
Supporting Data Collection
in Complex Scenarios with

Dynamic Data Collection Processes

Gregor Grambow, Nicolas Mundbrod, Jens Kolb and Manfred Reichert

Institute of Databases and Information Systems
Ulm University, Germany

{gregor.grambow,nicolas.mundbrod,jens.kolb,manfred.reichert}@uni-ulm.de

http://www.uni-ulm.de/dbis

Abstract. Nowadays, companies have to report a large number of data
sets (e.g., sustainability data) regarding their products to different le-
gal authorities. However, in today’s complex supply chains products are
the outcome of the collaboration of many companies. To gather the
needed data sets, companies have to employ cross-organizational and
long-running data collection processes that imply great variability. To
support such scenarios, we have designed a lightweight, automated ap-
proach for contextual process configuration. That approach can capture
the contextual properties of the respective situations and, based on them,
automatically configure a process instance accordingly, even without hu-
man involvement. Finally, we implemented our approach and started an
industrial evaluation.

Key words: Process Configuration, Business Process Variability, Data Col-
lection, Sustainability, Supply Chain

1 Introduction

In todays’ industry many products are the result of the collaboration of various
companies working together in complex supply chains. Cross-organizational com-
munication in such areas can be quite challenging due to the fact that different
companies have different information systems, data formats, and approaches to
such communication. These days, state authorities, customers and public opinion
demand sustainability compliance from companies, especially in the electronics
and automotive sector. Therefore, companies must report certain sustainability
indicators such as, their greenhouse gas (GHG) emissions or the amount of lead
contained in their products. Such reports usually involve data from suppliers of
the reporting company. Therefore, companies launch a sustainability data collec-
tion process along their supply chain. In turn, this might involve the suppliers of
the suppliers, and so on. Figure 1 illustrates this scenario with three exemplified
tiers of suppliers of a company. While having only two direct suppliers on tier
one, the company also has eight indirect suppliers on the tiers two and three.

http://www.uni-ulm.de/dbis

S2.3

S3.2

S1.3

S1.1 Responder

Requester

Service Provider

Application

Human
S1.2

S2.2

S2.1

S2.4

S3.1

S3.3

S3.5

S3.4

S3.6

Tier 1 Suppliers Tier 2 Suppliers Tier 3 Suppliers Tier n Suppliers

Fig. 1: Supply Chain Scenario

As sustainability data collection is a relatively new and complicated issue,
service providers (e.g., for data validation or lab tests) are involved in such
data collection as well. This fact is exemplified in Figure 1, where three service
providers in different tiers are involved. Another property that makes these data
collection processes even more complex and problematic is the heterogeneity in
the supply chain: companies use different information systems, data formats,
and overall approaches to sustainability data collection. Many of them even
do not have any information system or approach in place for this and answer
with low quality data or not at all. Therefore, no federated system or database
could be applied to cope with such problems and each request involves an often
long-running, manual, and error-prone data collection process. The following
simplified scenario illustrates issues with the data collection process on a small
scale.

Scenario: Sustainability Data Collection
An automotive company wants to collect sustainability data relating to the
quantity of lead contained in a specific part. This concerns two of the com-
pany’s suppliers. One of them has an IHS (In House Solution) in place, the
other has no system and no dedicated responsible for sustainability. For the
smaller company, a service provider is needed to validate the manually col-
lected data in order to ensure that it complies with legal regulations. The
IHS of the other company has its own data format that must be converted
before it can be used. This simple scenario already shows how much com-
plexity results even from simple requests and indicates how this can look
like in bigger scenarios involving hundreds or thousands of companies with
different systems and properties.

In the SustainHub1 project, we develop a centralized information exchange
platform that supports sustainability data collection along the entire supply
chain. We have already thoroughly investigated the properties of such data col-
lection in the automotive and electronics sectors and reported on the challenges
and state-of-the-art regarding this topic [1]. This paper, proposes an approach
that enables an inter-organizational data collection process. Thereby, the main
focus is the capability of this process to automatically configure itself in align-
ment with the context of its concrete execution.

To guarantee the utility of our approach as well as its general applicability, we
have started with collecting problems and requirements directly from the indus-
try. This included telephone interviews with representatives from 15 European
companies from the automotive and electronics sectors, a survey with 124 valid
responses from companies of these sectors, and continuous communication with
a smaller focus group to gather more precise information. Among the most valu-
able information gathered there was a set of core challenges for such a system: as
most coordination for sustainability data exchange between companies is done
manually, it can be problematic to find the right companies, departments, and
persons to get data from as well as to determine, in which cases service providers
must be involved (the first Data Collection Challenge - DCC1). Moreover, this is
aggravated by the different systems and approaches different companies apply.
Even if the right entity or person has been selected, it might still be difficult to
access the data and to get it in a usable format (DCC2). Furthermore, the data
requests rely on a myriad of contextual factors that are only managed implicitly
(DCC3). Thus, a request is not reusable since an arbitrary number of variants
may exist for it (DCC4). A system aiming at the support of such data collection
must explicitly manage and store various data sets: the requests, their variants,
all related context data, and data about the different companies and support
manual and automated data collection.

