On Maintaining Semantic Networks:
Challenges, Algorithms, Use Cases

Klaus Ulmschneider!, Bernd Michelberger?, Birte Glimm',
Bela Mutschler?, Manfred Reichert!

'Ulm University, Germany
University of Applied Sciences Ravensburg-Weingarten, Germany

Purpose — Knowledge workers are confronted with a massive load of data from heterogeneous
sources, making it difficult for them to discover information relevant in the context of their daily
tasks. As a particular challenge, enterprise information needs to be aligned with business
processes. In previous work, the authors introduced the Semantic Network (SN) approach for
bridging this gap, i.e., for discovering explicit relations between enterprise information and
business processes. What has been neglected so far, however, is SN maintenance, which is
required to keep an SN consistent, complete, and up-to-date. The paper tackles this issue and
extends the SN approach with methods and algorithms for enabling SN maintenance.

Design/methodology/approach — The paper illustrates an approach for SN maintenance.
Specifically, the authors show how an SN evolves over time, classify properties of objects and
relations captured in an SN, and show how these properties can be maintained. An empirical
evaluation, which is based on synthetic and real-world data, investigates the performance,
scalability and practicability of the proposed algorithms.

Findings — The authors prove the feasibility of the introduced algorithms in terms of runtime
performance with a proof-of-concept implementation. Further, a real-world case from the
automotive domain confirms the applicability of the SN maintenance approach.

Originality/value — As opposed to existing work, the presented approach allows for the
automated and consistent maintenance of SNs. Furthermore, the applicability of the presented
SN maintenance approach is validated in the context of a real-world scenario as well as two
business cases.

Keywords — Semantic network, knowledge representation, evolution, maintenance, algorithm,
knowledge-intensive business process, technology monitoring, decision support

1 Introduction

Knowledge workers and decision makers are confronted with a continuously increasing load of
data they have to cope with during daily work. Examples include e-mails, office files, checklists,
guidelines, fact sheets, web pages, and best practices. In daily practice, knowledge workers and
decision makers are not only interested in getting access to this data, but they also require
comprehensive and aggregated information when performing specific tasks in a business
process context (Michelberger et al., 2012a). Handling such information is by far more complex
and time-consuming than just storing data. For example, this information might be incomplete,
incorrect, unreliable, unstructured, or outdated (Michelberger et al., 2011a; Rowley, 2007).

A particular challenge is to align enterprise information with business processes and to provide
relevant information to knowledge workers and decision makers. In practice, enterprise
information is not only stored in distributed and heterogeneous sources, but also managed
separately from business processes. For example, shared drives, databases, enterprise portals,
and enterprise information systems are used to store the information. In turn, business
processes and their tasks are managed using process-aware information systems (Reichert and
Weber, 2012).

In such an environment, information and business processes are often linked manually as well
as statically. For example, it has been shown that enterprise portals rather contain complex and
static content (e.g., long lists of documents, large process maps). In turn, this rather confuses
users (Hipp et al., 2014). Therefore, it is challenging for the latter to identify the relations
between enterprise information and business processes, which is crucial when performing
specific process tasks.

In previous work, we introduced the Semantic Network (SN) approach bridging the gap
between enterprise information and business processes (Michelberger et al., 2013). Such an SN
can be created using in a bottom-up manner, i.e., starting with the integration of enterprise
information and business processes from heterogeneous sources (Michelberger et al., 2012b).
Following this, the integrated information and business processes are syntactically and
semantically analyzed. The resulting SN then comprises unified information objects (e.g.,
checklists, guidelines, forms), process objects (e.g., pools, lanes, tasks, gateways, events), and
semantic relations (e.g., “is similar to”, “is used by”). More specifically, information objects are
needed when performing the task of a business process. In turn, process objects correspond to
process elements, such as tasks or gateways, that guide process-oriented work. Finally,
semantic relations allow identifying inter-linked objects in different ways, e.g., information
objects referring to the same topic or objects required for performing a particular process task.
An SN constitutes the basis for the process-centric delivery of relevant enterprise information
to knowledge workers and decision makers (cf. Fig. 1). More specifically, an SN offers an
application interface that may be queried to retrieve the required information (Hipp et al.,
2013). Based on a query (e.g., “information objects relevant for creating a review”), the SN
automatically delivers respective information objects to users (Michelberger et al., 2012b).

Delivering relevant
information objects

7 O
Process Object .../ “ N » % ’\@

Information Object

Semantic Relation””

Figure 1: Delivering relevant information objects

In order to provide that process information to process participants fitting best to their current
demands, the information and process objects captured in an SN need to be complete,
consistent, and up-to-date. Consequently, an SN must be continuously maintained. In two case
studies as well as an online survey (Hipp et al., 2011; Michelberger et al., 2011b), we have
already shown that SN maintenance is a prerequisite to be able to continuously provide the
required information to knowledge workers and decision makers. SN maintenance, however, is
a non-trivial task. For example, objects may be added (e.g., new guidelines are created),
updated (e.g., a process task is modified), or deleted (e.g., a checklist is no longer valid).
Likewise, relations may be established (e.g., when discovering that two documents have the
same author or are stored in the same file format), updated (e.g., two forms become more
similar to each other), or deleted (e.g., two documents have no longer the same author). On
one hand, such changes may happen outside the SN (e.g., a checklist may have been changed in
a database), i.e., the change is exogenous. On the other, changes may occur inside the SN (e.g.,
a lifecycle status change of an object like a guideline becoming outdated). These changes, in
turn, are denoted as endogenous. Both exogenous and endogenous changes must be properly
handled by the SN (cf. Fig. 2).

SN

Exogenous
Data /E???g?i ’A\J Endogenous
Source)@ ___~/ Changes

Figure 2: Exogenous and endogenous changes

Picking up the aforementioned challenges regarding SN maintenance, the contribution of this
paper is as follows: First, we propose an approach for SN maintenance. Specifically, we show
how SNs evolve over time and identify characteristics of object and relation properties as well
as their influence with respect to SN maintenance. Second, we introduce three algorithms
dealing with exogenous and endogenous changes of an SN. In this context, we examine the
feasibility and costs of the algorithms through a proof-of-concept implementation. Further, we
demonstrate based on an empirical evaluation in the automotive domain, that automated SN
maintenance is essential, while being practical at the same time. Note that this paper provides
an extended version of the work we presented in Michelberger et al. (2014). The additional
contributions are as follows:

e The paper illustrates the use of the three algorithms along two real-world use cases. The

3

first one illustrates the monitoring of technologies in the automotive domain, while the
second one deals with decision making in the context of technology management.

e The paper comprises a detailed description of the six phases to be passed when creating
an SN. In particular, the sixth phase corresponds to SN maintenance.

e The paper provides a detailed discussion on the advantages and disadvantages of the SN
approach. Further, it provides a substantially extended discussion of related work.

e The paper provides deeper insight into the case study.

The remainder of the paper is organized as follows. Section 2 introduces the preliminaries.
Section 3 then presents the SN maintenance approach. Section 4 validates the costs of the
algorithms and presents a case study demonstrating their applicability. Section 5 deals with the
application of the maintenance approach based on two real-world use cases. Finally, Section 6
discusses related work and Section 7 concludes the paper.

2 Preliminaries

An SN constitutes a labeled and weighted directed graph whose vertices represent objects and
the (labeled) edges represent the semantic relations between the objects with weights
indicating the relevance of the relations. A weight is expressed in terms of a number ranging
between 0 and 1, with 1 indicating the strongest possible semantic relation.

Definition 1 (Semantic Network): A Semantic Network SN is a tuple (V,E,L, W, f, f,), where

V is a set of vertices such that each VeV represents an information object or a process object;
E is a multiset of edges such that each edge e=(V,V))eE, v,V eV and vV, represents a

relation between such objects. The function f :E — L labels each edge e € E with an edge
label from the set of labels L. Furthermore, the function f,:E —>W assigns a weight from the

set of weights W to each edge e € E . Given an edge € =(V,V') € E, we call v the source and V'
the destination of e .

Definition 2 (Neighborhood): Given a vertex v eV , the internal neighborhood of v, denoted
[(v), is the set of vertices {V'|(V',V) € E}. Analogously, for veV , the external neighborhood
of v, denoted I'*(V), is the set of vertices {V'|(V,V')€E}. Then, the total neighborhood of
v eV isthe union of the internal and external neighborhood of v, denoted I'(V).

Definition 3 (Degree): The incoming degree of a vertex VeV is the number of incoming edges
and the outgoing degree is the number of its outgoing edges. The total degree of v is the sum
of its incoming and outgoing degree.

For example, given two edges e=(v,V),e'=(V,V)eE, v,V,vV' €V, we call v an internal
neighbor of V' and V" an external neighbor of V'. Thus, the total degree of V' is 2.

Note that we often refer to vertices as objects (e.g., information and process objects) and to
edges as relations of an SN. We next define properties for vertices and edges.

4

Definition 4 (Properties): Each vertex VeV and each edge e € E has a set of properties P(V)
and P(e), respectively, where each p€P(V)UP(e) is a pair (key,val). We denote key as the
unique name and val as the value of p and write key(V) (key(e)) to denote val.

In order to create an SN, business processes and pieces of information, possibly from different
data sources (e.g., process repositories, shared drives), are transformed into process and
information objects (cf. Figs. 3(a) and 3(b)), each represented by a vertex and its according
properties. The transformation ensures that proprietary formats (e.g., office formats) are
converted into a uniform format, which allows analyzing the SN objects.

