFlows (cf. Section 4.2.11).

Unfortunately, doing assignments with lambda expressions is complicated, especially if
the arguments are dynamically determined during runtime and the assigning function
must be assembled from parts. A process rule is applied to different target objects as
the process execution progresses, so a function is needed to combine the assignment
with the property selection and with a target object of appropriate type as a dynamic pa-
rameter. Considering the effect from Listing 4.1, Line 11, the resulting assigning function
must provide the same functionality of the function instance => instance. Marking =
Confirmed, with step being the dynamic parameter: At this point, the dynamic argu-
ment is called instance since such effects are not limited to steps, but the target objects
supplied as the dynamic parameter can be Micro Transitions and MicroStates .

The Marking value Confirmed is provided by the AssignMarking extension method and
known at compile time, same goes for the property expression that selects the Marking in
the example. The final building block for the assigning function is a placeholder serving
as the dynamic parameter. The "glue” that brings these three parts together and enables
doing assignments in a LINQ-like style is Ezpression.Assign. It is a binary expression
taking two expression arguments, named left and right, and assigns expression right
to expression left. In terms of the assigning function, the property function and the
placeholder need to be combined to form expression /eft, whereas expression right is
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<<Interface>>

|IEffect<T>

-Restrictions : List<IEffectRestriction<T>>

void ApplyTo(T instance)

EffectCollection<T,TIntermediate, TProperty

Effect<T,TProperty> >
-Expression : Expression<Func<T,TProperty>> -Expression : Expression<Func<T,TProperty>>
-EffectList : < -EffectList :
List<IEffectitem<TIntermediate, TProperty>> List<IEffectltem<TIntermediate, TProperty>>
-Restrictions : List<IEffectRestriction<T>> -Restrictions : List<IEffectRestriction<T>>
void AddRestriction(IEffectRestriction<T> res) void AddRestriction(IEffectRestriction<T> res)
static Effect<T,TProperty> Create (...) static EffectCollection<T,TIntermediate, TProperty>
void ApplyTo(T instance) Create (...)

void ApplyTo(T instance)

EffectContext<T,TProperty>

<<Interface>>

IEffectltem<T,TProperty>

-InstancetoCheck : T

-PropertyFuncEx : Expression<Func<T,TProperty>>
-ParameterExpression : ParameterExpression bool ApplyTo (EffectContext<T,TProperty> context)

AssignMarkingEffectltem<T, TProperty>

-MarkingToAssign : TProperty

ApplyTo(EffectContext<> context)

Figure 4.5.: Class Diagram of the Effect Environment
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Tier0

MemberExpression

MemberExpression

Property Expression
Expression<Func<T,TProperty>>

Figure 4.6.: Simplified Expression Tree of the target function

the Marking value. All expressions are represented as expression trees (cf. Section
3.12) and in the end form a single, large expression tree that represents the assigning
function. The resulting expression tree is depicted in Figure 4.6 in a simplified version,
the actual tree is far too complex to be displayed here entirely.

In the following, the assigning function is assembled from parts. This means the
expression tree in Figure 4.6 must be constructed with these parts. The expression tree
is conceptually constructed from bottom to top. The parts which are already present
from the effect are PropertyFExzpression and the Marking value to assign.

The nodes in the tree contain an identifier for the expression and below, in a slightly
smaller font, the expression type. At Tier 3, the expression tree has the two parameters
for the MemberFExpression. The PropertyFExpression is obtained from the EffectFor decla-
ration, the placeholder must be created manually. It is a ParameterExpression from which
the constructor takes two arguments: First and most important, the type of the parameter,
which is the generic T, and second a string naming the parameter. In code this may be ex-
pressed as ParameterExpression p = Expression.Parameter(typeof(T), ” Placeholder”);
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Placeholder and PropertyExpression are then combined into a new lambda expres-
sion, which is then cast to a MemberExpression (cf. Section 3.6) . The explicit cast to
MemberEzpression is necessary because Assign expects something on the left side that
an assignment can be made to. Not all expression types have this attribute. Also this
attribute cannot be inferred from an ordinary lambda expression. For the right side, it it
is advantageous to have a second, variable parameter to Assign to represent the value
instead of hard-coding the constant value of the Marking. Therefore, the Marking value
to assign is another ParameterExpression, with the difference that this time the type is
TProperty. Type-wise, this works out because the PropertyFEzpression converts from
type T to type TProperty, which means the result value of the MemberExpression is of
type TProperty, t00.

Now that both parameters for Assign are present and accounted for, a BinaryExpression
making the assignment is created, which is located on Tier 1 of the expression tree
in Figure 4.6. However, the binary expression can not be compiled into an executable
function yet. Hence another conversion takes place. The parameter expressions
were lost when creating the binary expression, so new ParameterEzpressions replacing
placeholder and the Marking value are needed (named “TargetObject” and “Value”
respectively), to convert the assign expression into another lambda expression. The
lambda expression can now be compiled to obtain the assigning function with two
parameters for the instance and the value to be assigned.