The remainder of this paper is organized as follows: Section 2 shows our
general approach for a process-driven data collection. Section 3 extends this
approach with additional features regarding context and variability. Section 4
presents the implementation for our concept. This is followed by a discussion of
a preliminary practical application in Section 5, a comprehensive discussion of
related work in Section 6, and the conclusion.

2 Data Collection Governed by Processes

The basic idea behind our approach for supporting data collection in complex
environments is governing the entire data collection procedure by explicitly spec-
ified processes. Furthermore, these processes are automatically enacted by a
Process-Aware Information System (PAIS) integrated into the SustainHub plat-
form. This way, the process of data collection for a specific issue as a sustain-
ability indicator can be explicitly specified through a process type while process

1 SustainHub (Project No.283130) is a collaborative project within the 7th Framework
Programme of the European Commission (Topic ENV.2011.3.1.9-1, Eco-innovation).

instances derived from that type govern concrete data collections regarding that
issue (cf. Figure 2).

Analyze
Data

Gather
Data

Process
Data

Process Template 1
Analyze

Data
Gather
Data

Process
Data

Process Instance 1
Case Request

Role Interface Interface Person System System

Instantiation

Fig. 2: Utilizing Processes for Data Requests

Activities in such a process represent the manual and automatic tasks to be
executed as part of the data collection by different companies. This approach
already covers a number of the elicited requirements. It enables a centralized
and consistent request handling (cf. DCC1) and supports manual as well as
automated data collection (cf. DCC2). One big advantage is the modularity
of the processes. If a new external system shall be integrated, a new activity
component can be developed while the overall data collection process does not
need to be adapted. Finally, the realisation in a PAIS also enables the explicit
specification of the data collection process (cf. DCC4). Through visual modeling,
the creation and maintenance of such processes is facilitated.

However, the process-driven realization can only be the basis for comprehen-
sive and consistent data collection support. To be able to satisfy the requirements
regarding contextual influences, various types of important data and data request
variants, we propose an extended process-driven approach for data collection as
illustrated in Figure 3.

Context
Mapping

Process
Configuration

Configured Process Instance

Pr
oc

es
s

Ty
pe

s

Co
nf

ig
ur

at
io

ns

Da
ta

 M
od

el

Contextual
Influences

ProductCustomer

Customer
Relationship

SustainHub

Users and
other

Systems

Fig. 3: SustainHub Configurable Data Collection Approach

To generate an awareness of contextual influences (e.g. the concrete approach
to data collection in a company, cf. DCC3) and to make them usable for the data
collection process, we define an explicit context mapping approach (as discussed
in Section 3.1). This data is required for enabling the central component of
our approach, i.e., the automatic and context-aware process configuration (as
discussed in Section 3.2). That component uses pre-defined process types and

configuration options to automatically generate a process instance containing all
necessary activities to match the properties of the current requests situation (cf.
DCC4). As basis for this step, we include a comprehensive data model where
contextual influences are stored (cf. DCC3) alongside different kinds of content-
related data. This data model integrates process-related data with customer-
related data as well as contextual information.

We now briefly introduce the different kinds of incorporated data by dif-
ferent sections of our data model. At first, such a system must manage data
about its customers. Therefore, a customer data section comprises data about
the companies, like organizational units or products. Another basic component
of industrial production, which is important for topics like sustainability, are
substances and (sustainability) indicators. As these are not specific for one com-
pany, they are integrated as part of a master data section. In addition, the data
concretely exchanged between the companies is represented within a separate
section (exchange data). To support this data exchange, in turn, the system
must manage certain data relating to the exchange itself (cf. DCC1): For whom
is the data accessible? What are the properties of the requests and responses?
Such data is captured in a runtime data section in the data model. Finally, to be
able to consistently manage the data request process, concepts for the process
and its variants as well as for the contextual meta data influencing the process
have been integrated with the other data. More detailed descriptions of these
concepts and their utilization will follow in the succeeding sections.

3 Variability Aspects of Data Collection

This section deals with the necessary areas for automated process configuration:
The mapping of contextual influences into the system to be used for configuration
and the modeling of the latter.

