
U S I N G T E X T U A L E M O T I O N E X T R A C T I O N I N
C O N T E X T- AWA R E C O M P U T I N G

tim daubenschütz

Bachelor thesis
Institute of Databases and Information Systems
Faculty of Engineering and Computer Science

Ulm University

verifier

Prof. Dr. Manfred Reichert

supervisor

Marc Schickler

April 2015



Tim Daubenschütz: Using Textual Emotion Extraction in Context-Aware
Computing © April 2015

verifier:
Prof. Dr. Manfred Reichert

supervisor:
Marc Schickler

location:
Ulm



This work is dedicated to my family and friends who made all of this
possible in the first place by supporting me morally and financially.

Thanks grandpa for pushing me to study Computer Science.

Finally, thanks Robin Kraft, Robin Zöller and Sebastian Erhardt, my dear
fellow students.





A B S T R A C T

In 2016, the number of global smartphone users will surpass 2 billion.
The common owner uses about 27 apps monthly. On average, users
of SwiftKey, an alternative Android software keyboard, type approx-
imately 1800 characters a day. Still, all of the user-generated data of
these apps is, for the most part, unused by the owner itself. To change
this, we conducted research in Context-Aware Computing, Natural
Language Processing and Affective Computing. The goal was to cre-
ate an environment for recording this non-used contextual data with-
out losing its historical context and to create an algorithm that is able
to extract emotions from text. Therefore, we are introducing Emotext,
a textual emotion extraction algorithm that uses conceptnet5’s real-
world knowledge for word-interpretation, as well as Cofra, a frame-
work for recording contextual data with time-based versioning.

v





A C K N O W L E D G M E N T S

First and foremost I would like to thank Elisa Erroi for supporting
and motivating me throughout the whole process of writing this the-
sis. Simultaneously, I would like to give a big thank you to my advisor
Marc Schickler for giving me enough leeway to challenge myself. Fi-
nally, thank you Alexander Müller and Robin Kraft for being there
when I needed your help.

vii





C O N T E N T S

1 introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Methodology and Ambition . . . . . . . . . . . . . 2

1.3 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . 2

2 pervasive computing and context 5

2.1 Pervasive Computing . . . . . . . . . . . . . . . . . 5

2.2 Context . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Context-Aware Computing . . . . . . . . . . . . . 10

3 natural language processing 13

3.1 Defining the Term Natural Language Processing . 14

3.2 Methods and Techniques in NLP . . . . . . . . . . 16

3.2.1 Word Segmentation . . . . . . . . . . . . . 17

3.2.2 Word Normalization . . . . . . . . . . . . . 17

3.2.3 Negation Handling . . . . . . . . . . . . . . 18

3.2.4 Stop Word Removal . . . . . . . . . . . . . 19

3.2.5 Text Classification . . . . . . . . . . . . . . 19

4 affective computing 21

4.1 Defining the Term Affective Computing . . . . . . 21

4.2 Defining the Term Emotion . . . . . . . . . . . . . 24

4.3 Interaction of Emotion and Context . . . . . . . . 25

4.4 Emotion Extraction from Text . . . . . . . . . . . . 26

4.4.1 Methods for Extracting Emotion from Text 26

4.4.2 Smoothing outputs . . . . . . . . . . . . . . 28

5 requirements 29

5.1 Requirements for Emotext . . . . . . . . . . . . . . 29

5.1.1 General Requirements . . . . . . . . . . . . 29

5.1.2 Requirements for NLP . . . . . . . . . . . . 30

5.1.3 Requirements for Emotion Extraction . . . 30

5.2 Requirements for EtMiddleware . . . . . . . . . . 30

5.3 Requirements for Cofra . . . . . . . . . . . . . . . 31

6 design 33

6.1 The Choice of Tools . . . . . . . . . . . . . . . . . . 33

6.1.1 Emotion Extraction Techniques . . . . . . . 33

6.1.2 The Programming Language . . . . . . . . 35

6.1.3 The Database . . . . . . . . . . . . . . . . . 35

6.2 Data Structure and Object-relational Mapping . . 37

6.2.1 Data Structure . . . . . . . . . . . . . . . . . 37

6.2.2 Object-relational Mapping . . . . . . . . . . 38

6.3 The Architecture . . . . . . . . . . . . . . . . . . . 39

7 implementation 41

7.1 Emotext . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.1.1 Text Processing . . . . . . . . . . . . . . . . 42

ix



x contents

7.1.2 Emotion Extraction . . . . . . . . . . . . . . 44

7.2 Cofra . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.2.1 The RESTful Web Interface . . . . . . . . . 48

7.3 EtMiddleware . . . . . . . . . . . . . . . . . . . . . 50

7.3.1 Message Clustering . . . . . . . . . . . . . . 51

7.3.2 CacheController . . . . . . . . . . . . . . . . 52

7.3.3 Smoothing Methods . . . . . . . . . . . . . 52

8 discussion 55

8.1 Retrospective . . . . . . . . . . . . . . . . . . . . . 55

8.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . 56

8.2.1 Emotext . . . . . . . . . . . . . . . . . . . . 56

8.2.2 EtMiddleware . . . . . . . . . . . . . . . . . 58

8.2.3 Cofra . . . . . . . . . . . . . . . . . . . . . . 59

9 conclusion 61

bibliography 65



1
I N T R O D U C T I O N

1.1 motivation

Marc Andreessen, the inventor of the first widely used web browser,
once famously said: "Software is eating the world". His key argument
is that technology companies will disrupt established companies by
leveraging their software’s benefits. One infamous example, this pro-
cess can be seen easily is Uber1 and the taxi industry.
Judging by some companies’ monetary valuations – Uber valued $40

billion in December 2014 [21], Facebook’s stock is worth $230 billion
as of March 2015 [24] – he most certainly is right.
In late 2014, Facebook’s mobile applications had approximately 745

million daily active users2 [20]. Simultaniously, WhatsApp reportedly
handles 30 billion messages every day, while counting 700 million
monthly active users [18]. These numbers, combined with the fact
that Apple recently sold-out an estimated 2.3 million units of their
latest product line (the Apple Watch) in about 6 hours [33] and An-
droid’s promising sales numbers (its shipments exceeded 1 billion
devices sold in 2014) [32], confirm not only that Andreessen’s thesis
is right, but that software’s subsets instant-messaging and smart mobile
devices do too, "eat the world".
A recent study of Nielsen found that the average smartphone owner
uses approximately 27 mobile apps a month [5]. Though many peo-
ple use apps like activity trackers, location-based services and life-
journals, all this information is hardly ever combined to achieve more
advanced tracking results. The underlying problem is that an appro-
priate platform for storing contextual data does not exist yet. Equiva-
lently, in 2013 SwiftKey3 users typed an average of about 1800 charac-
ters a day on their mobile keyboards [8]. Still, its users never had the
chance to profit from a software solution that evaluated their typing
behavior. Apart from sentiment analyzing software modules4, there is
no well-performing, accurate and privacy-conform solution to mine
personal metadata from text sufficiently, especially none for emotion
extraction in particular.
Hence, in this work we address both problems by researching three
important domains, namely context-aware computing, natural lan-

1 Uber is a ride-sharing mobile app that lets its users essentially call a cab by clicking
a button.

2 Statistics do not include their aquired ventures WhatsApp and Instagram.
3 SwiftKey is an alternative and widely-spread Android software keyboard.
4 Sentiment Analysis is the study of the polarity of words that are used to express

attitudes.

1



2 introduction

guage processing and affective computing.
In addition, we use the acquired knowledge to specify and design a
system for recording contextual information historically and for ex-
tracting emotion from arbitrary-sized pieces of text. Our findings
in context-aware computing will help increase usability and effec-
tiveness of human-computer interfaces [13]. Our system’s ability to
record and correlate historical data will enable applications to pre-
dict future actions [17]. And our reference-implementation will po-
tentially help computational treatment of affect to improve human-
computer interaction [36].
In the following section, we introduce the methodology used to re-
search the contents of this work.

1.2 methodology and ambition

This work’s goal is to highlight problems and challenges in context-
aware computing, natural language processing and affective comput-
ing. By defining not only the essentials of each respectively, but also
by entering the domain sporadically deeper, we want to expose com-
monly used methods and techniques in all domains to ease future
successors’ entry-hurdles. Especially the intersection of affective com-
puting and natural language processing potentially poses interesting
use cases that could be leveraged to achieve great improvements in
consumer-facing context-aware computing and beyond [15].
To prove the practical value of our research and to illustrate its use-
fulness as well as our ability to develop software, approximately half
of this work is a documentation of the reference-implementation that
divides itself into the first three phases of the waterfall software de-
velopment model (requirements, design and implementation).
The next section, briefly covers the context of this work by chapter.

1.3 roadmap

In chapter 2, we discuss pervasive computing by enumerating on its
four major requirements and highlighting its current problems. Using
an example, we define context, which is information that can be used
to characterize an entity in space and time. Since its broad definition
poses a problem for present-day technology we present context-aware
computing and introduce a categorization-model, that helps us derive
requirements for it.
Subsequently (in chapter 3), we introduce natural language process-
ing and motivate its existence. In defining the term narrowly, we
present its tasks, exemplary implementations and highlight its ma-
jor challenges. We propose six categories of linguistic knowledge and
discuss NLP’s difficulties. Further, we suggest five commonly used
methods in natural language processing to build a foundation for



1.3 roadmap 3

our later specification.
Chapter 4 introduces the term affective computing. We define the
term affect, as well as a model called the topology of affective state.
Additionally, we present a classification-model, discuss the field’s
major challenges and define the term emotion. To help build spe-
cific knowledge about the problem’s domain, we introduce four com-
monly used techniques in textual emotion extraction as well as meth-
ods for smoothing their outputs. Since we use the classical waterfall
model in development, we represent each phase (requirements, de-
sign and implementation) separately as a chapter of this work.
Firstly, we specify requirements (see chapter 5) for an emotion ex-
tracting and context recording system, which we divide into the three
components Emotext, Cofra and EtMiddleware.
Secondly, in chapter 6 we discuss and design each component sepa-
rately and present the reasoning behind the choice of tools.
In chapter 7, we document the functionality of each component re-
spectively. We introduce Emotext’s text processing mechanism and
explain in detail how its emotion extractor generates outputs for its
inputs. Additionally, we present Cofra’s RESTful web interface and
explain EtMiddleware’s caching functionality, its usage of smoothing
methods as well as its capability of clustering messages.
Finally, we analyze all three phases by comparing the results to the
original requirements and explain in retrospective the reasons for the
decisions made in the software development process.
We start off by introducing pervasive computing and context-aware
computing. Two fields that may grow very large, considering the lat-
est innovations in wearable computing and smart mobile devices.





2
P E RVA S I V E C O M P U T I N G A N D C O N T E X T

With the rise of smart mobile devices such as smartphones and tablets
on one hand and cloud computing on the other hand consumers
have now the computing power of a small supercomputer in their
pocket. Today, any smartphone owner can calculate complex equa-
tions by simply querying for example WolframAlpha, a computa-
tional knowledge engine. Here, all calculations are done in the cloud
leveraging the advancing network infrastructure while regarding the
limited computational power of a mobile device. Recently, we could
also witness an increasing trend in wearable and smart home devices.
Internet-connected thermostats, tethered smart watches and fitness
bands are just the beginning. With this change in the consumer elec-
tronics market, a solid foundation for future pervasive computing
has been established. Yet context-aware computing in applications
fails to materialize in our everyday lifes. Although rare, there are
some strong and production-ready concepts that prove the benefits of
context-aware computing. With Google Now leading the way, Google
introduced an intelligent personal assistant that employs Google’s
Knowledge Graph to build more sophisticated search results by calcu-
lating their semantic meaning and real-world connections [2]. Google
Now does not only predict the users’ average commuting duration to
work and notifies them about soon arriving parcels, it also suggests
job offers from recently visited websites that might fit their expertise.
Particular functions of this service, though, are only possible owed to
the vast amounts of user data Google collects from its various other
products like web search, maps and mail. This shows the difficulties
in creating successful und useful context-aware applications, namely
collecting and correlating a critical mass of user data for getting a
context-aware service to work, and why it yet fails to materialize. In
this chapter we introduce the terms pervasive and context-aware com-
puting, but also the term context.

2.1 pervasive computing

Pervasive computing, often referred to as ubiquitous computing, de-
scribes the seamless integration of devices into users’ lives [13]. When
first introduced to the term, most people tend to miss the vast implica-
tions of this definition. The most common interpretation of this term
is that every (man-made) item contains a computer with networking
capabilities. This potentially stark magnitude of linked up devices
would enable services to collect big amounts of data that could be

5



6 pervasive computing and context

used by application developers for artificial decision-making. Espe-
cially with the invention of the internet and the recent rise of pow-
erful but small and cheap mobile devices researchers started to envi-
sion and define the term more detailed. One of the earliest but most
widely acknowledged definition originated from Mark Weiser in 1991.
He suggested that every major technology in the future needs to van-
ish into the user’s everyday life to be truly impactful [38]. Despite its
simplicity it still influences present definitions but is not fitting for the
extent of this work. More comprehensive requirements can be found
in works of Satyanarayanan et al. and Henricksen et al. [34, 19]:

• Disappearance: Devices disappear from the user’s perception
entirely and do not demand the user’s attention. A quite prac-
tical example would be a fridge that captures the quantity of
milk in stock and resupplies without the user’s interference.

• Mobility: Only in a utopian future ubiquitous computing can
be in every man-made device. In order to satisfy the disappear-
ance requirement the user should at least perceive it that way.
This however implies that uneven conditions, conditions where a
computational device might not be available, need to be masked
to convince the user of the ubiquity of the computational envi-
ronment. This could for example mean that a user’s location
data is interpolated given the fact that her GPS connection is
volatile or inaccurate.

• Proactivity: By tracking the user’s intentions and actions, a sys-
tem can learn specific human behavior and make future pro-
posals to the user. At first glance this seems like a decent ap-
plication for context-aware consumer-facing computing but is,
as past projects prove, harder than it might seems. Well de-
signed and timed proposals really have the potential to improve
human-computer interaction, while misleading instructions or
a poorly recognized context can lead to anger and/or to danger-
ous situations for the user. Simply, imagine a route planner that
notifies the car-driving user too late to take an exit ramp safely.

• Adaption: Is the necessity of change when there is a significant
mismatch between supply and demand. Here the term adaption
describes the computational ability to adjust to more relevant
data that is usually derived from the user’s context. Take again
a route planner that distributes cars to different routes in a city
to avoid congestion.