4.2.7. Effects on Collections

Like the preconditions, effects also need a different approach to deal with collections.
In Listing 4.1, Line 13 shows a declaration for an effect on collections. The first dif-
ference is the addition of the Each-suffix, so an EffectFor expression becomes an
Ef fectForEach expression. The second is a new syntactical difference: The generic
type parameters in angle brackets following EffectForFEach. Their significance will be
explained later on. After the angle brackets follows the property expression, the same as
with a PreconditionForFEach expression, with Select being the prominent element. The
AssignMarking extension method is conceptually the same as the one with effects, as
explained in Section 4.2.6.

The challenge for implementing effects on collections lies with the property expression.
In the preconditions on collections it was sufficient to take the result of the expression
(i.e., IEnumerable< TProperty>) and treat each element as a regular property. However,
in order to keep syntax consistent, Effects on collections are not as easy to accom-
plish. In order for an assignment to be made by FEzpression.Assign, it needs a proper
MemberEzpression as a left parameter. Unfortunately, there is no straightforward way to
achieve this with a collection of objects. The assignment must be made to the same
property of each of these objects. This requires a separate MemberEzxpression for each
property, with the same target object as initial argument. In Line 13 of Listing 4.1 the
PropertyFunction navigates to a collection of properties, which are the Markings of the
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outgoing Micro Transitions. The collection of properties cannot easily be converted to
a “collection of MemberExpressions”. The reason is the extension method Select in the
PropertyFunction. As an extension method, it interrupts the path of reference properties
necessary for a valid MemberFExpression.

The Select separates the PropertyFunction in two parts. The first part is called collection
identifier and it navigates to the collection Outgoing Transtitions and stands before Select.
The second part is called property identifier and is the argument expression of Select,
trans => trans.Marking, which navigates from a transition to a the property. To obtain
a valid member expression that can be used for an assignment to one property, the
Select must be removed and the collection identifier and property identifier need to be
extracted. Luckily, the property expression is represented as an expression tree with
Select as its root node, which makes it easy to extract the collection and property identifier
from the tree. In terms of the example in Listing 4.1, Line 13, the collection identifier is
step => step. Outgoing Transitions, which navigates from a target object called step to a
collection of unknown type, and the property identifier is trans => trans. Marking, which
selects the Marking property from an element trans of unknown type from the collection.

After the extraction, the property identifier trans => trans. Marking is already a valid
MemberEzpression and can be used for assignment. It is not unlike the PropertyFunction
as in Section 4.2.6 and can be regarded as such. The extension method AssignMarking
is the same as the extension method in Section 4.2.6. However, the type of input
parameter trans and the type of the collection OutgoingTransitions is not known to the
compiler. If the property identifier is to serve as a MemberEzpression, the type of trans
and the collection must be known. This unknown type, denoted TIntermediate, is in
fact masked inside the original expression tree of the PropertyFunction of EffectForEach
and cannot be automatically inferred by the type inferencer. In order to extract it
from the expression tree manually, a lot of work would have to be done, possibly
negatively impacting performance. To avoid that possibility, the responsibility of pro-
viding TIntermediate has been shifted to the rule creator, who can easily provide it
by specifying the type parameters of EffectForEach. The full specification is actu-
ally EffectForEach<TIntermediate, TProperty>. As a side effect of having to provide
TIntermediate, the type of TProperty, although already known, must be stated explicitly
for technical reasons regarding generics. As a drawback, the declaration EffectForEach
is less consistent with the other declarations, but it may be argued that it is warranted for
not affecting performance of rule execution.

Now that all required information is available, the collection identifier is applied onto the
target object of type T to obtain a collection of type IEnumerable< TIntermediate>. Each
of its elements is treated like an instance of a normal Effect, with the property identifier
being a proper MemberEzpression for use with Ezxpression. Assign.

46



4.2. Implementation

4.2.8. Effects for Execution Rules

Execution Rules do not alter the micro process state directly as Marking- and Reaction
Rules do. Instead, an event is raised informing the user interface that certain data is
required or a commitment is needed. The necessary logic to raise an event is pro-
vided within the Abstract Execution Rule<T> class, which is limited to a single effect:
RaiseProcessRule Event( ProcessRule Type type), with type being an identifier for the Exe-
cution Rule (e.g., UserCommitmentEr3). Preconditions are specified in the same way
as other rule types.

4.2.9. Restrictions on Effects

Since there are classes that are derived from other classes and rules can be for the base
classes, it may be necessary to restrict single effects to one of the derived classes. In the
rules for PHILharmonicFlows, this scenario is most common for MicroStepBase and the
derived classes MicroStep and ValueSpecificMicroStep. A ValueSpecificMicroStep often
has effects for its ValueSteps, which obviously do not apply to a normal MicroStep (c.f. .
To avoid defining an extra rule to deal with this case, Restrictions have been introduced.
They can be considered additional preconditions specifically for a single effect. They
are declared by using the When extension method that has a predicate expression as a
parameter.

