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Abstract

The increasing adoption of process orientation in companies and organizations has resulted in
large process model collections. Each process model of such a collection may comprise dozens
or hundreds of elements and captures various perspectives of a business process, i.e., organiza-
tional, functional, control, resource, or data perspective. Domain experts having only limited
process modeling knowledge, however, hardly comprehend such large and complex process mod-
els. Therefore, they demand for a customized (i.e., personalized) view on business processes
enabling them to optimize and evolve process models effectively.

This thesis contributes the pro View framework to systematically create and update process views
(i.e., abstractions) on process models and business processes respectively. More precisely, process
views abstract large process models by hiding or combining process information. As a result,
they provide an abstracted, but personalized representation of process information to domain
experts. In particular, updates of a process view are supported, which are then propagated
to the related process model as well as associated process views. Thereby, up-to-dateness and
consistency of all process views defined on any process model can be always ensured. Finally,
pro View preserves the behaviour and correctness of a process model.

Process abstractions realized by views are still not sufficient to assist domain experts in com-
prehending and evolving process models. Thus, additional process visualizations are introduced
that provide text-based, form-based, and hierarchical representations of process models. Par-
ticularly, these process visualizations allow for view-based process abstractions and updates as
well. Finally, process interaction concepts are introduced enabling domain experts to create and
evolve process models on touch-enabled devices. This facilitates the documentation of process
models in workshops or while interviewing process participants at their workplace.

Altogether, proView enables domain experts to interact with large and complex process models
as well as to evolve them over time, based on process model abstractions, additional process
visualizations, and process interaction concepts. The framework is implemented in a proof-of-
concept prototype and validated through experiments and case studies.
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Introduction

The adoption of Process-aware Information Systems (PAISs) in companies has resulted in a large
number of business processes involving various organizational units, domain experts, business
partners, and customers. A PAIS provides support for business processes at an operational level
[15]. Thereby, it strictly separates process logic from application code, relying on explicit process
models, e.g., graphical representations of real-world business processes. This enables a separation
of concerns, which is a well-established principle in computer science to increase maintainability
and to reduce costs of change [16]. Particularly, the practice of documenting business processes,
i.e., process modeling, is ranked fourth when it comes to what conceptual modeling in companies
is used for [17]. As a result, large process model collections have emerged in companies for several
years. FEach process model describes a business process and captures various perspectives of the
latter, i.e., organizational, functional, control, resource, or data perspective. Furthermore, a
process model may consist of dozens or hundreds of activities [18].

As has been shown, large process models tend to contain a multitude of errors [19], which, in
turn, have a negative impact on Business Process Management (BPM) success factors [20]. Fur-
thermore, organizational units or domain experts may have their own perspective on business
processes, which need to be reflected through specific process models. To cope with these re-
quirements, in current practice, a large number of process models of varying granularity have
emerged, which provide different perspectives on the business process [21, 22]. While managers
are more likely to prefer an abstract process overview, process participants need a detailed view
on those process parts they are involved in. For example, Figure 1.1 shows three different per-
spectives of an order-to-cash process'. Figure 1.1a depicts coarse-grained steps of the process
and, hence, provides an abstract view on it. In turn, Figure 1.1b provides a different perspective
on the same business process, assigning individual process activities to concrete organizational
units. Finally, Figure 1.1c depicts a perspective referring to involved information systems as well.

Another driver for the presence of multiple process models representing specific perspectives
on one and the same business process are the different use cases for process modeling, e.g.,

!Originates from United Motor Group Scenario of IDS Scheer ARIS Business Architect 7.2
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Figure 1.1: Perspectives on Order-to-Cash Process

process documentation or automation. For example, process automation necessitates technical
process models capturing implementation details (e.g., fetching data from a database) as well.
Furthermore, technical process models are intended to be executed in a PAIS (cf. Figure 1.1c).
By contrast, process models created for documentation purpose are used to closely reflect real-
world business processes (cf. Figure 1.1a+b) [23, 24, 25]. Although various process models refer
to the same business process, in general, the models may comprise disjoint sets of activities. For
example, a business process model describes that a truck drives from factory A to factory B.
By contrast, a technical process model documents the invocation of a database to fetch order
details. Furthermore, variants of process models describing the same business process may exist,
e.g., in regards to different products or countries [26, 27]. For example, multiple process models
separately document the order-to-cash process for different countries. Merging these process
variants into one single process model, in turn, would result in a large and complex process
model as well [26, 28, 29].