While requirements, visions and specifications of pervasive comput-
ing are widely available and discussed frequently, the concept still
faces tough problems that need to be overcome. One being the high
fragmentation in the mobile devices and operating systems market to-
day that is accompanied by a big variety of proprietary protocols and



2.1 pervasive computing 7

tools. For pervasive computing to flourish, protocols must be open,
extensible, accessible to everyone and free. Ease of usage and distinc-
tive appearance enable wide-spread participation and development.
Unfortunately, the status quo in 2015 is quite contrarian to this vision:
A recently released smart watch may only be usable if connected to
a smart phone of one certain type (Apple’s iOS for example), while
most cars integrate support only for another mobile operating sys-
tem (Google’s Android for instance). With the increasing number of
participants in the numerous smart-markets, the situation will get
worse, since proprietary software is commonly used as a unique sell-
ing proposition. The vision of pervasive computing in stark contrast
describes the interconnectivity and communication of all electronic
devices. Nevertheless, seamless integration of every electronic device
is a challenge that can only be achieved through time, standards and
a unifying middleware [34].
Another problem the concept faces is that pervasive applications and
devices need to become more flexible and target-oriented1. With sub-
siding cloud computing prices, service providers are now able to
"waste" computing power to improve the user’s experience [34]. In
turn, mobile computation can be outsourced to the cloud allowing
for the creation of even smaller, lighter and more durable mobile de-
vices [34]. This creates an environment where smart mobile devices
can be produced cheaply, with little to no computing power but net-
working capabilities that can then be used for a greater purpose in the
cloud. Finally, every pervasive mobile device is just an array of sen-
sors with networking capabilities sending a constant stream of data
to the cloud. In a nutshell, pervasive computing in today’s world can
be broken down into cheap, mobile devices that are connected to the
cloud making them hereby interconnected.
Once those problems are overcome and the technology is ready, per-
vasive computing offers a broad array of possibilities that can im-
prove the user’s everyday life. While today’s systems are poor at cap-
turing the user’s intent [34], future applications will help humanity
to overcome the rapidly increasing phenomenon of information over-
load by leveraging the cloud’s computing ability to compress complex
data into chunk-sized, comprehendible information-bites [38]. Still,
this can only be achieved with subsiding cloud computing prices,
open protocols and cheaper, smaller, lighter and more durable mo-
bile devices [34].
In the next section, we are introducing the term context, as well as
context-aware computing and highlight both their relations to perva-
sive computing.

1 Target-oriented describing the contraction between the user’s input and output.



8 pervasive computing and context

2.2 context

When using the word context outside of the computer science domain,
the term is often used for describing "implicit situational information"
in social interactions with other human beings [11]. We use both the
word but also the concept to reference other situations in social inter-
actions with other human beings. Given its vague but broad termi-
nology in the computer science domain, the term unfortunately has a
long history of attempted and failed definition by researchers. Many
of them first referred to it as location or identities of nearby peo-
ple and objects. Other definitions were done by enumeration [11, 17],
reciting every circumstance that applies. Since there is still no defini-
tion that can live up to the already introduced concepts and specifica-
tions, we introduce the term by giving a practical example:
Two persons are waiting for a bus at the station. Multiple lines stop
at the station and also multiple lines lead to both persons’ final desti-
nations. A bus arrives and so one person asks the other: "This one or
the next?". While a computer algorithm might have understood their
speech and would have been able to track their location, it would
not have been able to determine what the person asking the question
was trying to say. The sequence "This one or the next?" would not
enable the algorithm to calculate helpful information without know-
ing that both are talking about their decision which bus to take. So to
participate in the decision-making process, the algorithm first would
need to know the contextual information that both persons are wait-
ing together for a bus. Still, with this information at hand, making
the decision might be influenced by further factors including:

• Wether both persons are in a hurry and how long the first bus
takes compared to the second one?

• How many people are on the first bus and if it would therefore
be more pleasant taking the second one?

• What the weather is like? It might be freezing cold so that they
would probably prefer taking the first bus.

Special about these factors is that they are - in contrast to for example
the age of both persons, their gender or their nationality - contextually
important because by using them, a relevant solution to both persons’
best intentions can be computed. By using a temperature sensor and
a third-party service for obtaining the number of passengers on the
bus, what the weather is like and maybe even what clothes (warm
or cold) both persons are wearing the algorithm could compute a
sufficient conclusion that might support or even replace the decision-
making of both actors.
Based on this example we see that understanding the speech and lan-
guage is equally significant as knowing information that can be used



2.2 context 9

to describe the context of a person. Generally speaking only infor-
mation that can be used to characterize an entity in space and time
is context [17]. Additionally, an entity can be a person, place or any
object that can be considered relevant to the human-computer interac-
tion [17]. Another good rule of thumb to decide wether or not a piece
of information is context, is to ask ourselves if it can be used to define
the situation of an participant in an interaction [17]. This shows that
context can grow very rich and include multiple layers of physical,
physiological and emotional state but also a person’s personal his-
tory [34]. Because most of these states need to be handled separately,
researchers [13] propose that context needs to be segregated into mul-
tiple dimensions. More specifically, they suggest that context can be
differentiated between:

• External context - Can be physically measured, examples are:

• Location;

• time;

• season; and

• movement;

• (room) temperature;

• brightness.

• Internal context - Is specified through the user, examples are
the user’s:

• Emotional state;

• focus of attention;

• orientation; and

• work context;

• identity;

• goals.

Quite different to these proposals, Dey et al. [17] suggested about
six years earlier that context-aware applications are using the five
W questions, known from journalism. Specifically, the who’s, where’s,
when’s and what’s of entities to determine why a particular situation
is happening. This proposal implies that context can be divided into
five different categories, but Dey et al. go even further by classifying
context into primary and secondary context, the so called levels of con-
text. Identity (who), location (where), time (when) and activity (what)
are primary context level types while secondary context level types
are information that can be indexed by primary context. Take the ex-
traction of a number from a phone directory as an example: In order
to retain this task’s primary context the entity’s identity is required,
in this case his forename and surname. Dey’s definition might be
sufficient to narrow down a situation’s horizon, but is generally in-
adequate when used in a computational situation. Here, data and its
statistically correct correlation process is far more important than to
link specific data to W questions. At this stage in history, big data is
practically not interpreted individually but only by its result’s statis-
tical relevancy. As we will learn in the next section, there are several
steps to be reached, before being able do that.



10 pervasive computing and context

2.3 context-aware computing

Context-aware computing is a superordinate of pervasive computing
(see section 2.1) and can be described as the process of collecting
contextual information, information that can be used to describe the sit-
uation through automated means and use this information to enrich
the software around it [13]. Although Baldauf et al. [13] suggest that
systems need to be able to adapt their operations without the user’s
intervention, hence suggesting that context-aware systems need to act
proactively towards the user’s actual intent, we hold the opinion that
by satisfying the mentioned definition of context-aware computing,
more generic and usable requirements can be elaborated. For the sake
of completeness though, we hereby mention Dey et al.’s proposal [17]
to specify context-aware applications by their required features. These
can be broken up into three categories:

• presentation of information and services to the user;

• automatic execution of a service; and

• mapping of context to information.

Undoubtedly, an application could easily categorized using this model,
but, as we will debate later on, it’s assumption that execution of ser-
vice needs to be automatic, as well as that information only needs to
be mapped to context are quite unclear. Also, as we will learn later
on, context presentation can have multiple manifestations. Take for in-
stance, Dey et al.’s example [17] of entering a room with multiple
accessible printers. In a completely context-aware future your mo-
bile phone would access the printers’ networks automatically and
choose - in case the user would actually need one - a printer accord-
ingly to the file the user wants to print (text, image, ...). Using Dey
et al.’s categorization for specifying the application we can clearly
see that it matches. However, a mobile phone that would access the
printer’s networks automatically, but show a list of all available print-
ers in order to let the users choose manually according to the file
they want to print would still match this definition. Especially in this
case, the question which implementation is more mature in term of
contextual usage arises. To solve this problem we propose a model
that divides context-aware computing into four strategies by partic-
ularly looking at how they acquire their information and how they
process it. By definition, an application is composed of an automatic
or manual information acquisition and information processing. De-
spite the simplicity of this definition, we need to further discuss the
terms manual and automatic to avoid ambiguity. In this work the term
manual is used as a synonym to do something by hand, not using ma-
chinery or electronics to fulfill a function whereas automatic means
the direct opposite, namely using machinery or electronics to fulfill a



2.3 context-aware computing 11

function. Irrespectively of its automation degree (automatic or man-
ual), a process still needs to be initiated somehow, which is why the
initialization of a process must not be used to categorize the process’s
degree. Further, manual information acquisition means to enter values
into a specific computer interface by hand while automatic informa-
tion acquisition means that those values are collected through varied
sensors. An information handling process is classified as manual in-
formation processing if it requires additional user input to complete,
while a automatic information processing one does not. By constructing
a 2x2 matrix, as can be seen in figure 1, we can develop four major
context-aware computing strategies:

Figure 1: Schematic illustration of the four major context-aware computing
strategies.

• Manual processing - Manual acquisition: Can be found in the
bottom left corner of figure 1. Applications of this strategy can
often be found in our everyday lives. Take for an example a
calories counting app that needs manual input after every meal.
Rarely information is processed to a greater degree than sum-
ming up the calories of all meals and showing the user his re-
maining calories for the day.

• Manual processing - Automatic acquisition: Can be found in
the bottom right corner of figure 1. Applications of this kind can
also be found in our everyday lives, especially with the latest



12 pervasive computing and context

hype around health tracking wearable devices. These devices
automatically track the user’s activity by using a variety of sen-
sors while analysis of this data is rarely done extravagantly.

• Automatic processing - Manual acquisition: Can be found in
the top left corner of figure 1. Despite the fact that these types
of applications can eventually be found in your everyday lives,
they are far more rare than ones from the more primitive strate-
gies. One famous example of such an application is Google
Now, an intelligent personal assistant that is able to learn, rec-
ommend and adapt on its own and hardly needs his user’s man-
ual input.

• Automatic processing - Automatic acquisition: Can be found
in the top right corner of figure 1. As of today, these applica-
tions are not yet to be found in our everyday lives since they
would require the application to be completely decoupled from
a user’s manual inputs.

In our model the maturity degree of applications can easily be de-
termined according to the automation utilization of an application.
Of course, automatic information processing and acquisition is far
more advanced than its manual pendant. While manual information
processing and acquisition can theoretically already be done using pen
and paper, automatic information processing and acquisition needs com-
plex algorithms that may not yet exist. For both in-between strategies
can be said, that information processing and acquisition are subject
to the commutative property, which is why the maturity degree of
automatic information acquiring but manual information processing
applications and manual information acquiring but automatic infor-
mation processing applications are equal.
Having defined this model, we can now easily derive requirements
for context-aware computing, namely adaption and disappearance.
Clearly, adaption is a requirement as it can be used synonymously
to automation. The reason disappearance is a requirement for context-
aware computing is due to the fact that automation, and in this spe-
cial case, information processing and acquisition can only perceived
as automatic processes if they disappear from the user’s perception
[34, 13].
Having gathered all this information about pervasive computing and
context, we can now devote our attention to two equally important
fields that need to be studied to understand this works purpose. In
the two following chapters, we firstly introduce natural language pro-
cessing, the extraction of information from natural language, and fur-
ther embellish it by introducing affective computing, the computational
discipline of emotion extraction and expression.



3
N AT U R A L L A N G U A G E P R O C E S S I N G

As the quantity of user-generated content on the internet has risen
exponentially over the last ten years, users find themselves increas-
ingly overwhelmed by the amount of information that is presented
to them. This phenomenon helped information extraction to its most
recent Renaissance becoming an expanding field in research [7].
Other parties’ opinions have always played a crucial role in decision-
making. In fact social decision-making has now become the de-facto
standard. According to a study with more than 2000 American adults,
81% stated that they have at least once used the internet for research-
ing a product online. 32% of those surveyed also stated that they
have provided rating on a product, service or person at least once [30].
This can be seen as an indicator that commercial decision-making has
progressively gone social. Nowadays, many big online retailers have
a social rating system for their products (see amazon.com or wal-
mart.com). There are rating platforms for nearly every aspect of our
lives, such as movies, restaurants, travel guides, tech guides, or even
universities. Still, with more and more information being generated
on the world wide web every day, it becomes increasingly difficult for
users to briefly extract relevant information. This is the reason why
natural language processing has had such a surge of interest with the
rise of the internet [30].
For instance take the process of buying a digital camera. Instead of
reading through a five page long review for it, the user would rather
like to know wether its lens holds the manufacturer’s promise or not.
In this use case, natural language processing can really make a differ-
ence. One example this has been done is Microsoft’s Bing Shopping
platform [1]. An algorithm extracts affect-containing1 words as well
as feature-representative2 words from documents and classifies the
gadgets’ features depending on the polarity of those affective words.
A frequent occurrence of "bad" and "lens" together in different reviews
then allows the algorithm to draw the conclusion that the quality of
the camera’s lens is perceived as insufficient by the majority of the
customers. All gathered information can then be presented to the
users beforehand, to enable them to extract information more easily
and finally accelerate their decision-making process. Whilst the given
example appears to be quite useful, its core functionality is derived
rather from sentiment analysis than from natural language process-

1 Words that contain an emotional meaning.
2 Words that refer to one of the camera’s features.

13



14 natural language processing

ing. To be able to make this distinction however, we need to define
the term natural language processing further.

3.1 defining the term natural language processing

We have been using the achievements of natural language processing
unconsciously for years. Ever since in 1976 a Canadian computer pro-
gram has been used to generate unedited weather reports to the pub-
lic in French and in English [22]. Nowadays we conveniently use voice
recognition, auto completion and text-to-speech, as they are built into
nearly every smart mobile device or desktop computer. Natural lan-
guage processing, a subordinate of speech and language processing, fea-
tures a broad array of tasks, such as:

• natural language understanding and generation;

• speech recognition;

• machine translation;

• discourse analysis; and

• sentiment analysis.

Therefore it is often described as an intersection of computer science,
artificial intelligence and linguistics, with the goal of letting comput-
ers execute useful tasks involving human language [22]. Today, imple-
mentations of these tasks can be seen in various popular applications:

• Apple’s Siri3 as an example of a conversational agent. An ap-
plication that communicates with humans in natural language;

• Google Translate as an example of machine translation. An ap-
plication that is able to translate complete documents on its own
[3]; and

• WolframAlpha as a web-based question-answering engine. An
application that can be queried using natural language [10].