3.1 Context Mapping

As stated in Section 1, a request regarding the same topic (in this case, a sus-
tainability indicator) may have multiple variants influenced by a myriad of pos-
sible contextual factors (e.g. the number of involved parties or the data formats
used). Hence, if one seeks to implement any kind of automated variant man-
agement, a consistent manageable way of dealing with these factors becomes
crucial. However, the decisions on how to apply process configuration and vari-
ant management often cannot be mapped directly to certain facts existing in the
environment of a system. Moreover, situations might occur, in which different
contextual factors will lead to the same decision(s) according to variant man-
agement. For example, a company could integrate a special four-eyes-principle
approval process for the release of data due to different reasons, e.g., if the data
is intended for a specific customer group or relates to a specific law or regulation.
Nevertheless, it would be cumbersome to enable automatic variant management

by creating a huge number of rules for each and every possible contextual fac-
tor. In the following, therefore, we propose a more generic mapping approach
for making contextual factors usable for decisions regarding the data collection
process.

In our approach, contextual factors are abstracted by introducing two sepa-
rate concepts in a lightweight and easily configurable way: The Context Factor
captures different possible contextual facts existing in the systems’ environment.
Opposed to this, the Process Parameter is used to model a stable set of pa-
rameters directly relevant to the process of data collection. Both concepts are
connected by simple logical rules as illustrated on the left side of Figure 4. In
this example, a simple mapping is shown. If a contact person is configured for a
company (CF1), parameter ’Manual Data Collection’ will be derived. If the com-
pany is connected via a tool connector (CF2), automatic data collection will be
applied (P3). If the company misses a certain certification (CF3), an additional
validation is needed (P2).

P2

P1

P3CF2 P3

CF3 P2

CF1 P1

Context
Factors

Context Rules Process
Parameters

Im
pl

ic
at

io
n

M
ut

ua
l

Ex
cl

us
io

n

CF3

CF2

CF1 P1

P2

P3
P1

P2
P3CF2 P3

CF1 P1CF1

CF2

Contradiction 1 Contradiction 2

P1: Manual Data Collection
P2: Validation needed
P3: Automatic Data Collection

CF1: Contact Person X
CF2: Tool Connector Y
CF3: Certification

missing

Fig. 4: Context Mapping

When exchanging data between companies, various situations might occur, in
which different decisions regarding the process might have implications on each
other. For example, it would make no sense to collect data both automatically
and manually for the same indicator at the same time. To express that, we also
include the two simple constraints ’implication’ and ’mutual exclusion’ for the
parameters. For an example, we refer to Figure 4, where manual and automatic
data collection are mutually exclusive.

Though we put emphasis on keeping the applied rules and constraints simple
and maintainable, there still exist situations, in which these lead to contradic-
tions. One case (Contradiction 1 in Figure 4) involves a contradiction only cre-
ated by the constraints, where one activity requires and permits the occurrence
of another activity at the same time. A second case (Contradiction 2 in Figure
4) occurs when combining certain rules with certain constraints, in which a con-
tradicting set of parameters is produced. To avoid such situations, we integrate
a set of simple correctness checks for constraints and rules.

3.2 Process Configuration

In this section, we will introduce our approach for process configuration. We
have not only considered the aforementioned challenges, but also want to keep
the approach as easy and lightweight as possible to enable users of the Sustain-
Hub platform to configure and manage the approach. Furthermore, our findings
include data about the actual activities of data collection as well as their relation
to contextual data. Data collection often contains a set of basic activities that are
part of each data collection process. Other activities appear mutually exclusive,
e.g. manual or automatic data collection, and no standard activity can be deter-
mined here. In most cases, one or more context factors impose the application
of a set of additional coherent activities rather than one single activity.

In the light of these facts, we opt for the following approach for automatic
process configuration: For one case (e.g. a sustainability indicator) a process
family is created. That process family contains a base process with all basic
activities for that case. Additional activities, added to this base process, are
encapsulated in process fragments. These are automatically added to the process
on account of the parameters of the current situation represented in the system
by the already introduced process parameters and context factors. Thus, we only
rely on one single change pattern applicable to the processes, an insert operation.
This operation has already been described in literature, for its formal semantics,
see [2]. Thus our approach avoids problems with other operations as described
in the context of other approaches like Provop [3].

To keep the approach lightweight and simple, we model both the base process
and the fragments in a PAIS that will be integrated into our approach. Thus,
we can rely on the abilities of the PAIS for modeling and enacting the processes
as well as for checking their correctness.