4.2.10. Building and Using a Process Rule

Each process rule has its own class, derived either from Abstract Execution Rule<T> if
it is an Execution Rule or from AbtractEffectRule<T> if it is a Reaction- or Marking Rule.
Usually a process rule class only contains a constructor without arguments in which the
Preconditions and Effects are defined. However, the process rule class can be enhanced
with additional custom functionality, in case special circumstances require it.

Since Preconditions and Effects are defined in the constructor, it is ensured that upon
instantiation of a rule, their declaration functions are executed to create the necessary
classes to provide concrete rule functionality. The abstract rules provide a method
ApplyTo(T instance) that is used to execute a rule on an instance. For details on how
these rules are employed in PHILharmonicFlows, please refer to Chapter 5.

4.2.11. Applications of the Process Rule Framework

The Process Rule Framework and the Process Rule Manager not only work with micro
processes, but can also be used for process rules of macro processes and any other
process rules within PHILharmonicFlows. Most of these rules do not differ much from
the process rules for micro processes. The built-in extensibility possibilities should be
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able to provide all additionally needed functionality, so no fundamental change in the
Process Rule Framework should be necessary.

Although the Process Rule Framework currently is tailored to the specific needs of
PHILharmonicFlows, it is possible to adapt it to applications outside the scope of object-
aware process management systems. The underlying concept is sound and has proven
to be viable in testing of the PHILharmonicFlows runtime. For a general-purpose rule
framework, however, the concept would have to be extended and generalized. With
proper adaptation, rules could even be created and executed at runtime, using the power
and versatility of expression trees.

4.3. Summary

This chapter introduced the fundamental programming constructs that were used in the
Process Rule Framework. The Process Rule Framework was designed to simplify the
creation of process rules. The ultimate requirement was to make the runtime easily
maintainable, which has been achieved. An analysis of the process rules revealed a
pattern which could be used create a template for process rules with high abstraction
level. Hereby, the Framework implementation hides the complexity of process rules. The
Process Rule Framework enables the creation of rules with an easy and concise syntax
at a very high abstraction level.
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The Process Rule Manager is an object that manages the application of process rules
to a given process instance. Upon a change in a process instance, the Process Rule
Manager looks for appropriate rules, applies them if all preconditions are met, and in
case of an Execution Rule, propagates the request for data or a commitment to the WCF
Service and thereby the Ul. While process execution is rule-driven, rules themselves rely
on events to trigger them. This mechanism is explained in section 5.1. While process
rules are conceptually independent from each other and do not require a certain ordering,
it is unavoidable in practice to have certain implicit dependencies between rules. The
process rule manager must account for these implicit dependencies by imposing that
certain rules are applied in a certain order.

5.1. Event-driven Rule Application

Actively looking for instances on which a rule can be applied by iterating over all sets
of the process instance has been found to be inefficient. For each element of the
process graph, any rule of appropriate type must be checked for matching preconditions.
Since most of the time changes in the process graph only happen in a small area (the
currently activated state, with a few exceptions), most of the checks are unnecessary
and do not yield new results. Tracking changes to the process graph to narrow down
the point where a possible rule application is possible consumes additional memory and
impacts performance. Additionally, while iterating over each element and applying rules,
subsequent necessary rule applications might not trigger immediately, but are delayed in
the worst case until the next pass. This is likely to have an impact on the responsiveness
of the User Interface, since between two execution events normally as many as four or
five Marking Rule applications occur. This is under the assumption that iterating over all
sets takes a noticeable amount of time. So possibly the user has to wait half a second or
more before another action can be taken. This can be worsened by putting the runtime
under significant load.

A simple observation allows for a much more efficient execution: New process rules
only need to be applied if there has been a change in the process instance beforehand.
Take, for example, a Marking change by another rule, the user provided a data value or
has made a commitment. Instead of actively searching for these changes, the process
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instance can notify a system which then can specifically check rules and apply them
without any unnecessary overhead. This system is called the Process Rule Manager.
The notification is an event (cf. Section 3.10) raised by the elements of the process
instance where the change occurred. To keep the pool of possible rules as small as
possible, the instance needs to inform the Process Rule Manager about the kind of
change. For example, Marking changes trigger Marking Rules, while a commitment
triggers a Reaction Rule. Trying to apply Marking Rules to some event where a Reaction
Rule is the appropriate response, is a waste of resources and must be avoided.

The event-driven paradigm solves the problem of delayed rule triggering, the problem
of appropriate rule selection and the problem of rules triggering cascades. Once a
rule is applied, the changes it applies causes the instance to raise new events that
trigger the application of subsequent rules immediately. This creates a cascade of rule
applications until stopped by an Execution Rule event. Continuing process execution
requires interaction with the user. An in detail example of how event-driven rules are
applied with Process Rule Manager is presented in section 5.2.