What makes the implementation of these tasks challenging, is that
in order for them to complete they need language-specific knowledge.
Other than in regular data processing, where it is generally sufficient
to define one set of rules per application, rules for processing a lan-
guage can not be derived from another language and require deep
structural knowledge. To express this difficulty, Jurafsky et al. [22, 9]
exemplarily suggest the unix tool wc4.
While it is fairly easy to use it for counting bytes or lines in a file,

3 An intelligent personal assistant similar to Google Now.
4 wc is a tool for counting byes, words and lines in text files.



3.1 defining the term natural language processing 15

counting words is definitively a non-trivial task. This is, as we ad-
dressed already, due to the fact that we need language-specific knowl-
edge to accomplish the task. One could argue that whitespace is suf-
ficient, but given the English language’s characteristics of abbreviat-
ing possessive personal pronouns ("Wendy’s", "Moe’s Burger Bar")
and modal verbs ("can’t", "don’t", "I’d", "I’ll") this simple rule will not
yield sufficient results.
The proper name "San Fransisco" allows us to dive even deeper into
the problem. Despite the fact that it consists syntactically of two
words, semantically it refers to one concept, namely the famous city.
With languages differing in rules, it becomes apparent that they may
also differ in processing-effort. Take the Turkish language for an in-
stance: There, every verb can be causativized multiple times (you cause
A to cause B to... do C), creating an even larger quantity of words
to memorize. This makes the language harder to parse in compari-
son to English [22]. Luckily, language-specific knowledge can help us
overcome these hurdles. Jurafsky et al. split it into six categories and
called it linguistic knowledge [22]:

• Morphology: The study of meaningful components in words.
One of the most conventional use cases of this is the recognition
of plural forms in nouns. While in most cases this seems like an
easy task (door and doors), it can get challenging considering
every exception existing in a language (fox and foxes).

• Syntax: The structural relationship between words. Its impor-
tance is enforced when linked information is extracted from a
sentence or document. Take for instance the following sentence:
"I don’t like Brad Pitt, but I do like some of his latest flicks". Here "his
latest flicks" is used as a reference for Brad Pitt’s movies, because
they were already mentioned in the main clause.

• Semantics: Can be divided into two sub categories, one being
lexical semantics which is the study of the meaning of all the
words (for example "flicks" being a synonym for movies), while
compositional semantics explain the meaning behind word con-
structs ("latest [flicks]", where latest has a contextual component,
in this case temporal, to it).

• Discourse: The study and analysis of linguistic units that com-
posed amount to humanoid dialogues. If someone replied to
the previous statement about Brad Pitt’s movies with: "No! Those
are garbage", then "Those" is used synonymously for Brad Pitt’s
movies but this time beyond the context of a single sentence
and person.

• Pragmatics: The study of how language can be used to achieve
goals. Using natural language, actions can be demanded ("Open



16 natural language processing

the door!"), statements can be made ("The door is open.") and in-
formation can be requested ("Is the door open?").

• Phonetics and Phonology: The study of linguistic sounds, specif-
ically how words are pronounced and how they are realized
acoustically.

Despite the diversity in these tasks’ nature they all commonly aim to
resolve one main problem in language processing: reducing ambigu-
ity. Ambiguity is the uncertainty about an attribute of any concept,
idea, statement and so on and means in our case, that for one input
there are varied alternative structures that can be interpreted from
it. Jurafsky et al. [22] express this problem in a fitting example. The
english sentence "I made her duck" can, depending on its context, have
several meanings. They can be:

1. I cooked duck (a waterfowl) for her (meaning a meal).

2. I caused her to duck (the physical exercise).

3. I waved my magic wand and turned her into a duck (the water-
fowl).

This difficulty arises due to the fact that the word duck can either be
a verb (to lower one’s body) or a noun (the swimming and flying
animal). Therefore, we call "duck" a morphologically and syntactically
ambiguous word. Further, the word "make" is semantically ambigu-
ous, as it can mean to make, to create, to cook or to enchant somebody
or something [22]. There are several methods and techniques to ap-
proach this ambiguity in natural language processing which we are
going to introduce in the following section.

3.2 methods and techniques used in natural language

processing

With natural language processing being an intersection of computer
science, artificial intelligence and linguistics, it features a big quantity
of techniques to achieve functionality, most of which we cannot cover
in this work. Instead we will focus on methods and techniques that
are applicable for emotion extraction. At first, we need to refine our
knowledge about words and sentences.
To begin with, a lemma is a word that bundles all its enhancements to
a single word. Take for instance all conjugations of a word. Sing, sang,
sung are called wordforms and are bundled by their lemma sing [23].
Then there are types and tokens. Types are elements of a dictionary,
while tokens are an entity in a sentence. In the clause "He heard his
phone ring" there are five different types, while there are only four dif-
ferent tokens. "He" and "his", though different words, have the same



3.2 methods and techniques in nlp 17

meaning because they call out the same entity, namely the man who
heard his phone ring, which is why they are considered to be a single
token but two different types [14]. Luckily, this also gives a definition
for our previous problem with the proper name "San Fransisco". In
short, it consists of two types, but only one token.
When processing a document, the first task is to analyze it syntac-
tically and, subsequently, semantically. This is why we begin with
introducing the method of word segmentation.

3.2.1 Word Segmentation

Word segmentation, often referred to as tokenization is the task of sepa-
rating out words from a text corpus. As we already learned, segment-
ing words on the appearance of a space or punctuation character does
not yield satisfying results. We mentioned the proper name "San Fran-
cisco", still there is more like for example abbreviations (O.K.). The
issue becomes even more apparent in other languages such as French
where cliticization, the blend of an prefix and a stem5 ("l’ordinateur",
english: the computer), is commonly used [14]. The German language
also features obstacles. Here, nouns can be chained together and
allow the speaker to compose very long words ("Donaudampfschif-
fahrtsgesellschaftskapitänskajütenschlüssel", english: Danube Steamboat
Shipping Company Captain’s cabin key). Word segmentation is usu-
ally achieved using regular languages in combination with language-
specific rules.

3.2.2 Word Normalization

Once we’ve successfully segmented our words, we proceed with nor-
malizing them. Basically, normalization features the splitting of words,
the compression of singular and plural forms and the matching of words
that semantically refer to the same entity. This process is technically
called word normalization or stemming and is done using morphol-
ogy [23]. As we mentioned in section 3.1, morphology is the study
of meaningful components in words. It explores the way in which
words are built up from meaningful, smaller chunks. Those are called
morphemes. Generally, word segments can be divided into two types
of morphemes called stems and affixes. While some words can contain
more than one affix, every word can have only one stem. Take for
example the word "foxes". It consists of a stem ("fox- ") and an affix
("-es"), while the word "rewrites" has the stem "-write-" and two affixes
("re-" and "-s") [23]. We can also see that affixes can have different fea-
tures. In particular, there are four ways affixes can appear in words
[23]:

5 We will be covering stems and prefixes (affixes) in the next section.



18 natural language processing

1. Prefix: Precede the stem (unfair)

2. Suffixes: Follow the stem (foxes)

3. Circumfixes: Encompass the stem, like the german word gesagt
(en. said). Note that rewrites is not classified as a circumfixed
affix as it consists of two morphemes of different origin. The
prefix "re-" indicates a repetition of a task and the suffix "-s"
expresses a conjugation in the third person.

4. Infixes: Split the stem (legen - wait for it - dary)

An algorithm for word normalization features knowledge of these
language-specific grammatical rules. One of the most widely used
algorithms for stemming is the one created in 1980 by Martin Porter
[4]. Here a finite state machine uses a formal language to convert
for example conjugated affixes into their basic forms again [23]. It
contains rules like these:

IES→ I (1)

I→ Y (2)

The word "libraries" would first be matched by the first rule (1) to
"librari" and subsequently by the second one (2) to "library". As we
will find out later, stemming does not yield perfect results throughout
and is, in use cases like ours, neither necessary nor improves emotion
extraction sufficiently.

3.2.3 Negation Handling

Detection and handling of negation in natural language processing
is another important task, given the fact that negation words have
a profound influence on the result of textual semantic extraction of
information (in sentiment analysis for example) [30]. As with every
technique introduced so far, negation detection requires sufficient
language-specific knowledge. It needs to be aware of how the lan-
guage can be used syntactically and semantically to negate meaning
in documents. Considering the english language as an example, de-
tection of negating words ("not", "don’t", "never") is easily achieved
using pattern matching. The more challenging task is to detect subtle
negation like irony or sarcasm [30].
An easy, but commonly used method to manage negation is substi-
tution. An algorithm iterates over every sentence and negates certain
words if the context of the sentence requires it. More precisely, it



3.2 methods and techniques in nlp 19

prepends the word "NOT-" to every word between the causative nega-
tion and the next punctuation. So for example in the sentence: "[...]
didn’t like this movie, but [...]", the negation-word "didn’t" is detected
and every word between it and the next comma are adjusted, convert-
ing the sentence to: "[...] didn’t NOT-like NOT-this NOT-movie, but [...]".
This way, "NOT-like" will be analyzed instead of "like", hence the sen-
tence’s meaning remains semantically correct. The method was first
proposed by Das et al. [16] and is still commonly used throughout
various text processing algorithms.

3.2.4 Stop Word Removal

Words that carry a low information content and are only present in a
sentence for syntactical reasons are commonly called stop words [26].
Natural language processing, as well as other closely related disci-
plines focus therefore mostly on accurate ways to remove them from
a document efficiently. Makrehchi et al. [26] suggest that there are
two categories of stop words:

• General stop words: Words that fit the above definition of being
used for syntactical reasons. Some examples are:

– Articles: "the", "a", "their", ...;

– Conjunctions: "and", "or", ...; and

– Negations: "not", "never", ... .

• Domain-specific stop words: Words that have, according to Makre-
hchi et al. [26], no "discriminant value" within a specific context.
The inflationary usage of the word "learning" in the domain of
education for example makes it a stop word. In computer sci-
ence, however, "learning" is more of a keyword, he suggests.

Problematic is the fact that, stop words occur disproportionately. As
we will find out in further chapters though, textual extraction of emo-
tions can be quite computation-intense, which is why stop word re-
moval should be considered an important requirement later on.

3.2.5 Text Classification

The task of text classification is essential to natural language process-
ing, as it features a broad array of applicable use cases. Some writers
even call it one of the "most fundamental" technologies in most nat-
ural language processing applications [30]. In our everyday life this
can be witnessed most easily in applications that feature spam detec-
tion, language identification and sentiment analysis [23]. In particular,
classification is the assignment of a class for a certain document. The
assigned class can thereby only be chosen from a fixed set of clasess.



20 natural language processing

The easiest way to do text classification is to use a bag-of-words model
[14]. In disregard of grammar and even word order, a document is
parsed by simply counting all occurrences of words in a key-value
object. Consider these sentences in listing 1:

Listing 1: Two exemplarily sentences describing Bob’s and Alice’s feelings
towards theatres and movies.

1 Alice and Bob like to go to the movies.

2 Alice also likes to go to the theatre too. �
The resulting key-value object can be seen in listing 2:

Listing 2: Both sentences from listing 1 as a list of occurences.

1 {

2 "Alice": 2,

3 "and": 1,

4 "Bob": 1,

5 " like ": 2, // stemming: " likes " ==> " like "
6 " to": 3,

7 "go": 2,

8 " the": 2,

9 "movie": 1, // stemming: "movies" ==> "movie"
10 "also": 1,

11 " theatre ": 1,

12 "too": 1

13 } �
In essence, the frequency of words within a document is measured.
Generally, not all occurrences of every word are counted, but only the
ones that match specific criteria. Extraction of attitude can be done
by determining the frequency of certain biased adjectives and nouns.
The resulting key-value object is then compared to a set of classes, to
calculate the class resembling the closest. We learned in the introduc-
tion of this chapter about Microsoft’s Bing Shopping platform. It uses
exactly this procedure to determine a product’s features and ratings.
Clearly, the bag-of-words model is one of the easiest approaches,
whereas more sophisticated approaches, like Naive Bayes, use statis-
tical models [14]. But since the introduction and explanation of these
methods would push the boundaries of this work much to far, we
will not cover them any more detailed.



4
A F F E C T I V E C O M P U T I N G

So far, we discussed context-aware computing and natural language pro-
cessing. As we learned in chapter 2, every information that helps char-
acterize a person in a specific situation is essentially contextual infor-
mation. We also learned in chapter 2, that context-aware computing
combines manual or automatic information acquisition and process-
ing. Eventually, we will learn in this chapter, that affective comput-
ing is actually an implementation of context-aware computing. As
its more generic superordinate, it requires the acquisition of informa-
tion firstly. In our case this is done using techniques from natural
language processing to extract emotions from text. Secondly, it also
features a reactionary component: Emotion expression an equivalent
to context-aware’s information processing.
This chapter, however, strongly focuses on defining the term affective
computing properly, gives insights into what emotions actually are
and introduces multiple methods that can be applied for emotion ex-
traction. It will not cover emotion expression, as this would break the
mold of this work.

4.1 defining the term affective computing

Affective computing is the study of perception and expression of emo-
tions and mood through computers [31]. Like context-aware comput-
ing (see chapter 2.3), affective computing can also be divided into
four categories, according to Picard et al. [31]:

1. A computer is not able to perceive or express emotions;

2. A computer can express emotions, but not perceive such;

3. A computer cannot express, but perceive emotions;

4. A computer can both express and perceive emotions.

Picard et al., amongst others [31, 30], argue that affective computing,
if defined and implemented correctly, may one day enhance human-
computer interaction and also the ability for computers to make deci-
sions. Especially in context-sensitive1 scenarios, affective applications
may recognize the user’s emotions appropriately for the application
to automatically adapt to this change of temper. If however, comput-
ers obtain the ability to act affectively, then Picard et al. [31] argue
that their emotional state should be observable. They enhance this

1 Scenarios where context-aware computing can yield benefits for users.

21



22 affective computing

thought by splitting up affective computing’s field into two major
tasks:

• Emotion recognition: The study of extracting human emotion
through multimodal2, channels; and

• Emotion expression: The study of expressing emotion compu-
tationally to one or multiple human beings.