To enable the system to automatically extend the base process at the right
points with the chosen fragments, we add the concept of the extension point
(EP). Both EPs and fragments have parameters the system can match to find
the right EP for a fragment (see Figure 5 for an example with two EPs and
three fragments with matching parameters). Regarding the connection of the
EPs to the base processes, we have evaluated multiple options as, for example,
connecting them directly to activities. Most options introduce limitations to
the approach or impose a fair amount of additional complexity (see [3] for a
detailed discussion). For these reasons we have selected an approach involving
two connection points of an EP with a base process. These points are connected
with nodes in the process as shown in Figure 5. Taking the nodes as connection
points allows us to reference the nodes’ id for the connection point because this id
is stable and only changes in case of more complicated configuration actions [3].
If the base process contains nodes between the connection points of one EP, an
insertion will be applied in parallel to these, otherwise sequentially. Furthermore,
if more than one fragment shall be inserted at one EP, they will be inserted in
parallel to each other.

The example from Figure 5 illustrates this approach refining the aforemen-
tioned scenario. It comprises four basic activities for configuring the data collec-

Configure Data
Collection

ID: EP1
Start: EP1.start

End: EP1.end
Type: a

Order: 1

Extension Point 1

EP1.start EP1.end

ID: EP2
Start: EP2.start

End: EP2.end
Type: b, c

Order: 2

Extension Point 2

EP2.start EP2.end

Aggregate
Data

Deliver
Data

Inform
Requester

ID: EP3
Start: EP3.start

End: EP3.end
Type: x, y
Order: 3

Extension Point 3

EP3.start EP3.end

Fig. 5: Process Annotation

tion, aggregating the data, and delivering the collected data. To insert further
activities for data collection and processing, three EPs are defined. These have
different connection points to the nodes in the process. Figure 5 further shows
properties for the EPs including the connection points and an EP type (e.g.
’review’ or ’approval’) that will be used to determine which extension(s) may be
applied at that point during configuration. A particular EP may be applicable
for multiple fragments, but multiple EPs for the same fragment are not possible
as it would be ambiguous, for which point to apply it. This is automatically
checked during modeling. Another property, called ’Order’, governs in which or-
der extensions will be applied. It will also be checked that the ordering is not
ambiguous.

However, to correctly insert fragments into a base process other facts must
be considered as well: First, it must be determined whether a fragment, inserted
in a LOOP, shall be executed multiple times. Second, it must be defined how the
activities of a fragment are exactly inserted into the base process. Therefore, we
extend the process fragment with a number of parameters. The first parameter,
’Insert’, governs, if the fragment shall be inserted directly into the base process or
as sub-process. The latter could be considered, i.e., when the fragment comprises
a bigger number of activities with a complicated structure. The second is the
’Type’ that relates to the EP type and is used to match both of them. The third,
’Exec’ governs, if a fragment might be executed multiple times.

Figure 6 illustrates process fragments and their parameters utilizing the sce-
nario presented in Section 1. It contains five fragments: Fragments 1 and 2
comprise the activities for data collection of the two suppliers. They are inte-
grated at the same position in parallel. Fragments 3 and 4 comprise the activities
for data processing, integrated in parallel as well. Fragment 3 further demon-
strates the insertion as sub-process if the base process shall not be bloated with
many activities from large fragments. As both EP1 and EP2 are at the same
position the ’Order’ parameter comes into play governing the insertion of the
data processing activities after the data collection activities. Finally, Fragment
5 contains an activity for demonstrating the insertion at the erroneously defined
EP3. This would cause a violation to the regular nesting of the patterns (as
XOR and AND) in the process called block structure. This is recommended for
understandable modeling [4] and required by many PAIS for correct execution.
As aforementioned, such definitions are prevented by automatic checks.

Collect Data
Automatically

Inform Person
(Responsible)

Collect Data
Manually

ID: PF1
Type: a
Insert: Inline
Exec: single

ID: PF2
Type: a
Insert: Inline
Exec: single

Process Fragment 2

Process Fragment 1

Validate
Data

Process Fragment 3

Convert
Data

ID: PF4
Type: c
Insert: Inline
Exec: single

Process
Fragment 4

Request
Validation

Approve
Reiceipt

ID: PF5
Type: x
Insert: Inline
Exec: single

Process
Fragment 5

ID: PF3
Type: b
Insert: Sub
Exec: single

Configure Data
Collection

Aggregate
Data

Deliver
Data

Inform
Requester

Inform Person
(Responsible)

Collect Data
Manually

Collect Data
Automatically

Do
Validation

Convert
Data

Validate
Data

Request
Validation

Approve
Reiceipt

Fig. 6: Process Fragments Insertion

By relying on the capabilities of the PAIS, we keep the number of additional
correctness checks small. However, connection points are not checked by the
PAIS and could impose erroneous configurations. To keep correctness checks on
them simple we rely on two things: The relation of two connection points of one
EP and block-structured processes [4]. The first fact avoids the need to check all
mutual connections of all connection points as two always belong together. The
second one implies certain guarantees regarding the structuring of the process
models. That way, we only have to check a small set of cases, as e.g., an erroneous
definition of an extension point, as EP3 in Figure 5 that would cause a violation
to the block structure when inserting a fragment as shown in Figure 6.

