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Abstract. In the engineering domain, the development of complex prod-
ucts (e.g., cars) necessitates the coordination of thousands of (sub-)pro-
cesses. One of the biggest challenges for process management systems is
to support the modeling, monitoring and maintenance of the many inter-
dependencies between these sub-processes. The resulting process struc-
tures are large and can be characterized by a strong relationship with
the assembly of the product; i.e., the sub-processes to be coordinated
can be related to the di�erent product components. So far, sub-process
coordination has been mainly accomplished manually, resulting in high
e�orts and inconsistencies. IT support is required to utilize the informa-
tion about the product and its structure for deriving, coordinating and
maintaining such data-driven process structures. In this paper, we intro-
duce the COREPRO framework for the data-driven modeling of large
process structures. The approach reduces modeling e�orts signi�cantly
and provides mechanisms for maintaining data-driven process structures.

1 Introduction

Enterprises are increasingly demanding IT support for their business processes.
One challenge emerging in this context is to coordinate the execution of large and
long-running processes (e.g., related to car development). Engineering processes,
for instance, often consist of numerous concurrently executed, interdependent
sub-processes. The reasons for this fragmentation are manifold: Typically, these
sub-processes are related to di�erent (data) objects (e.g., product components),
enacted by di�erent organizational units (e.g., dealing with the testing or releas-
ing of single components), and controlled by di�erent IT systems. We denote
such correlated sub-processes as process structure.

These process structures have in common that changes (e.g., removing a sub-
process or adding a dependency between sub-processes) as well as real-world ex-
ceptions (e.g., abnormal termination of a sub-process) occur frequently and may

? This work has been funded by Daimler AG Group Research and has been conducted
in the COREPRO (COn�guration based RElease PROcesses) project.

In: Proc. of International Conf. on Cooperative Information Systems (CoopIS 2007), pp. 131-149. LNCS 4803. Springer Verlag.



a�ect not only single sub-processes but also the whole process structure [1, 2].
Consequently, IT support must �exibly cover modeling, enactment and mainte-
nance of process structures and assure their consistency. Even the modeling of
process structures constitutes a challenging task since these structures usually
comprise hundreds up to thousands of sub-processes (and sub-process depen-
dencies). Doing this manually often results in errors or inconsistencies leading
to bad process performance and high process costs.

To cope with these challenges, we have to better understand the dependencies
between sub-processes. Case studies we conducted in the automotive industry
[1, 3] have revealed that the dependencies between the di�erent sub-processes of
a process structure typically base on the assembly of the product to be man-
ufactured. As an example for a product structure (or con�guration structure)
consider the total electrical system in a modern car which consists of up to 300
interconnected components. To verify the functionality of the total system, sev-
eral sub-processes (e.g., testing and release) have to be executed for each electri-
cal (sub-)component. Interestingly, the technical relations between the di�erent
product components indicate sub-process dependencies; i.e., the relation between
two components leads to dependencies between sub-processes modifying these
components. We use the notion of data-driven process structures to characterize
process structures, which are prescribed by respective data structures. Fig. 1
presents an example for a data-driven process structure. The strong relationship
between data structures and process structures (e.g., the relations between the
S-Class and the Navigation object leads to respective sub-process dependen-
cies) also implies that a changed data structure (e.g., total electrical system for
another car series without navigation) leads to a di�erent process structure.

Our goal is to reduce modeling e�orts for data-driven process structures
by increasing model reusability and maintainability. In the automotive domain,
for instance, we can bene�t from the upcoming standardization of develop-

Product Data Structure Data-driven Process Structure

Total System:

S-Class

System: Engine

S ECS P S

S ECV VC R

Subsystem: Speed Sensor Unit

T R

V
[OK]

T

[*]

S

RSubSys

Release
System

Install
System

System: Navigation

S ECS P S T R

S ECV VC R

Subsystem: Main Unit

V
[OK]

T

[*]
S ECV VC R

Subsystem: GPS Unit

V
[OK]

T

[*]

E

Release
System

Install
System

SC SCRSubSys RSubSys

ReleaseS ETestedTestdrive

Total System: S-Class

Released

Several (Sub-)Processes Executed

for Data Product Objects

Subsystem:

Speed
Sensor

Subsystem:

GPS Unit

System:

NavigationSystem:

Engine

Sub-Process

Coordination Based on

Data Object States

Dependencies between

(Sub-)Processes

Synchronizing (Sub-)

Process

Subsystem:

Main Unit Data Relations Indicate

Process Dependencies

S
tr
o
n
g
 R
e
la
ti
o
n
s
h
ip
 b
e
tw
e
e
n

D
a
ta
 a
n
d
 P
ro
c
e
s
s
e
s

Product Data Objects

Modified by

(Sub-)Processes

SC

Fig. 1. Example for a Data Structure and a Related Data-driven Process Structure

In: Proc. of International Conf. on Cooperative Information Systems (CoopIS 2007), pp. 131-149. LNCS 4803. Springer Verlag.



ment processes driven by quality frameworks like CMMI (Capability Maturity
Model Integration) or engineering guidelines (e.g., [4]). This leads to standard-
ized processing of objects (e.g., the testing process for the speed sensor is in-
dependent from the car series it is built in), which can be utilized to increase
reuse of process models and to reduce modeling e�orts. In order to bene�t from
the standardization, a loose coupling of data structures and process structures
is required. In particular, three issues arise:

1. How to describe the processing of single objects, i.e., the relationship between
an object and its modifying sub-processes?