Imagine an application that reads a patient’s stress and depression
levels and automatically adjusts the brightness of the lights in its
room accordingly. While this certainly is not the most stunning use
case and does in fact not express emotion directly, it provides at least
affective computing’s right to exist in consumer electronics and med-
ical computing. Yet it also shows that affective computing’s integra-
tion into our every day lives, is right at its beginnings. Not only is this
the case as emotions are poorly understood, but also because emotion
recognition must first deliver sufficient results to be used further in
emotion expression [12, 15]. As of today, emotion recognition, also re-
ferred to as human emotion recognition, is executed insufficiently [15]
and considered to be a hard problem [sic]. An influencing factor for
this is that the task is multimodal. Even more problematic is the fact,
that mood classification in text is done equally insufficiently by hu-
mans comparing them to computer algorithms [28]. Mishne et al. [28]
only comment speculatively on the reasons for this and name prob-
lems like: inadequate task briefings and document size, but most im-
portantly the high subjectivity of the task itself. Some researchers [31]
shift the blame for this on emotion theory. They claim that emotion
theory is still far from being complete, so how can affective comput-
ing be. The problems are apparent. For affective computing to prevail,
large and qualified sets of data are required to enable machine learn-
ing algorithms to study sufficiently [15]. In addition, it doesn’t stop
there. As we already mentioned in the previous section 3.2.5, classifi-
cation’s accuracy depends on the issue’s domain. Everyone who has
traveled exceeding the borders of his continent knows that emotion
and mood are culture-specific. This obviously adds not only to the
complexity, but also to the duration of extraction and expression and
therefore increases the cost of creating sufficient labeled data sets for
affective machine learning operations [15]. Troubling to emotion ex-
traction in text are findings of researchers that suggest that only 4%
of words in documents have emotional value [15]. This is further con-
firmed by some works that claim to return insufficient results from
extraction of emotions through text [15, 28]. Still, affective computing
is an important future topic in computer science.
But what exactly do the terms affect or affective actually describe?

2 Communication is carried out over multiple channels of perception (even syn-
chronously in some cases). For instance: Text, audio, video, ...



4.1 defining the term affective computing 23

Scherer et al. [35] answer this question by proposing the topology of
affective states, a model that classifies affect, the psychological state of
a living being, into five distinguishable categories:

• Emotion: Is the evaluation of an event (e.g. fear, joy, angry, ...);

• Mood: Is a ongoing, arbitrary subjective feeling (e.g. gloomy, ...);

• Interpersonal stances: Are emotional stances towards another
person in a specific interaction (e.g. friendly, supportive, warm,
cold, ...);

• Attitudes: Are enduring dispositions towards objects and per-
sons (e.g. loving, liking, hating, desiring, ...); and

• Personality traits: Are stable, sometimes even inherited, behav-
ioral features (e.g. reckless, hostile, anxious, ...).

Especially in the context of text extraction this distinction is important
because the extraction of an enduring disposition towards objects and per-
sons (attitude) from text or speech is called sentiment analysis and lives
in its very own field. Admittedly, most methods and techniques for
extraction intersect with those used in emotion extraction [37, 12]. Es-
pecially, when using text as a major resource, both sentiment analysis
and emotion recognition rely heavily on natural language processing.
Still, the goal of affective computing is not only to recognize emotion,
but to express it as well. As we do not want to miss out on meth-
ods that could possibly help us reach our goal, we will exemplarily
introduce a concept taken from sentiment analysis that can be trans-
ferred to emotion recognition. It is initiated by Pang et al. [30]. He
suggests that attitudes can be segmented into levels. His basic thesis,
however, is that every text document, independent of its size contains
a quantity of sentiments. This group of dispositions towards objects
and persons are called local sentiments and form in total a global senti-
ment of the document. With this definition at hand, it becomes clear
that therefore attitude can vary depending on position, document
size and their entities they relate to. Take for instance a movie review.
Although the review might overall contain clearly negative sentiment
towards the film, individual performance of actors for example can
still be rated positively. Because emotions are much more short-lived
than attitudes, evaluations of events tend to overlay each other. There-
fore, the tracking of position and time frames of emotional outbursts
can be beneficial in the task of emotion recognition and determina-
tion. Also, recording emotion magnitude can be favorable, as we will
see later on. One case where an ordered and weighted set of emo-
tion records can be particularly helpful, is when trying to analyze so
called meta-emotions. We call them meta-emotions because they are
composed of multiple, more basic emotions and the context (in this
case the meta-information) they are embedded in [31].



24 affective computing

However, before we can elaborate further on emotion processing from
text, we first need to introduce the term emotion properly.

4.2 defining the term emotion

Emotions weaken our ability to make rational decisions. It is not a co-
incidence that this saying is commonly believed, especially by people
that have to make tough decisions everyday. That is, as emotions are
a guiding force in our perception and attention [31]. This is given the
fact that the cortex3 and the limbic system4 are connected through
a reciprocal relationship, whereas the limbic system can be viewed
as a filter or preprocessor for incoming perceptual information. The
connection between both systems is so strong, researchers argue that
an existence without experiencing emotions is not possible, because
emotions are literally pervasive [31]. In addition, they claim that in-
side the brain, the process of thinking and feeling is the same. They
go even further arguing, that the quantity of emotions involved in
making decisions can either damage or evolve the process, but with
certainty alter it. This implies that a thought or decision can never
be made without disregard of feelings, ergo a rational decision can
never be truly rational.
Even more striking is the fact that emotions also influence our outer
appearance, namely physical state. This can easily be observed in
real life. A person’s physical appearance and behavior tends to differ
greatly when they received compliments a moment ago compared to
when they have just been insulted. Conversely, tension can of course
also come from the inside. Sweaty hands, crying and nervousness
in the voice, are just a few examples of the fact that there is a tight
coupling between physical state and affective state and that every
emotion has a unique somatic response pattern [31]. Of course, this
knowledge is interesting as it would allow the unambiguous and ac-
curate extraction of emotions through, say physical sensors [31]. Un-
fortunately, Picard et al. [31] claim that not every affective state can
be observed through measurable functions. Instead they argue emo-
tions can on the one hand be consciously experienced. Those are called
emotional experiences and can not be observed from another person for
example. And that on the other hand emotions can also be experi-
enced in revelation, meaning that they can be observed from another
person for example. These kind of emotions are called emotional ex-
pressions [31].
When it comes to classification of emotions, researchers’ theories dis-
tribute quite differently. Basically it can be differentiated between 2 to
20 different emotions, where the most common ones are anger, fear,
sadness, happiness and surprise [12]. We mentioned earlier, that from

3 The cortex is the most outer layer of our brain.
4 The limbic system is the seat of memory, attention and emotion.



4.3 interaction of emotion and context 25

these so called basic emotions more advanced versions of emotions can
be composed. These meta-emotions are not only created in the intersec-
tion of multiple emotions but also in the variation of magnitude [25].
Examples of both can be seen in:

• Frustration: a low magnitude anger; or

• Horror: a high magnitude fear; or

• Relief: essentially fear followed by happiness.

Implementing a text processing emotion algorithm, this knowledge
can be used beneficially, as it enables us to extract not only basic
emotions but also meta-emotions. The most interesting correlation
of data however does not result in combining emotional information
reflexively, but in combination with contextual information.

4.3 interaction of emotion and context

We learned that emotions are a guiding force in our perception and
attention and that this results in blending the processes of thinking
and feeling. In addition, we learned (in chapter 2) that a person and
its state can - at least theoretically - completely described by recording
all its contextual information. Figuratively speaking, a person’s active
or passive and physical or non-physical actions always influence their
chronological, contextual state. While states seem to change in form
and content, their individual history remains untouched and can only
be adjusted by signing over, not by changing specific information in
history. Take a burn victim for example. Under the assumption that
it will never forget the situation that led to the circumstances as well
as the resulting consequences, this contextual and historical informa-
tion can not be changed. Instinct and strongly negative connotations
to fire as well as eventual scars remain and can only be overcome
making more positive experiences with fire or even undergoing psy-
chological or hypnotical therapy. The conclusion we draw from this is
that certain states of context result in certain emotions and that in re-
turn certain emotions cause context-state changing actions. Therefore
we propose, that under the assumption that emotions can accurately
extracted and a sufficient amount of contextual data is recorded for
a specific person, computational prediction of a person’s actions but
also its emotions is possible.
Later in this work we will introduce two tools for exactly this use case.
One for recording person-based, contextual information, and another
one for extracting emotion from text. For the moment however, we
first need to introduce methods and techniques for extracting emo-
tion textually.



26 affective computing

4.4 emotion extraction from text

Social interaction is a key part of human life. As we mentioned earlier,
decision-making requires a critical mass of emotion and thereby so-
cial value for it to be successful. Hence, Liu et al. [25] suggest that
successful social interaction is actually successful affective interac-
tion. When studying human-to-human and human-to-computer inter-
actions, researchers [29] found out that computer users can interact
most naturally when being social and affectively meaningful. This
implies that increasing the emotional value of an human-computer
interface, increases the value of the interface itself [25]. Addition-
ally, gathering useful information through these interfaces may im-
prove cognitive and emotion theory and improve our understanding
of human-health and well-being [31]. But, in pursuit of those goals
we need to start at the very beginnings, namely emotion recognition.
Digitalization of life altered our social and professional conditions im-
mensely. We chat, write emails, take notes on our phone, tablets and
laptops and even program collaboratively through the internet. To ex-
press our thoughts, ideas, plans but most importantly emotions how-
ever, we still rely on one major concept: text. While technology for ex-
tracting emotions through physical means might already be possible,
practically doing so is another story. Text input in contrast, is ubiqui-
tous in our lives. Why waste energy and resources on new sources,
when perhaps the most intimate one is already available. This is the
reason we devote this work to the extraction of emotion from text.

4.4.1 Methods for Extracting Emotion from Text

To begin with, we introduce four commonly used methods to solve
the problem. Whilst every method involves a basic preprocessing
with some of the previously introduced natural language processing
techniques, all take very different approaches at their core. Yet, there
is an considerable number of hand-crafted models and approaches,
mostly taken by researchers, for this task that we will most likely not
introduce.

4.4.1.1 Keyword spotting

Keyword spotting is the easiest and most approachable method. Similar
to the bag-of-words-approach used in sentiment analysis, keyword
spotting is based to counting the frequency of feature-containing5

words in a document. While it is certainly the most economic method6,
it has an unsurprisingly low accuracy, especially when used for doc-
uments that contain large amounts of negations and sarcasm [25]. Be-

5 feature, because keyword spotting can be applied in many areas, not only affective
computing or sentiment analysis.

6 It neither takes a lot of time, nor a lot of computation time.



4.4 emotion extraction from text 27

cause it relies mostly on surface features, many sentences containing
strong sentiments or emotions are not labeled correctly. A section in
a perfumes guide (Luca Turin and Tania Sanchez, Perfumes: The Guide,
Viking 2008.) taken from Pang et al. [30] illustrates this problem beau-
tifully: "If you are reading this because it is your darling fragrance, please
wear it at home exclusively, and tape the windows shut". No obviously
negative words appear, still the sentence is loaded with emotion and
attitude, strongly advising the reader never to use this perfume ever.
While such sentences tend to be used rather rarely in every day life,
their existence is not refutable, which ultimately makes keyword spot-
ting an insufficient approach for extracting emotions from text [25].

4.4.1.2 Lexical affinity

Lexical affinity, when compared to keyword spotting, is a slightly more
sophisticated method. Basically, lexical affinity still uses keyword spot-
ting as a basic approach for extraction. What sets it apart is that
words get assigned a probabilistic affinity. For example the word "acci-
dent"’s affinity probably tends to consist of the emotions "sadness" and
"anger". Usually, this knowledge is extracted from linguistic corpora
and either assigned by hand or with the use of special computer algo-
rithms [25, 22]. However, similar to keyword spotting, this approach
also operates on word-level which leads to decreased accuracy when
processing sentences containing negation. Examples of this are: "I’ve
successfully avoided a car accident" and "I met my girl friend by accident".
While the human reader will spot the affinity to luck and joy with ease,
an algorithm might rather assign the sentences the emotions sadness
and anger, as accident is in both cases the most emotion-rich word.

4.4.1.3 Statistical Natural Language Processing

An even slightly more sophisticated approach for emotion extraction
from text can be implemented using statistical natural language process-
ing. Other than both previously mentioned methods, statistical NLP
does not necessarily operate on the word-level and is therefore not
as surface-reliant as keyword spotting and lexical affinity. Conversely,
the units of text that are used for training can be arbitrary in size, but
need to be plenty and labeled accordingly [25]. Only then statistical
NLP can achieve competitive accuracy. The benefits of this approach
are that document features like the valence of keywords as well as
punctuation and word frequencies can be taken into account. Still,
keywords need to be obvious for the classifier to tag them correctly.

4.4.1.4 Usage of Semantic Networks

The so far introduced methods for extraction are fairly common as
they are used quite a lot in closely related areas as for example in sen-
timent analysis. Still, words can have tremendous emotional power,



28 affective computing

especially embedded in a personal or historical context ("Your sister
died in a car accident"). We also learned, that sentences do not necessar-
ily need to contain obvious negative words to be negative themselves.
But then how do we recognize these language constructs properly?
One way of doing this is to use semantic networks and the resulting
real-world knowledge about the inherent affective nature of words.
Liu et al. [25] use this technique to analyze text on sentence level and
later apply real-world knowledge to it. They use a network called
OpenMind7 and claim that their approach is superior to keyword spot-
ting and lexical affinity, as it does not rely on surface features and
cannot be tricked by structural language features as negation. Further
Lui et al. [25] argue that statistical models are effective but require to
much input to be used for casual human-to-human interaction. Ac-
cording to them, using the semantic networks approach is superior,
especially when applied to short documents.

4.4.2 Smoothing outputs

At this point, we filtered our text inputs, removed all stop words and
choose a method for extracting emotions. Optimally, our application
now returns a word- or sentence-based emotion-expressing vector.
Still, these results can processed further to increase they statistical
accuracy, as Liu et al. [25] claim. They propose so called smooth-
ing methods to do so. The most easiest way to do smoothing is in-
terpolation. Given three sentences, the middle one being neutral, the
two encompassing being angry, the middle one can then be interpo-
lated into a slightly less angry sentence. A related method is decay.
It can be implemented by transferring affective state from its source
sentences to subsequent sentences. Leveraging the differentiation of
global and local affective states (we introduced this concept in sec-
tion 4) in documents, another smoothing model can be introduced,
called global mood. Paragraphs for example can be classified by using
smaller chunks of local affective state. To achieve an even better result
interpolation and decay can be used. Finally, there is the concept of
meta-emotions. As we learned in this chapter, emotions relate reflex-
ively to themselves in a compositional nature. We quoted that there
are between 2 and 20 emotions of which most of them are composed
of other emotions. An example we introduced was the emotion relief,
a state of horror followed by joy. Under the assumption that we can
extract and detect basic emotions through the means of a semantic
network, it should therefore also be possible to smooth the resulting
vector with knowledge of an emotion’s compositional nature.