4 Implementation

This section elaborates on the concrete realization of the concepts presented in
Section 3. It shows how the abstract context mapping and process configuration
concepts can be transformed into a concrete implementation. At first, we discuss
the classes we created to implement our approach. Thereafter, we elaborate on
the components we apply to concretely conduct the process configurations.

To illustrate the relations of the concepts crucial for our concept, Figure 7
shows a simplified class diagram. The latter indicates a separation between the
classes defining the configuration concepts (build-time) and classes managing
their execution (runtime). To be able to reuse a process family easily in different
contexts, we separate the concepts into a process family (class ProcessFamily)
and a so-called context application (class ContextApplication). The process
family comprises the concepts for representing the base process as well as the
process fragments (classes AdaptableProcessTemplate and AdaptableProcess

-TemplateFragment). These classes hold references to concrete process tem-
plates of the PAIS. In addition, the base process has an arbitrary number of
extension points (class ExtensionPoint) that mark the points where process
fragments may be inserted. In order to be able to determine, when and at which

extension point one of these fragments shall be inserted, we integrate an activa-
tion condition (class Condition). This condition implements an interface we use
to unite all rules or expressions of our implementation (interface Expression).
The activation condition depends on the set of process parameters connected
to the process template (class ProcessParameter). As discussed, the process
parameters may be associated with constraints. These are realized by the class
ProcessParamterConstraint, which implements the Expression interface as
well.

To be able to use a process family for a certain situation, we must map
existing contextual factors into SustainHub. That way, they become usable
for the process parameters. This is done by the context application (class
ContextApplication) that encapsulates process parameters as well as context
rules (class ContextRule). A context rule, in turn, refers to context factors and
process parameters. The rule itself is implemented as a JavaScript expression
(class JavaScriptExpression) that also implements the expression interface.

Scenario

«interface»
Expression

1

*

ContextFactorContextApplication

ExtensionPointAdaptableProcessTemplate

ContextRule

ProcessFamily

ProcessParameter AdaptableProcessTemplateFragment

ConditionJavaScriptExpression

ProcessInstance

1

*

1 1

1 *
1 *

1

*

1 1

1

1

*

1*

1

*

1

1

1

11

*1

runtime
buildtime

ProcessParameterConstraint

1

1

Fig. 7: Class Diagram

At runtime, we apply a so-called scenario (class Scenario) that models a
current situation. It comprises all concepts of a process family and a context
application via an included context application. Besides that, the scenario also
refers to multiple process instances (class ProcessInstance), which represent
the base process and potential sub-processes executed in the PAIS.

We proceed with a discussion of the concrete components and procedure
at runtime. First of all, we have implemented the process configuration as an
adaptation operation on the running process instances instead of configuring the
process templates. Otherwise we would have created a high number of additional
configured process templates for each possible configuration. Therefore, we have
created an additional automatic adaptation component that interacts with the
PAIS and the process instance. This is illustrated in Figure 8.

In the following, we introduce the different steps performed for the execution
of a scenario. The first action is to start a process instance (cf. Figure 8 (1))

Scenario
#1

Fragment A

Insert
Fragment A

Adaption Operation Queues

2

Start
Process &
Register
Observer

Setup
Adaption
Scenario

Execute Activity

Analyse
and Adapt

Request
Decision

Request
Approaval

3

5

7

1

Automatic Adaption Component

Process Instance #1

PAIS

Insert
Fragment A

6

Schedule Fragment
Insertion

4

Fig. 8: Configuration Procedure

that corresponds to a base process of a process family. This action also registers
the automatic adaptation component as observer on this process instance so the
former can interact with the latter. This is necessary due to a specific property
of adaptable PAIS: For adapting a running process instance, instance execution
must be temporarily suspended. This can only be done when no activity is
active. Being registered as observer, the automatic adaptation component may
apply adaptations directly when the instance gets suspended. The first action
of the automatic adaptation component is to setup the scenario for the current
process instance (2). After that, the first activity of the process instance gets
executed (3). For every base process, this activity is a so-called ‘analyse and
adapt’ activity we apply to gather context information from both the user and
the environment. This data is then stored as context factors and passed to the
automatic adaptation component (4). The latter then starts a scenario engine
that determines the adaptation actions from the context factors. After that it
schedules a suspension of the process instance, which is applied right after the
termination of the ‘analyse and adapt’ activity.