Creating process models of different granularity and maintaining them separately requires large
efforts from process designers. Besides this, domain experts (e.g., process participants, process
owners, business analysts, software engineers) lack an understanding of large and complex pro-
cess models [30]. Therefore, personalized information on processes is a much needed feature for
them providing individual and customized perspectives on business processes. To be more pre-
cise, complex process models need to be abstracted to the specific needs of domain experts, i.e.,
personalized process abstractions are required [31, 32, 33]. In particular, studies have shown that
the involvement of domain experts constitutes a critical factor for successful process modeling
initiatives [20, 34].
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Personalized process abstractions are not sufficient to fully meet the requirements of domain
experts. Since the latter usually have limited process modeling knowledge and are unfamiliar
with process model languages, process models shall be visualized in a way that enables do-
main experts to understand them without high training efforts. In this context, studies have
shown that 24% of the domain experts in process modeling initiatives never and 52% have been
occasionally trained to analyze, design, and manage process models [35, 36]. Therefore, compa-
nies offer, in addition to graph-based process representations like Business Process Model and
Notation (BPMN), other kinds of model representations. For example, these include textual de-
scriptions in the context of the ISO 9000 quality management certification or process landscapes
for managers. In particular, the communication of process information to and from domain
experts is identified as a crucial factor within BPM [17].

Business processes are subject to continuous change due to evolving markets, organizational op-
timizations, or legal regulations [37, 38]. In turn, this needs to be mirrored by evolving process
models over time [39, 40]. According to Gartner, changing process models is of high relevance to
keep them synchronized with business processes enabling continuous process improvements and
optimizations [41]. Studies have shown that European companies spend between 10% and 55%
of their average profit margin on business process changes [42]. Nowadays, all process models
related to a particular business process must be manually adapted to reflect business process
changes. However, due to time pressure not all process models are adapted or the changes are
not accomplished consistently. Consequently, process models get outdated and, hence, do not
represent business processes in an appropriate way anymore.

The process modeling component of a PAIS (process modeling tool for short) should not only
enable process model abstractions, but also guarantee that they are kept up-to-date in the con-
text of process optimization and changes. Usually, the latter should not always be introduced by
process designers, but may be introduced by domain experts referring to their process abstrac-
tions as well. In particular, the involvement of domain experts in changing business processes
is significantly correlated with a successful outcome of BPM projects [43]. To guarantee up-to-
dateness of all abstractions defined on a given process model, changes must be automatically
propagated to all other process abstractions defined on the same business process. Note that
the change of business processes based on process abstractions contributes better process model
quality as well [44].

To change process models, domain experts must interact with a process modeling tool. In or-
der to identify changes and optimizations in business processes, interviews and workshops are
conducted [45]. However, process modeling tools have, typically, been designed for desktop com-
puters or notebooks [46] and do not adequately support such interviews and workshops. As a
result, changes are annotated on process models, which are printed on paper sheets or described
textually [47], i.e., additional effort is required to transfer the changes to a process modeling tool.
Figure 1.2, for example, shows a whiteboard used by domain experts to discuss and evolve pro-
cess models by utilizing sticky notes. However, to support domain experts in such situations, a
process modeling tool should provide process interaction support on touch-enabled devices (e.g.,
tablets, touch tables) [46]. Particularly, the latter have become widely used in companies [46, 48].
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Figure 1.2: Collaborative Process Modeling on a Whiteboard

1.1 Research Contribution

This thesis aims to provide techniques for abstracting and visualizing large and complex business
process models, which may involve multiple partners, organizational units, and user groups. The
thesis contributes generic techniques, concepts, and algorithms for creating, abstracting, and
changing process models as well as for interacting with them. Note that the thesis does not
target at a process modeling tool relying on a specific process modeling language.