7 As of the 8.4.15, all websites related to the OpenMind innitiative are down.



5
R E Q U I R E M E N T S

So far, we introduced pervasive computing and context, natural language
processing and affective computing. Because the conceptual introduc-
tions to these have been sufficiently discussed and elaborated on, we
can now devote our attention to describing requirements for an emo-
tion recognizing and context-aware application.

The system in question needs to solve two basic use cases:

1. It should be able to extract emotions from text

2. It should allow for recording arbitrary contextual data

Since these use cases involve rather different tasks, we would prefer to
implement them in separate components. As we will find out though,
not all requirements can be satisfied in strictly separating concerns in
the above described way. Therefore a third use case arises:

3. It should allow the communication of the two components de-
scribed in 1. and 2.

To make referencing easier, we give each of the mentioned use cases
a component name:

1. Emotext

2. Cofra

3. EtMiddleware

The following sections are separated requirements listings for all three
components. All three sections are written independently from their
future implementation and only specify What must be integrated, but
not How.

5.1 requirements for emotext

5.1.1 General Requirements

1. Emotext is a module-like component, that can easily be inte-
grated into other applications as a third-party dependency.

2. Emotext features a generic and easy-to-use interface.

a) Its functionality is loosely coupled and allows for a granu-
lar usage of specific methods.

29



30 requirements

b) Its functionality is well documented.

c) Its methods and variables are named predictably.

3. Parameters, known prior to runtime, can be configured without
deep technical knowledge, as they are not hardcoded into the
actual source code.

5.1.2 Requirements for Natural Language Processing

1. Emotext allows adjustment for other languages, though process-
ing English documents is sufficient.

2. Emotext features functionality for segmentation as described in
section 3.2.1.

3. Emotext features functionality for word normalization (also re-
ferred to as stemming) as described in section 3.2.2.

4. If desired, Emotext is able to remove stop words as described in
3.2.4.

5. Any natural language processing functionality implemented by
Emotext is connectable.

5.1.3 Requirements for Emotion Extraction

1. Emotext implements functionality for extracting emotions from
texts of any size as described in section 4.4.

2. Emotext is able to calculate an unknown word’s emotional mean-
ing on its own, without manual labeling.

3. Parameters for the process of extraction are adjustable without
deep technical knowledge.

5.2 requirements for etmiddleware

1. EtMiddleware features functionality for caching Emotext’s text
processing results persistently and dependent on all non-deterministic
parameters introduced in section 5.1.3 1.a).

2. EtMiddleware features functionality for smoothing text process-
ing results as described in section 4.4.2.

a) At least one of the described methods in section 5.1.3 for
smoothing results is implemented.

b) EtMiddleware provides an easy way for developers to en-
hance functionality, by providing straightforward ways for
integration and extensibility.



5.3 requirements for cofra 31

c) Smoothing functionality is implemented in a way that can
be reused (or easily adjusted) on a word, sentence- and
document basis.

3. EtMiddleware provides an interface for clustering messages based
on their submission time.

a) Any potential configurable parameters must be adjustable
without deep technical knowledge.

5.3 requirements for cofra

Figure 2: A simplified representation of Cofra’s desired graph-like data
structure. Time-based versioning was left out for simplification.

1. Cofra allows for storing contextual data as described in section
2.2 and figure 2 persistently.

a) Its data structure allows for saving data in a generic-as-
possible way by mapping real-world entities to multi-purpose
key-value-like objects.

2. Cofra provides an easy-to-use RESTful interface for manipulat-
ing and populating its data.

a) Contextual data is connected to a central entity, e.g. a per-
son.



32 requirements

b) Contextual data is allowed to be missing, removed or ma-
nipulated without removing any historical data or chang-
ing the data’s inherent structure.

3. All data is versioned and immutable.

a) If the user requires to manipulate existing data, a copy is
created, mutated and saved accordingly (marked as a new
version).

b) Any change (manipulation, creation, deletion) is a creation
of an entity’s new state.

c) All entities’ states are recoverable and discoverable.

4. Cofra’s data is easily queryable.

a) Existing data’s historical states are discoverable.

b) An entity’s different states are comparable through an in-
terface.

5. Any communication between a user and Cofra is encrypted us-
ing latest standards.

6. The users’ data is dereferenced from their real-world identities
(pseudonymization).



6
D E S I G N

In the last chapter, we discussed the requirements for Cofra, Emotext
and EtMiddleware. In short, we discussed all required implementation-
independent requirements by articulating what functionality must be
provided but not how it should be provided. We choose this proce-
dure because it creates a more generic wording for what we want to
achieve and it enables us to focus on the how afterwards, in the design
part. In the following sections, we are going to discuss decisions that
have been made during the design and implementation phase of the
project and the reasons behind them.

6.1 the choice of tools

When it comes to the choice of tools, programming can be compared
to a craft. We have to choose a software development method, an en-
vironment, an IDE, a programming language and modules that we
would like to use to ease the challenges that we face. In many in-
stances, however, this choice is made passively and without technical
reasoning. Generally speaking, people rather chose the known, than
the unknown. But especially when designing and implementing soft-
ware this can slow down the creation process and lead to difficulties
in later stages.
Knowing this pitfall, we made our design decisions based on profes-
sional arguments, which we introduce in the following sections.
In contrast to the sections of the last chapter, in this one we will not
always differentiate between Emotext, Cofra and EtMiddleware. We
will however tag individual sections if they reference design decisions
specifically made for either one. As for the next section, we will talk
about emotion extraction techniques used in Emotext.

6.1.1 Emotion Extraction Techniques

Earlier in this work (see chapter 4.4.1) we discussed commonly used
techniques in textual emotion extraction. In detail, we mentioned four
different ones:

• Keyword spotting: Counting all occurrences of feature-containing
words

• Lexical affinity: Assigning words a probabilistic affinity

• Statistical Natural Language Processing: Using the valence of
keywords as well as punctuation and word frequencies

33



34 design

• Semantic Networks: Defining the emotional value of a word
by finding their relation to emotions through real-world knowl-
edge

Figure 3: A simplified representation of conceptnet5’s internal data struc-
ture per word per link. Every word can have any number of links
going in and out.

In our requirements specification (see section 5.1.3) we did intention-
ally not discuss a choice in technique, as this choice is not only a
conceptual but also a technical one.
What we did mention, however, was the required functionality we
would like to achieve. As a reminder, we want Emotext to be able
to extract emotional features from words by looking at their connec-
tions to emotion-related words. In essence, this means that statistical
natural language processing as well as keyword spotting are insuffi-
cient for this task. Further, we specified that Emotext needs to be able
to extract information from a document of any size. Though Lexical
affinity could be used in this context, finding a sufficient lexicon for
this case turned out to be difficult. Instead, we found an advanced
semantic network, supported by MIT1, called conceptnet5. Essentially,
conceptnet5 is a database controller written in Python that provides
a RESTful web interface for looking up language specific concepts be-
hind words. Internally, every word has a list of closely related words
connected to it. As seen in figure 3, every link between two words is
named, giving the pair a more advanced meaning. In the mentioned
figure 3, the concept of driving a car is expressed. This approach cre-
ates a graph structure that can, though links are directed, be traversed
in any direction, circularly, from any word.
In addition, conceptnet5 is provided free of charge, is open source
software hosted on Github, has sufficient documentation and promises
to grow in scope since new data is populated on regular basis by vari-
ous contributors. Eventually, we chose to use conceptnet5 in Emotext,
hence a semantic network for extracting emotions from text.
Furthermore, Conceptnet5 is implemented using the programming
language Python. Which leads us to the choice of programming lan-

1 Massachusetts Institute of Technology



6.1 the choice of tools 35

guage, we discuss in the next section. It addresses all three compo-
nents.

6.1.2 The Programming Language

In the last chapter, we briefly described two of our main use cases,
namely the extraction of emotions from text and the recording of
arbitrary contextual data. In chapter 4 we learned that in doing so,
we first need to process the text using methods of natural language
processing. We have also learned that there are plenty of techniques
for emotion extraction from text (see section 4.4.1) but decided to use
conceptnet5, a semantic network, to do so.
The decision, made in the design process, came down to choosing a
language that fulfilled the following requirements:

• Quality of string implementation: As it is an important task in
natural language processing

• Availability of NLP2 libraries: Should provide a basic set of
tools for the most commonly used techniques we described in
section 3.2

• Enforcement of modularization practises: Should encourage
the programmer to structure functionality into separate mod-
ules

• Ease of usage: Should neither have syntactical nor semantical
overhead in expression of commands. Instead it should provide
the programmer with a high number of easy-to-use and well-
documented libraries.

Though unfamiliar with Python at that time, we chose it as it com-
plies with all of the enumerated requirements. It features a wealth of
integrated libraries (including a sufficient string implementation, but
also a lot of database drivers), has a comprehensive natural language
processing library, called Natural Language Toolkit [6], and promotes
a modular and agile approach to software development. In addition,
it provides a direct way to interact with conceptnet5 and can be run
on any major operating system.
Having chosen our programming language we can now take a step
further in discussing Cofra’s database and data structure.

6.1.3 The Database

Similarly to programming languages, database systems come in var-
ious forms and functions. While most claim to be general-purpose,

2 Natural Language Processing



36 design

they are not. In the previous chapter we described Cofra’s database
requirements:

• Timebased versioning: A data structure’s contents need to be
versionable over time

• Adjustability and extensibility: Data structures must be easily
adjustable and new fields should be added effortless

• Immutable data: Committed data should not be directly muta-
ble via an update for example. Instead, a copy should be created
and mutated (versioning)

• Interconnected data structures: The database should allow for
the creation of any desired data structure. Particularly tree and
graph structures as well as reflexive data structures should be
supported

• Key-value storage capabilities: Key-value storage functionality
would be beneficial

• Query interface: The database should provide an interface that
allows for easy accessibility to specific data and should allow
users to correlate data right out of the box

Despite our researching efforts, we did not find a database software
that sufficiently satisfied all our requirements simultaneously. When
it comes to timebased versioning, immutable data and key-value storage ca-
pabilities, a technique called event-sourcing sounds promising though.
In essence, event-sourcing is the recording of all changes to an appli-
cation’s state as a sequence of events. Instead of updating our per-
sistent data by sending events to various controllers, we save every
event itself persistently. By reiterating over all changes, we can then
describe the application’s state at any given time and also find the rea-
sons for state transitions [27]. Though this technique sounds promis-
ing and appropriate for our use case, there are not many well doc-
umented, supported and advanced databases that would allow the
implementation of Cofra without compromises. Simply implement-
ing an event-sourcing database ourselves, was not possible neither,
as it would have required a great deal of effort, especially making
the process transactional. Eventually, we chose the relational database
system PostgreSQL, as it offers a strong query language, satisfies all
structural requirements, offers key-value storage capabilities and al-
lows us to create versioned data structures that are – at least seem-
ingly – immutable as we will see in chapter 7. Prior to this however,
we introduce Cofra’s relational data structure and object-relational
mapping.



6.2 data structure and object-relational mapping 37

6.2 data structure and object-relational mapping

Now that we selected our database and programming language, the
next essential step is to create a data structure that fits the earlier
mentioned requirements (see chapter 5.3). As a reminder, this task
was particularly delicate since the data structure should allow the
recording of arbitrary contextual data persistently. In short, the re-
quirements are as follows:

• Recorded data is always connected to a central entity.

• All recorded data be represented in a graph like-structure.

• The data structure should support time-based versioning and
promote immutability.

• Entities may be interconnected through contextual data (this
implies that entities can share contextual data amongst them-
selves).

• Contextual data can be missing or changed, but not changed
structurally.

With these requirements at hand, we can now introduce Cofra’s data
structure and its object-relational mapping.

6.2.1 Data Structure

Cofra’s persistent data structure consists of two tables: A persons and
contexts table. As seen in figure 4, a person has a tuple of integers as
its primary key, compound from id and timestamp. A person can also
have a string name. The attribute modified is not modifiable as it is set
automatically by a SQL-trigger on every update. A person can have
an arbitrary number of contexts related to it. In contrast, a context

Figure 4: Cofra’s data structure in min-max notation.



38 design

can (at least for now) either have personid and persontimestamp or
only contextid defined. This means that it can either have a person
as its parent or another context. For a context to relate reflexively3, it
has an integer id and a foreign key contextid, that can be used to
refer to another row in the table. Furthermore, it has the strings key

and value for content storage, a non-configurable attribute modified

and a special attribute called decay.
Since contextual states of persons are almost never steady, there must
be a way for contexts to be deleted after a certain timespan. By setting
the decay attribute a context can be deleted on a specific date. Cofra
detects exceeded decay dates automatically, creates a new version and
deletes the decayed context from the new version.
Now that we discussed Cofra’s data structure, we can introduce the
mapping between database relations and Python objects.

6.2.2 Object-relational Mapping

Mapping this kind of relational structure is fairly straightforward. As
seen in figure 5, every entity is of the type GraphNode. A GraphNode

Figure 5: Cofra’s object-relational mapping explained in a class diagramm.
Person and Context are simple GraphNodes with individual prop-
erties that do not implement any methods themselves.

can have an arbitrary number of children and implements methods
for manipulating those. Exemplarily, multiple children can be added
using add_children and individuals can be removed using rmv_child.
Children’s children can be removed using rmv_graph_child. Chil-

3 Meaning that it links to another context in his own table.



6.3 the architecture 39

dren with a specific key-value combination can be looked up us-
ing search_graph. Additionally, children can be manipulated in-place
with an anonymous function passed to traverse_graph.
The actual entities Person and Context implement the same attributes,
their relational pendants also do and inherit all functionality and at-
tributes (in this case only the list attribute children) from their parent
GraphNode.
Now that we made all necessary decisions concerning the systems
setup, we briefly explain its architecture as whole again.

6.3 the architecture

The system we designed and implemented in this work basically con-
sists of three major components (also seen in figure 6):

• Cofra: A RESTful web interface that allows users to record con-
textual data in a versioned, event-sourced fashion.

• Emotext: A Python module that extracts emotions from arbi-
trary text.

• EtMiddleware: Enables communication between Cofra and Emo-
text.

Figure 6: The system represented as a simplified UML class diagramm.

Each of these three components connect to various third party depen-
dencies. They are4:

• PostgreSQL: Is an advanced object-relational database manage-
ment system.

4 Descriptions taken from the libraries’ Github pages.



40 design

• flask: Is a small web framework for getting started quickly.

• shelve: Is an embedded5 database and comes with Python’s
standard library.

• nltk: Or Natural Language Toolkit, is a suite of Python modules
for research and development in natural language processing.

• conceptnet5: Is a word-based common-knowledge database writ-
ten in Python.