When the ’anaylse and adapt’ activity is finished, the process instance is
suspended and the automatic adaptation component is triggered (5). The latter
then uses the API of the PAIS to apply the scheduled adaptations (6). Following
this, the instance is reactivated and proceeds with its execution (7). This ap-
proach bears the advantage that the running process instance can be adapted at
any position after the ‘analyse and adapt’ activity, while the user is not impeded
from the adaptation.

Having explained our adaptation approach abstractly, we now go into detail
about the interaction between the components. This is illustrated as a sequence
diagram (cf. Figure 9).

After being activated by the PAIS, the ‘analyse and adapt’ activity deter-
mines the context factors values. Then, it calls the automatic adaptation compo-
nent via a REST interface passing the id of the process instance and the context
values to it. The adaptation component uses the ID to determine the right sce-

Base Process Instance
#1 EngineAdaptation Component

Analyze & Adapt Activityexecute activity

adapt(#1, ctxVal)

execute(scen, ctxVal)

applyOps(scenario, #1, ops)schedule(#1, ops)
signal suspend

onSustpend(#1)

insertFragments

return & continue

detAdaptOps(scen, ctxVal) : ops

determine scenario

detemine context values

suspend & fire suspension event

checkForAdaptations(#1)

applyAdaptations(#1, ops)

Fig. 9: Sequence Diagram

nario and calls the engine to execute the scenario with the received context
values. In turn, the engine uses this data to determine the concrete adapta-
tion operations. In particular, it runs the context rules to obtain the process
parameters and the activation conditions to determine which fragments are to
be inserted for the current situation. After that, the engine applies these oper-
ations meaning it signals the adaptation component and the activity to signal
the suspension of the process instance.

When the ‘analyse and adapt’ activity finishes, the instance gets suspended
automatically and the adaptation component gets triggered to apply the adap-
tations. The latter then checks, which operations are scheduled and applies them
to the instance. Finally, the adaptation component returns control to the process
instance that proceeds with its execution.

5 Preliminary Practical Application

We already implemented a set of indicator use cases and, based on that, we
have had a first feedback loop with our industry partners in the SustainHub
project. As our partner companies could confirm the practical applicability of
our approach, we will now continue to implement a bigger set of indicators for
further evaluations. In the following, we show one use case dealing with energy
consumption that is rather simple. It involves three context factors based on
the following questions: Can the responder distinguish between own and bought
energy, between consumption categories, and energy sources? The context factors
are mapped to one process parameter. In Figure 10, we show this mapping, the
base process and an example fragment modeled in the PAIS we used for our
implementation (AristaFlow [5]), and the SustainHub web-GUI while executing
this process. In addition to this, we have recently started to implement a use
case from the educational domain: the management of theses at a university.
Our approach shows promise to also suit this domain well.

P1=
1

¬ CF1 ᴧ ¬ CF2 ᴧ ¬ CF3 P1=1CF1
CF1 ᴧ ¬ CF2 ᴧ ¬ CF3 P1=1

¬ CF1 ᴧ CF2 ᴧ ¬ CF3 P1=1

¬ CF1 ᴧ ¬ CF2 ᴧ CF3 P1=1

¬ CF1 ᴧ CF2 ᴧ CF3 P1=2

CF1 ᴧ CF2 ᴧ CF3 P1=2

CF1 ᴧ ¬ CF2 ᴧ CF3 P1=3

CF1 ᴧ CF2 ᴧ ¬ CF3 P1=3

CF2

CF3

P1=
2

P1=
3

Distinguish: Own/bought Energy Data Collection = Simple

Data Collection = Consumption Cat

Data Collection = Energy Origin

Distinguish: Consumption Category

Distinguish: Energy Sources

Base Process Fragment: Energy Origin

Fig. 10: Application Use Case

6 Related Work

The the area of sustainable supply chain communication is relatively new. De-
spite this fact, a set of approaches exist in this area (e.g., [6] or [7]). However, in-
stead of proposing technical solutions, they focus on analyzing the importance of
corporate sustainability reporting or evaluating sustainability indicators. There-
fore, we will focus on the technical aspects in the rest of this section.

Regarding the topic of process configuration, various approaches exist. Most
of them focus on the modeling of configuration aspects of processes. One example
is C-EPC [8], which enables behavior-based configurations by integrating con-
figurable elements into a process model. Another approach with the same focus
is ADOM [9]. It allows for the specification of constraints and guidelines on a
process model to support variability modeling. Such approaches focus on the ex-
tension of available process modeling notations and produce maximized models
containing all possible activities. Such models might be difficult to comprehend
and maintain.