The main research contributions can be summarized as follows:

1. We provide concepts to abstract complex process models according to the specific needs of
domain experts through so-called process views. In particular, the presented process view
concept reduces process model complexity. More precisely, elements of process models
may be reduced in a process view to hide process information not relevant in the current
context. Alternatively, process elements may be aggregated to abstract from detailed
process information. In this context, well-defined view creation operations are introduced
that may be combined to provide semantically-enriched abstractions. Note that view
creation considers various perspectives on a process model, e.g., control and data flow.

2. A complete set of operations that allow for view-based updates of a process model is pre-
sented. To be more precise, domain experts may evolve a process model based on the
personalized views they have on this process model. Process view updates are automati-
cally propagated to the process model the view is based on. In turn, this process model
is then adapted accordingly. Furthermore, other process views associated with the same
process model are migrated to the new model version to immediately reflect the process
change if applicable. In particular, this allows guaranteeing that all process views are
up-to-date and outdated process models are prevented. Note that the provided update
operations ensure correctness of the resulting process model.



1.2 Outline

3. We provide three alternative process representations that focus on domain experts with
limited modeling experience. Furthermore, process model updates may be accomplished
based on the provided representations as well, i.e., the developed concepts are orthogonal
to each other. This enables domain experts to evolve and optimize process models and
process views respectively. In the context of this thesis, form-, tree-, and text-based
representations are provided. The form-based representation displays a process model in
terms of nested rectangles. The tree-based representation, in turn, enables interaction with
process models in a top-down manner. Finally, the text-based representation describes a
business process in a verbalized way while not using any graphical elements.

4. We provide a multi-touch gesture set to create and evolve process models and process
views on touch-enabled devices (e.g., tablets, touch tables). This gesture set results from
empirical evaluations.

Altogether, the results presented in this thesis aim to enable domain experts to effortlessly
create and update process models as well as to interact with them based on process views,
process representations, and process interaction concepts.

1.2 Outline

The remainder of this thesis is structured as follows:

Part I discusses the challenges that emerge when interacting with process models to create,
abstract, and update them. Chapter 2 introduces the research methodology applied in the
context of the thesis. Chapter 3 presents the requirements to be met. Chapter 4 discusses
state-of-the-art process modeling tools. Finally, Chapter 5 gives an overview on the framework
developed in this thesis. Furthermore, it discusses general design decisions made.

Part II introduces the concepts of updatable process views. Chapter 6 presents view creation
operations to construct process views, including a detailed description on how flexible process
hierarchies may be created based on process views. Chapter 7 deals with view update operations
showing how their effects may be propagated to the underlying process model and associated
process views to keep them up-to-date. Chapter 8 presents advanced operations to create and
update process views providing more convenience for domain experts.

Part III introduces process representation and interaction concepts supporting users to under-
stand and evolve process models. Chapter 9 presents process representations that aim to reduce
the effort required from domain experts to comprehend and evolve process models and process
views respectively. Chapter 10 introduces process interaction concepts for touch-enabled devices.

Part IV evaluates developed concepts and algorithms. Chapter 11 introduces a proof-of-concept
prototype, demonstrating the technical feasibility of the developed concepts. Chapter 12 presents
a case study based on real-world process models to show the practical relevance of our contribu-
tion. Experiments are presented to evaluate process representations and interaction concepts.

Part 'V concludes the thesis. Chapter 13 summarizes the developed concepts and gives an
outlook on future work.