After that, SN objects are syntactically and semantically analyzed to detect their semantic
relations (cf. Fig. 3(c)) (Hipp et al., 2013). First, properties (e.g., authorship) are compared
(syntactic analysis), e.g., to link objects with the same author. Second, the properties of the
objects are analyzed (semantic analysis). For this purpose, algorithms from the fields of data
mining, text mining (e.g., text preprocessing, linguistic preprocessing, clustering, classification,
information extraction), pattern-matching, and machine learning (e.g., supervised learning,
unsupervised learning, reinforcement learning, transduction) are applied (Hotho et al., 2005;
Wurzer, 2008) in order to further classify and group correlated objects.

Business Processes

Information

Figure 3: Schematic creation of an SN

Semantic relations in an SN exist between information objects (e.g., a guideline similar to
another one) or process objects (e.g., an event triggering a sub-process). Additionally, semantic
relations exist between information and process objects (e.g., an instruction required for
executing a specific process task).

Generally, an SN is created in six consecutive phases (cf. Fig. 4) following a bottom-up
approach, i.e., we start with the integration of business processes and enterprise information
that originating from heterogeneous sources such as databases, shared drives, enterprise
portals, process repositories, or enterprise information systems (Michelberger et al., 2013).

In Phase 1, business processes relevant for an SN need to be identified and integrated. In this
context, relevancy depends on which processes shall be supported by the SN. The business
processes to be integrated must be explicitly specified, e.g., using a process modeling language
such as BPMN (Freund and Riicker, 2012) or EPC (Scheer, 2002). Only such an explicit process
description allows for the automated transformation of a process schema and its corresponding
process instances into process objects. For this purpose, all relevant process objects (e.g., tasks,
events, gateways, data objects, pools, lanes, sequence flows, message flows, or associations)
are identified. In turn, the resulting objects are then used to create the SN's first stage of

5

expansion. In Phase 2, relevant process information (e.g., e-mails, office files, manuals,
templates, forms, checklists, or guidelines) is added to the SN; i.e., the already existing SN is
extended by adding information objects of different granularity levels, ranging from fine-grained
information (e.g., database tuple) to coarse-grained one (e.g., multi-page office document).

a @ Start
Integration of
@ Business Processes @
Maintenance of Objects Integration of
and Relations Process Information
Determination of Cross- Determination of Process
Object Relations 4@7 Object Relations

Determination of
Information Object Relations

Figure 4: Construction phases of the SN

In Phase 3, the relations among the process objects are identified, i.e., process objects such as
sequence flows, associations or message flows are transformed into process object relations. In
Phase 4, the information object relations between the SN information objects are discovered.
Explicit relations, like hyperlinks in documents, are discovered first. Then, algorithms from the
fields of data mining, text mining, pattern-matching, and machine learning are applied to
discover implicit relations as well (Hotho et al., 2005; Wurzer, 2008). In Phase 5, in turn, cross-
object relations between information and process objects are identified. For this purpose similar
algorithms as used in Phases 3 and 4 are applied. In addition, pre-defined business rules (e.g.,
conditional constraints, derivations or process rules) are used to detect further relations
(Michelberger et al., 2012b; Wurzer, 2008). Finally, in Phase 6, the SN is maintained. This phase
deals with the continuous integration as well as the continuous analysis of information and
process objects including their corresponding relations. Note that SN maintenance constitutes a
prerequisite for providing relevant and up-to-date information to knowledge workers and
decision makers. In the following, we present concepts and algorithms used in the maintenance
phase.

3 Maintaining Semantic Networks

This section introduces the SN maintenance approach. First, we show how an SN evolves over
time (cf. Section 3.1). Second, we illustrate why properties of objects and relations are
important (cf. Section 3.2). Third, we present a collection of algorithms for properly maintaining
SNs (cf. Section 3.3).

3.1 Evolution

SN evolution is driven by exogenous as well as endogenous changes. These, in turn, result in
changes of objects and relations including their property values. Therefore, we further
distinguish between evolution in depth and breadth (Oertelt and Ulmschneider, 2013). Depth is

6

defined by the size of all property values of an SN, i.e., the amount of information (e.g., the
information stored with respect to all SN objects). Breadth, in turn, is defined as the number of
relationships in an SN, i.e., the cardinality of the set of edges.

Depth may be increased by adding objects (e.g., new documents on a shared drive), adding
properties (e.g., adding keywords to a object), or updating property values (e.g., describing a
property in more detail) (cf. Fig. 5(a)). In turn, deleting objects and properties decreases the
depth of an SN (cf. Fig. 5(b)). Note that updates of property values might decrease depth as well.
Breadth can be increased by adding relations, e.g., adding a link between two objects (cf. Fig.
5(c)). By contrast, deleting relations (e.g., two objects no longer have the same author)
decreases breadth (cf. Fig. 5(d)). Hence, depth and breadth are indicators for the cost of
performing maintenance tasks.

Comp(85) @ mp @ (35 mp (5o) (B3 mb (35)

(a) increase depth (b) decrease depth (c) increase breadth ~ (d) decrease breadth

Figure 5: SN evolution in depth and breadth

In order to formalize SN maintenance operations, we need a component which is capable to
adapt exogenous and endogenous changes to the SN. We achieve such functionality by the
concept of an action.

Definition 5 (Action): An action changes an SN in a structured and standardized way. Each
action a has a set of parameters PA@), where each pacPA(Q) is a pair (key,val). We call

key the unique name and val the value of pa and write key(a) to denote val. A parameter
pa, in turn, is either mandatory or optional. If pa with key Key is mandatory, then, for each
action a, there exists a value val, such that (key,val,) e PA@).

Typical mandatory parameters of an action are a unique identifier uri (e.g., a URL) and the
function func (e.g., add, update, delete) to be executed. Actions are triggered by exogenous or
endogenous changes (cf. Fig. 6), e.g., when a document on a shared drive is deleted (an
exogenous change) or becomes outdated (an endogenous change). Accordingly, respective
events trigger add, update and delete operations on the SN. Therefore, actions adapt internal as
well as external events and affect the SN.

Endogenousfi}h’a‘njg—e_s* Changes ¢Fi>5(3g§r7191715 Changes
. E 2
PA(a;) = {(uri, 1), (func, delete)}; »
PA(ay) = {(uri, 2), (func, add)};
PA(a3) = {(uri, 2), (func, update)};
SN Changed SN

Figure 6: Actions changing an SN

As example consider an engineer in the automotive domain conducting a review of product

7

requirements documented in functional specifications. The goal is to improve as well as to
approve such specifications. Due to a revision of the review process, an employee from the
quality management department replaced an outdated review template. Thus, an action a, was
triggered with uri(a,)= “H:/templates/review-vl.xls” and func(a)= “delete”. Thereby,
another action a, was triggered with uri(a,)= “H:/templates/review-v2.xls” and func(a,)=
“add”. However, based on new guidelines the engineer noticed that the template was
incomplete (e.g., a required question was missing). Therefore, he adapts it. Thus, another action
a, is triggered with uri(a,) = “H:/templates/review-v2.xIs” and fund(a,)= “update”.

3.2 Property Classification

SN maintenance not only requires to consider the object-relation-level, but the properties of
objects and relations as well. Furthermore, if the author of a document changes, for example, it
is not necessary to update the entire object but only relevant parts, i.e., the value of property
author and according relations. One can observe that certain properties change over time (e.g.,
filesize), whereas others do not (e.g., uri). This can be exploited in maintenance algorithms by
focusing on those properties being relevant for a particular operation. To capture this, we
categorize properties as follows:

Definition 6 (Existence and Mutability): Properties are classified into two categories: existence
and mutability. Existence expresses whether a property is mandatory or optional, where
property p with key key is mandatory for vertices V (edges E) of an SN if, for each veV (

ecE), there exists a value val, (val,) such that (key,val)eP(v) ((key,val,)eP(e)),

otherwise, it is optional. Mutability, in turn, expresses whether a property’s value is dynamic or
static, where p is dynamic if val in (key,val) can change over time and it is static otherwise.

For example, for v eV , typical mandatory properties are a unique identifier uri, a data source

source, a creation date cdate, a modification date mdate, and a content cont. The categories,
existence and mutability, can be combined into a matrix comprising four blocks to which we
assign the properties (cf. Fig. 7).

A
(a) (b)
& mandatory/dynamic optional/dynamic
%
8
=]
p (c) (d)
mandatory/static optional/static
Existence

Figure 7: Property classification

In the following, we illustrate the assignment of individual properties to different blocks with
examples:

(a) mandatory/dynamic: Some properties are always part of an SN and are dynamic. For
example, the modification date mdate changes with every update of an object or relation.
The content cont or the total degree deg of an object can change over time as well.
Therefore, these properties are mandatory and dynamic.

(b) optional/dynamic: The title of a document can change over time, but some file types (e.g.,
a text file) do not have a title. Therefore, the title of a document can be considered as
optional and dynamic. A property containing project budgets invest might not be
available for all vertices or edges and can vary over time as well. Therefore, invest can be
considered as optional/dynamic as well.

(c) mandatory/static: An identifier uri, a creator or a creation date cdate exists for all objects
and relations and therefore is mandatory. Since these properties do not change over
time, they can be considered as static.

(d) optional/static: If a property does not change over time and does not exist for every
object or relation it is called optional/static, e.g., the file type of a document.

Based on the property classification we infer the following for adding, updating, and deleting
elements of an SN: One must ensure that static/mandatory properties (c) are given as a
minimum requirement when adding elements (cf. Fig. 8(a)). When deleting elements one has to
consider properties within all blocks (a, b, ¢, d) (cf. Fig. 8(b)). When executing updates, only
properties not assigned to the mandatory/static block (a, b, d) must be considered (cf. Fig. 8(c)).
Note that the grey background color in Figure 8 indicates affected blocks for each function (cf.
Section 3.3).