In [10], a comprehensive meta-model for process variability is proposed. It in-
corporates a set of different perspectives, as e.g., a functional as well as a resource
perspective. Therefore, it allows specifying a rich set of process information as
well as necessary configurations and changes to it. Compared to our approach,
this meta model is rather complicated and heavyweight and therefore difficult
to understand. Moreover, it lacks adequate facilities for context modeling.

The approach presented in [11] features a meta model for process fragments
as well as also a definition for actions on these fragments (e.g., composition).
However, it strongly focuses on this topic and neglects the modeling of contex-
tual facts that trigger such operations. Another meta model is proposed by [12].
Its intend is to extend process models to incorporate aspects that have been
neglected so far, i.e., the data and resource perspectives. The authors therefore
introduce role-task and object-task associations for EPCs. This, however, pro-
vides no additional support for easier automated or contextual configurations.

Besides the approaches just discussed, which focus on the configurability
topic in general, there exist other approaches focusing on specific aspects like
correctness or recovery. For example, [13] provides a concept for enabling recov-
ery strategies for workflows incorporating dynamically inserted fragments. This
is achieved by introducing transactional behaviour for the fragments, which en-
ables two different recovery strategies: a forward recovery and a backward re-
covery strategy. The former repairs a faulted process fragment by executing
additional process logic. This is achieved by inserting a new fragment into the
faulted one that is capable of repairing it. The backward recovery strategy, in
turn, is applied if the problem is too severe to repair the fragment. Therefore, it
is compensated or removed to enable another way of achieving the business goal
of the process. The approach presented in [14] aims at presenting correctness
for process configuration. In particular, it enables verification of configurable
process models intended for execution. This verification is executed at design
time and imposes no additional constraints on the model. The authors have
further implemented their approach concretely for the C-YAWL language. Both
of these approaches offer solutions for specific aspects of process configuration.
None of them, however, provides means to support automated and contextual
configuration abilities as out approach does.

All modeling approaches share the same drawbacks: First, they strongly fo-
cus on the modeling of process configuration aspects and neglect its execution.
Second, process configuration must be manually applied by humans, which might
be complicated and time-consuming. Two approaches, which take the automatic
composition of processes out of a set of fragments into account are presented
in [15] and [16]. The former addresses the issue of incorporating new run-time
knowledge in pervasive computing. It employs pervasive process fragments and
allows modeling incomplete and contextual knowledge. To be able to reach the
process goal and include dynamic contextual knowledge, all relevant data is en-
coded as AI planning problem. In [16], however, an approach for dynamically
composing fragments at run-time is presented. It is applied it to a logistics sce-
nario and includes an explicit variation model as addition to a base process
model and process fragments. At run-time a solver creates a solution using the
specified models and context data implying the insertion of fragments matching
the specified situation.

Both approaches focus strongly on the automatic selection of potentially
concurring fragments. In contrast, our approach targets user support as well: we
emphasize keeping the model simple and apply correctness checks for the user-

modeled concepts. An approach, more closely related to ours, is Provop [3]. It
allows storing a base process and corresponding pre-configured configurations. As
opposed to Provop, SustainHub provides a framework for completely automatic,
context-aware configuration of processes without need for any human interaction.
Furthermore, Provop is more fine-grained, complicated, and heavyweight.

Another approach having many similarities to ours is Corepro [17]. It enables
modeling and automated generation of large process structures. Furthermore, it
comprises features for dynamic runtime adaptation as well as exception han-
dling. However, it has one major drawback: context data utilized to generate the
processes is limited to product data. Processes get generated solely relating to
the product for whose production they intended. Further reading regarding other
configuration approaches can be found in [18] and [19] as well as our predecessor
paper for SustainHub [1].

7 Conclusion

In this paper, we have introduced a lightweight approach for automatic and
contextual process configuration as required in complex scenarios. We have in-
vestigated concrete issues relating to sustainability data collection in supply
chains. Our approach centralizes data and process management uniting many
different factors in one data model and supporting the entire data collection
procedure based on process templates executable in a PAIS. Moreover, we en-
able this approach to apply automated process configurations conforming to
different situations by applying a simple model allowing for mapping contextual
factors to parameters for the configuration. However, our approach is not only
theoretical but is applicable in a real information system to support supply chain
communication. Therefore, we have shown specifics of the implementation of our
concepts. In future work, we plan to continue the evaluation of our work with
our industrial partners and also in the educational domain. Further, we plan
to extend our approach to cover further aspects regarding runtime variability,
automated monitoring, and automated data quality management.