2. How to describe the processing of the overall data structure, i.e., the depen-
dencies between the sub-processes in relation to the di�erent data objects?

3. How to automatically derive a proper process structure that can be cus-
tomized by the underlying data structure, i.e., di�erent data structures lead
to di�erent process structures?

So far, there exists no IT support for con�guring a process structure based on
a given data structure. IT systems used in industry, such as product data man-
agement systems or work�ow management tools currently lack an integration of
data and processes [1]. Approaches from academia, such as data-centered process
paradigms [5�7] also do not fully address the aforementioned issues. Instead,
users have to manually de�ne the requested process structure for each given
data structure. This often leads to in�exible process structures and generates
high e�orts for coordinating and maintaining them. In this paper, we introduce
the modeling component of the COREPRO approach, which aims at an intu-
itive and product-related integration of data and (sub-)processes. In particular,
COREPRO enables

� the data-driven speci�cation of process structures at the model level
� the automated creation of process structures based on given data structures
� the data-driven adaptation of process structures to deal with real-world
changes.

We utilize the life cycles of objects (i.e., the sequence of states an object goes
through during its lifetime) for enabling data-driven modeling and coordina-
tion of process structures. State transitions within a life cycle take place when
a sub-process is enacted for the related object [8�11]. According to the rela-
tions between objects, we connect the life cycles of these objects. The concept
thereby enables the automated derivation of the process structure for a given
data structure.

The remainder of this paper is structured as follows: Section 2 character-
izes the relationship between data and process structures, and introduces our
approach for describing them. Section 3 shows how to model and instantiate
(product) data structures. Section 4 deals with the data-driven creation and
change of large process structures. Section 5 illustrates the practical bene�ts
of the COREPRO approach. Section 6 discusses related work, and Section 7
concludes with a summary and outlook.
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2 Overview of the Approach

IT support for the modeling and change of data-driven process structures must
meet four major requirements. First, it must enable the de�nition of the (prod-
uct) data structure, i.e., its objects and their relations. Second, with each (data)
object a set of sub-processes for processing this object and for transforming its
state has to be associated. Third, sub-process dependencies have to be de�ned
based on the object relations. For example, a sub-process for the Navigation

object shall be not started before having �nished the sub-processes of the re-
lated subsystems (cf. Fig. 1). Fourth, the concepts must enable the automated
creation of a data-driven process structure.

The COREPRO modeling framework meets these requirements. In order to
enable reuse and to reduce modeling e�orts, COREPRO distinguishes between
the model and the instance level when creating data-driven process structures (cf.
Fig. 2). We allow de�ning a domain speci�c data model consisting of object and
relation types (cf. Step 1a in Fig. 2). Such a data model can then be instantiated
to create speci�c data structures (e.g., a bill of material) consisting of objects
and relations (cf. Step 1b in Fig. 2). While the de�nition of a data model requires
profound domain knowledge, the instantiation can be done by users.

Further, process experts describe the dynamic aspects of each object type
by modeling object life cycles (OLC). An OLC de�nes the coordination of sub-
processes associated with a particular object type (cf. Step 2a in Fig. 2). A sub-
process is an autonomous process (or activity). In COREPRO an OLC is mapped
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to a state transition system whose states correspond to object states and whose
(internal) state transitions are triggered when associated sub-processes (which
are modifying the object) are completed. In Fig. 2, the OLC for object type
System (Step 2a), for example, goes through state S1 followed by state S2. The
internal state transition from S1 to S2 takes place when �nishing sub-process Y.
Altogether, an OLC constitutes an integrated view on a particular object and
on the sub-processes manipulating this object.

De�ning the dynamic aspects of each object type by modeling its OLC is only
half of the story. We also have to deal with the many dependencies existing be-
tween the sub-processes associated with di�erent objects types. Such dependen-
cies might describe, for example, that every system (Engine and Navigation)
must have reached a certain state before the Testdrive sub-process for the
S-Class can be started (cf. Fig. 1). Consequently, a sub-process dependency
can be seen as a synchronization link between the states of concurrently enacted
OLCs.