(a) (b) (@) (b) (@) (b)
mandatory/dynamic| optional/dynamic mandatory/dynamic| optional/dynamic mandatory/dynamic| optional/dynamic
(©) (d) (©) (d) (©) (d)
mandatory/static optional/static mandatory/static optional/static mandatory/static optional/static

(a) add-function (b) delete-function (¢) update-function

Figure 8: Property classification and functions

Therefore, from the evolutionary perspective (cf. Section 3.1), dynamic properties capture
changes of existing vertices and edges in an SN, whereas static properties cover changes in
terms of added vertices and edges. Additionally, mandatory properties always allow for
analyses, like comparisons on the overall set of SN vertices and SN edges. Usually, dynamic
properties store process information whereas static properties usually store metadata.

3.3 Algorithms

In order to successfully maintain SNs, we first specify functions (add, delete, and update) that
can be triggered by actions to perform maintenance operations with the algorithms.

9

The add-function adds a vertex V,, and its properties to a Semantic Network SN and
determines which semantic relations exist between V,,, and existing vertices. As mentioned
above, mandatory/static properties are the minimum input parameter for the add-function.

Require: SN =(V,E,LW, f,) an SN, V., the vertex to be added incl. its properties
P(Vaga);
Ensure: SN is updated;
V=V Uuiv,};
foreach veV do
if uri(v) #uri(v,y,) then

E:=E U {newedge/sbetweenvandVv,y,};

end if
end for

Function add(SN,V,,)

The delete-function deletes a vertex V4, in a Semantic Network SN including existing
semantic relations between V,,, and its total neighborhood. Note that the function considers all

blocks of the property classification, i.e., all properties of V,, are deleted.

Require: SN =(V,E,LW, f, f,) an SN,

V4 the vertex to be deleted incl. its properties P(Vy,);
Ensure: SN is updated;

v:=get veV s.t. uri(v)=uri(vy,);

E=EMV.7).(rV]yelTW)};
V=V \{v};

Function delete(SN, V)

The update-function takes a vertex Vv,,, as input, which is used to update the vertex v in the
SN that is identified by the same uri as v, . The function also adds, deletes, and updates

semantic relations between the updated vertex v and existing vertices. Note that
mandatory/static properties are not considered in case of objects.

10

Require: SN =(V,E,LW, f,,f) anSN, v
properties P(v,,);

wpa the vertex used to update the SN incl. its

Ensure: SN is updated,;
P(Vypa) = 1{P € P(v,,q) | P is not mandatory/static} ;
vi=get VeV s.t. uri(v) =uri(v,,);
for each (key,val) e P(V) do
if (key,val,)€ P(v,,) then
val :=val,;

P(Vipg) = P(Vypa) \ {(key, val)}
else
P(v):=P()\ {(key,val)};
end if
end for
P(V):=P(V)UP(V,y);
foreach V' eV do
if V'eI'(V) then
E := update edge/s betw. V' and v;
E:=E\ {obsoleteedge/sbetweenv' andv};
end if
ifuri(v’) = uri(v) then
E :=EuU{newedge/sbetweenv’ andv};

end if
end for

Function update(SN, v,)

Based on these functions, we propose three algorithms for maintaining SNs. The maintenance
is based on two main principles: the push- and the pull-principle. The former can be applied to
both exogenous and endogenous changes, whereas the latter can only be applied to exogenous
changes.

With the push-principle, the data source pushes information and business processes
automatically to an SN when they are added, updated, or deleted within the data source.
However, with regard to exogenous changes, prerequisite is that the data source is able to send
notifications if information and/or business processes have been changed. Regarding
endogenous changes, the prerequisite is that the SN detects changes automatically and triggers
respective actions.

With the pull-principle, an SN gathers information and business processes from a data source.
Such a maintenance process is triggered by time-based schedulers, i.e., the SN is maintained at
a certain point in time. The principle is used for data sources which are not capable of sending
change notifications (e.g., a document has changed) to the SN.

Altogether, the use of a specific principle depends on the capabilities of a data source (whether

11

the data source is able to send change notifications to the SN or not). For example, for an
enterprise information system which is capable of sending notifications we use the push-
principle whereas for a shared drive we use the pull-principle.

For each of these two principles, we introduce a corresponding algorithm (cf. Fig. 9).
Prerequisite for both principles is that the SN has access to underlying data sources. In case of
exogenous changes the SN transforms information and business processes into a uniform
format. In case of endogenous changes no transformation is necessary.

Principles Push-Principle Pull-Principle
Algorithms Push-Algorithm Pull-Algorithm

Functions add delete update add delete update

Figure 9: Push- and Pull-Algorithm

3.3.1 Push-Algorithm

The Push-Algorithm deals with changes of an SN based on the push-principle, e.g., a policy is no
longer valid in 2015 and the corresponding object in the SN has to be maintained accordingly.
Thus, the maintenance of the SN is triggered by an action that is applied to the SN by the Push-
Algorithm.

The algorithm works as follows: In the add and update case, we create a vertex v including its
properties from the data source affected by the action a (i.e., based on the uri of the action).
After that, we call the corresponding function. In the delete case, we identify the corresponding
vertex VeV based on the uri of the action and call the according function. Hence, the Push-
Algorithm applies endogenous and exogenous changes to the SN by actions.

12

Require: SN =(V,E,LW, f,,f,) an SN, a an action;
Ensure: SN is updated,;
switch func(a) do
case add
v:= create a vertex incl. its properties from the data source affected by
the uri of a;
add(SN,v);
break;
end case
case update
v:= create a vertex incl. its properties from the data source affected by
the uri of a;
updatgSN,v);
break;
end case
case delete
v:=get veV s.t. Uri(v)=uri(a);
deletgSN,v);
end case
end switch

Algorithm 1: Push-Algorithm
3.3.2 Pull-Algorithm

The Pull-Algorithm deals with changes of an SN based on the pull-principle, i.e., data has
changed in the data source and needs to be gathered by the SN. For example, documents on a
shared drive are updated and, therefore, respective changes have to be made in the SN. As
aforementioned, the maintenance of the SN is triggered by a scheduler. The algorithm works as

follows: First, we create a set of vertices V,, from a data source ds. After that, for each vertex
veV in the SN that was created from ds (property source(v)), we check if a corresponding
vertex V, €V, exists. If this is the case, we check if V4 is newer than v (e.g., by comparing the
creation and/or modification dates). If v is out-of-date, it is updated with the properties of V

by calling update(SN,v,,) . After that, V, is removed from V. If no corresponding vertex exists
in the data source, we delete the vertex (v) in the SN using the deletaSN,v) function. Finally, we
add each remaining vertex V, €V, from the data source to the SN by calling add(SN,v,,),

which leaves the SN synchronized with the data source. Hence, the Pull-Algorithm allows for
maintaining the SN at a certain point in time. Note that the process has to be repeated for each
data source which must be synchronized.

13

Require: SN =(V,E,LW, f,, f,) an SN, ds the data source;
Ensure: SN is updated;
V,, = create a set of vertices incl. their properties from the data source ds;
for each veV s.t. sourcgv)=ds do
Vg, i= get Vy, €V s.t. uri(vy,) =uri(v);
if V4 then
if V4 is newer than v then
update(SN, vy,) ;
end if
Vs 7= Ve VM Vst 5
else
delete(SN,v);
end for
for each v eV

add(SNavds) ;

end for

Algorithm 2: Pull-Algorithm
3.3.3 Partial-Pull-Principle and Algorithm

In practice, SNs can comprise a large amount of objects and relations. Maintaining SNs using
the pull-principle can, therefore, be a very time-consuming task. In a specific work context, a
user might, however, only be interested in a selected part of the SN. For example, during a
review, review templates, review minutes, existing reviews, or even results of a real-time
evaluation (e.g., prioritization of projects in a workshop) are of great importance, while
checklists and best practices for performing effective project management are less interesting.
Thus, it is sufficient to maintain only these objects and relations that are relevant to the user
when querying the SN. To capture this, we introduce a further principle, called the partial-pull-
principle, where the SN gathers only information and business processes from data sources as
requested by a user. These (and only these objects) are then updated on demand.

In contrast to the other principles, the partial-pull-principle is completely user-driven because it
is triggered by a user request, whereas the push- and pull-principle are machine-driven, e.g.,
through notifications from other enterprise information systems or schedulers.

Based on the partial-pull-principle, we introduce a third algorithm (cf. Fig. 10) as a lightweight
version of the Pull-Algorithm. It does not maintain the entire SN, but only the parts which are
relevant for a given request.

14

Principle Partial-Pull-Principle

Functions add delete update

Figure 10: Partial-Pull-Algorithm

The algorithm works as follows: First, we create a set of vertices V,, from affected data sources
according to the user request req. Then, for each vertex VeV affected by req we retrieve the
corresponding vertex V, from the affected data sources. Thus, if a corresponding vertex V, is
in the data source, we check if V, is newer than v (e.g., by comparing the creation and/or
modification dates) and if v is out-of-date, it is updated with Vv, by calling updateSN,v,). If
there is no corresponding vertex in the data source, we delete the vertex (v) in the SN using the
deletgSN,v) function. Hence, the Partial-Pull-Algorithm allows for maintaining parts of an SN
based on a user request and ensures that all requested objects including their properties are
synchronized with affected data sources.

