
Context-Aware and Process-Centric
Knowledge Provisioning

An Example from the Software Development Domain

Gregor Grambow1, Roy Oberhauser2, and Manfred Reichert1

1Institute for Databases and Information Systems, Ulm University, Germany
{gregor.grambow, manfred.reichert}@uni-ulm.de

2Computer Science Department, Aalen University, Germany
roy.oberhauser@htw-aalen.de

Abstract. With the increasing availability of information and knowledge, effec-
tive knowledge utilization is becoming a growing and key competency within
organizations in various knowledge-intensive fields. One current challenge in
process-oriented work, such as that exhibited in new product development pro-
jects, is the provisioning of contextually-relevant knowledge to the knowledge
workers at the appropriate point in their process. This chapter provides back-
ground on technical challenges, referring to the software engineering domain to
exemplify these. Thereafter, a practical solution approach based on the Context-
aware Software Engineering Environment Event-driven framework (Co-
SEEEK) is presented. Subsequently, it is shown how automated knowledge
provisioning within processes, contextual adaptation of processes, and collabo-
rative process support can be realized.

Keywords: context awareness, process awareness, automatic knowledge provi-
sioning, knowledge management, semantic processing.

1 Introduction

In various domains, process-orientation and explicit process management are benefi-
cial [1][2][3], fostering both project efficiency [4] and product quality [5][6][7].
However, the quality of process-oriented work in various knowledge-intensive do-
mains depends on the proper utilization of available knowledge1 by knowledge work-
ers [8][9][10]. Respective domains include healthcare, software, and automotive;
especially new product development is a knowledge-intensive task [11][12]. From a
knowledge perspective, organizations develop their own local organization-specific
knowledge systems [13]. In turn, these may overlap with other knowledge systems
(e.g., discipline-specific, product-specific, market-specific, etc.). To a limited degree,

1 Since knowledge can be transformed into information when articulated, and information can

be turned by a mind into knowledge, this chapter uses these terms interchangeably.

such human-based knowledge systems may be represented within IT-based
knowledge management systems (KMS) [14].

Peter Drucker has argued that knowledge-worker productivity will be the biggest
managerial challenge of the 21st century [15]. When considering current IT-based
KMS solutions, knowledge utilization and effectiveness remains an issue [16]. While
a KMS can store and retrieve knowledge, it does not really solve the real problem:
providing the required knowledge to the right person at the right time for dealing with
the right situation. For instance, retrieval and dissemination of the stored knowledge
can become problematic when knowledge is highly dependent on the process and
context of the participating persons. Typically, knowledge workers are responsible
and tasked to retrieve and utilize knowledge on their own (active, free-access retriev-
al). However, this can be problematic and inefficient in certain situations. For exam-
ple, not all workers may be aware of the knowledge they should attempt to retrieve
(e.g., new knowledge or changes to the knowledge store) at different points in time or
while working with new processes. Additionally, humans are prone to forgetfulness,
especially in stressful situations, and therefore, even manual retrieval can become
problematic.

Thus, the automatic contextual filtering and provisioning of structured knowledge,
as well as the automated realignment of processes to changing knowledge, will be-
come increasingly important KMS capabilities, especially in light of the increasing
proliferation of information and knowledge. In order to cope with these issues, sys-
tems must be aware of context, processes, and knowledge to have the following capa-
bilities:

 Provision knowledge to workers that is aligned with the task at hand.
Knowledge is typically relevant only to specific situations. Knowledge redundancy
(e.g., providing knowledge the human is already well aware of) or overload (e.g.,
too much knowledge at once) may be detrimental, in that the KMS may be ignored
or rejected.

 Adapt users' processes to knowledge and context changes.
Processes in knowledge-intensive fields may need to adapt the sequencing of activ-
ities to align themselves to the knowledge or contextual situation.

 Use knowledge to support collaborative processes.
This includes automatically inferring impacts of any process activity and notifying
or including appropriate collaborators in the processes.

This chapter provides insights into how an automated information system can support
the above capabilities. In particular, it addresses the following questions:

 How should information be stored to enable automatic information processing and
dissemination?

 How can information be automatically distributed to those need it?
 How can the relevant information be injected at the right point into the users' oper-

ational process?
 How can a process be automatically realigned based on changes to knowledge?
 How can collaborative work be supported with knowledge?

Our knowledge management approach is illustrated with examples from the software
development domain. Within the field of software engineering (SE), software devel-
opment projects are collaborative, knowledge-intensive, and process-centric [17].
They exhibit the aforementioned issues and represent a knowledge management (KM)
environment in which the three capabilities enumerated above can be exemplified.
Developers and testers may participate collaboratively in multiple projects dealing
with different products simultaneously and on teams that may be globally distributed.
Due to resource and schedule constraints, developers should be able to enter and leave
projects quickly and efficiently, which can be daunting considering that complex
tasks require specific knowledge. Processes that should govern such tasks are usually
manually implemented without automated guidance - presenting a further challenge
for process-awareness, and these knowledge-intensive processes need to adapt to the
dynamic knowledge situation. With regard to context, since the involved artifacts,
tool chain, and actors are solution-oriented, the environment can be heterogeneous
with dynamic contexts playing a significant role. Effective KM remains a crucial
factor for successful software projects [17]. This chapter gives a comprehensive over-
view about the different knowledge management capabilities of our approach and
system. Further reading to the discussed features can be found in our prior publica-
tions and the upcoming doctoral thesis of Gregor Grambow
[18][19][20][21][22][23][24][25].

This chapter is organized as follows: the next section provides an overview of cur-
rent approaches. Section 3 describes issues in knowledge-intensive projects, including
problems and general requirements. Section 4 presents a solution approach, including
a concept and an implementation framework for the SE domain. Then, Section 5 illus-
trates automated knowledge provisioning within processes, while Section 6 focuses
on the knowledge-based contextual adaptation of processes, and Section 7 shows how
knowledge-based collaborative processes are supported. Finally, Section 8 summariz-
es the chapter and designates future challenges. A glossary and references are provid-
ed at the end.

2 Overview of Approaches in the Software Engineering Domain

This section discusses various approaches, focusing on the example domain of SE.
KM in complex and knowledge-intensive projects requires more than only storing and
retrieving knowledge. A tool or system that aims to comprehensively support
knowledge workers must provide holistic support for the entire project and for the
collaborating knowledge workers. Therefore, approaches beyond the classical KM
category are discussed that provide project and collaboration support for SE
knowledge workers. Another factor especially important in SE is knowledge about the
produced product and its quality. Therefore, approaches supporting software quality
management (QM) are mentioned.

SE Knowledge Management. [26] provides a systematic review of studies on the
application of KM in SE, categorizing the studies according to the various KM
schools: systems, cartographic, engineering, commercial, organizational, spatial, and

strategic. [27] presents a study about the usage of a process-oriented KM tool in a
small-to-medium-sized software development company. In particular, this tool allows
for web-based documentation and support for the SE process model. The study
showed good acceptance of the tool and that it really does support the developers. The
approach presented in [28] focuses on KM, considering various risks in SE projects.
The approach incorporates the modeling of risk archetypes and scenarios to model
risk impact and resolution strategies as well as to provide reusable project manage-
ment knowledge. [29] presents the knowledge dust and pearls approach, which aims
to facilitate the application of an experience base containing information that has been
analyzed and organized into experience packages. Looking beyond the SE domain,
[30] presents a study of various KMS classified in different areas: knowledge-based
systems, data mining systems, information and communication technology, database
technology, modeling, and expert systems providing decision support. The presented
approaches narrowly focus on management, storage and retrieval of information.

SE Quality Management Support. The quality of the produced product and related
knowledge involved are crucial success factors for a project. In order to be able to
provide automated support for QM, continuous awareness about the quality state is
crucial. Source code metrics are one means in SE of assessing quality. In [31], a re-
port is provided about the application of such a metric program at Motorola. It de-
scribes a set of different views on metrics to support their successful application and
reports success in several areas by using software metrics. [32] describes a formal
meta-model enabling measurement in SE. It puts strong focus on storing, interpreting
and analyzing gathered data. Further, a practical framework is also developed sup-
porting the creation of models for software measurement, connection of these to
measurement tools, and storage of the results. A comprehensive industry survey about
the success of metric programs is presented in [33].