In COREPRO, we specify such sub-process dependencies by de�ning external
state transitions, which connect states of di�erent OLCs. Like an internal state
transition within an OLC, an external state transition can lead to the enactment
of a sub-process. In Fig. 2, for example, the external state transition between
the OLCs of Type System and Type Subsystem is associated with sub-process
V (cf. Step 2a). Further, external state transitions are mapped to relation types.

In COREPRO, the OLCs for every object type and the external state tran-
sitions for every relation type form the Life Cycle Coordination Model (LCM)
(cf. Fig. 2, Step 2a). Consequently, the LCM describes the dynamic aspects of
the whole data model and constitutes the blueprint for creating the data-driven
process structure.

On instance level, the life cycle coordination structure (LCS) describes the
process structure for a particular data structure. While data model, data struc-
ture, and LCM are created manually, the LCS can be automatically generated
based on these ingredients (cf. Step 2b in Fig. 2). The LCS includes an OLC for
every object in the data structure. Likewise, for each relation in the data struc-
ture, external state transitions are inserted to the LCS. For example, for every
hasSubsystem relation in the data structure from Fig. 2 (Step 1b), the associ-
ated external state transitions (with the associated sub-process V) are inserted.
The result is an enactable process structure describing the dynamic aspects of
the given data structure. Further details are presented in the following sections.

3 Modeling and Instantiation of Data Structures

In COREPRO, a domain speci�c data structure establishes the basis for creating
data-driven process structures. COREPRO enables the de�nition of dynamic
aspects of objects and relations at model level. Therefore, the de�nition of a
data model may consist of object and relation types (cf. Fig. 3a). Based on
this, data structures can then be created by instantiating speci�c objects and
relations (cf. Fig. 3b).
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3.1 Creation of a Data Model

Generally, a data meta model provides the constructs for describing a data model
[12�14]. In COREPRO, we use a simple data meta model, comprising object and
relation types1. An object type represents, for example, an abstract or physical
product component that is part of the logical structure of a car. A relation type
expresses a single relationship between two object types (including cardinality).
A data model comprises object and relation types, and describes how objects
are structured in a speci�c domain (cf. Fig. 3a). Based on the restrictions of the
data model, several data structures (i.e., instances of the data model) can be
created, such as product structures for di�erent car series.

Generally, multiple relation types can be de�ned between two object types.
Further, we allow de�ning recursive relation types, which can be used to realize
relations between objects of the same object type on instance level.

De�nition 1 (Data Model). Let T be the set of all object types and let R be
the set of all relation types. Then: A data model is a tuple dm = (OT, RT ) where

� OT ⊆ T comprises a set of object types
� RT ⊆ OT × R × OT comprises a set of binary relation types de�ned for

object types
� card : RT 7→ N0 × N0 with card(ot1, rt, ot2) = (minrt,maxrt) assigns to

each relation type rt ∈ RT a minimal and maximal cardinality.

3.2 Creation of the Data Structure

A data structure contains objects and relations, which constitute instances of the
object and relation types de�ned by the data model. In Fig. 3b, for example, the
Total System type is instantiated once, while the System type is instantiated
three times (Engine, Navigation, and Instrument Panel). The cardinalities
associated with relation types restrict the number of concrete relations between

1 The data meta model neglects descriptive object attributes since they do not in�uent
the generation of the requested process structure.
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objects. Accordingly, a Subsystem object can only be related to one System

object via the hasSubsystem relation (cf. Fig. 3b). Note that the data structure
from Fig. 3b is a simpli�ed example. In Sect. 5 we indicate, that such a data
structure may comprise a high number of instantiated objects in practice.

De�nition 2 (Data Structure). Let dm = (OT, RT ) be a data model. Then:
A data structure created from dm is a tuple ds = (O,R) with

� O is a set of objects where each object o ∈ O is associated with an object type
objtype(o) ∈ OT

� R ⊆ O×RT×O is a set of object relations meeting the cardinality constraints
de�ned by the data models. Each relation r = (o1, rt, o2) ∈ R has a relation
type rt = reltype(r) with (objtype(o1), rt, objtype(o2)) ∈ RT .

4 Integration of Data and Processes

After having de�ned how a data structure is modeled, we need to specify its rela-
tionship to the process structure. To allow for reuse, we describe this relationship
at the model level; i.e., we de�ne the dynamic aspects for the data model and
translate them to the instance level afterwards. Therefore, an object life cycle
(OLC) describes the dynamic aspects of an object type and an OLC dependency
de�nes the dynamic aspects of a relation type. The life cycle coordination model
(LCM) comprises the OLCs for every object type and the OLC dependencies
for every relation type. Consequently, the LCM describes the dynamic aspects
of the whole data model. On instance level, in turn, the LCM constitutes the
basis for creating life cycle coordination structures (LCS) for given data struc-
tures. Altogether, the LCS de�nes the dynamic aspects of the underlying data
structure and represents the data-driven process structure.