Require: SN =(V,E,L,W, f, f) an SN, req the request to an SN;
Ensure: SN is partially updated;
V., contains the requested vertices;

V,, = create a set of vertices from the data sources affected by req;
for each veV affected by req do
Vg i= get Vy €V s.t. uri(vy,) =uri(v);
if V4 then
if V4 is newer than v then
update(SN,v,,) ;
Vg == get V' eV s.t. uri(v') =uri(vy);
Vieg = Vieg Y Vipa } 5

else
Vieg = Vieg YAV}
end if
else
deletgSN,v);
end if
end for

Algorithm 3: Partial-Pull-Algorithm

15

4 Validation

This section shows that the algorithms are able to successfully maintain an SN. For this
validation, we implemented the algorithms and evaluated their performance considering depth
and breadth, i.e., we measured the time needed to add, update and delete objects as well as
relations. We further evaluated the relevance as well as the applicability of the algorithms in the
context of a case study which we conducted in the automotive domain.

The validation was guided by three research questions (cf. Tab. 1):

Research Questions

RQ1 Is automatic maintenance of an SN feasible considering both exogenous and
endogenous changes?

RQ2 How do depth and breadth affect the runtime of the SN maintenance algorithms?

RQ3 How essential is automatic maintenance of SNs in practice?

Table 1: Research Questions

4.1 Implementation and Configuration

Driven by the research questions presented in Table 1 we created (a) a well-defined set of SNs
for evaluating the performance with synthetic data (cf. Fig. 12) to answer RQ1 and RQ2 as well
as (b) a specific SN for empirical evaluating the algorithms with real business data to answer
RQ3. Note that the objects and relations shared identical properties in order to enable
comparability regarding measurements as well as enable the evaluation of the used
configuration in a real world application.

We realized the prototype as a 3-tier architecture. The presentation layer was implemented
with the web application framework Play?, the Twitter Bootstrap framework?, the Data-Driven
Documents (D3) library3, jQuery®, HTML5 templates, and Cascading Style Sheets (CSS3). We
created the SNs using the semantic middleware iQser GIN Server (v. 2.0.0.36) (Wurzer, 2008). In
addition, we developed Java open-source plugins® on the logic layer. The data layer was based
on a Lucene search index® and a MySQL database’.

Based on the property classification described in Section 3.2, we configured objects and
relations of the prototype. As mandatory/static object properties, we chose cdate, uri, and
source (cf. Fig. 11(a)). Optional properties were file type and title: the file type does not change
over time (static), whereas the title may evolve (dynamic). Furthermore, the title might not be
available for every file type (e.g., text file), i.e., it is optional. Mandatory dynamic properties
included buzz (i.e., user activity on objects), cont, deg, and mdate.

16

a
buzz(zont (.b) (@) . ()
deg, mdate title mdate, weight -

(c)
(c) (d) cdate, destination, (d)
cdate, source, uri file type vertex, label, reason
source vertex, uri
(a) objects (b) relations

Figure 11: Property classification implementation

Analogous to object properties, uri and cdate were mandatory for relations (cf. Fig. 11(b)).
However, relations had additional mandatory properties such as source vertex and destination
vertex. The label of an edge was also mandatory and static. However, the weight of an assigned
label may vary over time and, therefore, it was configured as mandatory and dynamic. As
example, changing cont may affect the weight of “is similar to” relations. Additionally, the
reason of a relation, which describes why a relation was established (e.g., a particular method
that detected an “is similar to” relation), was classified as static and optional. All SNs were
created with the following relations: “is author of”, “has same title as”, and “is similar to”.

After setting up the prototype, we first validated the performance of the algorithms (cf. Section
4.2), i.e., the influence of depth and breadth on the algorithms. The performance tests were
executed on a machine with an Intel quad-core CPU Intel Core i7 2670Q with 3.1 GHz, 16 GB
RAM, 512 GB solid-state drive (SATA 6 Gbit/s), and a Windows 7 64-bit operating system. Then
we evaluated the application of the algorithms in the context of a case study in the automotive
domain (cf. Section 4.3).

4.2 Technical Validation

The successful implementation and initial tests have already demonstrated that automatic SN
maintenance is feasible in general. We now examine the runtime in consideration of depth and
breadth. In order to address research questions RQ1 and RQ2, we investigated the performance
of add, update and delete operations for the Pull- as well as the Push-Algorithm (cf. Section 3.3).
Following this, we created SNs comprising 5, 50 and 500 objects, once with small (1 KB) and
once with larger (100 KB) text files (cf. Fig. 12). To obtain comparable results for the
measurements, all objects within an SN were identical (e.g., identical property cont). Based on
this, we simulated the worst-case scenario with respect to performance: every object being
connected with every other object in each SN vyielding 40, 4,900 and 499,000 relations. Note
that only “is similar to” and “is author of” relations were detected since the property title is not
explicit in plain text files and, therefore, no “has same title as” relations were recognized.

17

Configuration

l

B

5 objects 50 objects 500 objects
1 KB 100 KB 1 KB 100 KB 1 KB 100 KB
} l } } } }
SN, SN, SN; SNy SN SN

Figure 12: SN instances for technical validation

Based on the initial SNs, we performed operations (add, update, delete) that refer to a single
object using the Push- and Pull-Algorithm (cf. Section 3.3). Each combination of SN, algorithm
and operation represented one case to be examined with regard to small and large files, which
resulted in a total of 36 cases. An exemplary case may be updating an object with a size of 1 KB
using the Push-Algorithm in an SN with 5 objects. For each case, the numbers shown in the
diagrams (cf. Figs. 13-15) correspond to averages over three warm runs. Warm runs were
chosen to ensure comparability of the measured values since the iQser GIN Server (Wurzer,
2008) performs several initial background tasks on start-up. Note the logarithmic scale used in
the diagrams.

Figure 13 shows that objects can be added to an SN in linear time. Further, depth has an
influence on the runtime regarding the number of objects in an SN as well as their size (1 KB vs.
100 KB). Therefore, the actual performance of the algorithms depends on the property values of
the vertices. For example, the value of cont (i.e., the size of the property in bytes) affects the
analysis of similarity relations between the added and the existing vertices. Detecting relations
between the added and the existing objects is polynomial in the number of vertices. Note that
complexity rises when additional relation labels (m = # of relation types) must be detected
between objects (n = # of objects) since, usually, additional algorithms must be executed, which
examine properties of vertices concerning a specific relation type. Therefore, the complexity
level can reach nm”2 considering that each relation label is derived by a particular algorithm
whose complexity influences the overall algorithmic complexity as well. For example, if such an
algorithm is exponential, the overall complexity will no longer be polynomial. However, some
algorithms can be used to process multiple relation labels. As example, consider deriving foreign
key relationships from a relational database (e.g., “is author of“ or “is used by").

18

100.000

10.000

1.000

Orelation
®object

time in ms

1

obj.
alg.
filesize

Figure 13: Effect of depth and breadth on additions

As shown in Figure 14 update operations perform similarly compound to add operations. As
opposed to the integration of objects, however, certain operations are not required (e.g., for
mandatory/static properties). Comparisons between existing properties need to be performed
instead, e.g., to check whether a property has changed. However, we could not detect
significant differences concerning costs between add and update operations when applying
them under identical initial situations.

19

100.000

10.000 - —

w0

wn

=

= .
> O relation
E 100 1 B object
N

10 -
obj. | 5 5 5 5 50 50 50 50 500 500 500 500
alg. push | pull | push | pull | push | pull | push | pull | push | pull | push | pull

filesize 1KB | 1KB |[100KB|100KB| 1 KB | 1 KB |100 KB|100 KB| 1 KB | 1 KB |100 KB|100 KB

Figure 14: Effect of depth and breadth on updates

As opposed to add and update operations, delete operations perform differently. While the
objects can be deleted in linear time, the deletion of relations varies significantly depending on
the size of the objects. The reason is that all references, which form the basis of a relation (e.g.,
extracted concepts and co-occurrences of a specific object in case of “is similar to” relations)
must be deleted as well. Note that such “housekeeping” tasks were controlled by the iQser GIN
Server. In turn, this might be the reason for variations of the measured values. For example, the
cost for deleting an object with a size of 1 KB out of 5 objects was higher than the cost for
deleting an object with a size of 100 KB out of 5 objects (cf. Fig. 15). Furthermore,
measurements with the programming language Java can be less accurate compared to native
programming languages (e.g., the Java garbage collector cannot be disabled).

Despite the fact that the implemented technology might cause inaccuracies in measurements,
we were still able to verify that the maintenance costs caused by the algorithms highly depend
on depth and breadth (RQ2). However, external components (e.g., a component for the
semantic analysis of object properties) as well as their computation cost can influence the
performance of maintenance operations significantly. In turn, the consideration of the
presented property classification (cf. Section 3.2) can have positive effects on performance if
only required operations (e.g., only updating properties which are not mandatory/static) are
executed.

20

10.000

1.000
100 -
. Orelation
. Eobject
10 -
l m
obj. 500 | 500

alg. push pull push pull push pull push pull push pull push pull
filesize 1KB | 1KB |[100KB|100KB| 1 KB | 1 KB |100 KB|100KB| 1KB | 1KB 100 KB|100 KB

time in ms

Figure 15: Effect of depth and breadth on deletes

Altogether, the Push- and the Pull-Algorithm both ensure a synchronized SN regarding affected
data sources. Thereby, the technical validation has shown that automatic SN maintenance is
feasible (RQ1). We further showed that the runtime of the maintenance algorithms is influenced
by depth and breadth (RQ2). In the following, we evaluate the relevance as well as applicability
of automatic SN maintenance in the context of a case study we conducted in the automotive
domain.