Now that we designed all necessary parts of our system, we can focus
our attention on the actual implementation, which we will cover in
the next chapter. In a nutshell, we will discuss the core functionality
of all three components.

5 A database that is tightly integrated into the application.



7
I M P L E M E N TAT I O N

In this chapter we will introduce implementation-specific details for
all of our three major components (Cofra, Emotext and EtMiddle-
ware). Since we completed the last chapter by discussing the systems
architecture, we will start off with exposing it further. As can be seen

Figure 7: The system devided into three major components including a sim-
plified version of their classes and modules.

in figure 7, we enriched our previously introduced graphic (see figure
6) quite a bit. In particular, we added all modules and classes to the
components, to give a more advanced view of the system. To start
with, we will take a closer look on Emotext.

7.1 emotext

Emotext is a module written in Python that uses conceptnet5 and Nat-
ural Language Toolkit (nltk) to extract emotions from text. Internally,
the module itself hosts another batch of modules. The file structure
can be seen in listing 3:

41



42 implementation

Listing 3: The internal file structure of Emotext’s source code.

1 emotext

2 | apis

3 | concept_net_client.py

4 | text.py

5 | models

6 | models.py

7 | utils

8 | utils.py

9 | requirements.txt

10 | settings.py �
Every .py file hosts its own Python module by default. In detail,
concept_net_client.py communicates with conceptnet5 via HTTP
using a method called lookup. text.py implements the main func-
tionality of the module, namely text processing and emotion extrac-
tion. Though, the actual graph search for conceptnet5, that uses the
conceptnet5-client lookup functionality, is implemented in models.py

The module utils.py only features one method for processing a
string, hence does not require any closer discussion. Instead we will
take a closer look at text.py.

7.1.1 Text Processing

Inside of text.py there is a function called text_processing (see list-
ing 4). This function is one of the core functionalities of Emotext, as
it bundles most nltk’s features. For execution, a string of text, as well
as three booleans must be passed. The booleans determine how the
string should be processed. Particularly, their functions are:

• remove_punctuation: Determines wether or not punctuation
shall be completely removed from text. We use a simple to-
kenizer that uses regular expressions. Filtering for \w{2,} re-
moves all words smaller than double digits that are not in the
range of the alphabet. For instance, punctuation characters, num-
bers and small words.

• stemming: In chapter 3.2, we already talked about stemming.
As a reminder, stemming or word normalization is the process
of feeding back a morphed word to its origin ("libraries" → "li-
brary"). Popular stemmers use syntactical methods1 instead of
semanticals, which is why it is important to provide the option
to turn them off completely, as they will produce rather unsat-
isfactory results in some cases.

1 This means that the stemmer is using a language-specific rule to process a word
instead of using a language- and word-specific rule. For instance: "smiles" → "smile"
but "foxes"→ "foxe" (wrong) instead of "fox" (right).



7.1 emotext 43

• remove_stopwords: Stop words are words that do not contain
any valuable information for the text processing algorithm (see
section 3.2.4). In our case, we use nltk’s standard corpus of
English stop words for removal. Examples of such words are:
"I", "me", "my", "myself", "we".

Though already enabling plenty of functionality, not everything the
function does can be connectible via a boolean. For example, sen-
tences will inevitably be tokenized using a punctuation tokenizer as
can be seen in the code snippet 4 (lines 3-5).

Listing 4: A simplified version of the text_processing function inside of
api.text.py.

1 def text_processing(text, remove_punctuation=True, stemming=True,

remove_stopwords=True):

2

3 # Tokenize from sentences to words

4 sentence_tokenizer = PunktSentenceTokenizer(PunktParameters()

)

5 sentences = sentence_tokenizer.tokenize(text)

6

7 # Remove all non alphabetic words smaller than 2 digits

8 if remove_punctuation:

9 punct_rm_tokenizer = RegexpTokenizer(r ’\w{2 , } ’)
10 sentences = [punct_rm_tokenizer.tokenize(s) for s in

sentences]

11

12 # Remove all stop words, based on nltk’s corpus

13 if remove_stopwords:

14 sentences = [[w for w in sentence if not w in stopwords.

words(language)] for sentence in sentences]

15

16 # Stem words, or at least make them lower case

17 if stemming:

18 stemmer = SnowballStemmer(language)

19 sentences = [[stemmer.stem(w) for w in sentence] for

sentence in sentences]

20 else:

21 sentences = [[w.lower() for w in sentence] for sentence

in sentences]

22

23 return sentences �
Once text_processing was fully executed, our original sentences
passed in will return as an array of potential feature-containing words
that we can now submit to the emotion extraction algorithm.



44 implementation

7.1.2 Emotion Extraction

Also implemented in text.py is a method called build_graph. It is es-
sentially the core of Emotext’s emotion processing algorithm. It takes
four arguments:

• token_queue: A list of words we want to extract emotions from.
These words must be passed in as a list of Node objects.

• used_words: A list of words we already traversed in the process.
This is needed because build_graph’s search algorithm operates
breadth-first on a graph. Therefore we need to avoid cycles and
previously processed words of same depth.

• emo_vector: A boilerplate Python dictionary which we will
use to save the found emotions for a specific word. It serves as
a future reference to our firstly passed in word, as build_graph

is implemented recursively.

• depth: The levels of children build_graph traversed.

Figure 8: A simplified version of conceptnet5’s graph structure based on the
word "war". In our case, links are bidirectional and weighted by
cohesiveness.

To begin, we cast a string word to a Node object, put it in a list and
submit it as token_queue. We also pass in an empty list, since no
words have been traversed yet (used_words), a boilerplate emotion-
vector as well as the depth 0.
The idea is to traverse conceptnet5’s graph breadth-first starting at a



7.1 emotext 45

particular word and find all shortest paths of its surrounding emo-
tions. Emotions are found by looking up the word "emotions" on con-
ceptnet5 and by filtering its edges by the link attribute "IsA". In fig-
ure 8, the surrounding emotions of "war" are "grief ", "sorrow", "love",
"anger", "happiness" and "joy". To accelerate lookup times, we prepro-
cessed all "isA" relationships of "emotions" and hardcoded them in
config.cfg, hence they can easily be adjusted by the user. Given the
fact that conceptnet5 almost contains 50 gigabytes of data, traversing
is a computationally intensive task that we need to limit somehow. Es-
sentially, with enough time or enormous computing-power any con-
nection between two words could be made. However, we only want
closely related emotions. Therefore, Emotext provides three ways of
limiting a word’s lookups:

• MAX_DEPTH: Is the maximum traversal distance build_graph is
allowed to go.

• MIN_WEIGHT: As seen in figure 8, links between nodes are weighted.
MIN_WEIGHT is the minimum weight build_graph is allowed to
look upon.

• REQ_LIMIT: Communication between Emotext and conceptnet5
is done via HTTP. REQ_LIMIT limits the number of edges that
are returned upon a lookup. Without an HTTP request limit,
conceptnet5 usually sends up to 50 related nodes. As this slows
down both conceptnet5’s lookup times as well as transfer times
to Emotext, limiting this parameter to a small number can im-
prove Emotext’s per-word processing time greatly.

Once all lookups were successful and build_graph’s limiting condi-
tions are satisfied, we take every path that was found in the process,
traverse it back and calculate a score for each emotion and path. The
presented score formula in figure 7.1.2 shows that we favor short dis-
tances instead of long ones, and high numeral links instead of low
ones.

Sp(l) =
∑l

i=1

wi

i · l2

In this formula, Sp(l) is the score a single path achieves for l, the
length of the path p. wi is the weight of a specific link in the path
at index i. By dividing the link’s weight through the index i, multi-
plied by the path’s squared length l, each term becomes quadratically
smaller. The evaluation of single weights wi, however, follows the har-
monic series.
If we apply this formula to our previously introduced example in fig-
ure 8, the score of the path between "war" and "sorrow" (specifically:
war → dead_person → funeral → sorrow) Sp(3) would look like
this:



46 implementation

Sp(3) =
3

1 · 32
+

2

2 · 32
+

1

3 · 32
=

13

27
≈ 0.481

In comparison, the score of the longer path between "war" and "joy"
Sp(5) produces:

Sp(5) =
3

1 · 52
+

2

2 · 52
+

5

3 · 52
+

4

4 · 52
+

4

5 · 52
=

112

375
≈ 0.299

Yet, there is another problem we’re facing, which are the multiple
occurrences of different paths to the same emotions. As can also be
seen in figure 8, "sorrow" can either be reached by traversing:

war→ weapon→ hurt_someone→ sorrow

or

war→ dead_person→ funeral→ sorrow

While we could now easily figure out which path is the strongest, we
do not want to chose between them, excluding all of them but one.
Instead, we would rather - since this is a frequent occurrence - like
to add these connections to our score calculation as a word that has
many different paths to a specific emotion is likely to be more closely
related to it than a word that does not. To do this, we gather the scores
for each emotion in a dictionary. If multiple paths for an emotion are
found, we simply add them up. For our example in figure 8, the re-
sulting dictionary looks like listing 5.

Listing 5: Calculated absolute scores for the example given in figure 8.

1 {

2 " joy": 0.299,

3 "sorrow": 1.055, // 0.481 + 0.574

4 " grief ": 0.481,

5 " love": 0.437,

6 "anger": 0.611,

7 "happiness": 0.518,

8 } �
Once we’re done with this, we calculate the percentage of each emo-
tion in the dictionary. This is achieved by dividing all values of the
dictionary through the sum of all values (which is 3.351).
In listing 6, this method has been applied.



7.2 cofra 47

Listing 6: Related emotions for the word "war", described in percentages.

1 {

2 " joy": 0.08,

3 "sorrow": 0.31,

4 " grief ": 0.14,

5 " love": 0.13,

6 "anger": 0.18,

7 "happiness": 0.15

8 } �
Subsequently, this dictionary is returned as an HTTP response to the
client, and Emotext’s task is done.
Now that we showed the operating principles behind Emotext, we
can devote our attention to Cofra’s RESTful web interface and EtMid-
dleware’s additional functionality.

7.2 cofra

In comparison to Emotext, Cofra’s architecture is slightly more ad-
vanced. It integrates two third-party modules (flask and PostgreSQL),
which are respectively integrated in WSGI and SQLController (both
of which can be seen in figure 9). WSGI implements a RESTful web
interface for interacting with Cofra, while SQLController is a Python
class for handling database queries. GraphNode as well as Person and
Context compound a simple model structure that mimics (as we al-
ready saw in section 6.1.3) the database’s tables. In this chapter, we
introduce Cofra’s RESTful interface and how it can be used to manip-
ulate and populate data.

Figure 9: A striped version of the overall system’s architecture, only show-
ing Cofra’s relevant components.



48 implementation

7.2.1 The RESTful Web Interface

In section 6.2, we already introduced Cofra’s data structure and object-
relational mapping. For reminder, we do not want to update our data
by changing already persistently saved bytes on our database. Instead
we want, if an update is inevitable, to add our newly discovered data
to the latest version’s copy and save it afterwards. To keep it sim-
ple, we decided that an entity and its context can only be enhanced
through the RESTful web interface one object at a time.
Exemplarily, for creating a new person we send an HTTP request like
the one seen in listing 7.

Listing 7: A POST request for creating a new person.

1 POST /persons HTTP/1.1

2 Host: http://localhost:3000

3 Content-Type: application/json

4

5 { "name": "Bob" }

6

7

8 HTTP/1.1 201 Created

9

10 {

11 "name": "Bob",
12 " id": 0,

13 "timestamp": 0,

14 "modified": 2015-01-13T15:32:43.450686Z,

15 "children": []

16 } �
The server will return the request after creating a new row. As can be
seen, the returned object not only features the name of the person, but
also its last modified date, an id and a timestamp. Either by request-
ing the resource GET /persons or GET
/persons/<person_id>/versions we can see the newly created per-
son’s latest states.
Now that we have successfully created a new person, we can enhance
its current state by adding contextual information over time. There
are two routes for doing this:

1. POST /persons/<int:person_id>/contexts

2. POST /persons/<int:person_id>/contexts/<int:context_id>

Using the first one, an HTTP request looks like the one shown in list-
ing 8. As we can see, the body’s dictionary only requires the property
key to be defined, still id, modified and children are added auto-
matically by the server. Also, notice that the timestamp attribute of
Bob got incremented while his id stayed untouched. Purposely, we



7.2 cofra 49

created Location without a value, as it simply does not have any. In-
stead, its actual value is derived from its children, as we will see next.

Listing 8: A POST request for adding contextual information to a person.

1 POST /persons/1/contexts HTTP/1.1

2 Host: http://localhost:3000

3 Content-Type: application/json

4

5 { "key": "Location" }

6

7

8 HTTP/1.1 201 Created

9

10 {

11 "name": "Bob",
12 " id": 0,

13 "timestamp": 1,

14 "modified": 2015-01-13T15:35:33.456586Z,

15 "children": [{

16 " id": 0,

17 "key": "Location",
18 "modified": 2015-01-13T15:35:34.656236Z,

19 "children": []

20 }]

21 } �
In another request (see listing 9), this time using the second route,
we add a property called Longitude to Location. Note, that again
timestamp was increased and id remained the same. Requesting GET

/persons/1/versions, still all versions of Bob can be inspected. For
deleting either Location (and all its children) or Longitude, the HTTP
DELETE method can be applied to both previously introduced routes
as well. It removes the nodes in question and creates a new version of
Bob with an once more incremented timestamp. Again, all previously
generated versions remain available, as there is no way of deleting
something completely.
Finally, there is another component we introduce, called EtMiddle-
ware. Previously, we described it as a component for enabling Emo-
text’s and Cofra’s communication. As we will find out in the next sec-
tion, EtMiddleware additionally implements functionality that could



50 implementation

have only implemented using the users’ acquired data collectively.

Listing 9: A POST request for adding contextual information to an existing
context.