5.2. Process Rule Manager Context and Example

The Process Rule Manager is one of the essential parts of the PHILharmonicFlows
runtime. It is responsible for advancing process state and is the interface between the
process instances and the WCF Service. The relationship between a micro process
instance, the Process Rule Manager and the WCF Service is depicted in Figure 5.1. The
Process Rule Manager conceptually resides between the WCF Service and the process
instance. It receives events from the instance, chooses appropriate rules and the rules
alter the Markings of the process instance elements.

In the following, an exemplary execution of a micro process is conducted. It focuses an
the qualitative aspects and therefore omits certain detail. The numbers in the circles in
Figure 5.1 are referenced by a letter inside normal parentheses and indicate where a
certain event happens. The numbering does not necessarily induce an ordering to the
events. The target object is the process instance element that raised the event and to
which an appropriate rule is applied. In the beginning, the micro process instance has
not yet been started.

1. The micro process instance is started (A), which triggers an event for Reaction
Rule RRO1 (B) . The event is acknowledged by the Process Rule Manager, which
selects the Reaction Rule from its rule repository and applies it to the target object.
This updates the Markings (C) of several elements of the graph like states, which
in turn trigger additional events (B).

2. These events raised are now Marking Rule events. Depending on the type of target
object that raised the event, the Process Rule Manager looks for appropriate rules
and applies them (C).
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Figure 5.1.: Runtime Architecture and Template of Event-Driven Process Rule
Application
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3. The cycle between (B) and (C) represents a cascading application of rules and
repeats until the preconditions for the raising of an Execution Rule event is met.
An Execution Rule does not affect a process instance directly. It is instead passed
to the WCF Service (D)

4. The WCF service analyzes the incoming event and extracts a reference to the
target object to which the Execution Rule event belongs. The WCF Service checks
if an attribute value has been provided for the instance by the user. It communicates
with the Ul to determine if a value is present. If not, it reacts by sending a request
to the Ul (E) to acquire the data. If data is already present, it continues at (G).

5. The Ul waits until the user has filled out the corresponding form field. Once this
has happened, the form field is parsed an the resulting value is sent back to the
WCF Service (F)

6. The service matches the incoming data to the corresponding target object. Since
it obtained a reference, it can write the data directly into the instance attribute (G),
which in turn raises a Reaction Rule event (B)

7. The cycles repeat themselves until the process instance execution is terminated.

The direct write back to the model is currently needed to trigger the Reaction Rule event.
This may change as soon as the WCF Service is specified entirely. The current status
of the WCF Service is not implemented and only rudimentary components have been
devised for the testing purposes of other parts, for example the Process Rule Manager.

The Process Rule Manager requires that process instances register themselves with the
Process Rule Manager. Otherwise the event mechanism which drives rules execution is
not able to work. Ideally, registering takes place directly after deployment so a process
instance can be executed right away. However, it is possible to register or unregister
process instances at any point in time, which might be useful in the future, for example
when performing a schema evolution [3] for running instances.

While a event-driven rule execution has many advantages for performance and simplicity,
it also has disadvantages. The most significant disadvantage is, that event raising
logic and -conditions have to be hard coded into the runtime model, which makes
changing events or even adding new ones significantly harder. Therefore runtime model
maintainability suffers.

5.3. Process Rule Manager Implementation

The Process Rule Manager is responsible for finding all appropriate rules for a given
target object to test whether they are applicable or not. This consists of two separate
requirements. First, if a Reaction Rule event is raised, the appropriate Reaction Rule
must be found and applied to the target object. Second, if the event is a Marking Rule
event, all Marking Rules for the appropriate type must be found. The standard case
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is to find a rule AbstractEffectRule<T> or AbstractEzecutionRule<T> for a target object
of type T'. But if T"is a subtype of U (for example, MicroStep and MicroStepBase), an
AbstractEffectRule< U> might also be applicable. A more detailed problem statement
and the solution to the problem is presented in Sections 5.3.3 and 5.3.4.

5.3.1. Reaction Rule Mapper

Each Reaction Rule event has a parameter that identifies the Reaction Rule it is sup-
posed to trigger, the so called reaction rule type. To apply the Reaction Rule to the
target object that raised the event, the Process Rule Manager needs to retrieve the
corresponding rule from a collection of Reaction Rules. The Reaction Rule Mapper
associates reaction rule types with their corresponding Reaction Rule of type T'. To
retrieve a Reaction Rule by its corresponding reaction rule type, the reactions rules need
to be stored in a key-value pair with the reaction rule type as the key. This is is done by
a Dictionary< ProcessRule Type, object>. Dictionary is a generic collection therefore can
only hold objects of the same type. A Reaction Rule however is parametrized by a type
parameter T', which changes depending on the type of target object the Reaction Rule is
for. This prevents an AbstractEffectRule< T>t0 be stored in the same generic collection
as an AbstractEffectRule<U>,T # U since they are considered different types by the
CLR. In order to store every Reaction Rule in the dictionary as a value, the value must
have the a common non generic super class of AbstractEffectRule<T>, which is object.
Storing an AbstractEffectRule<T> as object hides its actual type information. When a
rule is retrieved from the Reaction Rule Mapper, a cast to the appropriate type of the rule
is necessary. In fact, a retrieval from the Reaction Rule Mapper is unnecessary, as the
Reaction Rule Mapper can also handles the ensuing application of the Reaction Rule,
after the rule has been retrieved from the dictionary and cast to its original type.