4.3 Empirical Validation

After completing the successful technical validation, we have to confirm the relevance and
applicability of the algorithms in a real-world use case (RQ3). Following the proposal of Yin
(2009) and Kitchenham et al. (1995), we chose an empirical case study to evaluate RQ3 in a
characteristic project setting. Data was collected by semi-structured interviews, which allowed
us to ask open as well as closed questions (cf. Fig. 16). The interviews were based on a
questionnaire comprising 60 questions.® The layout of each interview was designed applying the
time-glass principle (Runeson and Host, 2009). We started with closed-ended questions allowing
for comments from the participants in the first part where we asked general questions about
their current work environment and information handling in the context of their processes.
Afterwards they had to perform tasks with the described prototype (cf. Section 4.1) and answer
mostly closed-ended questions bound to these tasks with respect to maintenance (i.e., add
objects, update objects, delete objects, and search for objects and validate property values as
well as detected relations). Finally, we asked additional, mostly open-ended questions. This
approach allowed us to develop and guide the interview conversation to gain deeper insights
through exploration as well as the collection of structured data based on closed questions.

21

Particularly, in the last part of the interviews, the open questions allowed reflecting the tasks
with the SN together with the participants. In addition, the approach allowed to further
understand the need as well as the requirements for SN maintenance and offered the basis to
discuss the benefit of further application scenarios.

. SN tasks & task- Summ.arlzmg task-
General questions ———» — > specific & con-

specific questions . .
p 4 cluding questions

/\

Figure 16: Interview design

Therefore, RQ1 could be addressed from the user’s perspective by the task-specific questions,
whereas RQ3 was investigated by introducing and final questions. The participants were
selected based on their expert knowledge regarding the considered case. Two basic roles were
involved: knowledge workers and decision makers from several innovation departments in the
automotive domain. Thus, all participants were involved in knowledge-intensive business
processes (Mundbrod and Reichert, 2014). No participant was a member of the research team.
The case study was performed in July 2014 with five decision makers and six knowledge
workers from a large automotive manufacturer. Each interview lasted around 90 minutes. For
the tasks we provided an SN with identical configuration regarding the technical evaluation (cf.
Section 4.2). However, the underlying corpus (data sources) contained 333 real-world
documents from their field of interest (e.g., scientific papers from departments dealing with
technology monitoring and technology development). Therefore, the users were familiar with
the information represented in the SN and able to judge the containing information and its
guality on a certain level.

22

Question: Where do you access information needed for your
daily business?

None
Other
Colleagues

Non-eletronic media

Archives m Knowledge Worker

Decision Maker
Internet

m Total
Optical Data Storages

Local Data Storages

Shared Data Storages

Databases/Information Systems

0% 20% 40% 60% 80% 100%

Figure 17: Information access by source

The initial questions about information handling in the users’ current work environment
revealed that, except personal contacts (e.g., in meetings or phone calls), information is mostly
handled and accessed in a digital way (cf. Figs. 17 and 18).

Question: How do you access information needed for your daily
business?
Other
Manual
Individual Software ® Knowledge Worker
Decision Maker
Internet m Total
Intranet
File Browser
0% 20% 40% 60% 80% 100%

Figure 18: Information access by software

However, information is mostly not well structured and often distributed across different

23

sources (e.g., information systems or shared drives), which makes it difficult to search for it.
These statements are endorsed by the fact that a significant amount of information is stored in
files (cf. Fig. 19). Remarkable in this context is the usage of visual information. Almost fifty
percent of the participants work with visual information. Figures, which might be of interest for
decision makers and knowledge workers, are often embedded in files (e.g., charts in
spreadsheets, models in presentations, or technical drawings in patents) or information systems
(e.g., reports or dashboards). The participants stated that such drawings usually had additional
business value.

Question: In which file formats is the relevant information for
your daily business usually stored?

Other
Non-electronic media

Technical formats

Web formats

Video formats
m Knowledge Worker

Audio formats Decision Maker

Spreadsheets m Total
Presentations
Text formats

PDF Documents

Images

0% 20% 40% 60% 80% 100%

Figure 19: Information access by file format

Considering the enormous file usage, a resulting challenge when working with files in a business
environment is to keep track of changes (cf. Fig. 20) and to identify interdependencies such as
identical or similar documents within different data sources (cf. Fig. 21). This is mainly
substantiated by the dynamics and the amount of available information as well as a lack of
technological assistance (e.g., search over different data sources, notifications on changed
content). Therefore, in order to be up-to-date, an SN must cover such changes.

24

Statement: The information needed for my daily
business is very dynamic.

1: completely disagree, 2: disagree, 3: neutral,
4: agree, 5: completely agree

5
—&— lower quartile
4 1 ..
minimum
37 —A— median
2 —X— maximum
upper quartile

Figure 20: Information dynamics

In order to address these challenges (e.g., dynamics of information in distributed sources,
heterogeneous file types), we introduced the implemented prototype and asked the
participants to perform tasks with the provided graphical user interface (e.g., to check whether
property values were updated or to validate the correctness of a relation).

Statement: Regarding my current work environment,
I can easily identify interdependencies between
information from different data sources.

1: completely disagree, 2: disagree, 3: neutral,
4: agree, 5: completely agree

> —&— lower quartile

41 minimum

34 —A— median

5 | —X— maximum
upper quartile

Figure 21: Information overview

Regarding the concluding questions, every participant stated that all SN maintenance tasks with

the prototype could be completed successfully. Since objects, relations and properties were
adapted based on exogenous and endogenous changes, we can confirm that automatic SN
maintenance is feasible in practice.

25

Statement: Updating the SN was easy.

1: completely disagree, 2: disagree, 3: neutral,
4: agree, 5: completely agree

5 . b Y

—&— lower quartile
41 minimum
3 A —#A— median
2 A —>— maximum
1 T upper quartile

Pull/Add Push/Add Pull/Delete Push/Delete

Figure 22: Simplicity of SN maintenance for users

However, certain users could not recognize any relation between the document they added to
the SN and others. While no “is author of” and “has same title as” relation existed, the “is
similar to” relations were not shown. To enable a more sophisticated user experience, we
filtered these relations according to a hard-coded weight-threshold with respect to the overall
amount of “is similar to” relations. Nevertheless, with corresponding database entries we could
verify that the relations were set and took this as an input for further user interface
development by allowing users to set the threshold dynamically (i.e., filtering relations by
weight).

Additionally, we asked the users about their preferences for push or pull. All users preferred
the Push-Algorithm since the effects of their tasks were reflected immediately in the user
interface. By contrast, the Pull-Algorithm always has a delay since it is only triggered at a certain
point in time. Obviously, a synchronization every three minutes caused too much delay for some
users, even when performing other tasks inbetween. However, the Partial-Pull-Algorithm, which
addresses this downside, received positive feedback from the participants. Note that the Partial-
Pull Algorithm only considers objects currently existing in an SN.

26

Statement: My effort updating the SN was low.
1: completely disagree, 2: disagree, 3: neutral,
4: agree, 5: completely agree

—&— lower quartile

41 _R minimum

31 —a— median

2 —— maximum

1 : upper quartile
Pull/Add Push/Add

Figure 23: SN maintenance effort for users

We interpret the disadvantage of the Pull-Algorithm as a confirmation of RQ3 (automatic
maintenance is essential) and recommend the Push-Algorithm if technology permits. Regarding
the Pull-Algorithm, the update intervals can be shortened, depending on the number of files in a
data source. Nevertheless, the delay of the Pull-Algorithm, as observed by the users, is caused
by the configured time interval of implemented schedulers. However, its performance
compared to the Push-Algorithm is almost identical (cf. Section 4.2).

Finally, we asked the users about their impression of benefits for their daily work with respect
to SN maintenance. All users stated that integrating and connecting distributed information was
easy when using the prototype (cf. Fig. 22) and could be done with reasonable effort (cf. Fig.
23). Additionally they confirmed the benefits resulting for their daily work (cf. Fig. 24).

Statement: Automatic updates of objects, relations

and properties are useful.
1: completely disagree, 2: disagree, 3: neutral,
4: agree, 5: completely agree

5 y
1 —&— lower quartile

41 _* minimum

3 1 —A— median

2 4 —— maximum

1 : upper quartile
Pull/Update Push/Update

Figure 24: User perspective on automatic SN maintenance

More than 90% of the participants stated that the SN provided an enhanced overview on
information and that a maintained SN was desirable. In particular, this would be a benefit
compared to distributed heterogeneous data sources. One user summarized: “Maintenance and

27

corresponding updates should be automatic. No user interaction for maintenance should be
required. Users should focus on working with the SN.” Asking about use cases for a maintained
SN, knowledge workers as well as decision makers recognized the potential of the SN to support
their daily work.

4.4 Conclusion

We have shown that automatic SN maintenance with regard to both exogenous and
endogenous changes is feasible with acceptable cost (RQ1). Furthermore, we examined the
effect of depth and breadth on the runtime of the proposed algorithms (RQ2). Both algorithms
performed satisfactorily when adding, updating, and deleting objects. The cost of detecting
relations, however, varies significantly with the algorithms used for this task (e.g., expensive
linguistic or statistical algorithms).

In the case study, all users appreciated a unified single point of information access, which is up-
to-date and allows for searching and filtering distributed information. Many of the interviewed
users already experienced a well maintained SN as an enabler for various use cases (e.g., expert
search or gap analysis). In particular, knowledge workers and decision makers can benefit from
maintained SNs. Both groups emphasized that relations between objects could be interesting
for various purposes (e.g., navigation within an SN or decision support). For example, SN
visualizations can be used to support decisions (cf. Section 5.2).