However, these approaches only deal only with the use of metrics, but not with
tool-supported automated QM quality management. In the following, therefore, a
selection of approaches concerning automated measurement tools is discussed. [PR-
Miner [34] enables automated analysis of source code and efficient and automated
extraction of implicit, undocumented programming rules from it. Further, it automati-
cally detects violations to these rules. Another tool is the Empirical Project Monitor
(EPM) [35], which aims to support effective software process management by provid-
ing quantitative data. It collects and measures data from different repositories within
software development support systems and presents that data graphically to the users
in order to generate an awareness of the project progress. The collection and aggrega-
tion of data about users' programming behavior is offered by the modular framework
ElectroCodeoGram (ECG) [36]. It comprises a set of sensors as well as modules for
integrating the data gathered by the sensors. ElectroCodeoGram provides micro-
process data to support researchers in understanding how programming is carried out
on a fine-grained level. A similar approach shown in [37] is called SUMS (Standard
User Monitoring Suite). SUMS features acquisition facilities for different program-
ming languages, applying neural networks and Bayesian analysis to achieve automat-
ed learning features. While the mentioned tools offer advanced data acquisition, ag-

gregation, and interpretation facilities for different kinds of data in SE projects, they
address a relatively narrow quality area.

SE Collaboration Support. Knowledge-intensive projects typically require commu-
nication and collaboration among knowledge workers in order to work on complex
tasks. Existing approaches support such collaboration with related knowledge. For
example, CASDE [38] and CoolDev [39] make use of activity theory. CASDE sup-
ports mutual awareness between different actors and their activities via a role-based
awareness module. In turn, CoolDev manages activities performed by a single person
in the context of global cooperative activities. It is realized as an integrated develop-
ment environment (IDE) plugin capable of monitoring activities carried out with other
plugins. Another approach is taken by CAISE [40], a framework that enables the inte-
gration of other SE tools and supports the development of new SE tools based on
collaboration patterns. Other frameworks like Syde [41], SPACE [42], and ADAMS
[43], take an artifact-centric approach. Syde is based on an extended view on source
control management. It can automatically inform every developer about any changes
another developer makes, even if the changes have not yet been synchronized to the
common code repository. It enables synchronous development. SPACE (Semantic
Process- and Artifact-oriented Collaboration Environment) takes another approach by
managing two types of interconnected models for processes and artifacts. That way it
enables a set of supportive features, e.g., personalized user views or comprehensive
artifact traceability. ADAMS (ADvanced Artefact Management System) is even more
artifact-centric: it models the whole project in terms of its artifacts. Thus it features
sophisticated versioning and locking approaches, fine-grained traceability of the arti-
facts, and an event module capable of informing users about any relevant event. The
above mentioned tools focus on the collaboration perspective of humans and activities
and neglect other aspects of comprehensive KM.

SE Project Support. Numerous approaches exist that aim at providing some kind of
SE project support based on knowledge. Respective approaches mostly target a dis-
tinct area. For example, [44] describes knowledge support approaches during process
execution, consisting of the domain-oriented software development environments
(DOSDE) as well as the enterprise-oriented software development environments
(EOSDE). Another category of approaches for SE project support puts it focus on a
model-driven approach. Representatives of this category include the Transforms En-
vironment [45] and the model-driven approach described in [46]. Being situated on
the M2 level of the OMG model layers, the Transforms Environment uses parts of the
SPEM process meta-model and tailors it for MDA processes. The model-driven ap-
proach suggested in [46] also applies a model-driven procedure, in this case in order
to support deployment and variability of software processes.

While all these approaches provide a certain amount of project and knowledge assis-
tance, they lack a comprehensive approach to optimally support project participants in
their context, knowledge, and with their workflows.

3 Current Issues

This section describes problem areas and requirements that a solution must address
for knowledge provisioning in process-oriented and knowledge-intensive projects .

3.1 Problem Areas

Concerning holistic knowledge support for contemporary projects in various domains,
the problem areas can be classified in two categories: direct knowledge-related prob-
lems about processed artifacts, human collaboration, or used tools; and process-
oriented problems. Because these areas are intertwined, if these two problem areas are
not addressed properly, effective IT-based KM is impeded. Fehler! Verweisquelle
konnte nicht gefunden werden. illustrates these problems in the context of the SE
domain. The project is separated into three process domains illustrating the relation of
concrete KM problems and related process problems. Domains such as these have
been mentioned several times in the literature (e.g., [47] or [48]). Both of these are
conceptually analogous, and we herewith use Dowson’s. It distinguishes three do-
mains.

 Process modeling: processes are modeled and process models, including actors,
tools, or artifacts, are situated.

 Process enactment: the modeled processes are implemented by means of workflow
management technology [49].

 Process performance: the real-world-process takes place, including humans, the
concrete artifacts, or concrete software tools used by the humans.

Knowledge Management (Fig. 1 (1)). The first problem area concerns classical KM.
This comprises, for example, knowledge about the correct use of tools and technolo-
gies in a organization, its organizational structure, or other concrete approaches like
how to apply source control management for the artifacts produced.

Quality Management (Fig. 1 (2)). The second area deals with the assets produced in
the organization: artifacts in the SE domain. In particular, knowledge about the quali-
ty of these artifacts, occurring problems, reported bugs, or approaches to bug fixing
are of primary importance. Organizations are often not aware about the state of their
products’ artifacts. Problems often remain undiscovered and reveal themselves either
near the end of a project or later during use by the customer. Proactive QM is often
not implemented. When software quality measures are applied under high time pres-
sure, they often disrupt the development process or do not match the applying per-
son's situation or abilities, and are thus less effective and efficient.

Information Coordination (Fig. 1 (3)). Knowledge workers collaborate, and thus
efficient and effective coordination is crucial. For knowledge workers, information
about the tasks and artifacts processed by co-workers is vital.

As mentioned, these problem areas directly relate to various kinds of knowledge and
are not the only ones for contemporary projects. The problem areas are all situated in

the process performance domain, where users interact with real tools and with each
other. Because such projects are often complex, their processes have to be planned,
modeled, and explicitly managed. In particular, their implementation and use is cru-
cial for effective KM. Therefore, in the following, three more generic problem areas
relating to processes are discussed (as also illustrated in Fehler! Verweisquelle
konnte nicht gefunden werden.).

Fig. 1. Problem areas mapped to process domains

Process Automation (Fig. 1 (A)). Processes are modeled in the process modeling
domain using specific process modeling tools and notations. In many organizations,
explicit support for processes remains at that modeling domain level. Process imple-
mentation is considered as the activity of releasing a process model document to all
process participants. When no PAIS are in place to govern or support the actual pro-

cess enactment, the real-world process can often and easily deviate from the modeled
process as it is executed in the process performance domain.

Context integration (Fig. 1 (B)). While Process-Aware Information Systems (PAIS)
can provide organizations with IT-based process support and help govern process
execution, only a limited amount of the work actually done in knowledge-intensive
projects is even captured in process models. The PAIS are often unaware about the
tools used, the variety of (partly unexpected) events that happen in everyday work, or
the great number of potentially interrelated artifacts. Thus the process, as it is really
executed, differs from the one executed in a PAIS, and the latter becomes (at least
partly) irrelevant.

Process Dynamicity (Fig. 1 (C)). Another problem with process implementation
relates to the dynamicity of the executed process. If an organization has a system in
place that governs and supports the process, the support provided by that tool can be
beneficial in keeping the real world process aligned. But this mostly only applies as
long as nothing requires a change in the operationally running process [50]. For ex-
ample in SE, this can be a received bug report from an important customer that re-
quires one or more developers to deviate from their standard development schedule.

3.2 Basic Requirements

For a system to cope with the above problem areas, it must fulfill certain require-
ments. These requirements are organized around the basic problem areas (RA relates
to a requirement concerning problem area A from Fehler! Verweisquelle konnte
nicht gefunden werden.). The more advanced problems will be covered in dedicated
sections: KM will be covered in Section 5, QM in Section 6, and information coordi-
nation in Section 7. Please note that fundamental system abilities such as distributing
tasks to its users or correctness of process execution are presumed. Although the re-
quirements are tailored toward the SE example domain to make them concrete, they
can easily be adapted for other domains.