4.1 Modeling of the Dynamic Aspects of Single Object Types

Every object type is associated with an OLC, which constitutes a labeled tran-
sition system describing object states and internal state transitions (cf. Fig. 4).
An internal state transition can be associated with a sub-process modifying the
object (and thus inducing a state change). This sub-process becomes enacted
when the source state of the transition is enabled. After having executed it, the
source state of the transition is disabled and the target state becomes enabled.
Hence, the de�nition of the OLC constitutes the mediator for associating stateful
objects with modifying sub-processes2.

To realize non-deterministic processing, the de�nition of conditional (i.e.,
non-deterministic) internal state transitions is possible in COREPRO. All internal
state transitions with same OLC state as source are associated with the same

2 Stateless objects are also supported. Their OLCs include one internal state transition
(with an associated sub-process) from the start to the end state.
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sub-process, but can be bound to (di�erent) sub-process results, i.e., exit codes
(e.g., �nished with errors). Depending on the concrete sub-process result, always
one internal state transition is triggered at runtime. In Fig. 4, for example, the
result of the Testdrive sub-process determines, whether the state Tested or
Faulty is enabled. The default transition to state Faulty (indicated by *) be-
comes activated in case of uncovered sub-process results. A conditional internal
transition may also be used for modeling loops within an OLC.

De�nition 3 (Object Life Cycle). Let dm = (OT, RT ) be a data model
and let ot ∈ OT be an object type. Then: The object life cycle of ot is a tu-
ple olc = (P, V, TS) where

� P is a set of sub-processes that can be applied to instances of object type ot
and V is a set of possible sub-process results (σ : P 7→ P(V ) with σ(p) ⊆ V
is the set of possible results de�ned for sub-process p)

� TS = (S, T, sstart, send) is a labeled transition system, where
• S is the set of states that can be reached by objects of type ot
• T ⊆ S × (P × V )× S is a set of internal state transitions with

∗ t = (s, (p, v), s′) ∈ T,⇒ v ∈ σ(p); i.e., a state transition t is triggered
by the completion of a sub-process p with particular result v

∗ ∀ti = (si, (pi, vi), s′i) ∈ T, i = 1, 2 with t1 6= t2 and s1 = s2,⇒
p1 = p2 ∧ v1 6= v2; i.e., if there are several state transitions with
same source state s, all of them will be associated with the same sub-
process p. The concrete target state is determined based on the sub-
process result. In case of non-deterministic state transitions, there is
a default transition that will be chosen if the associated sub-process
delivers a result not covered by the other transitions.

• sstart ∈ S is the initial state and send ∈ S is the �nal state of the
transition system; sstart is the only state without incoming transitions
and send is the only state without outgoing transitions.

Let OLC be the set of all object life cycles. For olc ∈ OLC, sstart(olc) denotes
the start and send(olc) the end state of the respective transition system.

4.2 Modeling of the Dynamic Aspects of the Data Model

Modeling the dynamic aspects of single object types is only one part of the chal-
lenge. To de�ne the processing of the whole data model, we also have to spec-
ify the dynamic aspects of relation types. Relation Types are associated with
OLC dependencies which synchronize the OLCs of related objects. An OLC de-
pendency comprises several external state transitions between the states of the
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dependent OLCs. The resulting structure is denoted as life cycle coordination
model (LCM). A LCM describes the dynamic aspects of the data model by inte-
grating the OLCs associated with object types as well as the OLC dependencies
associated with relation types (Fig. 5a presents the LCM for the data model
from Fig. 3a).

Like internal state transitions (within an OLC), an external state transition
can be associated with a sub-process. As an example, consider the OLC depen-
dency of the relation type hasSystem in Fig. 5a. This dependency consists of two
external state transitions, which synchronize (1) the start state of the Total

System OLC with the Tested state of the System OLC and (2) the Release

state of the System OLC with the Release state of the Total System OLC.
The sub-process associated with the external state transition (e.g., sub-process
InstallComponent) can be considered as synchronizing (sub-)process, which op-
erates on both related object types.

De�nition 4 (OLC Dependency). Let olci = (Pi, Vi, TSi), i = 1, 2 be two
di�erent object life cycles with TSi = (Si, Ti, sstart, send) (cf. Def. 3). Then: An
OLC dependency between olc1 and olc2 is a tuple olcDep = (Id, P,EST ) where

� Id is the identi�er of the dependency
� P is a set of sub-processes that can operate on both object types
� EST is a set of external state transitions with

est = (s, p, s′) ∈ EST ⇔ (s ∈ S1 ∧ s′ ∈ S2) ∨ (s′ ∈ S1 ∧ s ∈ S2).

OLCDEP denotes the set of all OLC dependencies. For an OLC dependency
olcDep ∈ OLCDEP , let est(olcDep) denote the set of related external state transi-
tions.