The case study results on the deficits of information handling in current business environments
(cf. Section 4.3) have shown that it becomes increasingly crucial to provide up-to-date,
integrated, and homogenous views on enterprise information. Moreover, the empirical
validation confirms that there is a high demand for a central point of information access in
knowledge-intensive processes. Finally, we verified that a maintained SN is not only essential for
such business processes, but a practicable solution as well (RQ3).

5 Use Cases

Complementary to the validation of the algorithms in Section 4, we now demonstrate the
relevance of SN maintenance in practical settings by considering two use cases from the
technology process in the automotive domain.

Radical innovations require high investments and conscientious preparation (Oertelt and
Ulmschneider, 2013). The technology process of an enterprise (cf. Fig. 25) constitutes the basis
for developing and adopting novel technologies, products and processes in a structured way
(Oertelt, 2009) in order to create value for customers with changing demands (e.g., technical
and functional innovations, environmental awareness) in a dynamic environment (e.g., volatile
raw material prices, legal regulations, competitors, or start-ups). The technology process
involves tasks like the identification, monitoring, prioritization, and controlling of technologies
(Oertelt and Ulmschneider, 2013). Typical tasks, for example, include the observation of
relevant technologies, the identification of technology enablers, and the evaluation of a
technology's maturity to determine future application scenarios and evaluate them with regard
to costs, potentials and risks. The output of such tasks must be well-grounded since
corresponding decisions might have significant future impact in terms of technological and

28

economic success as well as a company's reputation. The process requires sustainable research
activities, interaction and expertise and therefore, can be characterized as knowledge-intensive.

"> Evaluation I

| Technology) - Technology [
Message Fact Sheet
N

request

technology R

information
(T1)

evaluate
technology

(13)

evaluate

technology
(T5)

Y S

Lessons

Learned

(R1)

Decision Maker

Technology Process

perform monitor & enrich utilize
technology | technology with technology

research | information *B (T6)
o , . w (T B i > Product
Fair Report Supplier Patent Fact Sheet

(12)

Pool Lane Start event Task Data object ~ Sequence flow Association Gateway XOR

Knowledge Worker
(R2)

Scientific
Publication

Figure 25: Technology process

In consequence, identifying and utilizing relevant information to support the technology
process constitutes a challenging task. Usually the required information can not be found in one
data source and is stored in un- or semi-structured data formats. Taking technology monitoring
and decision support as examples, we illustrate how a maintained SN could reduce efforts and
enhance the technology process.

5.1 Use Case: Technology Monitoring

Technology monitoring can help companies to detect scientific, technical, or socio-economic
events that have an impact on a company's business (Bradford Ashton et al., 1994). Process
tasks include the monitoring of

e patent publications in the area of a specific topic of interest,
e scientific publications (e.g., conference papers, dissertations, books), and
e competitors (e.g., analysis of technology usage announcements)

Usually, such information has already been available in a company, but is physically stored at
different places. Consider an engineer performing a search on a specific topic. Assume that he
discovers an interesting publication, which can support users when solving a technical problem.
The engineer saves the document on a shared drive and forwards the document to a colleague
from another department. Another example is a technology analyst looking for information for
a particular field of interest. If the research result is unsatisfactory, a technology scout can be
hired in order to monitor significant technology centers, i.e., concentrated domiciles of high-
tech corporations. Tasks of a technology scout include visiting fairs or interrogating the personal
network. Results are usually reported by email in form of a document or a presentation.
Altogether, as illustrated with the examples, information is, in the context of the technology
process, typically gathered and stored by knowledge workers at different locations in various
data formats. Important information might not reach every stakeholder and the analyis of all
available information is challenging.

29

Process Objects
A

Lessons
Learned

107
-8 Technology
101 Fact Sheet
Scientific
Publication

Information Objects
N

Product
Fact Sheet

Process Information
N

R =Role, T = Task, 10 = Information Object, D = Data Source, &---- - Transformation into Information Object
Figure 26: SN object representation of the technology process

The SN approach closes this gap by integrating siloed (technology) information, bringing it into
the context of process and other information objects (cf. Fig. 26), and keeping it up-to-date.
Therefore, in a first step, the process schema (cf. Fig. 25) is integrated (Michelberger et al.,
2012b). Process schema elements such as tasks, events, data objects, roles, sequence flows,
message flows, associations, or gateways are first identified and then used to create the first
stage of the SN (R1 and R2, T1-T6 in Fig. 26). Afterwards, process instances (e.g., request for
information, decision for technology usage, allocation of funds) of the integrated process
schemas are included as well. Besides the process elements, corresponding metadata, such as
author, creation date, or modification date are also considered and associated with the process
elements. Certain metadata is automatically available (e.g., creation date, modification date,
unique identifier), whereas other metadata has to be defined manually (e.g., deadline, project
milestone, temporal process constraint or quality gate).

In a second step, process information schemas (e.g., technology fact sheet templates or
guestionnaires for technology evaluation) and process information instances (e.g., technology
fact sheets or completed technology evaluations) are integrated in the SN. Data sources can be
folders on a shared drive containing technology information (D1 and D2 in Fig. 26; e.g., pdf or
office documents), a supplier management system (D3), a patent database (D4), or a project
management system (D5). Metadata, such as author, file type or revision number is attached to
information objects accordingly.

In the third step explicit relations are identified and integrated in the SN. Examples include the
transformation of relations between process objects (e.g., sequences, role associations derived
from BPMN models) or foreign key relations (e.g., author or technology fact sheet derived from
a relational database). The last integration step is the detection of implicit relations (e.g.,
similarity relations between information objects).

30

Overall, the mentioned steps of the illustrated use case result in the property classification (cf.
Section 3.2) and configuration of the SN as shown in Figure 27.

(b)
(a) abstract, chances, (b)
buzz, cont, deg, description, end @ . end date,
. mdate, weight
mdate, status date, risks, start start date
date, title
(d) (©)
(c) content type, file cdate, destination, (d)
cdate, source, uri type, revision vertex, label, source reason
number vertex, uri
(a) objects (b) relations

Figure 27: Property classification for the technology process

Compared to the classification in Section 4.1, we added additional properties. The status
property (cf. Fig. 27(a)) contains the categorization of an information object based on its type.
The status property can, for example, be used to store the legal status of a patent (e.g., applied,
granted), the maturity status of a technology (e.g., research, development, ready) or the
progress status of ongoing product developments (e.g., open, started, finished, approved). In
turn, process objects may use this property to store their process status (e.g., open, warning,
problem, canceled). Note that status changes usually trigger further process steps (e.g.,
‘evaluate the application of a technology' when the status is changed to ready).

Optional and static properties are extended by revision number and content type. Revision
number is used for tracking changes of process and information objects whereas content type
specifies whether an object contains information about a technology, patent, product or
supplier. In most cases, the required information can be directly gathered from the data source
(e.g., patent database or technology fact sheet).

The title is used to store names, e.g., a task name, a technology name, a product acronym, a
scientific publication, a patent, or a supplier name. Usually, the title does not change very often
but can change over time. Since title might not be available for every object, it is classified as
optional/dynamic. Further optional/dynamic properties are abstract, description (e.g., problem
statement, possible solutions), chances and risks which allow users providing further details
about process and information objects. Properties start date and end date, in turn, store
temporal information on a process or information object. For example, in the context of a
process object, they define when a task must be started or completed. In the context of
information objects, the properties can specifiy the report date, the estimated maturity date of
a technology as well as the production period of a product. Further they can store patent
application and expiration dates. Note that such dates allow detecting complex temporal
dependencies, e.g., whether a technology is mature before the production of a new product
begins (cf. Section 5.2).

Analogously, we add properties start and end date for relations (cf. Fig. 27(b)) and use them for
temporal restrictions to trigger endogenous changes. Examples include patent expirations,
temporary roles (e.g., vacation replacement) or supplier changes.

31

Furthermore, we enrich the SN with relation labels like “transfers into” or “has invented”,
which we derive from the business process instances (e.g,. technology transfers into a product)
and available process information (e.g., patent inventor). As example, transfer information or
inventors can be derived from technology fact sheets and transformed to relations accordingly.
Inventors of a patent can be directly derived and processed from a patent database whereas
products usually do not have an inventor. Note that the additional semantics of relations will be
the basis for further application scenarios (cf. Section 5.2).

After configuration, the SN is ready for use. The first step of the technology process, the
technology identification, can be supported by integrating, structuring and interrelating
information from underlying data sources (cf. Section 2). Examples of technology related
artifacts are illustrated in Table 2. Knowledge workers and decision makers then benefit from a
unified single point of information access where they can search and filter available technology
information. Consider an engineer looking for information about autonomous driving. He might
be able to find a new approach which is currently evaluated by another department. Further, he
may follow related information objects and detects a scientific publication describing a novel
collision avoidance technology. Another engineer can, starting with a technology of interest,
identify technology alternatives by filtering related technologies which are connected by ”is
similar to” relations. Note that related information objects can provide hints for the solution of
a technical problem as well.

The second step, technology monitoring, can be supported by SN maintenance, i.e., by adapting
endogenous and exogenous changes (cf. Section 3.1). Consider knowledge workers and decision
makers from different teams who are continuously updating technology information in
documents or enterprise information systems. A major breakthrough, such as a solution for a
specific technical problem, the discovery or the maturity of a technology, is usually filed, but
might not reach all knowledge workers who had interest. The SN captures such changes
immediately and sends notifications accordingly (i.e., by role or author associations of similar
objects). Decision makers receive notifications when a new maturity level of a technology is
reached or additional economic information, e.g., on cost, becomes available.

Therefore, the SN captures exogenous and endogenous changes, i.e., if new information (e.g., a
patent or information about a technology supplier) becomes available or objects and relations
need further processing (e.g., a relation or information object is outdated). Based on such
changes, the SN is able to initiate further process steps by sending notifications.