A system aiming for holistic process and knowledge support should incorporate the
following features:

─ Additional Process Information (RA.1): incorporate various types of supplemen-
tary information contained in process models (e.g., artifact hierarchies or support-
ive information like checklists). These should be integrated into the execution se-
mantics of the executing PAIS to facilitate consistency between modeled and en-
acted processes;

─ Abstract and Operational Processes (RA.2): model abstract processes (like the
lifecycle of a whole project) and also operational concrete processes (like concrete
development tasks). Both types of process areas (abstract and concrete) should be
seamlessly integrated;

─ Seamless Integration (RA.3): integrate seamlessly into everyday work. Usage
should not be cumbersome and specific process or knowledge support should not
distract users from their work;

─ Context-data Acquisition (RB.1): automatically acquire context data from its envi-
ronment, classifying the current situation;

─ Context-data Processing (RB.2): automatically process acquired context data to
react to changing contextual conditions;

─ Context / Process Integration (RB.3): integrate acquired context data with its pro-
cess model and the associated data to be able to align the enacted process with the
actually performed process;

─ Dynamic Workflow Changes (RC.1): enable changes to running process instances;
and

─ Automated Workflow Changes (RC.2): automate instance changes of running
workflows to be able to autonomically react to changing situations.

4 Automated Knowledge Provisioning Approach

This section gives details on the basic solution approach comprising the abstract con-
cepts as well as the implementation architecture of a system that enables comprehen-
sive and holistic knowledge support for contemporary projects.

4.1 Abstract Knowledge Provisioning Concept

This section gives insights on the basic principles of the system we have developed
that amalgamates a knowledge-based system (KBS) with an adaptable process-aware
information system (PAIS) and a contextually-aware system. Fig. 2 shows the major
components in this concept.

Knowledge Management

Environment Sensors

Event Extraction

Adaptable
Process Management

Artifacts

Event Processing

Context Management

Data Storage
Rules Processing

Agent System

Guidance Assistance GUI

Fig. 2. Automated knowledge provisioning conceptual architecture (domain independent)

Contemporary PAIS only offer a limited number of concepts like activities, work-
flows, data elements, users, and roles. To be able to execute processes in line with the
actual project work, a system should have additional modeling capabilities. Our con-
cept enables the integration of various interconnected entities that enable the explicit
modeling of complex artifact hierarchies with diverse properties for each artifact
(Context Management and Knowledge Management in Fig. 2). Further, it enables the
relation of such artifacts to a similarly complex and flexible hierarchy of intercon-

nected activities of different types (Adaptable Process Management in Fig. 2). Be-
sides these, various other concepts are also implemented to enable a comprehensive
modeling of complete process models for execution [20][25].

Another limitation of contemporary PAIS is the fact that they mostly apply rigid
and pre-defined workflows. In our opinion, rigid workflows applied in automated
systems are an important cause for their dissonance in practice. Therefore, our con-
cept not only comprises facilities to provide dynamic adaptation of running work-
flows for users (Adaptable Process Management in Fig. 2), but also to let the system
perform automated process adaptations in alignment with context data representing
the current project situation (Context Management in Fig. 2).

Context data is also crucial for a system that seeks to provide holistic project and
process support. Therefore, our system integrates facilities to automatically gather
context data from various sources (Environment Sensors and Event Extraction in Fig.
2). Further, aggregation and processing of the data is automated (Event Processing in
Fig. 2), i.e., data can be delivered to the components that use it in a reasonable granu-
larity and with more semantic value.

Providing automation in knowledge-intensive projects is challenging. A system
aiming at comprehensive project support must be able to automate a large number of
different types of tasks while still being flexible and transparent to the user. To enable
this, our system combines different technologies for supporting different tasks: se-
mantic web technology enables automatic classification capabilities, rule engine tech-
nology automates simple recurring tasks (Rule Processing in Fig. 2), and an agent
system adds more autonomic capabilities (Agent System in Fig. 2).

In order to enable a system to provide knowledge assistance in a holistic and auto-
mated way for entire projects, a more comprehensive approach to KM must be taken
into account. Our system comprises an active KM component managing the user rele-
vant knowledge in alignment with context data (Knowledge Management in Fig. 2).
Furthermore, it not only stores and manages that knowledge, but also explicitly man-
ages internal knowledge that enables the system to react to various situations in a
project in an appropriate way (Data Storage in Fig. 2).

Finally, system providing comprehensive project support and tackling different ar-
eas necessarily implies a certain amount of complexity. Such a system involves a fair
number of different components and modules and has to process various kinds of
dynamic data. Enabling efficient communication of the different components with
various kinds of data while preserving extensibility can be a serious issue. Therefore,
all framework communication is event-based and loosely-coupled in order to be able
to easily integrate new components as well as new kinds of data.

4.2 Knowledge Provisioning Framework

The concept above was then implemented for the SE domain and named CoSEEEK
(Context-aware Software Engineering Environment Event-driven frameworK). It
unites adaptive process management with semantic web technology and a sensor
framework to provide holistic support for SE projects. Users can store and annotate
knowledge in a semantic wiki and thus make it machine-accessible and –readable. To

be able to not only transfer this knowledge automatically back to the users, but also to
maximize the suitability and effect of that knowledge, CoSEEEK tailors it to the cur-
rent situation of each and every individual participating in the project. This becomes
possible on one hand by guiding the users with dynamic workflows; on the other by
having a multitude of active sensors in various SE tools connected to the framework.
These sensors provide accurate information on the various artifacts users manipulate
in a project and also on tasks they execute even if they are external to their planned
workflows. This enables CoSEEEK to match meta information in the knowledge base
to various properties of the situations the users are in, and automatically inject the
knowledge into the users workflows. That way, users can be provided automatically
tailored knowledge that matches their current needs. Fehler! Verweisquelle konnte
nicht gefunden werden. details the technical architecture of CoSEEEK followed by
an explanation of the different components and their interaction.

The different parts of the concept previously discussed are realized by the different
components shown in Fehler! Verweisquelle konnte nicht gefunden werden.. To
enable communication between the different components that facilitates extensibility
and exchangeability, all communication is event-based using a Data Storage compo-
nent for event storage. The integration of CoSEEEK with its environment is realized
via an Event Extraction and an Event Processing component that enable the automatic
acquisition and processing of events from other SE tools using sensors. Context data
is then centrally managed by a Context Management component. To integrate the data
with process execution and extend this with additional knowledge, the Context Man-
agement component is tightly integrated with a Process Management component that
is in charge of workflow execution. The latter component also manages dynamic ad-
aptations to workflows to conform to changing situations. To enable comprehensive
knowledge support for entire projects, a separate component centrally manages
knowledge. That Knowledge Management component is also tightly integrated with
the Context Management component to facilitate context-based knowledge provision-
ing. Finally, an agent system and a rule engine offer tight integration of configurable
automatisms into the framework to support users in their complex tasks.

In the following, the technical realization of the different components is briefly
discussed. The event-based communication and storage within the framework is im-
plemented via a specialized tuple space [51] that uses the XML database eXist [52].
Each module and the applied sensors can write in that tuple space and register to be
automatically notified about events relating to a specific topic. The sensors are real-
ized via the Hackystat framework [53], which offers a rich set of sensors that can be
integrated into various applications like source control management systems or IDEs
(cf. requirement RB.1 (Context-data Acquisition)). The sensors automatically create
events for various real events like the change of an artifact. Such events can be of
rather atomic nature and with low semantic value. Therefore, to produce events with
more semantic value and not burden the event system with numerous micro events,
the complex event processing (CEP) [54] tool Esper [55] is applied to create higher-
level events out of various low-level events (cf. requirement RB.2 (Context-data Pro-
cessing)).

Fig. 3. CoSEEEK Framework

To enable CoSEEEK to apply various kinds of automatisms and act autonomously in
various situations, the multi-agent system JADE [56] and the rule engine JBoss
Drools [57] are integrated. An example for such automatisms is automatically deter-
mining an appropriate software quality measure to apply to counteract a detected
quality problem in the source code, and then automatically assigning the measure to
the appropriate user based on various factors. This will be further described in Section
6.