Acknowledgement

The project SustainHub (Project No.283130) is sponsored by the EU in the 7th
Framework Programme of the European Commission (Topic ENV.2011.3.1.9-1,
Eco-innovation).

References

1. Grambow, G., Mundbrod, N., Steller, V., Reichert, M.: Challenges of applying
adaptive processes to enable variability in sustainability data collection. In: 3rd
Int’l Symposium on Data-Driven Process Discovery and Analysis. (2013) 74–88

2. Rinderle-Ma, S., Reichert, M., Weber, B.: On the formal semantics of change pat-
terns in process-aware information systems. In: Proc. 27th Int’l Conf on Concept
Modeling (ER’08). Number 5231 in LNCS, Springer (October 2008) 279–293

3. Hallerbach, A., Bauer, T., Reichert, M.: Configuration and management of process
variants. In: Int’l Handbook on Business Process Management I. Springer (2010)
237–255

4. Mendling, J., Reijers, H.A., van der Aalst, W.M.: Seven process modeling guide-
lines (7pmg). Information and Software Technology 52(2) (2010) 127–136

5. Dadam, P., Reichert, M.: The adept project: A decade of research and development
for robust and flexible process support - challenges and achievements. Computer
Science - Research and Development 23(2) (2009) 81–97

6. Pagell, M., Wu, Z.: Building a more complete theory of sustainable supply chain
management using case studies of 10 exemplars. Journal of Supply Chain Man-
agement 45(2) (2009) 37–56

7. Singh, R.K., Murty, H.R., Gupta, S.K., Dikshit, A.K.: An overview of sustainability
assessment methodologies. Ecological indicators 9(2) (2009) 189–212

8. Rosemann, M., van der Aalst, W.M.P.: A configurable reference modelling lan-
guage. Information Systems 32(1) (2005) 1–23

9. Reinhartz-Berger, I., Soffer, P., Sturm, A.: Extending the adaptability of reference
models. IEEE Trans on Syst, Man, and Cyber, Part A 40(5) (2010) 1045–1056

10. Saidani, O., Nurcan, S.: Business process modeling: A multi-perspective approach
integrating variability. In: BPMDS 2014. (2014) 169–183

11. Eberle, H., Leymann, F., Schleicher, D., Schumm, D., Unger, T.: Process Fragment
Composition Operations. In: Proceedings of APSCC 2010, IEEE Xplore (December
2010) 1–7

12. La Rosa, M., Dumas, M., ter Hofstede, A.H., Mendling, J., Gottschalk, F.: Beyond
control-flow: Extending business process configuration to roles and objects. In:
Conceptual Modeling-ER 2008. Springer (2008) 199–215

13. Eberle, H., Leymann, F., Unger, T.: Transactional process fragments - recovery
strategies for flexible workflows with process fragments. In: APSCC 2010. (2010)
250 – 257

14. Van der Aalst, W., Lohmann, N., La Rosa, M., Xu, J.: Correctness ensuring pro-
cess configuration: An approach based on partner synthesis. In: Business Process
Management. Springer (2010) 95–111

15. Sirbu, A., Marconi, A., Pistore, M., Eberle, H., Leymann, F., Unger, T.: Dynamic
composition of pervasive process fragments. In: ICWS 2011. (July 2011) 73–80

16. Murguzur, A., De Carlos, X., Trujillo, S., Sagardui, G.: Dynamic composition of
pervasive process fragments. In: CAiSE 2014. (2014) 241–255

17. Müller, D., Reichert, M., Herbst, J.: A new paradigm for the enactment and
dynamic adaptation of data-driven process structures. In: 20th Int’l Conf. on
Advanced Information Systems Engineering (CAiSE’08). Number 5074 in LNCS,
Springer (June 2008) 48–63

18. Torres, V., Zugal, S., Weber, B., Reichert, M., Ayora, C., Pelechano, V.: A qualita-
tive comparison of approaches supporting business process variability. In: BPM’12
Workshops. LNBIP, Springer (September 2012)

19. Ayora, C., Torres, V., Weber, B., Reichert, M., Pelechano, V.: Vivace: A Framework
for the Systematic Evaluation of Variability Support in Process-Aware Information
Systems. Information and Software Technology (May 2014)

	Supporting Data Collectionin Complex Scenarios withDynamic Data Collection Processes
	Gregor Grambow, Nicolas Mundbrod, Jens Kolb and Manfred Reichert
	Introduction
	Data Collection Governed by Processes
	Variability Aspects of Data Collection
	Context Mapping
	Process Configuration

	Implementation
	Preliminary Practical Application
	Related Work
	Conclusion
	References