5.2 Use Case: Decision Support

Building on the previous use case, we demonstrate how technology analysis can be enhanced
through SN maintenance.

Increased market dynamics, changing customer demands, extended product-portfolios,
multiple stakeholders or uncertainty (e.g., about consequences of a decision) are examples of
challenges which executives have to cope with in enterprises when making decisions. Such
factors typically increase the complexity of decisions, making it difficult to determine and decide
for the best option. As example, a broader product range and variety on product derivates
requires higher density of decision-making with prevision and deeper understanding of
expected interdependencies (e.g., complexity of interdependencies of products and their

32

components). Usually, many tasks related to the decision process are performed manually
which can be very time-consuming. As example, consider the preparation of a strategic
roadmap for a management meeting or the request for information from process stakeholders.
Thus, providing up-to-date views on integrated and cross-linked information by request can be a
business benefit, e.g., to reduce preparation time for decision makers.

As example, a decision maker has to consider the maturity level of a technology and compare
cost, benefit, quality and availability with other alternatives — if available. Examples of general
guestions are as follows: Does the technology fit into the product portfolio? When will the
technology be available? Can the technology be implemented with reasonable cost?

Therefore, the on-demand availability of an integrated view on all information required for
analysis is desirable (cf. Section 4.3).

The SN supports this sub-process by unveiling alternatives as well as possible connections to
other related information objects (cf. Tab. 2) through semantic relations. In order to determine
a technology's maturity (e.g., status) as well as for capturing temporal facts (e.g., start date, end
date), we use the configured properties presented in Section 5.1.

Artifact Characteristics

Fact sheets Strategy, topic field, idea, technology, project, material, patent,
competence, product, production technique

Guidelines and Checklist, order, request form (e.g., for funds)

templates

Scientific Scientific paper, master thesis, dissertation, survey, journal article

publications

Reports and Meeting and workshop protocol, decision protocol, fair report, trend

protocols report, customer feedback, internal research and laboratory reports,

competitive and market analysis, press release, reverse engineering report
Lessons learned Project documentation, workshop preparation, strategies and creativity
and best practices techniques

Table 2: Technology related artifacts

The additional properties allow us to visualize the SN and its underlying objects in a flexible
way, i.e., different views on the SN can be generated. One SN view supporting the decision
process is a strategic roadmap (cf. Fig. 28). A decision maker can spot temporal aspects of
technologies, like expected maturity dates, when arranging technology objects on a timeline.
Additionally, related process information like projects, patents or materials can be added to the
view, which allows detecting time constraints (e.g., whether a technology will be ready or
whether a technology is still protected by a patent when a project requires this technology). A
search and filter functionality limits the result to relevant objects and therefore reduces the
view to relevant information by using available properties (e.g., creation date, content type, file
type or status). Evaluations (e.g., chances and risk analysis) from experts like engineers can
support opinion making.

For example, a decision maker filters technologies with status “ready” and product
development projects which have not started yet and only selects “transfers into” relations. By
arranging these objects and relations on the x-axis with temporal information, using start and
end dates, critical product development processes (in case a technology might not be mature)

33

can be identified. Furthermore, the visualization can be triggered and adapted on demand
avoiding manual preparation work.

e N

- e + +

~ » s o

- ; & = v 7

— = : 9
: = —1 .

L : -

|
2015 2020 2025

Figure 28: Strategic roadmap (data masked)

Such views on the SN are not limited to time-based charts. Consider a portfolio chart which
groups technologies by their maturity, expected cost savings or fields of interest (e.g.,
autonomous driving).

Therefore, SN maintenance does not only allow for the integration and global search of
technology information, but enables real-time analysis as well.

Summing up, a maintained SN supports the technology process by providing access to up-to-
date technology information in an integrated, connected and searchable way. Process steps, like
technology analysis, technology monitoring, technology controlling and search for alternatives,
can be supported. Related technologies can be identified and process steps be triggered by
capturing endogenous and exogenous changes, e.g., through notifications in case of a new
technology or an updated maturity level. Furthermore, decision makers can be supported by
delivering information through adequate views on demand.

In future work, we will support further process steps in order to allow rationalizing decisions by
socializing information in terms of evaluation (e.g., capturing opinions of engineers on a
technology's maturity in a more profound way) and enrich internal information objects with
information from the World Wide Web (e.g., selected technology blogs).

6 Related Work

A semantic network represents domain-specific knowledge in a structured and machine-
interpretable way (Reichenberger, 2010). Generally, various types of semantic networks exist.
Figure 29 shows the most common approaches, i.e., associative networks, topic networks, fact
networks, and ontologies. The x-axis represents the effort required to create a semantic
network, whereas the y-axis represents the degree of support a semantic network provides for

34

particular use cases such as search refinement, semantic search, visualization, or reasoning.
According to Reichenberger (2010), we distinguish between light- and heavy-weighted semantic
networks.

Light-weighted

high Type 4
& Semantic Networks i
£ - A N Type 3 Ontologies
S - @ . Fact
7 \ype 2 Networks
kS ‘ Topic
8 Lype . Networks L)
& Associative YT
3 Networks Heavy-welghted
low Py Semantic Networks
low effort to create high

Figure 29: Types of semantic networks

As shown in Figure 29, the effort for creating associative networks (Findler, 1979) as well as
their degree of support are low. Associative networks are mainly used for search refinement. In
turn, topic networks (Park and Hunting, 2002) provide a higher degree of support than
associative networks, but the effort for creating them is significantly higher as well. They are
often used for realizing a simple navigation in semantic networks and for visualizing related
topics. In turn, fact networks (Reichenberger, 2010) provide a higher degree of support (e.g.,
concepts are supported). They are used for realizing personalized views (e.g., context-aware
search) and navigation trees (e.g., moderated search). Finally, the highest degree of support is
offered by ontologies (Lacy, 2005; Stuckenschmidt, 2009), which provide good results in respect
to conceptualization and delimitation of concepts. However, huge manual effort is needed to
create high-quality ontologies. Important uses cases are semantic search and reasoning.

Unlike existing semantic networks, an SN focuses on information and process objects as well as
their relations. Less manual effort is needed to create or maintain an SN (Wurzer, 2008). Note
that research in the field of semantic networks has mainly focused on the representation of
domain-specific knowledge in a structured and machine-interpretable form. What has been
neglected, however, is the maintenance of semantic networks. Generally, semantic networks
have in common that they must be maintained. Depending on the type of the semantic network
(cf. Fig. 29), however, the level of maintenance effort varies widely. Commonly, the higher the
effort to create a semantic network is, the higher the maintenance effort will be. Semi-
automatic maintenance approaches are provided, for example, by Capek (2009), Gargouri et al.
(2003), and Dinh et al. (2014). However, these approaches cannot be directly applied to the SN
since they do not allow for entirely automated SN maintenance as it is necessary in many
scenarios.

Moreover, in recent years, various approaches were proposed to tackle the delivery of
information to users including data warehousing (Kimball and Ross, 2013), business intelligence
(Kolb, 2012), decision support systems (Sauter, 2011), and enterprise content management
(Rockley and Cooper, 2012). Data warehousing, for example, rather focuses on the creation of
an integrated database (Lechtenboérger, 2001). Opposed to this, an SN deals with the delivery of

35

process information to support the effective and efficient execution of business processes.
Traditional business intelligence, in turn, enables data analysis and is usually completely isolated
from business process execution (Bucher and Dinter, 2008). Moreover, information supply is
often restricted to decision makers on executive level (Baars and Kemper, 2008; Rouhani et al.,
2012). Conversely, our approach focuses on the integration and analysis of process information
as well as its delivery to both knowledge workers and decision makers. By contrast, decision
support systems support decision making; i.e., they serve the executive level (Janakiraman and
Sarukesi, 2004) and are usually based on structured data (e.g., sales figures). Enterprise content
management, in turn, deals with the management of information across enterprises referring to
strategies, methods, and tools (Cameron, 2011).

7 Summary and Outlook

This paper presented an approach for SN maintenance, i.e., for adopting exogenous and
endogenous changes. For this purpose, we presented three algorithms based on the property
classification, which allows for an efficient SN maintenance.

The validation confirms that the SN maintenance approach is able to keep SNs synchronized
with underlying data sources in reasonable time. Moreover, we applied the algorithms to a real-
world case, i.e., we validated them based on an implementation in the automotive domain.
Furthermore, we illustrated the practicability and usability with two real-world use cases from
the technology process.

In future, we will improve the algorithms to support self-learning components with a focus on
endogenous changes. Therefore, we will extend the information extraction component to
retrieve additional facts (e.g., competitor activities) which can be further processed by a
reasoning component. Additionally we will add taxonomic support so that automatic
maintainance is still ensured, i.e., the component will not affect the algorithms. The extensions
will allow us to optimize search and filter capabilities (e.g., extended facets for filtering) as well
as inferring new facts from properties (e.g., "competitor launched a new product in China"),
which may result in further relations (e.g., "is active" relation to an information object
describing the Asian markets). Therefore, we will increase the degree of support (cf. Section 6)
while keeping the effort low.

References

Baars, H. and Kemper, H.-G. (2008), "Management Support with Structured and Unstructured
Data - An Integrated Business Intelligence Framework", in J of Information Systems
Management, Vol. 25, No. 2, pp. 132-148.

Bernstein, P.A. and Haas, L.M. (2008), "Information Integration in the Enterprise", in
Communications of the ACM, Vol. 51, No. 9, pp. 72-79.

Bradford Ashton, W., Johnson, A.H. and Stacey, G.S. (1994), "Monitoring science and technology
for competitive advantage", in Competitive Intelligence Review, Vol. 5, No. 1, pp. 5-16.