For management of the workflows in CoSEEEK, the AristaFlow [58][59] PAIS is
integrated. It offers numerous advantages for the correct and dynamic enactment of
workflows, featuring a correctness-by-construction principle that only allows the user
to create correct workflows. This correctness is continuously enforced during the
entire execution lifecycle. In addition, it enables dynamic changes even to running
workflow instances (cf. requirement RC.1 (Dynamic Workflow Changes)) and guar-
antees the correctness of the workflows before and after the adaptations.

The Context Management as well as Knowledge Management components rely on
semantic web technology. For user-related knowledge, the Knowledge Management
component integrates the Semantic MediaWiki [60]. That way, the users can enter
knowledge like in a common wiki, but can also semantically tag their entries, ena-
bling automated usage of that knowledge by CoSEEEK. This will be further detailed
in Section 5. Internal knowledge that the system utilizes with both components is
stored within an OWL-DL ontology [61]. To exploit the full potential of the semantic
web technology, the reasoner Pellet [62] is used together with the Jena framework
[63] for programmatic access to the concepts. In addition to that, rules can be applied
via SWRL [64] within the ontology, and queries can be posed via SPARQL [65].

The ontology is not only used to model contextual data, it is also tightly coupled
with the Process Management component in order to realize useful extensions to the
workflows and model complete process models (cf. requirement RA.1 (Additional
Process Information)). That way, it is also possible to enrich operational workflows
with various granularities of activities and additional user-related information. It ab-
stracts from the internal workflow logic (cf. [18]) to make workflow use less cumber-
some for humans (cf. requirement RA.3 (Seamless Integration)), while still being able
to automatically govern the abstract processes to which the operational workflows
belong (cf. requirement RA.2 (Abstract and Operational Processes)). Furthermore, by
the close integration of process-related information in the ontology with the contextu-
al data, a seamless integration of both can be applied (cf. requirement RB.3 (Context /
Process Integration)). This tight integration of the Context Management and Process
Management components makes it possible to automatically utilize context data to
apply automated adaptations for aligning the process with reality (cf. requirement
RC.2 (Automated Workflow Changes)).

The environment of CoSEEEK, which primarily consists of artifacts, humans, and
tools within a project, is integrated in two ways: the entities are modeled in the Con-
text Management component and, via sensors, their state can be kept up to date with
the real world entities. For providing the supporting and governing functionalities,
CoSEEEK offers a set of simple web-based GUIs. To enable seamless integration into
everyday work (cf. requirement RA.3 (Seamless Integration)) and not disturb the
software developers, the main GUI was also realized as a plugin for common software
IDEs like Microsoft Visual Studio and Eclipse.

5 Automated Knowledge Provisioning in Processes

As stated, knowledge worker projects as well as the knowledge management can be
challenging. In particular, this applies to SE as it involves new product development,
which is a knowledge-intensive task [11]. Further, software processes can be mostly
considered as knowledge processes [66]. It has been shown that an automated system
supporting KM can be beneficial [67]. In SE projects, nowadays, wikis are often used
for such tasks as they enable distributed access to knowledge. However, the retrieval
of respective knowledge is often problematic as the knowledge organization in a wiki
used by dozens or even hundreds of people can be challenging [68]. For example, if
one developer encounters a best practice for a recurring situation, e.g., the application
of a design, he might enter it in such a wiki. The retrieval of that information is prob-
lematic. On the one hand, the information is only passively stored and another devel-
oper might not even be aware of its existence when encountering a problem. On the
other, even when using the wiki, the information might not be found because one
might search quite differently than the one who stored the information had in mind.
This section gives insights on the knowledge provisioning concept we have created.
For further reading on that topic see [21][22]. Section 5.1 discusses specific require-
ments, while Section 5.2 shows the different components involved. Section 5.3 dis-
cusses the specific concepts, and the last sub-section gives a concrete example for
automatic knowledge provisioning.

5.1 Knowledge Provisioning Requirements

To overcome the aforementioned problems, a system aiming for holistic process and
knowledge provisioning should incorporate the following features:

─ Knowledge storage (R1.1): store user-relevant knowledge in an appropriate way;
─ External knowledge integration (R1.2): integrate knowledge from external sources;
─ Automatic knowledge access (R1.3): automatically access, use, and distribute

knowledge stored in the system;
─ Context-data utilization (R1.4): utilize contextual information to select appropriate

knowledge for different situations and persons;
─ Knowledge injection (R1.5): automatically inject knowledge into process enact-

ment and performance; and
─ Knowledge provisioning configuration (R1.6): enable users to configure

knowledge provision.

5.2 Knowledge Provisioning Components

To meet the above requirements, we developed a system that comprises tightly inte-
grated active components relating to process, context, event, and knowledge man-
agement. These components and their interaction are illustrated in Fig. 4.

Fig. 4. Knowledge management components (using symbols from robustness diagrams)

Recalling the requirements, effective knowledge management and provisioning ne-
cessitates that information suitable to the user's situation be seamlessly integrated into
his or her current process. This is achieved by the integration of multiple components
as described in the following. The Context Management component, a central compo-
nent of the system, stores information about users, artifacts, tools, and various other
project entities. The Event Management component, in turn, automatically collects
information from the environment by the aforementioned sensors (1) and delivers it to
the Context Management component (2) (cf. requirement R1.4 (Context-data utiliza-
tion)). The Process and Context Management components are tightly integrated and
together realize the enactment of entire process models. The Knowledge Provider that
is in charge of managing the provision of knowledge to users directly communicates
with the Context Management component (5), and thus has direct access to context
information (cf. requirement R1.4 (Context-data utilization)) and to process infor-
mation (cf. requirement R1.5 (Knowledge injection)).

As also mentioned in the requirements, automatic knowledge provisioning relies
on effective acquisition and storage of the knowledge and the ability of the provision-
ing system to access and utilize that knowledge. The storage is realized by a separate
component called the Knowledge Store (cf. requirement R1.1 (Knowledge Storage)).
The latter allows the Knowledge Provider semantic access (4) (cf. requirement R1.3
(Automatic knowledge access)) to the stored knowledge that is obtained from a spe-

cial Knowledge Collection GUI (8) that allows users to enter and tag their knowledge
(7).

However, even if a system contains useful knowledge for users, it would still be
marginalized by users if it is unable to deliver it in a way fitting to their current tasks
and workflows. Therefore, the knowledge chosen by the system is passed from the
Knowledge Provider to the Context Management component (5). That component, in
turn, utilizes its tight connection to the Process Management component (3) to deter-
mine the time point to inject the knowledge in the process (cf. requirement R1.5
(Knowledge Injection)) and then deliver that knowledge to the Process Support GUI
(12) that makes it visible to the user (11).

Finally, even if a knowledge provisioning system is effective, it will never com-
prise all possible matching knowledge. Therefore, the integration of external
knowledge sources is managed by the Knowledge Provider (6), so that these can be
easily provided to users (cf. requirement R1.2 (External knowledge integration)). The
configuration of external knowledge and the entire knowledge provisioning process
can be managed by users by utilizing the Knowledge Management GUI (9) (cf. re-
quirement R1.6 (Knowledge provision configuration)), which communicates with the
Knowledge Provider (10).

5.3 Knowledge Provisioning Process

This section discusses how knowledge is managed within the system. To be able to
explicitly reference and provide each unit of information, a separate concept has been
introduced in the ontology that is called a Guidance Item (GI). It is used by the
Knowledge Provider to access and classify the knowledge integrated into the system.
The GI has a set of properties enabling information management. The relevant ones
are shown in Table 1.

Table 1. GI properties

Type Knowledge can occur in various types that are distinguished by this
property, like checklist, information, best practice, notice, or tutorial.

Origin This property denotes if the GI is stored within the system or coming
from an external source.

Compilation This property denotes if the GI is static or if the system dynamically
compiles it. In the latter case, the system matches entered tags users
add to the knowledge in the Knowledge Store to process and context
information and thus creates specifically tailored knowledge support
for the users' situation.

Tags This property contains tags used to dynamically compile knowledge for
users with dynamic GIs.

Link This property stores a direct link to the knowledge represented by this
GI if the GI is static.

The properties of the GI comprise information about the knowledge represented by
the GI as well as information relevant to contextual knowledge provisioning. Howev-
er, the knowledge must be injected into the user’s process in a defined way to make it
effective. This is governed by four distinct properties, managing when and how to
apply knowledge support to different kinds of activities as shown in Table 2.