It is important to mention that internal and external state transitions di�er
in their operational semantics (cf. Table 1). During runtime, the concurrent
processing of di�erent objects is required to enhance process e�ciency (e.g., by
supporting concurrent engineering techniques). In COREPRO, this is realized
by concurrently enacting di�erent OLCs while avoiding concurrency within an
OLC3. Both, internal and external state transition become activated (i.e., their
sub-processes are started) when the source state of the transition is entered.
While the completion of the sub-process of an internal state transition induces

3 Concurrently activated states are not allowed within one OLC since this has not
been a requirement in our case studies.

Table 1. Classi�cation of State Transitions in COREPRO

Type Meaning Operational Semantics

Internal State

Transition

Connects two states within one OLC Fires after sub-process execution
dependent on sub-process result

External State

Transition

Connects two states from di�erent OLCs Fires after sub-process execution

Direct State

Transition

Connects LCS start state with start state of
an OLC (end states accordingly)

Fires immediately
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the deactivation of the source state and the activation of the target state, the
completion of the sub-process of an external state transition does not imply any
state change in the source OLC.

Further, the target state is activated if and only if the sub-processes of (1) one
incoming internal state transition and (2) all incoming external transitions are
�red. This rule allows for concurrently activated states within di�erent OLCs of
an LCS, while it prevents concurrently activated states within a single OLC. Due
to the lack of space, we omit a formal speci�cation of the operational semantics
of internal and external state transtions.

De�nition 5 (Life Cycle Coordination Model). Let dm = (OT, RT ) be a
data model and let P be a set of sub-processes. Then: The life cycle coordination
model associated with dm is a tuple lcm = (olc, olcDEP ) where

� olc : OT 7→ OLC assigns to each object type ot ∈ OT (of the data model) an
object life cycle olc(ot) ∈ OLC

� olcDEP : RT 7→ OLCDEP assigns to each relation type rt = (ot1, rt, ot2) ∈
RT an OLC dependency olcDEP (rt) for the object life cycles olc(ot1) and
olc(ot2) of the object types ot1 and ot2.

Regarding the execution of created process structures, it is important to
guarantee soundness, i.e., to ensure that data-driven process structures termi-
nate with a correct end state. Deadlocks might occur (1) when external state
transitions are starting from non-deterministic states, and (2) when external
state transitions are forming cycles. The �rst situation can be avoided during
runtime, for example, using deadpath elimination techniques. The second sit-
uation can be recognized during buildtime by analyzing the process structure.
Analyzing large data-driven process structures, however, generates high e�orts.
COREPRO enables checking soundness on model level and guarantees soundness
for every data-driven process structure that bases on a sound LCM.

To check soundness of a LCM, all OLCs and OLC dependencies (i.e., their
external state transitions) of the LCM are composed. In addition, a unique start
state is added and connected with all start states of the OLCs via direct state
transitions (cf. Fig. 6). Accordingly, all OLC end states are connected with a
unique end state. Direct state transitions are concurrently triggered and lead to
the deactivation of the source state and the activation of the target state (cf.
Table 1). We denote the extended transition system resulting from this as LCM
machine. The LCM machine constitutes a LCS for a data structure where every
element and relation type is instantiated once (to map OLC dependencies for
recursive relation types, it is necessary to contemplate two OLCs for the object
type associated with the recursive relation type). Thereby, e�orts for soundness
checks do not rise with the size of the instantiated process structure but only
depend on the size of the LCM machine. As example consider Fig. 6, which
shows the LCM machine for the LCM depicted in Fig. 5a. Since sub-processes
connected with state transitions do not a�ect soundness checks (we presume
sound sub-processes), they can be neglected when analyzing soundness.
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De�nition 6 (Soundness of the LCM). A LCM machine is sound if each
state of the LCM machine (including its end state) can be enabled by direct or
internal state transitions beginning with the start state of the LCM machine and
every external transition becomes activated (or deactivated) then.

4.3 Creating the Life Cycle Coordination Structure

So far, we have introduced the data part which comprises the data model and
the data structure, and the LCM (consisting of OLCs and OLC dependencies)
which integrates the data model and the sub-processes. Based on this, the data-
driven process structure, i.e., the life cycle coordination structure (LCS), can
be automatically derived for respective data structures. The LCS comprises a
start and an end state, an OLC instance for every object in the data structure,
and external state transitions between these OLC instances according to the
relations de�ned between the objects (cf. Fig. 5b).

De�nition 7 (Life Cycle Coordination Structure). Let dm = (O,R) be
a data structure and let lcm = (olc, olcDEP ) be a life cycle coordination model.
Then: A life cycle coordination structure based on dm and lcm is a tuple
lcs = (olcinst, estinst, sstart, send, ST,ET ) where

� olcinst : O 7→ OLC assigns to each object o ∈ O an instance of the associated
object life cycle olcinst(o) = olc(objtype(o))

� estinst : R 7→ OLCDEP assigns to each relation r ∈ R the associated external
state transitions estinst(r) = est(olcDEP (reltype(r)))

� sstart denotes the initial state and send the �nal state
� ST is the set of direct state transitions connecting the start state of the LCS

with the start states of the instantiated object life cycles
� ET is the set of direct state transitions connecting the end states of the

instantiated object life cycles with the end state of the LCS.