36

Bradford Ashton, W., Kinzey, B.R. and Gunn, M.E. (1991), "A structured approach for monitoring
science and technology developments", in Int'l J of Technology Management, Vol. 6, No. 1-2, pp.
91-111.

Bucher, T. and Dinter, B. (2008), "Process Orientation of Information Logistics - An Empirical
Analysis to Assess Benefits, Design Factors, and Realization Approaches", Proc 41st Hawaii Int'l
Conf on System Sciences (HICSS'08), Hawaii, United States, pp. 392-402.

Cameron, S.A. (2011), Enterprise Content Management: A Business and Technical Guide, 1*
edition, British Informatics Society, Swindon, United Kingdom.

Capek, T. (2009), "Semantic Network Integrity Maintenance via Heuristic Semi-Automatic Tests",
Proc. RASLAN Workshop 2009, Brno, Czech Republic, pp. 63-67.

Dinh, D., Dos Reis, J.C., Pruski, C., Da Silveira, M. and Reynaud-Delaitre, C. (2014), "ldentifying
relevant concept attributes to support mapping maintenance under ontology evolution", in Web
Semantics: Science, Services and Agents on the World Wide Web, Vol. 29, pp. 53-66.

Farwick, M., Agreiter, B., Breu, R., Ryll, S., Voges, K. and Hanschke, 1. (2011), "Requirements for
Automated Enterprise Architecture Model Maintenance - A Requirements Analysis based on a
Literature Review and an Exploratory Survey", Proc. 13th Int'l Conference on Enterprise
Information Systems (ICEIS'11), Beijing, China, pp. 325-337.

Findler, N.V. (1979), Associative networks, 1% edition, Academic Press, New York, United States.

Fischer, R., Aier, S. and Winter, R. (2007), "A Federated Approach to Enterprise Architecture
Model Maintenance", 2nd Int'| Workshop on Enterprise Modelling and Information Systems
Architectures, St. Goar, Germany, pp. 9-22.

Freund, J. and Riicker, B. (2012), Real-Life BPMN: Using BPMN 2.0 to Analyze, Improve, and
Automate Processes in Your Company, 1%t edition, CreateSpace Independent Publishing
Platform, North Charleston, United States.

Gargouri, Y., Lefebvre, B. and Meunier, J.-G. (2003), "Ontology Maintenance using Textual
Analysis", Proc. 7th World Multiconference on Systemics, Cybernetics and Informatics (SCl),
Orlando, United States, pp. 248-253.

Hipp, M., Michelberger, B., Mutschler, B. and Reichert, M. (2013), "A Framework for the
Intelligent Delivery and User-adequate Visualization of Process Information", Proc 28th
Symposium on Applied Computing (SAC'13), Coimbra, Portugal, pp. 1383-1390.

Hipp, M., Mutschler, B., Michelberger, B. and Reichert, M. (2014), "Navigating in Process Model
Repositories and Enterprise Process Information", Proc 8th Int'l Conf on Research Challenges in
Information Science (RCIS'14), Marrakesh, Morocco, pp. 1-12.

Hipp, M., Mutschler, B. and Reichert, M. (2011), "On the Context-aware, Personalized Delivery
of Process Information: Viewpoints, Problems, and Requirements", Proc 6th Int'l Conf on
Availability, Reliability and Security (ARES'11), Vienna, Austria, pp. 390-397.

Hotho, A., Nirnberger, A. and PaaR, G. (2005), "A Brief Survey of Text Mining", in LDV Forum -
GLDV Journal for Computational Linguistics and Language Technology, Vol. 20, No. 1, pp. 19-62.

37

Janakiraman, V.S. and Sarukesi, K. (2004), Decision Support Systems, 1* edition, Prentice Hall,
New Delhi, India.

Kimball, R. and Ross, M. (2013), The Data Warehouse Toolkit: The Definitive Guide to
Dimensional Modeling, 3" edition, John Wiley & Sons, Indianapolis, United States.

Kitchenham, B., Pickard, L. and Pfleeger, S.L. (1995), "Case Studies for Method and Tool
Evaluation", in /EEE Software, Vol. 12, No. 4, pp. 52-62.

Kolb, J.M. (2012), Business Intelligence in Plain Language: A practical guide to Data Mining and
Business Analytics, 2" edition, Applied Data Labs, Plainfield, United States.

Lacy, L.W. (2005), OWL: Representing Information Using the Web Ontology Language, 1%
edition, Trafford Publishing, Victoria, Canada.

Lechtenborger, J. (2001), Data Warehouse Schema Design, 1% edition, Infix, St. Augustin,
Germany.

Lewandowski, D. (2005), "Web Searching, Search Engines and Information Retrieval", in
Information Services & Use, Vol. 18, No. 3.

Michelberger, B., Mutschler, B., Hipp, M. and Reichert, M. (2013), "Determining the Link and
Rate Popularity of Enterprise Process Information", Proc 21st Int'l Conf on Cooperative
Information Systems (CooplS'13), Graz, Austria, pp. 112-129.

Michelberger, B., Mutschler, B. and Reichert, M. (2011a), "Towards Process-oriented
Information Logistics: Why Quality Dimensions of Process Information Matter", Proc 4th Int'|
Workshop on Enterprise Modelling and Information Systems Architectures (EMISA'11), Hamburg,
Germany, pp. 107-120.

Michelberger, B., Mutschler, B. and Reichert, M. (2011b), "On Handling Process Information:
Results from Case Studies and a Survey", Proc 2nd Int'| Workshop on Empirical Research in
Business Process Management (ER-BPM'11), Clermont-Ferrand, France, pp. 333-344.

Michelberger, B., Mutschler, B. and Reichert, M. (2012a), "A Context Framework for Process-
Oriented Information Logistics", Proc 15th Int'l Conf on Business Information Systems (BIS'12),
Vilnius, Lithuania, pp. 260-271.

Michelberger, B., Mutschler, B. and Reichert, M. (2012b), "Process-oriented Information
Logistics: Aligning Enterprise Information with Business Processes", Proc 16th Int'l Enterprise
Computing Conf (EDOC'12), Beijing, China, pp. 21-30.

Michelberger, B., Uimschneider, K., Glimm, B., Mutschler, B. and Reichert, M. (2014),
"Maintaining Semantic Networks: Challenges and Algorithms", Proc 16th Int'l Conf on
Information Integration and Web-based Applications & Services (iiWAS'14), Hanoi, Vietnam, pp.
365-374.

Mundbrod, N. and Reichert, M. (2014), "Process-Aware Task Management Support for
Knowledge-Intensive Business Processes: Findings, Challenges, Requirements", Proc 3rd Int'l
Workshop on Adaptive Case Management and other Non-workflow Approaches to BPM
(AdaptiveCM'14), Ulm, Germany, pp. 116-125.

38

Oertelt, S. (2009), Innovationscontrolling - Ganzheitliches Verfahren zur Priorisierung und
Steuerung von Vorentwicklungsprojekten, 1%t edition, Shaker, Magdeburg, Germany.

Oertelt, S. and Ulmschneider, K. (2013), "Prozessintegrierter Einsatz virtueller Methoden im
strategischen Technologie und Innovationsmanagement", KnowTech - Wissensmanagement und
Social Media - Markterfolg im Innovationswettbewerb, Hanau, Germany, pp. 485-498.

Park, J. and Hunting, S. (2002), XML Topic Maps: Creating and Using Topic Maps for the Web, 15t
edition, Addison-Wesley, Boston, United States.

Reichenberger, K. (2010), Kompendium semantische Netze: Konzepte, Technologie,
Modellierung, 1% edition, Springer, Berlin, Germany.

Reichert, M. and Weber, B. (2012), Enabling flexibility in process-aware information systems, 15
edition, Springer, Berlin, Germany.

Rockley, A. and Cooper, C. (2012), Managing Enterprise Content: A Unified Content Strategy, 2"
edition, New Riders, Berkely, United States.

Rouhani, S., Asgari, S. and Mirhosseini, S.V. (2012), "Review Study: Business Intelligence
Concepts and Approaches", in American J of Scientific Research, Vol. 50, pp. 62-75.

Rowley, J. (2007), "The wisdom hierarchy: representations of the DIKW hierarchy", in J of
Information Science, Vol. 33, No. 2, pp. 163-180.

Runeson, P. and Host, M. (2009), "Guidelines for conducting and reporting case study research
in software engineering", in Empirical Software Engineering, Vol. 14, No. 2, pp. 131-164.

Sauter, V.L. (2011), Decision Support Systems for Business Intelligence, 2" edition, John Wiley &
Sons, Hoboken, United States.

Scheer, A.-W. (2002), ARIS - Vom Geschdftsprozess zum Anwendungssystem, 4" edition,
Springer, Berlin, Germany.

Stuckenschmidt, H. (2009), Ontologien: Konzepte, Technologien und Anwendungen, 1% edition,
Springer, Berlin, Germany.

Wourzer, J. (2008), "New Approach for Semantic Web by Automatic Semantics", Proc 2nd
European Semantic Technology Conf (ESCT'08), Vienna, Austria.

Yin, R.K. (2009), Case Study Research: Design and Methods, 4™ edition, Sage Publications,
Thousand Oaks, United States.

[1] http://www.playframework.com/

[2] http://getbootstrap.com/

[3] http://d3js.org/

[4] http://jquery.com/

[5] http://sourceforge.net/directory/?q=nipro

[6] http://lucene.apache.org/

[7] http://www.mysgl.com/

[8] Available at http://nipro.hs-weingarten.de/casestudy

39