Table 2. Knowledge injection properties

GI alignment This property governs how the knowledge is shown to the
user in relation to the activity it relates to. ‘Pre’ means that
the GI is shown at the beginning of an activity and ‘Post’
means it will be shown at the end of an activity.

GI alignment This property indicates if the lifecycle of the GI is tied to
the lifecycle of the relating activity. If so, the GI will only
be available as long as the activity is active.

GI usage This property distinguishes between the values ‘Required’
and ‘Optional’. Required GIs must be reviewed by the user
and can even block activity termination if they are tied to
an activity.

Item Compilation This property relates to the GI’s ‘Compilation’ property
and manages how the system uses runtime context infor-
mation to dynamically compile GIs matching the current
situation. One example would be a database development
checklist for junior engineers.

Not all combinations of these properties are allowed, for more information see [22].

5.4 Knowledge Provisioning Example

Recalling the introductory example from this section, this subsection gives a brief
concrete example for our knowledge provisioning concept that is illustrated by the
following figure and explained afterwards.

Fig. 5. Knowledge provisioning example

During the course of a project, different steps are performed to enable automated
knowledge provisioning as illustrated in Fig. 5.

1. Utilizing the Knowledge Collection GUI, users can collect knowledge while work-
ing in a project. They can tag this knowledge to support later discovery by humans
or any automated system. Examples of tags on that information include ‘junior’ to
indicate applicability for junior engineers or ‘backend’ or ‘frontend’ to relate them
to a specific implementation area.

2. The process of the project is managed and governed automatically by the system,
including various operational workflows belonging to the process. Activities to be
processed by humans are automatically delivered to them. Examples of activities
governed that way include ‘Implement Solution’, where new source code is devel-
oped, or ‘Run Developer Test’, where source code is tested by the developer.

3. The governed workflows can be annotated by process engineers to make use of GIs
and thus automatically deliver knowledge to the other users. Examples for such
GIs include implementation or testing checklists, or specific notes as, e.g., hints
about a relevant design pattern.

4. Applying a multitude of sensors in various applications, the system continuously
detects new facts about the current situation. This makes it possible to tailor the
knowledge provision to the user’s current situation. For example, a junior engineer
working at the frontend of an application could be provided a pre-GI containing the
aforementioned item concerning a GUI-related design pattern when starting his
‘Implement Solution’ activity.

6 Knowledge-based Contextual Adaptation of Processes

For manufacturers, the state and quality of their produced product is of primary im-
portance. Therefore, knowledge about the product, its quality, relating problems, and
quality measures to overcome the problems are crucial. Quality and quality issues
should typically be viewed holistically. For SE, software is intangible, and acquiring
and relating quality issues to source code artifacts can be problematic. Furthermore,
the effective and efficient application of software quality measures to proactivley
improve the product's quality as well as reactively correct discovered quality issues is
even more challenging. One way to address quality issues systematically is to utilize
knowledge to adapt processes in alignment with the users' context. For further reading
on that topic see [19][20]. This section is organized as follows: Section 6.1 introduces
the knowledge-based adaptation concept, Section 6.2 elicits advanced requirements
for such an approach, and Section 6.3 extends the presented approach to satisfy these
requirements.

6.1 Concept for Knowledge-based Contextual Adaptation of Processes

As a concrete scenario to illustrate this concept in the SE domain, we will use the
automated integration of quality measures into processes. To support this critical area,
we have integrated facilities into CoSEEEK that enable the automated integration of

software quality measures into the development process via dynamic workflow adap-
tations. This section will introduce the basics regarding this facility by a simple ex-
ample. It deals with proactive quality measures that users have identified as being
useful, and have been entered into the knowledge base to be easily reused. Fig. 6 il-
lustrates how our system can facilitate such knowledge reuse actively.

Fig. 6. Knowledge integration example

As aforementioned, the user (e.g., a developer) enters a proactive software quality
measure (an advice to analyze the modularity of the source code to proactively aid
maintainability) into the Knowledge Store via the Knowledge Collection GUI and tags
it in a way such that the system can identify it as such. It is thus available for other
users when they are processing tasks relating to software development. In Fig. 6, such
a workflow is shown: it is the ‘Develop Solution Increment Workflow’ that deals with
the development of new software from the OpenUP [69] process. CoSEEEK governs
that workflow within its Process Management component and manages related addi-
tional information and entities, like the processed artifacts or checklists in the Context
Management component. That way, CoSEEEK's Knowledge Provider is aware of the
activities and artifacts of the user's process and can thus provide matching infor-
mation. In this example, CoSEEEK can automatically integrate a new activity relating
to the proactive software quality measure right after the ‘Implement Solution’ activi-
ty, since it was detected that this quality measure would match the artifacts processed
by that activity. With this approach, a seamless integration of QM with normal pro-
cess execution is achieved.

6.2 Requirements for Knowledge-based Contextual Adaptation of Processes

In reality, a multitude of different factors influence quality measure provisioning. If
they are not considered, the latter cannot be executed in an effective and efficient
way. Section 6.3 will introduce a more complex extended approach to quality meas-

ure provisioning. A system aiming for holistic knowledge-based contextual adaptation
of processes should incorporate the following features:

─ Problem awareness (R2.1): be aware of problems in the assets produced within the
organization (e.g., source code for SE);

─ Opportunity awareness (R2.2): be aware of opportunities when users could apply
actions (e.g., quality measures) to improve the situation (e.g., the quality of an arti-
fact) without significantly delaying the process;

─ Strategic action alignment (R2.3): strategically align possible actions (e.g., soft-
ware quality measures) with goals of the current project (e.g., quality goals);

─ Proactive actions (R2.4): Include not only reactive actions (e.g., reactive quality
measures) dealing with existing problems, but also proactive actions (e.g., proac-
tive quality measures) to prevent problems;

─ Context-sensitive actions (R2.5): Enable context-sensitive tailoring of the actions
(e.g., quality measures) so that they fit to the current situation and person;

─ Context monitoring (R2.6): continuously monitor the context (e.g., quality of arti-
facts) and also identify the impact of actions (e.g., quality measures) on artifacts;

─ Seamless integration (R2.7): enable seamless integration of the provided actions
(e.g., quality measures) with the standard process to not delay the latter or disturb
the participants.

6.3 Extended Concept for Knowledge-based Contextual Adaptation of
Processes

Recalling the problems and requirements we already elicited, there are many factors
that play a role for successful automated quality support. On one hand, the system
must be aware of the problems in artifacts (cf. requirement R2.1 (Problem aware-
ness)). On the other, it must be aware of the users’ activities and the process to not
hamper the process with inappropriate actions such as quality measures (cf. require-
ment R2.2 (Opportunity awareness)). Furthermore, the measures must be in line with
the goals of the project (cf. requirement R2.3 (Strategic action alignment)) and the
current situation of the person applying them (cf. requirement R2.5 (Context-sensitive
actions)). In order to be able to exploit the usefulness of such measures, the system
should manage proactive as well as reactive measures (cf. requirement R2.4 (Proac-
tive actions)) and the applied measures should be assessed for their impact and utility
(cf. requirement R2.6 (Context monitoring)). Finally, the system should enable seam-
less integration of the measures into the standard development process to not disturb
the users (cf. requirement R2.7 (Seamless integration)). To be able to conform to this
set of different and complex factors, we have defined a multi-step approach to auto-
mated QM that uses a second internal knowledge system within the Context Man-
agement component. This approach is illustrated in Fig. 7 and explained in the follow-
ing.

Fig. 7. Quality management approach

The approach presented in Fig. 7 is separated into three phases. The detection phase is
applied to generate an awareness of the systems environment. This includes source
code artifacts (cf. requirement R2.1 (Problem awareness)) and user activities (cf. re-
quirement R2.2 (Opportunity awareness)). In the processing phase, a quality trend
analysis of the source code takes place and, based on that, a quality measure prioriti-
zation including proactive and reactive software quality measures (cf. requirement
R2.4 (Proactive actions)) in line with projects goals (cf. requirement R2.3 (Strategic
action alignment)). The proposed measures are then tailored to the users’ situations
(cf. requirement R2.5 (Context-sensitive actions)) and seamlessly integrated into their
running workflows (cf. requirement R2.7 (Seamless integration)). To evolve the
knowledge system, in the post-processing phase there is also a measure utility as-
sessment (cf. requirement R2.6 (Context monitoring)) that reveals what measures
were effective and ineffective.