The operations for creating a LCS are de�ned in Table 2. Based on a data
structure and an LCM, three steps become necessary to generate the LCS. Al-
gorithm 1 describes these steps in detail:
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1. For every object in the data structure, the OLC associated with the corre-
sponding object type is instantiated.

2. For every relation in the data structure, the OLC dependencies associated
with the corresponding relation type (i.e., their external state transitions)
are inserted to connect states of the dependent OLCs.

3. Direct state transitions are inserted, which connect the LCS start state with
all OLC start states and all OLC end states with the LCS end state.

As result, we obtain the complete LCS representing the logical view on the
data-driven process structure (cf. Fig. 5b). Such LCS can be transformed to
activity-centered process representations, like BPMN or WS-BPEL.

Checking soundness of an LCS comprising hundreds up to thousands of
sub-processes and (external) state transitions is a complex task to accomplish.
COREPRO enables soundness checking on model level and ensures that every
LCS created on basis of a sound LCM is sound as well (cf. Theorem 1).

Theorem 1 (Soundness of the LCS). Assume that an LCS has been created
with Alg. 1 with a particular data structure and an LCM as input. Then: If the
LCM machine of the LCM is sound (cf. De�nition 6), the created LCS is sound
as well.

Table 2. Operations for Creating an LCS

Operation E�ect

createLCS Creates a new LCS
insertStartState(lcs) Inserts the initial state sstart to the given lcs

insertEndState(lcs) Inserts the �nal state send to the given lcs

insertOLC(lcs,olc) Inserts an instance of the given OLC to the given lcs

insertExtTrans(lcs,s,p,s') Inserts an external state transition from state s = (Transitionsystem,

State) to state s' = (Transitionsystem, State) with the associated
sub-process p to the given lcs

insertDirTrans(lcs,s,s') Inserts a direct state transition from state s = (Transitionsystem,

State) to state s' = (Transitionsystem, State) to the given lcs

Input: DS = (O, R), LCM = (OLC, OLCDEP )1

Output: lcs = (OLCinst, ESTinst, sstart, send, ST, ET )2

// Initialize the LCS and insert start and end state3

lcs := createLCS; s := insertStartState(lcs); e := insertEndState(lcs);4

// Insert an OLC instance for every instantiated object and connect it with the start5

and end state of the LCS via directed state transitions

forall obj ∈ O do6

olc := insertOLC(lcs,olc(objtype(obj)));7

insertDirTrans(lcs, (lcs, sstart), (olc, sstart(olc)));8

insertDirTrans(lcs, (olc, send(olc)), (lcs, send));9

// Insert external state transitions for each instantiated relation10

forall rel = (o1, rt, o2) ∈ R do11

// Insert external state transitions between the OLC of o1 and the OLC of o212

forall est = (s1, p, s2) ∈ olcDEP (rt) do13

insertExtTrans(lcs, (olcinst(o1), s1), p, (olcinst(o2), s2));14

return(lcs);15

Algorithm 1: Generation of the Life Cycle Coordination Structure
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Theorem 1 can be inductively proven: The LCM machine constitutes a sound
LCS for a data structure where every object type and every relation type are
instantiated once. When adding one additional object and all corresponding re-
lations to other objects, we can prove that this leads to a sound LCS again
(n = 1). Making this assumption for n additional objects, we can show that
soundness can still be guaranteed when adding a further object and correspond-
ing relations (n → n + 1). Due to lack of space, we omit further details.

4.4 Change Scenarios

When dealing with data-driven process structures, change management becomes
an important issue. Adaptations of process structures become necessary, for ex-
ample, when the underlying data structure is changed (e.g., when adding a new
object). In COREPRO, such changes can be speci�ed at the data level and
are then automatically translated into corresponding adaptations of the process
structure. Compared to conventional approaches (e.g., the manual adaptation
of activity-centered process structure representations), adaptation e�orts can
be signi�cantly reduced. To illustrate this, we sketch three change scenarios in
which users (e.g., engineers) adapt the (product) data structure.

Removing an object
Example: The Speed Sensor subsystem shall not be processed any longer, i.e.,
the Speed Sensor and all its relations to or from other objects are removed from
the data structure (cf. Fig. 3b).
Conventional approach: Manually removing associated sub-processes and their
incoming and outgoing synchronization links from the process structure.
COREPRO procedure: The corresponding OLC and the external state transitions
are automatically removed from the LCS.