5.3.2. Process Rule Repository

The key-value mechanic of the Reaction Rule Mapper in principle also applies to the
Marking- and Execution Rules. For an target object of type T several process rules for T
might be applicable, so it would be advantageous if it were possible to retrieve this list
based on the type as the key, again using a Dictionary to provide the basic functionality.
A Type is, like everything else, an object in C# and can be used as key to a dictionary.
The problem is again that generic collections can not hold objects of different types,
but for one bucket of the dictionary, execution and Marking Rules have the common
ancestor AbstractRule<T>. And since there is possibly more than one rule for a given
type T, a List<AbstractRule<T>> is stored in a bucket, hidden under a non-generic
interface IEnumerable. Like with the Reaction Rule Mapper, the Process Rule Manager
delegates the task of applying rules to the Process Rule Repository. The mechanism for
applying the rules is as follows. An target object of type T is passed to the Process Rule
Repository and based on T', an I Enumerable is retrieved from the internal dictionary.
Since the target object is of type T, the I Enumerable retrieved from the corresponding
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bucket must be a List<AbstractRule<T>>. The I Enumerable can now be cast and each
rule in the list is applied to the target object.

5.3.3. Handling a Process Rule Event

It was shown in section 5.3.1 and 5.3.2 how a strongly typed target object of a type is
used to search for applicable rules and apply them. However, beforehand the Process
Rule Manager needs to solve the following two problems:

1. A process rule event passes its source, the target object, not as an object of type
T, but as an object of type object. This was made to be able to use the same event
for all target object types, e.g. MicroStep, MicroTransition and so on. However,
once the target object reaches the Process Rule Manager, it needs to be cast back
from object to its original type T to be compatible to the Reaction Rule Mapper and
the Process Rule Repository, which rely on knowing 7.

2. The step types (MicroStep, ValueStep and ValueSpecificMicroStep) are derived
from the abstract classes MicroStepBase and CommonStepBase (see Figure 4.1).
Also, there are rules that have an abstract type as its target type. The problem
is that generics forbid to apply a Rule<U> to an target object of type T"when T
is derived from U. Also, casting a Rule<U>to a Rule<T>is not possible, the only
remaining solution is to cast an target object of type T to all of its superclasses
(e.g., U) and for each try to apply rules.

For problem a), there are no information from the event about which actual type the
sender object has. Fortunately, the pool of possible solutions is finite and also small. It
can be tested in a trial-and-error fashion. The possible types an target object can be
cast to consist of the following seven types: MicroProcess, MicroState, Micro Transition,
MicroBackward Transition, ValueSpecificMicrostep, MicroStep, and ValueStep. The trial
and error is simply casting the target object to one of these types, if it does not fail with an
exception, the target object is of type T and can be passed to Reaction Rule Mapper or
Process Rule Repository, depending on the event type. Afterward it terminates execution,
since an target object can only be of one of the types.

Basically the same functionality as problem a) is needed with problem b), however an
target object can belong to several types, namely the target object’s actual type and
the supertypes. Therefore, if a cast was successful, it must not terminate but instead
continue until all types are tested.

Combining both solution requirements, a pattern was created that resembles that of a
switch statement with fall-through behavior. The switch parameter is the target object
and the cases are all possible types. A normal switch statement of C# however is unable
to switch on types. For this reason, a custom switch on types with the required features
and behavior has been designed (cf. Section 5.3.4).
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5.3.4. Type Switch

The TypeSwitch class allows to execute code based on the type of an object. It uses a
fluent style syntax and safe type casting to enable the core functionality of the Process
Rule Manager. It mimics syntax and behavior of a standard switch statement in C#.
The TypeSwitch can be configured to either fall through the cases like a normal switch
without break, or simulate the break statement by aborting the function chain after a
Case method was successful.

Listing 8 shows an excerpt from ProcessRuleManager.cs that uses a TypeSwitch to
match target objects to process rules.If a Marking Rule event is triggered, a new
TypeSwitch is instantiated with a constructor that takes the object on which the switch
will be performed as an argument. Next, an arbitrary number of methods with signature
Case<T Possibly>(Action<T Possibly> action) follow. The type parameter TPossibly
represents a type to which the object may be cast. For solving problem one and two, the
type switch remains in its default fall-through behavior.