The different steps of this approach are briefly explained in the following. They
can be separated into three procedures: problem processing, opportunity processing,
and measure assessment. The first one, problem processing, comprises the following
steps. During the course of the project, the quality of the artifacts is continuously
monitored, e.g., by static code analysis tools (Code Analysis (4)). In turn, via the
Event Management component, these tools are also monitored and the creation of a
code analysis report is recognized by the system. These reports are then automatically
transformed into a unified format. On such unified reports, pre-defined rules are exe-
cuted that assess if any metric exceeds a given threshold, categorizes these cases as
problems, and then automatically assigns an appropriate software quality measure to
each problem (Rules processing (5)). To obtain more meaningful values representing
the global state of the artifacts, the metrics from the unified reports are aggregated to
KPIs afterwards (KPI Calculation (6)). As the number of assigned measures usually
exceeds the capacities of a project, the assigned measures are later prioritized by an
agent-based automated goal-question-metric [70] to align them to the quality goals of
the project (AGQM (7)).

The second procedure deals with the quality opportunities in the users' workflows.
This relates to users’ tasks that are part of the process and opportunities to apply ac-
tions (i.e., quality measures) without delaying such tasks. Therefore, the different user
tasks have to be estimated concerning time consumption by humans at the beginning

(Workflow Estimation (1)). These tasks are then automatically imported into the sys-
tem and, for each of them, a dedicated workflow is started. After that, the workflows
are executed within the system by the users (Workflow Execution (2)). The system
can, based on the estimated times and the actual times, carry out a so-called Q-Slot
detection (3). This means that the system determines if a person has time left for the
application of an action (i.e., software quality measure) without delaying the planned
tasks. When the system has recognized a person with time left for a quality measure,
the concrete point in one of his workflows where the measure application shall be
integrated is determined (Extension Point Determination (8)). This is done via seman-
tic enhancements to the workflows in the Context Management component (cf. [20]).
To make the applied measures as effective as possible, context-based measure selec-
tion is carried out by the system incorporating multiple properties of the situation and
the intended user (Measure Selection (9)). When the appropriate person, measure and
extension point have been determined, the system automatically and seamlessly inte-
grates the measure into the potentially running workflow of the person via the dynam-
ic adaptation capabilities of AristaFlow (Workflow Adaptation (10)).

The third procedure deals with the assessment of measures that have been applied
by the users. Therefore, the calculation of the KPIs representing the state of the source
code is continuously executed (KPI Calculation (6)). Therefore, it can serve as an
indicator for the effectiveness of applied quality measures by comparing values before
and after their application. At user-configured points in the process, the effectiveness
and usefulness of the applied measures (measure utility) will be automatically calcu-
lated by the system utilizing the KPIs (Measure Utility Calculation (11)). The values
obtained by this calculation will then be used in future measure proposals to improve
the effectiveness of the applied measures.

Via the described approach, it becomes possible to effectively and systematically
manage and provision knowledge regarding the quality of the artifacts an organization
produces. Furthermore, that knowledge is actively used by the system to support and
improve the situation (e.g., quality) by automatically distributing appropriate actions
(i.e., matching quality measures) that fit a user's context and will adapt their process
accordingly.

7 Knowledge-based Collaborative Process Support

In knowledge-intensive projects, the essential collaboration between the knowledge
workers involves concurrent or cooperative work on various complex artifacts. In
some cases, one might depend on the work of others on a certain artifact, in other
cases changes might interfere with each other or might entail additional work for
someone. In particular, artifacts often relate to and can impact each other, e.g., the
requirements specification may change, entailing changes to source code artifacts,
while the implementation is already operational. For further reading on that topic see
[23][24]. Section 7.1 introduces specific requirements and Section 7.2 presents the
collaboration concept.

7.1 Advanced Collaboration Requirements

To provide effective support for such projects, an automated aiming for holistic pro-
cess and knowledge support should incorporate the following features:

─ Notification delivery (R3.1): deliver notifications of interest to applicable users in
case an artifact or the state of a task of a colleague changes;

─ Impact identification (R3.2): identify the impact of the execution of a certain activ-
ity on certain artifacts;

─ Automatic activity initiation (R3.3): automatically initiate certain follow-up activi-
ties to enable users to react to changes certain activities have caused. For example,
if one of two associated artifacts is changed in an incompatible way, another activi-
ty could be initiated to also change the associated artifact;

─ Applicable actor identification (R3.4): Be able to automatically identify the re-
sponsible person for a follow-up activity;

─ Configurability (R3.5): Enable users to flexibly configure the way follow-up ac-
tivities are initiated.

7.2 Collaboration Support Concept

The first requirement deals with passive coordination, where the system delivers in-
formation but does not actively affect the process. To enable such information distri-
bution, the system relies on its event management and sensor infrastructure. When
activities are executed by humans and artifacts are manipulated, both are usually done
using some designated tool and can thus be detected by CoSEEEK. To exploit this for
configurable notifications, an explicit notification concept is introduced. The proper-
ties of this concept are shown in Table 3. Utilizing this notification concept, both
generic and personal notifications become possible that will be automatically deliv-
ered to the target person by CoSEEEK.

Table 3. Notification properties

Source This denotes the entity to be monitored. Possible sources include various
types of artifacts or different granularities of activities.

Trigger This denotes the event happening in context of the source entity that will
be the trigger for the notification to be delivered. This can be the comple-
tion of an activity or the state change of an artifact.

Target This denotes the target, to which the notification will be delivered. This
can be concrete persons or, to enable generic pre-configured notifica-
tions, also roles in a project.

Requirements R3.2 – R3.5 deal with active coordination, where the system affects the
executed activities. This is a far more complex collaboration situation, in particular
when it concerns associated artifacts that are part of different areas of a project, such
as requirements management, implementation, or test management. Therefore, a set
of prerequisites have to be satisfied to enable automated support: First, the project is
split into hierarchically different components, such as areas or modules. These mod-

ules are then connected to each other, for example, to model the fact that a specific
part of a requirements specification relates to a specific source code package or pro-
ject (similar to traceability). Second, information is provided to indicate under which
circumstances one area affects the other. Finally, different components are classified,
for example if one source code package realizes the interface of a component.

With these facts modeled in CoSEEEK’s Context Management component, a five-
step procedure supports the configurable issuing of follow-up activities based on the
occurrence of certain events. The first step of this procedure is applied to determine
areas that might be affected by an activity. This step is configurable by the users and
can take various contextual factors into account. Applied to the aforementioned ex-
ample, for a requirements change such a configuration could be ‘Search for affected
areas in case of technical issues if an activity implies a change to a requirement’. Such
a configuration would require the system to have access to the requirements. This can
be established if the requirements are managed within a requirement management tool
for which a sensor can be applied. After that, in a second step, the concrete target for
a follow-up activity can be determined. For this example, this would be a source code
package that relates to the changed requirement. In a third step, a matching responsi-
ble person is identified for the follow-up activity. For this example this would be the
developer responsible for the identified source code package. If none is defined, the
system searches super-components of the package in the hierarchy and if no responsi-
ble can be found, the activity would be issued for the development team leader, who
could then distribute it to the most appropriate developer. After that, the concrete
activity to be issued has to be determined. It can take into account various contextual
properties regarding involved artifacts, areas, sections and the activity that was the
trigger. In the final step of the procedure, the follow-up activity must be integrated
into the running process. This can be done either by starting a separate workflow for it
or, if it matches properties of a running workflow, by integrating it into one of these.
The adaptation of running workflow is applied in the same manner as described in
Section 6.

By integrating contextual data and the combination of active and passive coordina-
tion capabilities, our concept can overcome various problems and support collabora-
tion in knowledge-intensive projects. Active information distribution can be used to
proactively counteract emerging problems, while passive information distribution can
keep project participants updated and aware without obstructing the current process.