Removing a relation
Example: The Main Unit does not use the Speed Sensor any longer, i.e., the
relation usesSubsystem between the Main Unit and the Speed Sensor object
is removed from the data structure (cf. Fig. 3b).
Conventional approach: Manually removing the sub-process dependencies which
are no longer necessary from the process structure (i.e., synchronization links of
the sub-processes modifying the Main Unit and the Speed Sensor subsystem).
COREPRO procedure: The corresponding external state transitions are auto-
matically removed from the LCS.

Adding an object
Example: A new Head-Up Display subsystem shall be processed as part of the
Navigation system, i.e., a new object is added to the data structure and related
to the Navigation object (cf. Fig. 3b).
Conventional approach: Manually inserting the corresponding sub-processes and
associated synchronization links.
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COREPRO procedure: The corresponding OLC and the external state transitions
are automatically added to the LCS.

Taking these scenarios, COREPRO allows users to apply process structure
changes at a high level of abstraction. Using conventional, activity-driven ap-
proaches for process modeling, process structures would have to be manually
adapted in case of a data structure change. That requires extensive process
knowledge and necessitates additional soundness checks. By contrast, CORE-
PRO signi�cantly reduces e�orts for adaptation. The process structure can be
adapted without comprehensive process knowledge by simply changing the data
structure. The soundness of the resulting process structure is assured, since the
model level (i.e., the data model and the LCM) remains unchanged.

5 Practical Impact

To indicate the practical bene�t of our modeling approach, we introduce a model
calculation for a characteristic process from the car development domain: the
release management (RLM) process for electrical systems [1, 3]. The calculation
(cf. Table 3) bases on the experiences we gained from case studies in this domain.

The release of an electrical system encompasses 200 to 300 components (de-
pending on the car series), which are divided in root components and their
variants (e.g., driver's airbag as root component and passenger's airbag as its
variant). Root components are further divided into categories requiring di�erent
processing. For example, releasing a multimedia component requires di�erent
sub-processes when compared to a security related component. Additionally,
components are grouped into systems (e.g., navigation system covers several
components) to integrate logically coherent components. Finally, systems are
collected in total systems, which represent the car series to be developed (e.g.,
S-Class). Altogether, this leads to the de�nition of a data model with about 20
object types and 25 relation types connecting them.

On instance level, the relation types with a 1:n cardinality lead to more
than 200 instantiated relations. Additionally, there exist dependencies between
components that exchange signals and messages. These relation types are de�ned
with an n:m cardinality leading to more than 400 relations. OLCs for the di�erent
object types coordinate 5 (for components) to 20 (for systems) sub-processes.

In constrast to conventional modeling, the creation of the process structure
constitutes an automated task. In total, the LCS contains 200 to 300 OLCs (ac-
cording to the number of objects) with more than 1300 sub-processes. Relation
types encompass 2 to 6 external state transitions (cf. Table 3) leading to more
than 1500 external state transitions within the generated LCS.

The potential for reducing modeling e�orts when using the instantiation
mechanism of COREPRO depends on the ratio of object types to objects. Even
though the calculation bases on a moderate estimate, it indicates that the mod-
eling e�orts for RLM processes can be signi�cantly reduced by more than 90%.
The bene�t even increases considering the fact that soundness checks (cf. Sect.
4.2) and changes (cf. Sect. 4.4) become less complex.
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Table 3. Projection of the Modeling E�orts Reduction

Model

Data Model LCM

Object Types Relation Types Sub-Processes Ext. Transitions per Relation Type
20 25 5-20 2-6

Instance

Data Structure LCS

Objects Relations Sub-Processes Ext. Transitions
200-300 >600 >1300 >1500

Modeling E�orts Reduced by

>90% >95% >98% >99%

6 Related Work

Activity-driven approaches for process modeling do not focus on the automated
creation of large process structures comprising multiple sub-processes. Interac-
tion graphs [15] and choreography de�nition languages (e.g., [16]), for example,
are activity-centered approaches to specify the choreography between distributed
sub-processes. The data-driven derivation of sub-process dependencies is not
covered. Other approaches partially enable the data-driven creation of process
structures. For example, multiple instantiation of activities based on simple data
structures (set, list) [17, 18] is supported by UML 2.0 activity diagrams (Expan-
sion Region) [14] and BPMN (Multiple Instances) [19]. They enable iterated or
concurrent execution of the same activity for each element given by a �at data
container. Utilization of respective data structures raises further options, such
as data-driven process control with exception handling mechanisms [20]. How-
ever, these approaches aim at the sequential or concurrent execution of multiply
instantiated activities. COREPRO, by contrast, focuses on the de�nition of ar-
bitrary complex data structures and their association with (sub-)processes. The
data-driven process structure in Fig. 7, for example, realizes the interleaved syn-
chronization of sub-processes. It represents a list structure where sub-processes
are executed for every list element. In this context, COREPRO also allows for the
realization of anticipation concepts [21]: Regarding the generated LCS, Process
A for Element 2 can be started even though the processing of Element 1 has
not been �nished.