1 POST /persons/1/contexts/1 HTTP/1.1

2 Host: http://localhost:3000

3 Content-Type: application/json

4

5 {

6 "key": "Longitude",
7 "value": "10.4541194"
8 }

9

10

11 HTTP/1.1 201 Created

12

13 {

14 "name": "Bob",
15 " id": 0,

16 "timestamp": 2,

17 "modified": 2015-01-13T15:37:10.749253Z,

18 "children": [{

19 " id": 0,

20 "key": "Location",
21 "modified": 2015-01-13T15:37:10.952745Z,

22 "children": [{

23 " id": 0,

24 "key": "Longitude",
25 "value": "10.4541194",
26 "modified": 2015-01-13T15:37:11.102655Z,

27 "children": []

28 }]

29 }]

30 } �
7.3 etmiddleware

As we mentioned already in Requirements and Design, Emotext is
implemented as a Python module and Cofra is implemented as a
standalone application. Because it promotes reusability, we explicitly
specified their independency. However, there still needs to be a way
to interact with Emotext RESTfully, but more importantly, there is
functionality that can only be implemented leveraging both. Use cases
like:

• correlating users’ emotions and contexts; or

• clustering users’ messages to conversations; or

• smoothing emotion extraction outputs; and



7.3 etmiddleware 51

• caching emotion extraction outputs;

are only possible using both technologies. Figure 10 shows all rel-
evant pieces of EtMiddleware. Its most integral part is the module
MessageCluster.

Figure 10: A striped version of the overall system architecture, only showing
EtMiddleware’s relevant components.

7.3.1 Message Clustering

Already, we discussed the importance of social interaction in our ev-
eryday lives (see Affective Computing’s section 4.4) and specified that
Emotext must be able to extract emotions from any document inde-
pendent of size (see Design’s section 6.1.1). This specification is im-
portant as Emotext should be applicable in widely spread communi-
cation tools like instant messaging, where short documents are the
default and messages are not necessarily clustered into conversations.
Hence, EtMiddleware implements an interface that clusters messages
according to their arrival date. The flow chart in figure 11 explains the
basic process. MessageCluster, a standard Python class, is initialized
with a numeric threshold time in seconds. When the first message is
added to MessageCluster, a counter is started that keeps track of the
time between the latest two consecutive messages. If the counter’s
time exceeds MessageCluster’s threshold time, a conversation is con-
sidered to be over.
Hence, MessageCluster.to_conversation is called and its embedded
database, as well as its counter, are reseted. As long as the counter
does not exceed the threshold, the submitted message is just added
to the database. Otherwise, the process will reset itself and start all



52 implementation

Figure 11: A flow chart describing MessageCluster’s methology of grouping
messages.

over again.
Another functionality that can only be implemented in EtMiddleware
is the caching of words that have already run through Emotext, in or-
der to constrain its computationally intensive nature.

7.3.2 CacheController

A few sections earlier (see section 7.1.2), we learned that emotion ex-
traction from text is a computation consuming task. However, given
the same limiting parameters (MAX_DEPTH, MIN_WEIGHT and REQ_LIMIT)
it is also a deterministic one. Hence, CacheController, also a stan-
dard Python class, can be initialized using all three limiting param-
eters and passed into Message.to_emotion_vector. For every token
passed in to_emotion_vector checks for a cache-hit and returns the
responding vector or None2. Of course, if a token does not produce
a cache-hit it is processed and added to the cache. This procedure
greatly reduces server load and overall lookup times.
Potentially, CacheController’s functionality could be outsourced into
its own package, saving Emotext’s results persistently.

7.3.3 Smoothing Methods

In section 4.4.2, we introduced methods for smoothing Emotext’s
outputs. Exemplarily, we implemented a word-based interpolation
method into the Conversation class. As can be seen in lisiting 10, it

2 The Python equivalent of Java’s Null.



7.3 etmiddleware 53

calculates the average values for a token’s resulting vector by looking
at its left and right neighbors.

Listing 10: A simplified version of the interpolation method used in
Conversation.

1 def word_interp(words):

2 interp_words = list()

3

4 for i, w in enumerate(words):

5 prev_word = words[i-1]

6 if i == len(words)-1:

7 next_word = words[0]

8 else:

9 next_word = words[i+1]

10 if prev_word is not None and next_word is not None:

11 interpolated_w = self.interp_emotion_vector(prev_word

, w, next_word)

12 interp_words.append(interpolated_w)

13 return interp_words �
For even better results, interpolation (and generally smoothing meth-
ods) could also be implemented on a sentence, conversation and even
document level.
In the next section, we will discuss and rate the achievements of this
work.





8
D I S C U S S I O N

This chapter evaluates and discusses the results of this work. Prior
to rating our implementation results, we will analyze the process in
retrospective and highlight failures, achievements and things we have
learned.

8.1 retrospective

Prior to writing this work, I hardly knew anything about context-
aware computing, natural language processing and especially noth-
ing about affective computing. In the beginning, the idea was to write
a sentiment analyzing mobile application to help treat mentally ill pa-
tients. One idea was to adjust a room’s temperature or lighting depen-
dent on a patient’s mood. In theory, patients would install an alter-
native keyboard on their mobile device that would record (with the
approval of the patient of course) their written communication. Soon
though, while defining and writing the chapter about context-aware
computing bigger problems emerged. Specifically, context’s generic
definition helped surface some of them. While nowadays most ap-
plications inherit their state directly from the most recent pieces of
information, in context-aware computing time and therefore histor-
ical data is equally important as current data. In addition, contex-
tual data can not be jammed into a static data structure, relational
databases these days promote. Instead, a data structure must provide
a way to model real-life situations freely at runtime. Furthermore, it
needs to promote version control and help the user query historical
and present data in an understandable fashion. Ultimately, I did not
find any appropriate database system that could satisfy all these re-
quirements, which lead to the implementation of Cofra.
Similarly, sentiment analysis did not fit the goals I wanted to achieve.
The idea was to somehow classify a user’s affect using their their tex-
tual input, not being sure yet how this could be done. Only after quite
a lot of research in natural language processing and sentiment anal-
ysis I found the field of affective computing. While it most certainly
served my needs, namely recognizing emotions (and not attitudes, for
example), there are hardly any resources on extracting emotions from
text. Moreover, graph-searching a semantic network is rather a nov-
elty. The most expedient work for this was probably Lui et al’s "A
model of textual affect sensing using real-world knowledge" [25]. Their ap-
proach consists of the conversion of a semantic network’s information
into a affect-measuring lexicon of words. Not only did this lead to the

55



56 discussion

discovery of conceptnet5, it also introduced to me the idea of smooth-
ing methods.
The Python programming language turned out to be equally inspir-
ing. It is extremely easy to learn, comes with a gigantic toolkit of em-
bedded ready-to-use libraries and strongly promotes modularization.
Particularly pleasing was that it is self-documenting. Per convention,
any function is ought to have a so called doc-string, a multi-line com-
ment that describes its functionality. In spite of using various third-
party libraries, it never lead to reading an extensive documentation.
Conversely, I found myself often searching for function definitions in
the actual source code. Surprisingly though, this was fun, effective
and by no means difficult. In every instance, external code was easily
understandable, sufficiently documented and ultimately contributed
to a better understanding of the Python language on my part. Ad-
ditionally, the lack of exceptional programming language constructs1

lead to a lot of bug free code and satisfying debugging sessions. Test-
driven development, again, turned out to be the right programming
method to implement backend software and especially helped refac-
toring major parts of the system.
The most essential lesson learned from writing this thesis though,
is that provided with motivation, time, great advisors and the right
understanding of how to examine a topic, any subject is worth re-
searching but most importantly learnable.

8.2 evaluation

In this section, we rate the implementation against all the enumerated
requirements (see chapter 5). Ratings are represented as percentages,
critical decisions are annotated in the comment column. To ease com-
prehension, we segmented the requirements rating equivalent to the
grouping used in chapter 5 and provided links for reference.

8.2.1 Emotext

This section compares Emotext’s requirements to its actual implemen-
tation. Specifically, requirements are grouped by their field of exper-
tise.

1 Consider Javascript’s "Falsy Values" or Objective-C’s agressive garbage collection one
of them.



8.2 evaluation 57

8.2.1.1 General Requirements

Link Name Rating Comment

5.1.1.1 Modularization 80% Can be integrated as third-
party dependency, but is quite
large (conceptnet5 is 50GB).

5.1.1.2 Interface 90% Granularity. Self-documented
Python classes, predictable
function declarations and vari-
able names.

5.1.1.3 Configuration 100% All parameters are adjustable
in config.cfg

Table 1: Rating for Emotext’s general implementation

8.2.1.2 Requirements for Natural Language Processing

Link Name Rating Comment

5.1.2.1 Localization 50% Though possible, results in
other languages are inaccurate
as conceptnet5’s database for
them is considerably smaller.
English-specific NLP tech-
niques used (besides nltk).

5.1.2.2 Segmentation 100% Segmentation on sentence
and word level, language
independent because nltk is
used. Punctuation characters
and non-words are removed.

5.1.2.3 Normalization 70% Language independent imple-
mentation through nltk. Stem-
ming decreases accuracy as it is
done syntactically.

5.1.2.4 Stop Words 100% Language independent stop
words removal through nltk

5.1.2.5 Granularity 80% Punctuation removal, stem-
ming and stop words removal
is connectable.

Table 2: Rating for Emotext’s natural language processing implementa-
tion



58 discussion

8.2.1.3 Requirements for Emotion Extraction

Link Name Rating Comment

5.1.3.1 Document Size 80% Extraction is done on word
level. So even tiny docu-
ments can be processed suf-
ficiently. More comprehensive
levels (sentence-based e.g.) can
easily be implemented.

5.1.3.2 Technique 100% All common English words
are processed and yield corre-
sponding emotions.

5.1.3.3 Configuration 100% All parameters are adjustable
in config.cfg

Table 3: Rating for Emotext’s emotion extractor implementation

8.2.2 EtMiddleware

In this section we discuss EtMiddleware’s implementation compared
to its requirements.

Link Name Rating Comment

5.2.1 Caching 100% Word-based caching algo-
rithm, dependent on con-
figurable parameters, per-
sistently stored in embed-
ded key-value storage.

5.2.2 Smoothing Methods 75% Message-based interpola-
tion is possible. Enhance-
ments are effortlessly im-
plementable. Interpolation
was not implemented in a
reusable way.

5.2.3 Message Clustering 100% Message clustering to con-
versations is possible. All
parameters are adjustable
in config.cfg.

Table 4: Rating for EtMiddleware’s implementation



8.2 evaluation 59

8.2.3 Cofra

In this last section, we compare the requirements to our actual imple-
mentation.

Link Name Rating Comment

5.3.1 Genericity 70% Complex data structure
modeling is possible, e.g.
trees and graphs. However,
the application logic only
supports trees, no graphs.
Connections between per-
sons in SQL are possible,
not in in application.

5.3.2 Interface 100% Flexible RESTful web in-
terface for manipulation of
data.

5.3.3 Immutability 100% All data is versioned. In
the application logic, data is
treated as immutable. His-
torical states are explorable.

5.3.4 Interface 60% Data is only queriable for
the user through the REST-
ful web interface. Queries
in SQL are possible, though
complex (e.g. recursive state-
ments). Data is not compara-
ble.

5.3.5 Encryption 0% Was not implemented,
though in an actual de-
ployment scenario flask

could be easily adjusted to
using HTTPS for example.
Database is not encrypted
as well.

5.3.6 Pseudonymization 100% Tracked users can choose
any name that is not al-
ready used. No meta-data
(like the user’s IP address
for instance) is tracked.

Table 5: Rating for Cofra’s implementation





9
C O N C L U S I O N

The goal of this work was to use textual emotion extraction in the
field of context-aware computing. To achieve it, we chose to study
three research subjects. Though seemingly unrelated judging by their
names and attempts, context-aware computing, natural language pro-
cessing and affective computing result in an interesting intersection,
ready to be exploited by specifically designed software.
In chapter 2, we learned that for context-aware computing to func-
tion appropriately, its requirements for adaption and disappearance
must be fulfilled and enough data to study the user’s environment
must be present. We learned that there are multiple dimensions of
context, namely external (physically measured) and internal context
(specified through the user, not physically measured). As our initial
goal was to use text-extracted emotions in context-aware computing,
these findings helped us enhance the idea further. Essentially, we de-
veloped a software sensor to detect a user’s emotions and later use
them as an internal context dimension in context-aware computing.
To properly implement this, we researched natural language process-
ing (see chapter 3) and affective computing (see chapter 4), in order
to find commonly used methods in both domains.
Over the course of the requirements and design phase (chapters 5

and 6), we found that there was no plug-and-play solution present for
saving and handling contextual data. Hence, we did not only specify
requirements for Emotext, our text-processing component, but also
for Cofra, a contextual data management framework. To reiterate on
this: Emotext is a Python module that is able to extract emotions from
any word, using conceptnet5, a word-based graph database for real-
world knowledge. Cofra is a Python application that can be used to
record arbitrary contextual data in a graph-like structure.
Subsequent research showed that Emotext’s outputs can further be
polished by applying smoothing methods on them and by specifying
the application’s use case closer to a certain domain. One example,
we showed this exemplarily was with the implementation of a mes-
sage clustering algorithm that can be used to group incoming instant-
messages in a larger context, namely a conversation. In this case, we
adjusted Emotext’s functionality to be used a social-communication
context.
Due to the limited scope of this work, we were not able to fulfill all
imposed requirements appropriately. Requirements like localization,
negation handling and stemming turned out to be quite hard prob-
lems, as they require deep linguistic knowledge. In addition, Cofra’s

61



62 conclusion

makeshift implementation is subpar. In order to record and correlate
contextual data successfully, a fact-based, versioned, event-sourced
database with a strong query language that allows for complex real-
world-like entity-relationship models is required, yet not available
currently. Unluckily, we were also not able to apply all this function-
ality to a real-world use case. Still, we can think of plenty examples
were they could potentially flourish. As mentioned in chapter 4.3 for
instance, the records of emotions and contextual data could be used
as already labeled data for machine learning operations to predict
either a users future change in state or - as a result of a change in
state - its future emotions. Considering the recent hype in wearables
and smart mobile devices in users’ homes and pockets, Cofra could
be used as a recorder for contextual data. More exciting, though, is
the idea of using Emotext to predict a stock’s market by analyzing
certain social media streams. Hence, we would love to see the great
potential of these applications being enhanced and used.