8 Summary and Conclusion

To summarize, with the growing volume of knowledge and the need for knowledge
workers to efficiently utilize knowledge collaboratively, it is important that organiza-
tions have options that go beyond passive knowledge management techniques and
that they also pursue the systematic active provisioning of knowledge. For such provi-
sioning not to disrupt ongoing knowledge work, the system must possess contextual
awareness and adapt to changes in both context and knowledge, integrating the provi-

sioning of knowledge in such a way that is aligned to their current process (i.e., work-
er-goal awareness), and utilize knowledge to actively support worker collaboration.

The software development domain was used to exhibit these knowledge challeng-
es, beginning with an overview of related current approaches in the software engi-
neering (SE) domain. This was followed by a discussion of the problems and issues
and the resulting requirements. We then described our holistic knowledge provision-
ing approach, first in an abstracted conceptual form followed then by a technical im-
plementation for the SE domain called the CoSEEEK framework. To exemplify how
it addresses the challenges using concrete scenarios, the chapter then illustrated auto-
mated knowledge provisioning within processes, knowledge-based contextual adapta-
tion of processes, and support for knowledge-based collaborative processes.

Future challenges include the integration and utilization of distributed extra-
organizational knowledge bases, cross-granular process and contextual dependencies,
and automated semantic annotation techniques.

References

1. Lenz, R., Reichert, M.: IT support for healthcare processes – premises, challenges,
perspectives. Data & Knowledge Engineering, 61(1), pp. 39-58, 2007.

2. Müller, D., Herbst, J., Hammori, M., Reichert, M.: IT support for release management
processes in the automotive industry. Proc 4th Int'l Conf on Business Process Management
(BPM 2006), pp. 368-377, 2006.

3. Mutschler, B., Reichert, M., Bumiller, J.: Unleashing the effectiveness of process-oriented
information systems: Problem analysis, critical success factors, and implications. IEEE
Transactions on Systems, Man, and Cybernetics, Part C, 38(3), pp. 280-291, 2008.

4. Gibson, D.L., Goldenson, D.R., Kost, K.: Performance results of CMMI-based process
improvement. Technical Report, Software Engineering Institute, Carnegie-Mellon
University, Pittsburgh, 2006.

5. Heravizadeh, M.: Quality-aware business process management. PhD Thesis, Queensland
University of Technology, 2009.

6. Lohrmann, M., Reichert, M.: Efficacy-aware business process modeling. Proc 20th Int'l
Conf on Cooperative Information Systems (CoopIS 2012), pp. 38-55, 2012.

7. Lohrmann, M., Reichert, M.: Understanding business process quality. In: Business Process
Management. Springer, pp. 41-73, 2013.

8. Gloet, M., & Terziovski, M.: Exploring the relationship between knowledge management
practices and innovation performance. Journal of Manufacturing Technology
Management, 15(5), pp. 402-409, 2004.

9. Künzle, V., Weber, B., Reichert, M.: Object-aware business processes: Fundamental
requirements and their support in existing approaches. In'l Journal of Information System
Modeling and Design, 2(2), pp. 19-46, 2011.

10. Mundbrod, N., Kolb, J., Reichert, M.: Towards a System Support of Collaborative
Knowledge Work. Proc Business Process Management Workshops, pp. 31-42, 2013.

11. Ramesh, B., Tiwana, A.: Supporting collaborative process knowledge management in new
product development teams. In: Decision Support Systems, 27, pp. 213-235, 1999.

12. Müller, D., Reichert, M., Herbst, J.: A new paradigm for the enactment and dynamic
adaptation of data-driven process structures. Proc 20th Int'l Conf on Advanced Information
Systems Engineering (CAiSE 2008), pp. 48-63, 2008.

13. Bonifacio, M., Bouquet, P., Cuel, R.: Knowledge nodes: the building blocks of a
distributed approach to knowledge management. Journal of Universal Computer Science,
8(6), pp. 652-661, 2002.

14. Maier, R.: Knowledge Management Systems: Information and Communication
Technologies for Knowledge Management. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2002.

15. Drucker, P. F.: Knowledge-worker productivity: The biggest challenge. The knowledge
management yearbook 2000-2001, 1999.

16. Davenport, T. H.: Rethinking knowledge work: A strategic approach. McKinsey Quarterly,
1(11), 2011.

17. Lindvall, M., Rus, I.: Knowledge management in software engineering. IEEE Software,
19(3), pp. 26-38, 2002.

18. Grambow, G., Oberhauser, R., Reichert, M.: User-centric Abstraction of Workflow Logic
Applied to Software Engineering Processes. Proc 1st Workshop on Human-Centric
Process-Aware Information Systems, LNBIP 112, pp. 307-321, 2012.

19. Grambow, G., Oberhauser, R.: Towards Automated Context-Aware Selection of Software
Quality Measures. Proc 5th Int’l Conf on Software Engineering Advances, pp. 347-352,
2010.

20. Grambow, G., Oberhauser, R., Reichert, M.: Contextual Injection of Quality Measures into
Software Engineering Processes. Int'l Journal on Advances in Software, 4(1 & 2), pp. 76-
99, 2011.

21. Grambow, G., Oberhauser, R., Reichert, M.: Towards Dynamic Knowledge Support in
Software Engineering Processes Proc 6th Int'l Workshop on Applications of Semantic
Technologies (AST'11), held in conjunction with INFORMATIK'11, LNI 192, pp. 149,
2011.

22. Grambow, G., Oberhauser, R., Reichert, M.: Knowledge Provisioning: A Context-
Sensitive Process-Oriented Approach Applied to Software Engineering Environments.
Proc 7th International Conference on Software and Data Technologies, pp. 506-515, 2012.

23. Grambow, G., Oberhauser, R., Reichert, M.: Towards Automatic Process-aware
Coordination in Collaborative Software Engineering. Proc 6th Int’l Conference on
Software and Data Technologies, pp. 5-14, 2011.

24. Grambow, G., Oberhauser, R., Reichert, M.: Enabling Automatic Process-aware
Collaboration Support in Software Engineering Projects. In: Selected Papers of the
ICSOFT'11 Conference. CCIS 303, Springer, pp. 73-89, 2012.

25. Grambow, G., Context-aware Process Management for the Software Engineering Domain,
Doctoral Thesis, Ulm University, 2015 (to appear).

26. Bjørnson, F. O., Dingsøyr, T.: Knowledge management in software engineering: A
systematic review of studied concepts, findings and research methods used. In:
Information and Software Technology, 50(11), pp. 1055-1068, 2008.

27. Kurniawati, F., Jeffery, R.: The long-term effects of an EPG/ER in a small software
organisation. Proc Australian Software Engineering Conf, pp. 128-136, 2004.

28. Barros, M.O., Werner, C.M.L., Travassos, G.H.: Supporting risks in software project
management. Journal of Systems and Software, 70(1-2), pp. 21-35, 2004.

29. Basili, V., Costa, P., Lindvall, M., Mendonca, M., Seaman, C., Tesoriero, R., Zelkowitz,
M.: An experience management system for a software engineering research organization.
Proc. 26th Annual NASA Software Engineering Workshop, pp. 29-35, 2001.

30. Liao, S.: Knowledge management technologies and applications--literature review from
1995 to 2002. Expert Systems with Applications, 25(2), pp. 155-164, 2003.

31. Daskalantonakis, M.K.: A practical view of software measurement and implementation
experiences within Motorola. IEEE Transactions on Software Engineering, 18(11), pp.
998-1010, 1992.

32. Offen, R.J., Jeffery, R.: Establishing software measurement programs. IEEE Software,
14(2), pp. 45-53, 1997.

33. Gopal, A., Krishnan, M.S., Mukhopadhyay, T., Goldenson, D.R.: Measurement programs
in software development: Determinants of success. IEEE Transactions on Software
Engineering, 28(9), pp. 863-875, 2002.

34. Li, Z., Zhou, Y.: PR-Miner: automatically extracting implicit programming rules and
detecting violations in large software code. ACM SIGSOFT Software Engineering Notes,
30, pp. 306-315, 2005.

35. Ohira, M., Yokomori, R., Sakai, M., Matsumoto, K., Inoue, K., Torii, K.: Empirical
project monitor: A tool for mining multiple project data. Proc Int'l Workshop on Mining
Software Repositories, 2004.

36. Schlesinger, F., Jekutsch, S.: ElectroCodeoGram: An environment for studying
programming. TeamEthno-online, 2, pp. 30-31, 2006.