Approaches for explicitly generating process structures based on bills of ma-
terial are described in [5, 7]. The idea of coordinating activities based on data
dependencies also constitutes the basis of the Case Handling paradigm [6]. The
idea is to model a process structure by relating activities to the data �ow. The
concrete activity execution order at runtime then depends on the availability of
data. Another approach integrating control and data �ow is provided by AHEAD
[22], which o�ers dynamic support for (software) development process structures.
The approach enables the integration of control and data �ow, by relating ac-
tivities to the objects de�ned in the data model. Based on this information,
dynamic task nets are generated. The goal of respective data-driven approaches
is the precise mapping of object relations to sub-process dependencies. Though
the object relations indicate sub-process dependencies (cf. Sect. 2), the informa-
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tion given by relations is insu�cient for their direct mapping to synchronization
edges for three reasons. First, several sub-processes may modify one object,
whereas the relation itself does not re�ect which of these sub-processes have
to be synchronized. Second, the relations do not provide su�cient information
about the direction of synchronization dependencies. In Fig. 1, for example, the
relation points from the Speed Sensor to the Navigation object, while the syn-
chronization dependencies between their sub-processes point in both directions.
Third, it is also requested to associate synchronization dependencies with the
enactment of synchronizing sub-processes (cf. Sect. 4.2).

A general approach following the idea of modeling life cycles and relating
them is Object/Behavior Diagrams. The concept allows for the object-oriented
de�nition of data models which can be enhanced by runtime aspects [8]. The
behavior is de�ned for every object within a Petri Net relied life cycle dia-
gram. Another approach using life cycles for describing operational semantics
of business artifacts (semantic objects) is Operational Speci�cation (OpS) [11].
The collection of all objects and their life cycles speci�es the operational model
for the entire business. The Object-Process Methodology (OPM) is an object-
oriented approach from the engineering domain. It focuses on connecting ob-
jects (or object states) and processes by procedural links [10]. Team Automata
provide a formal method to describe the connection of labeled transition sys-
tems (automata) via external actions associated with (internal) transitions [9].
Automata including transitions with the same external action perform them si-
multaneously. The idea is adopted in [23] where Team-Automata are structured
in an object-oriented way. Its synchronization mechanisms are based on events.
These approaches rather focus on an activity-driven speci�cation of dependen-
cies (based on events) than on the consideration of data relations for process
structure generation. In contrast to event-based synchronization, external state
transitions can be added, removed or disabled (e.g., in order to avoid deadlocks)
without changing the dynamic aspects of the object itself (i.e., the OLC).
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7 Summary and Outlook

The COREPRO approach o�ers promising perspectives with respect to the
modeling and coordination of large data-driven process structures consisting of
numerous sub-processes and their interdependencies. COREPRO supports the
loose coupling of data and sub-processes by de�ning life cycles of data objects,
and it provides a well-de�ned mapping of object relations to OLC dependencies.
Further, COREPRO distinguishes between model and instance level, which en-
ables a high level of abstraction, extensibility and reuse. In particular, modeling
and change e�ectiveness are signi�cantly enhanced by

� introducing model-driven design in conjunction with an instantiation mech-
anism for data-driven process structures

� enabling the instantiation of di�erent data structures and automatically gen-
erating respective data-driven process structures

� integrating data and processes which allows users without process knowledge
to adapt the process structures by changing the data structure.

Another important issue to be considered is the need for �exibility at run-
time, such as applying structural changes during enactment (cf. Sect. 4.4). This
becomes necessary, for example, when the number of objects or relations be-
tween them is not (exactly) known at buildtime. Due to the many sub-process
dependencies, uncontrolled runtime changes may lead to inconsistencies not only
within single OLCs, but also within the whole LCS. In addition to structural
changes, we also have to consider state changes. To realize iterative development
processes, for example, data structures need to be processed several times. How-
ever, that necessitates the (partial) utilization of previous processing states of
objects; i.e., object states which were already activated before execution, have to
be retained. For example, product components which have already been tested
and which remain unchanged do not need to be tested again. Applying such
changes and supporting exceptional situations (e.g., abnormal termination of a
sub-process or backward jumps within an OLC) while preserving consistency is a
challenging problem [2]. Solutions for runtime scenarios and exception handling
are also addressed by COREPRO and will be presented in future publications.

We have implemented major parts of the presented modeling concepts in a
prototype, which we use for a �rst proof-of-concept case study in car develop-
ment [24]. The approach will be applied for modeling, coordinating and main-
taining data-driven process structures in the automotive industry. However, the
presented concept is not speci�c to the engineering domain. We also plan to eval-
uate COREPRO in the healthcare domain, where the approach shall be used to
model medical treatment processes [25].
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