Inside the Case-method, the object is safely cast to T'Possibly using the operator as.
Instead of throwing an exception when a cast fails, the operator returns null. If the
object is not null after casting, it was of type TPossibly and the Action is executed
(for Action c.f. Section 3.9). The action is a lambda expression and acts as the case
statement body. In Line 7 of Listing 5.1, the action takes the object, now cast to type
MicroProcessInstance, and passes it as an argument to the ApplyRulesTo method of the
Process Rule Repository.

Whether or not a cast is successful and the action executes, the fall-through behavior
does not break the chain but takes the next Case and evaluates it. This continues until
the last Case in the method chain, where either a De fault method can execute additional
code or the Default is missing and the type switch simply terminates.
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switch

{

(processRuleType)

case ProcessRuleType.MarkingRuleEvent:
new TypeSwitch (sender)

.Case<MicroProcessInstance> (process =>

{
_processRuleRepository.ApplyRulesTo (process) ;

})

.Case<MicroStateInstance> (state =>

{
_processRuleRepository.ApplyRulesTo (state);

})

.Case<MicroStepInstance> (step =>

{
_processRuleRepository.ApplyRulesTo (step) ;

})

.Case<ValueSpecificMicroStepInstance> (vsstep =>

{
_processRuleRepository.ApplyRulesTo (vsstep) ;

})

.Case<ValueStepInstance> (vstep =>

{
_processRuleRepository.ApplyRulesTo (vstep) ;

})

.Case<CommonBase> (cbase =>

{
_processRuleRepository.ApplyRulesTo (cbase);

})

.Case<MicroStepBaselInstance> (stepBase =>

{
_processRuleRepository.ApplyRulesTo (stepBase) ;

H)

.Case<MicroTransitionInstance> (trans =>

{
_processRuleRepository.ApplyRulesTo (trans);

})

.Case<MicroBackwardTransitionInstance> (btrans =>

{
_processRuleRepository.ApplyRulesTo (btrans) ;

1)

break; // belong to switch

//continue with reaction rule types
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5.4. Initialization
5.4. Initialization

When a process manager is instantiated, it creates its Process Rule Repository and
Reaction Rule Mapper and fills them with all currently configured process rules. The rule
creator currently has to ensure manually that a process rule is added to the initialization
routine of the Process Rule Manager. To aid with this responsibility, unit tests have been
designed to indicate that something may have been forgotten. Also removing a rule must
currently be managed by the programmer. Due to the expected low number of new or
obsolete rules this inconvenience has been considered acceptable.

5.5. Summary

In summary, this section showed how the Process Rule Manager fits into the layout
of the PHILharmonicFlows Runtime. The concept of event-driven rule application has
been explained and illustrated with an exemplary process execution. Further, the
internal workings of the Process Rule Manager were demonstrated. In the context of
discussing the Process Rule Manager, a few requirements have been hinted at that other
components need to meet in order to work with the Process Rule Manager.
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Related Work

This section discusses other approaches for defining rules. It is not limited to rules
used for executing business processes, but rules in general, for example business rules.
Furthermore, an algorithm frequently used in business rule engines is discussed.

6.1. QuestionSys

QuestionSys [46, 45, 47] is a system for designing and evaluating electronic question-
naires. The questionnaires themselves are realized as an activity-centric business
process. It also comprises a system called QuestionRule to create boolean expressions.
These expressions are called rules and are used to evaluate the questionnaire. Rules
can aggregate information from the questionnaire and summarize the result as string,
e.g,. “The participant is a heavy drug user” if the participant admits to using cocaine or
other illegal drugs regularly.

The rules comprise simple comparisons of process variables with constants, but can
also include functions like counting values of process variables. For example, such a
function can be used to determine if a participant has answered at least three questions.
Unlike process rules in PHILharmonicFlows, rules can also be built with a graphical rule
editor. The editor includes all basic comparison operators and functions and can be
extended with custom function definitions. The resulting rule expression is parsed and
converted into executable code. A detailed description of QuestionRule can be found in
[25].

Compared to the Process Rule Framework, QuestionRule lacks the ability to define rule
effects other than returning a string which describes the result. Rules cannot change the
state of the questionnaire process. However, this is not a requirement of QuestionSys.

6.2. Rete Algorithm

The Rete algorithm [11] was developed by Dr. Charles Forgy and is widely used in
business rule engines [33, 14] . The algorithm solves the many pattern/many objects
matching problem efficiently. It finds all objects that match each pattern.
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A naive approach for such a task is to check a rule against all facts in a knowledge base,
applying the rule if all conditions are satisfied, then moving on to the next. For moderate
to large-sized rule and knowledge bases, this approach performs far too slowly. The
Rete algorithm (Latin rete 'net’,network’) contructs a network of nodes, where each node
(except the root node) corresponds to a pattern occurring in the preconditions of a rule.
A path from root node to a leaf node means that all preconditions of the rule represented
by the leaf node match. Therefore, the rule can be applied. Data is organized as tuples,
which are called facts in the rete algorithm. The efficiency is based on the following
properties:

e The network reduces or eliminates certain types of redundancy. If preconditions
have the same patterns, they share the same node representing the pattern.

e The nodes memorize fact matches when evaluating rule preconditions. This allows
avoiding complete re-evaluations of all facts each time changes are made to the
knowledge base. Instead, only the changes (deltas) are evaluated.