37. Nystrom, N.A., Urbanic, J., Savinell, C.: Understanding productivity through non-intrusive
instrumentation and statistical learning. Proc 2nd Workshop on Productivity and
Performance in High-End Computing, 2005.

38. Jiang, T., Ying, J., Wu, M.: CASDE: An Environment for Collaborative Software
Development. Computer Supported Cooperative Work in Design III, LNCS, 4402, pp.
367-376, 2007.

39. Lewandowski, A., Bourguin, G.: Enhancing support for collaboration in software
development environments. Computer Supported Cooperative Work in Design III, LNCS,
4402, pp. 160-169, 2007.

40. Cook, C., Churcher, N., Irwin, W.: Towards synchronous collaborative software
engineering. Proc 11th Asia-Pacific Software Engineering Conf, pp. 230-239, 2004.

41. Hattori, L., Lanza, M.: Syde: A tool for collaborative software development. Proc 32nd
Int'l Conf on Software Engineering, pp. 235-238, 2010.

42. Weber, S., Emrich, A., Broschart, J., Ras, E., Ünalan, Ö.: Supporting Software
Development Teams with a Semantic Process-and Artifactoriented Collaboration
Environment. Proc Software Engineering (Workshops), pp. 243-254, 2009.

43. de Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Fine‐grained management of software
artefacts: the ADAMS system. Software: Practice and Experience, 40(11), pp. 1007-1034,
2010.

44. de Oliveira, K.M., Zlot, F., Rocha, A.R., Travassos, G.H., Galotta, C., de Menezes, C.S.:
Domain-oriented software development environment. Journal of Systems and Software,
72(2), pp. 145-161, 2004.

45. Maciel, R.S.P., da Silva, B.C., Magalhães, P.F., Rosa, N.S.: An integrated approach for
model driven process modeling and enactment. Proc Software Engineering, 2009.
SBES'09. XXIII Brazilian Symposium on, pp. 104-114, 2009.

46. Aleixo, F.A., Freire, M.A., dos Santos, W.C., Kulesza, U.: Automating the variability
management, customization and deployment of software processes: A model-driven
approach. Enterprise Information Systems. Springer, pp. 372-387, 2011.

47. Dowson, M.: Consistency maintenance in process sensitive environments. Proc. Process
Sensitive Software Eng. Environments Architectures Workshop, 1992.

48. Conradi, R., Fernström, C., Fuggetta, A., Snowdon, R.: Towards a reference framework
for process concepts. Software Process Technology. Springer, pp. 1-17, 1992.

49. Reichert, M., Weber, B.: Enabling Flexibility in Process-aware Information Systems –
Challenges, Methods, Technologies. Springer, 2012.

50. Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in process-aware information
systems. Transactions on Petri Nets and Other Models of Concurrency II, pp. 115-135,
2009.

51. Gelernter, D.: Generative communication in Linda. ACM Transactions on Programming
Languages and Systems (TOPLAS), 7(1), pp. 80-112, 1985.

52. Meier, W.: eXist: An open source native XML database. Web, Web-Services, and
Database Systems, LNCS, 2593, pp. 169-183, 2009.

53. Johnson, P.M.: Requirement and design trade-offs in Hackystat: An in-process software
engineering measurement and analysis system. Proc 1st Int’l Symposium on Empirical
Software Engineering and Measurement, pp. 81-90, 2007.

54. Luckham, D.C.: The power of events: an introduction to complex event processing in
distributed enterprise systems. Addison-Wesley Publ, 2001.

55. Esper. Website: http://esper.codehaus.org. Visited: September 2013.
56. Bellifemine, F., Poggi, A., Rimassa, G.: JADE–A FIPA-compliant agent framework. Proc.

4th Intl. Conf. and Exhibition on The Practical Application of Intelligent Agents and
Multi-Agents, pp. 97-108, 1999.

57. Browne, P.: JBoss Drools Business Rules. Packt Publishing, 2009.
58. Dadam, P., Reichert, M.: The ADEPT project: a decade of research and development for

robust and flexible process support. Computer Science-Research and Development, 23(2),
pp. 81-97, 2009.

59. Lanz, A., Reichert, M., Dadam, P.: Robust and flexible error handling in the AristaFlow
BPM Suite. Proc. CAiSE'10 Forum, Information Systems Evolution, pp. 174-189, 2011.

60. Krötzsch, M., Vrandecic, D., Völkel, M.: Semantic mediawiki. Proc. Int'l Semantic Web
Conference, pp. 935-942, 2006.

61. World Wide Web Consortium, ‘OWL Web Ontology Language Semantics and Abstract
Syntax,’ 2004.

62. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical owl-dl
reasoner. Web Semantics: Science, Services and Agents on the World Wide Web, 5(2), pp.
51-53, 2007.

63. McBride, B.: Jena: A semantic web toolkit. IEEE Internet Computing, 6(6), pp. 55-59,
2002.

64. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
semantic web rule language combining OWL and RuleML. W3C Member submission, 21,
pp. 79, 2004.

65. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C WD 4, pp.
2006.

66. Kess, P., Haapasalo, H.: Knowledge creation through a project review process in software
production. International Journal of Production Economics, 80(1), pp. 49-55, 2002.

67. Teigland, R., Fey, C.F., Birkinshaw, J.: Knowledge dissemination in global R&D
operations: an empirical study of multinationals in the high technology electronics
industry. MIR: Management International Review, pp. 49-77, 2000.

68. Schaffert, S., Bry, F., Baumeister, J., Kiesel, M.: Semantic wikis. IEEE Software, 25(4),
pp. 8-11, 2008.

69. Kroll, P., MacIsaac, B.: Agility and Discipline Made Easy: Practices from OpenUP and
RUP. Pearson Education, 2006.

70. Basili, V.R., Caldiera, V.R.B.G., Rombach, H.D.: The goal question metric approach.
Encyclopedia of software engineering, 2, pp. 528-532, 1994.

71. Davenport, T. H., Pruzak, L.: Working knowledge: How organizations manage what they
know. Harvard Business Press, 2000.

72. Alavi, M., Leidner, D. E.: Review: Knowledge management and knowledge management
systems: Conceptual foundations and research issues. MIS quarterly, pp. 107-136, 2001.

73. Davenport, T. H., David, W., Beers, M. C.: Successful knowledge management projects.
Sloan Management Review, 39(2), pp. 43-57, 1998.

Appendix: Glossary

The terms below are defined practically for the purpose of understanding this chapter,
and not intended to be definitive or comprehensive.

Context-awareness. Perception of a system's surroundings via information that can
be used to characterize the situation. This information can consist of various things
like other systems, humans, actions, events, or related artifacts.

Information. Facts and data organized to describe a particular situation or condition.
Knowledge communicated or received concerning a particular fact or circumstance.

Knowledge. Familiarity, acquaintance, experience with, understanding, or perception
of some subject, involving facts, truths, principles, beliefs, perspectives, concepts,
judgments, expectations, methodologies, or know-how. Within organizations, it fre-
quently becomes embedded in documents or repositories, as well as in organizational
routines, processes, practices, and norms [71]. It is a "justified belief that increases an
entity’s capacity for taking effective action" [72]. Information can be converted into
knowledge once cognitively processed, and knowledge can be transformed into in-
formation if codified or articulated in symbolic forms.

Knowledge base (KB). A repository of knowledge, typically utilizing some form of
storage.

Knowledge management (KM). A systematic and organizational process for retain-
ing, organizing, sharing, and updating (collective) knowledge critical to individual
performance and organizational competitiveness [73].

Knowledge systems. Organizations as social collectives can be viewed as knowledge
systems, representing the cognitive and social nature of organizational knowledge and
its embodiment in the individuals' mind and practices as well as the practices and
culture of the organization [72].

Knowledge management systems (KMS). To support human knowledge systems,
IT-based knowledge management systems support the codification and sharing of
knowledge, the creation and maintenance of knowledge repositories, and knowledge
networking [72] or collaboration.

Knowledge-based system (KBS). A system that uses knowledge, either in an open or
closed form, to adjust its own behavior.

Process-aware information systems (PAIS): Information systems that enable the
automated implementation of processes comprising their whole lifecycle, including
modeling, enactment, and monitoring.