L I S T O F F I G U R E S

Figure 1 Schematic illustration of the four major context-
aware computing strategies. . . . . . . . . 11

Figure 2 A simplified representation of Cofra’s desired
graph-like data structure. Time-based version-
ing was left out for simplification. . . . . 31

Figure 3 A simplified representation of conceptnet5’s in-
ternal data structure per word per link. . 34

Figure 4 Cofra’s data structure in min-max notation. 37

Figure 5 Cofra’s object-relational mapping explained in
a class diagramm. Person and Context are sim-
ple GraphNodes with individual properties that
do not implement any methods themselves. 38

Figure 6 The system represented as a simplified UML
class diagramm. . . . . . . . . . . . . . . . 39

Figure 7 The system devided into three major compo-
nents including a simplified version of their
classes and modules. . . . . . . . . . . . . 41

Figure 8 A simplified version of conceptnet5’s graph struc-
ture based on the word "war". . . . . . . . 44

Figure 9 A striped version of the overall system’s archi-
tecture, only showing Cofra’s relevant compo-
nents. . . . . . . . . . . . . . . . . . . . . . 47

Figure 10 A striped version of the overall system archi-
tecture, only showing EtMiddleware’s relevant
components. . . . . . . . . . . . . . . . . . 51

Figure 11 A flow chart describing MessageCluster’s methol-
ogy of grouping messages. . . . . . . . . . 52

L I S T I N G S

Listing 1 Two exemplarily sentences describing Bob’s and
Alice’s feelings towards theatres and movies. 20

Listing 2 Both sentences from listing 1 as a list of oc-
curences. 20

Listing 3 The internal file structure of Emotext’s source
code. 42

Listing 4 A simplified version of the text_processing

function inside of api.text.py. 43

63



Listing 5 Calculated absolute scores for the example given
in figure 8. 46

Listing 6 Related emotions for the word "war", described
in percentages. 47

Listing 7 A POST request for creating a new person. 48

Listing 8 A POST request for adding contextual informa-
tion to a person. 49

Listing 9 A POST request for adding contextual informa-
tion to an existing context. 50

Listing 10 A simplified version of the interpolation method
used in Conversation. 53

L I S T O F TA B L E S

Table 1 Rating for Emotext’s general implementation 57

Table 2 Rating for Emotext’s natural language process-
ing implementation . . . . . . . . . . . . . 57

Table 3 Rating for Emotext’s emotion extractor imple-
mentation . . . . . . . . . . . . . . . . . . . 58

Table 4 Rating for EtMiddleware’s implementation 58

Table 5 Rating for Cofra’s implementation . . . . 59

64



B I B L I O G R A P H Y

[1] Bing blog: Bing shopping launch.
http://blogs.bing.com/search/2011/03/01/
bing-feature-update-searching-for-a-good-deal-new-natural
-language-capabilities-in-bing-shopping-understand-prices .
Accessed: 19-03-2015.

[2] Google I/O Day One: Google continues attacks
on Apple, Amazon. http://www.cnet.com/news/
google-io-day-one-google-continues-attacks-on-apple-amazon/.
Accessed: 16-12-2014.

[3] Google Translate. https://translate.google.de. Accessed: 27-04-
2015.

[4] Martin Porter’s website. http://tartarus.org/~martin/
PorterStemmer/. Accessed: 27-04-2015.

[5] Smartphones: So many apps, so much time. http:
//www.nielsen.com/us/en/insights/news/2014/
smartphones-so-many-apps--so-much-time.html. Accessed:
17-04-2015.

[6] Natural Language Toolkit. http://www.nltk.org/. Accessed: 28-
04-2015.

[7] Sentiment symposium tutorial. http://sentiment.
christopherpotts.net/. Accessed: 14-12-2014.

[8] The world according to SwiftKey. http://swiftkey.com/en/
blog/the-world-according-to-swiftkey. Accessed: 17-04-2015.

[9] Unixtool wc man pages. http://unixhelp.ed.ac.uk/CGI/
man-cgi?wc. Accessed: 27-04-2015.

[10] WolframAlpha. http://www.wolframalpha.com. Accessed: 27-
04-2015.

[11] Gregory D Abowd, Anind K Dey, Peter J Brown, Nigel Davies,
Mark Smith, and Pete Steggles. Towards a better understand-
ing of context and context-awareness. In Handheld and ubiquitous
computing, pages 304–307. Springer, 1999.

[12] Cecilia Ovesdotter Alm, Dan Roth, and Richard Sproat. Emo-
tions from text: machine learning for text-based emotion predic-
tion. In Proceedings of the conference on Human Language Technology
and Empirical Methods in Natural Language Processing, pages 579–
586. Association for Computational Linguistics, 2005.

65

http://blogs.bing.com/search/2011/03/01/bing-feature-update-searching-for-a-good-deal-new-natural-language-capabilities-in-bing-shopping-understand-prices
http://blogs.bing.com/search/2011/03/01/bing-feature-update-searching-for-a-good-deal-new-natural-language-capabilities-in-bing-shopping-understand-prices
http://blogs.bing.com/search/2011/03/01/bing-feature-update-searching-for-a-good-deal-new-natural-language-capabilities-in-bing-shopping-understand-prices
http://www.cnet.com/news/google-io-day-one-google-continues-attacks-on-apple-amazon/
http://www.cnet.com/news/google-io-day-one-google-continues-attacks-on-apple-amazon/
https://translate.google.de
http://tartarus.org/~martin/PorterStemmer/
http://tartarus.org/~martin/PorterStemmer/
http://www.nielsen.com/us/en/insights/news/2014/smartphones-so-many-apps--so-much-time.html
http://www.nielsen.com/us/en/insights/news/2014/smartphones-so-many-apps--so-much-time.html
http://www.nielsen.com/us/en/insights/news/2014/smartphones-so-many-apps--so-much-time.html
http://www.nltk.org/
http://sentiment.christopherpotts.net/
http://sentiment.christopherpotts.net/
http://swiftkey.com/en/blog/the-world-according-to-swiftkey
http://swiftkey.com/en/blog/the-world-according-to-swiftkey
http://unixhelp.ed.ac.uk/CGI/man-cgi?wc
http://unixhelp.ed.ac.uk/CGI/man-cgi?wc
http://www.wolframalpha.com


66 bibliography

[13] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. A
survey on context-aware systems. International Journal of Ad Hoc
and Ubiquitous Computing, 2(4):263–277, 2007.

[14] Dan Jurafsky, Christopher Manning. Natural language process-
ing.

[15] Taner Danisman and Adil Alpkocak. Feeler: Emotion classifi-
cation of text using vector space model. In AISB 2008 Conven-
tion Communication, Interaction and Social Intelligence, volume 1,
page 53, 2008.

[16] Sanjiv R Das and Mike Y Chen. Yahoo! for amazon: Sentiment
extraction from small talk on the web. Management Science, 53(9):
1375–1388, 2007.

[17] Anind K Dey. Understanding and using context. Personal and
ubiquitous computing, 5(1):4–7, 2001.

[18] Stuart Dredge. Whatsapp growth continues with
700m users sending 30bn daily messages. http:
//www.theguardian.com/technology/2015/jan/07/
whatsapp-growth-700m-users-facebook. Accessed: 17-04-2015.

[19] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy.
Modeling context information in pervasive computing systems.
In Pervasive Computing, pages 167–180. Springer, 2002.

[20] Facebook Inc. Mobile daily active users
(mobile daus). http://files.shareholder.com/
downloads/AMDA-NJ5DZ/3907746207x0x805520/
2D74EDCA-E02A-420B-A262-BC096264BB93/FB_
Q414EarningsSlides20150128.pdf. Accessed: 17-04-2015.

[21] Chris Johnston. Ubers value more than doubles
to $40bn after investors back fundraising. http:
//www.theguardian.com/technology/2014/dec/05/
uber-value-doubles-after-fundraising. Accessed: 17-04-2015.

[22] Dan Jurafsky and James H Martin. Speech & language processing.
Pearson Education India, 2000.

[23] Daniel Jurafsky and James H Martin. Speech and language process-
ing, 2nd edition. Prentice Hall, 2008.

[24] Tomi Kilgore. Facebooks stock-market valuation tops
$230 billion. http://www.marketwatch.com/story/
facebooks-stock-market-valuation-tops-230-billion-2015-03-20.
Accessed: 17-04-2015.

http://www.theguardian.com/technology/2015/jan/07/whatsapp-growth-700m-users-facebook
http://www.theguardian.com/technology/2015/jan/07/whatsapp-growth-700m-users-facebook
http://www.theguardian.com/technology/2015/jan/07/whatsapp-growth-700m-users-facebook
http://files.shareholder.com/downloads/AMDA-NJ5DZ/3907746207x0x805520/2D74EDCA-E02A-420B-A262-BC096264BB93/FB_Q414EarningsSlides20150128.pdf
http://files.shareholder.com/downloads/AMDA-NJ5DZ/3907746207x0x805520/2D74EDCA-E02A-420B-A262-BC096264BB93/FB_Q414EarningsSlides20150128.pdf
http://files.shareholder.com/downloads/AMDA-NJ5DZ/3907746207x0x805520/2D74EDCA-E02A-420B-A262-BC096264BB93/FB_Q414EarningsSlides20150128.pdf
http://files.shareholder.com/downloads/AMDA-NJ5DZ/3907746207x0x805520/2D74EDCA-E02A-420B-A262-BC096264BB93/FB_Q414EarningsSlides20150128.pdf
http://www.theguardian.com/technology/2014/dec/05/uber-value-doubles-after-fundraising
http://www.theguardian.com/technology/2014/dec/05/uber-value-doubles-after-fundraising
http://www.theguardian.com/technology/2014/dec/05/uber-value-doubles-after-fundraising
http://www.marketwatch.com/story/facebooks-stock-market-valuation-tops-230-billion-2015-03-20
http://www.marketwatch.com/story/facebooks-stock-market-valuation-tops-230-billion-2015-03-20


bibliography 67

[25] Hugo Liu, Henry Lieberman, and Ted Selker. A model of textual
affect sensing using real-world knowledge. In Proceedings of the
8th international conference on Intelligent user interfaces, pages 125–
132. ACM, 2003.

[26] Masoud Makrehchi and Mohamed S Kamel. Automatic extrac-
tion of domain-specific stopwords from labeled documents. In
Advances in information retrieval, pages 222–233. Springer, 2008.

[27] Martin Fowler. Event Sourcing. http://martinfowler.com/
eaaDev/EventSourcing.html. Accessed: 01-04-2015.

[28] Gilad Mishne. Experiments with mood classification in blog
posts. In Proceedings of ACM SIGIR 2005 Workshop on Stylistic
Analysis of Text for Information Access, volume 19, 2005.

[29] Clifford Nass, Jonathan Steuer, and Ellen R Tauber. Computers
are social actors. In Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 72–78. ACM, 1994.

[30] Bo Pang and Lillian Lee. Opinion mining and sentiment analysis.
Foundations and trends in information retrieval, 2(1-2):1–135, 2008.

[31] Rosalind Wright Picard. Affective computing. 1995.

[32] Rob Price. Android just achieved something it will
take apple years to do. http://uk.businessinsider.com/
android-1-billion-shipments-2014-strategy-analytics-2015-2?r=
US, . Accessed: 17-04-2015.

[33] Rob Price. The apple watch is already wiping the floor with the
entire smartwatch market.
http://uk.businessinsider.com/apple-watch-kgi-securities-2

-million-ming-chi-kuo-smartwatch-android-wear-pebble-2015-4?
r=US , . Accessed: 17-04-2015.

[34] Mahadev Satyanarayanan. Pervasive computing: Vision and
challenges. Personal Communications, IEEE, 8(4):10–17, 2001.

[35] Klaus R Scherer. Emotion as a multicomponent process: A model
and some cross-cultural data. Review of personality & social psy-
chology, 1984.

[36] Carlo Strapparava and Rada Mihalcea. Semeval-2007 task 14: Af-
fective text. In Proceedings of the 4th International Workshop on Se-
mantic Evaluations, pages 70–74. Association for Computational
Linguistics, 2007.

[37] Carlo Strapparava and Rada Mihalcea. Learning to identify emo-
tions in text. In Proceedings of the 2008 ACM symposium on Applied
computing, pages 1556–1560. ACM, 2008.

http://martinfowler.com/eaaDev/EventSourcing.html
http://martinfowler.com/eaaDev/EventSourcing.html
http://uk.businessinsider.com/android-1-billion-shipments-2014-strategy-analytics-2015-2?r=US
http://uk.businessinsider.com/android-1-billion-shipments-2014-strategy-analytics-2015-2?r=US
http://uk.businessinsider.com/android-1-billion-shipments-2014-strategy-analytics-2015-2?r=US
http://uk.businessinsider.com/apple-watch-kgi-securities-2-million-ming-chi-kuo-smartwatch-android-wear-pebble-2015-4?r=US
http://uk.businessinsider.com/apple-watch-kgi-securities-2-million-ming-chi-kuo-smartwatch-android-wear-pebble-2015-4?r=US
http://uk.businessinsider.com/apple-watch-kgi-securities-2-million-ming-chi-kuo-smartwatch-android-wear-pebble-2015-4?r=US


68 bibliography

[38] Mark Weiser. The computer for the 21st century. Scientific ameri-
can, 265(3):94–104, 1991.



E R K L Ä R U N G

Ich erkläre, dass ich die Arbeit selbstständig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel verwendet habe.

Ulm,

Tim Daubenschütz


	Dedication
	Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Methodology and Ambition
	1.3 Roadmap

	2 Pervasive Computing and Context
	2.1 Pervasive Computing
	2.2 Context
	2.3 Context-Aware Computing

	3 Natural Language Processing
	3.1 Defining the Term Natural Language Processing
	3.2 Methods and Techniques in NLP
	3.2.1 Word Segmentation
	3.2.2 Word Normalization
	3.2.3 Negation Handling
	3.2.4 Stop Word Removal
	3.2.5 Text Classification


	4 Affective Computing
	4.1 Defining the Term Affective Computing
	4.2 Defining the Term Emotion
	4.3 Interaction of Emotion and Context
	4.4 Emotion Extraction from Text
	4.4.1 Methods for Extracting Emotion from Text
	4.4.2 Smoothing outputs


	5 Requirements
	5.1 Requirements for Emotext
	5.1.1 General Requirements
	5.1.2 Requirements for NLP
	5.1.3 Requirements for Emotion Extraction

	5.2 Requirements for EtMiddleware
	5.3 Requirements for Cofra

	6 Design
	6.1 The Choice of Tools
	6.1.1 Emotion Extraction Techniques
	6.1.2 The Programming Language
	6.1.3 The Database

	6.2 Data Structure and Object-relational Mapping
	6.2.1 Data Structure
	6.2.2 Object-relational Mapping

	6.3 The Architecture

	7 Implementation
	7.1 Emotext
	7.1.1 Text Processing
	7.1.2 Emotion Extraction

	7.2 Cofra
	7.2.1 The RESTful Web Interface

	7.3 EtMiddleware
	7.3.1 Message Clustering
	7.3.2 CacheController
	7.3.3 Smoothing Methods


	8 Discussion
	8.1 Retrospective
	8.2 Evaluation
	8.2.1 Emotext
	8.2.2 EtMiddleware
	8.2.3 Cofra


	9 Conclusion
	List of Figures
	Listings
	List of Tables

	Bibliography
	Declaration