The current fact and pattern base (i.e. target objects and process rules) of the process
rules of PHILharmonicFlows is sufficiently small to make the speed gains by implement-
ing the Rete algorithm negligible. This is supported by the running time of the process
rule tests. As of the time of writing this thesis, there are seven elements of the micro
process graph as facts, and nine different IConditionltems serving as patterns. The
implementation of the process rules for macro processes will increase these numbers,
but not significantly. The architecture of the Process Rule Manager and the definitions of
the process rules themselves support a future implementation of the Rete algorithm in
the PHILharmonicFlows runtime, should the need arise.

6.3. Microsoft BizTalk Server Business Rule Engine

Microsoft offers a business rule engine as part of the BizTalk Server [33] software.
Business Rules are comparable to PHILharmonicFlows’ process rules and consist of
conditions and actions, which are similar to preconditions and effects. As a commercial
product, the rules are capable to process data from XML, databases or .NET classes to
be used with conditions. Actions are also able to write to the data sources, e.g. adding
data from a XML file to a database table. Rules are built using a graphical editor which
contains all possible condition and effect options, no programming is necessary.

Since BizTalk Server is closed source, implementation details of the rules cannot be
discussed. However, it is known the business rule engine uses the Rete algorithm (cf.
Section 6.2) for executing its business rules [32].
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7.1. Summary

This thesis aimed at providing an easy-to-use and maintainable way to create process
rules. With the Process Rule Framework, presented in Chapter 4.2, this has been
achieved. The simple template of a process rule with preconditions and effects and the
high-level, fluent style definition syntax allow a rapid development pace. Additionally, the
Process Rule Framework has the possibility to be extended to a full-fledged business
rule engine that allow designing, compiling and applying rules entirely at runtime. The
capabilities of the Process Rules Framework have been verified with the implementation
of the process rules.

To enable the complex interactions and cascading effects between process rules, the
Process Rule Manager (cf. Chapter 5) was designed. It matches incoming events to
appropriate rules and passes data requests to the User Interface. An exemplary run
from the perspective of the Process Rule Manager has been presented in Section 5.2.
While macro processes are currently not implemented, the Process Rule Manager was
designed to handle these process rules as well.

One of the main goals for the Process Rule Manager was to keep process rules inde-
pendent from each other, which increases the maintainability. However, during the tests
of the Process Rule Manager, it was observed that some of the process rules desired
execution behavior depended on the definition of other process rules. Theses dependen-
cies are not intended by the PHILharmonicFlows Framework to enable the cascading
behavior, but implicit dependencies that stem from the practical implementations and
the inherent complexity of process rule interactions. As these dependencies are implicit,
they are not easy to find and resolve. This has a heavy impact on maintainability and
can only be mitigated by careful testing.

7.2. Outlook

The immediate next steps in the development of the PHILharmonicFlows runtime is the
extensive testing of the Process Rule Manager and the implemented process rules. A
functional micro process execution is a prerequisite for the macro process implementation
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and the integration of the PHILharmonicFlows permission and authorization system. As
soon as micro process execution is deemed stable, macro processes will be implemented,
allowing to realize most of the potential of the PHILharmonicFlows framework. In parallel,
the concept of the permission and authorization system will be finalized and subsequently
implemented.

To extend the theoretical base of the PHILharmonicFlows framework, the following
research topics of object-aware process management are currently under consideration
or actively researched:

Schema evolution describes the adaptation of processes or databases to changing
circumstances. While schema evolution has been researched and applied for activity-
centric process management systems [10, 44], a concept is still being researched for
object-aware processes [6]. Since process schemas and data schemas are tightly
integrated in object-aware processes, schema evolution in PHILharmonicFlows presents
a particular challenge. The reason is that evolving data schemas affects corresponding
process schemas and vice versa. Also, a migration to an evolved process schema for
running process instances is desired.

Process variants describe processes in different contexts or environments. For example,
an application for a job in the the human resource department and a job in the engineer-
ing department is in large parts the same (e.g. Name, address, salary). However, the
professional qualification requirements are different for each department. To accom-
modate for the necessities of each department, process variants are needed. For the
activity-centric modeling and execution paradigm, process variability is well understood
[1]. For object-aware processes, however, this is not yet the case. In object-aware
processes, variants of objects exists with different attributes and therefore different micro
processes. It is also possible to have different micro processes for one and the same
object. Research into object-aware process variability is planned for the future.

For most data storage needs it is sufficient to only store the currently valid data. In
case of a change, data which is no longer valid will simply be overwritten. However, it
can be necessary to keep track of these changes and to document the development of
data (e.g. prices or employment). To this end, PHILharmonicFlows needs to support
historization. Historization is therefore a possible future research topic in context of
object-aware processes.
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Source

public bool ApplyTo (EffectContext<T, TProperty> context)

{

//The initial function that selects the property
Expression<Func<T, TProperty>> expression = context.
PropertyFuncExpression;

//initial parameter, the object that has the property
ParameterExpression p = context.ParameterExpression;

//combine Function to determine the property and the Parameter
LambdaExpression lambda = Expression.Lambda (Expression.Convert (p,

typeof (T)), p);

//Substitute parameters for a much nicer looking expression
Expression injected = new SwapVisitor (expression.Parameters[0],
lambda.Body) .Visit (expression.Body) ;

//convert expression "injected" to a new lambda function that gets
the property

Expression<Func<T, TProperty>> combined = Expression.Lambda<Func<T,
TProperty>>(injected, lambda.Parameters);

//Extract information about the property
var memberExpression2 = combined.Body as MemberExpression;

//Create parameter expression for the value that will be assigned
ParameterExpression valueExp = Expression.Parameter (typeof (
TProperty), "value");

//Make the assignment expression
BinaryExpression body = Expression.Assign (memberExpression2,

valueExp) ;

//collect parameters in a list
var parameters = new List<ParameterExpression> {p, valueExp};
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33
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36
37
38
39
40
41

A. Source

//convert the expression and parameters to a final function
expression that actually does the Jjob on compilation

Expression<Action<T, TProperty>> testfunc = Expression.Lambda<
Action<T, TProperty>>(body, parameters);

//compile the function expression so that things can be done
Action<T, TProperty> assignmentFunction = testfunc.Compile();

//finally execute the function
assignmentFunction (context.InstanceToCheck, MarkingToAssign);

return true;
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Glossary

Activity-centric processes: Are defined as a set of activities of variable granularity.
Ordering is determined by —control flow. Common notations are —BPMN and
—EPC.

Attribute: Belongs to an — object type and represents a specific property, e.g., “Name”
of object type “Person”.

BPMN: Business Process Model and Notation. Defines a model and a notation for
—activity-centric processes. Alternative to —EPC.

Control flow: Induces an ordering on activities in —activity-centric process manage-
ment systems.

EPC: Event-driven Process Chain. A flowchart-like notation for— activity-centric process
modelin, can be used as alternative to —BPMN.

Event-driven: Actions such as user interactions trigger an event, which elicits an ap-
propriate response from the system.The process rule application is event-driven.

Form: Standard input method for — attribute values of objects in a user interface. A
form usually comprises textboxes, checkboxes, drop-down menus and other form
input fields. — PHILharmonicFlows generates forms automatically depending on
the attribute data types.

-Instance: Suffix identifying a runtime class.

Macro process: Captures object interactions. Interactions depend on — states. Details
can be found in [17]

Maintainability: The ease with which a product can be maintained in order to isolate
or correct defects or their cause. Maintainability also describes the property to
repair or replace faulty or worn-out components without having to replace still
working parts.

Markings: Markings convey additional information about — micro steps, — micro transi-
tions, — states and — backward transitions. Process rules depend on markings.

Micro process: A micro process captures object behavior (Section 2.1.2).
It consists of —micro steps, — micro transitions, — states and — backward transi-
tions.

Micro step: A micro step represents an —attribute of an —object type in a —micro
process. It has —micro transitions connecting to other micro steps. Belongs to a
— state.
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A. Source

Value step: A value step represents permitted value or range of permitted values for
an —attribute.lt is used in conjunction with — value-specific micro steps and may
have outgoing — micro transitions.

Value-specific micro step: A value-specific micro step is a variant of a —micro step
where input is limited to certain values. Allowed values are represented by
—value steps.

Backward transition: A backward transition allows redoing previous work, €.g., in order
to correct errors.A backward transition belongs to a —micro process. It connects
— states, but not —micro steps as normal — micro transitions.

Micro transition: A micro transition connects —micro steps with micro steps and
— value steps with micro steps. Micro transitions connecting steps in different
— states are called external.

Modeling environment: The modeling environment allows modeling —object types
and corresponding —micro processes and —macro processes. Modeled pro-
cesses are deployed to the —runtime environment in order to executed the
processes.

Object Type: An object type is a logical grouping of certain —attributes, e.g., a person
that has a name, first name and age can be represented as an object type. Object
types may also have relations to other object types.

PHILharmonicFlows: Framework for supporting object-aware processes. Consists of a
—Modeling Environment, — Runtime Environment and — Runtime User Interface.

Runtime environment: Executes —micro processes. The current prototype does not
support —macro processes. The graphical front end for process execution is the
—runtime user interface.

Runtime user interface Allows for user interactions with the processes in the —runtime
environment. Automatically generates —forms from underlying process data.

State Represents the processing state of a —micro process. Comprises at least one
—micro step. Object interaction in —macro processes is based on states.

-Type: Suffix identifying a design-time class.
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