Research Method

The research of this thesis makes use of well-defined research methods that allow for generic
solutions [49]. In this context, Section 2.1 introduces the research questions addressed by this
thesis. Section 2.2 presents the research framework we applied to answer these research questions.

2.1 Research Questions

The research questions addressed by this thesis are based on the initial problem statement that
contemporary process modeling tools do not provide proper support to all domain experts [50].
When dealing with large process models in particular, no dedicated support for domain experts
who do not have a process modeling background exists. Consequently, these users are also not
able to adapt these complex models to changing situations [44, 51, 52]. In particular, large
process models are often too detailed for domain experts only interested in specific process parts
or abstract overviews. Research question RQ1 addresses this issue.

Research Question RQ1
Which abstractions of large and complex process models are useful to increase model compre-
hensibility and, thereby, to enable domain experts to evolve the process models over time?

Typically, process models are visualized using a specific process modeling language (e.g., BPMN
2.0). However, as known from related research, this rigid representation of process models is
too restrictive and does not meet the visualization requirements of more advanced scenarios (cf.
Research Question RQ2) [50, 52, 53]. Domain experts that are unfamiliar with process modeling
need to know which steps in a business process have to be performed in an easily understandable
way [51, 54, 55].

Research Question RQ2
Which representations of process models are required by domain experts unfamiliar with
business process modeling?



2 Research Method

Contemporary process modeling tools restrict users to interact with them using a desktop com-
puter or a notebook [56, 57]. They are not customized for usage on touch-enabled devices. Due
to the increasing adoption of such devices, however, both process representation and interac-
tion should be feasible on these devices as well (cf. Research Question RQ3), e.g., to record or
optimize business processes while interviewing process participants “on-site”.

Research Question RQ3
Which process interaction concepts are required to interact with process models using touch-
enabled devices?

2.2 Research Framework

Information System (IS) research may be based on two complementary paradigms: behavioural
science and design science [58, 59, 60, 61, 62]. Behavioural science aims to develop and evaluate
theories explaining or predicting organizational and human phenomena [63]. In turn, design
science originates from the engineering domain and constitutes a problem-solving paradigm.
Furthermore, design science aims at building innovative IT artifacts (i.e., constructs, models,
methods, or instantiations) as well as evaluating them [64].

This thesis applies design science to build a novel and innovative I'T artifact. Furthermore, it
utilizes evaluation methods known from behavioural science, i.e., empirical analysis. Generally,
in design science a differentiation between routine and scientific design is made [49]. Routine
design is performed by applying existing knowledge and best practices (e.g., to develop an ERP?
system based on a particular software development method). In contrast, scientific design solves
current issues in an innovative way and contributes new knowledge to the common knowledge
base. In this thesis, we contribute concepts to create, visualize, and interact with complex
business process models, which foster both the understanding and evolution of complex process
models by domain experts, i.e., scientific design is applied.

Figure 2.1 shows the research framework applied in this thesis and presents major steps of our re-
search [49, 65]. Requirements are identified from the environment taking the described research
questions into account (cf. Figure 2.1, Step 1a). In particular, the roles, skills, and objectives of
domain experts are relevant to extract these requirements. Furthermore, organizations as well
as the technologies they apply must be taken into account by our research. Concepts developed
in this thesis are evaluated against the environment by proof-of-concept prototypes, case studies,
and empirical evaluations (cf. Figure 2.1, Step 4a).

Regarding research questions RQ1-RQ3, the existing knowledge base comprises knowledge from
fields like business process management, process model abstractions, process change, process
representation, and process interaction (cf. Figure 2.1, Step 1b). Moreover, the research re-
sults of this thesis are transferred to the knowledge base by publications, business forums, and
exhibitions as well as industry projects (cf. Figure 2.1, Step 4b).

Figure 2.1 further indicates, which chapter addresses the various parts of the research framework.

!Enterprise Resource Planning
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We discuss the research framework and the research contribution of this thesis based on the
seven design science research guidelines suggested in [49]. In particular, this shall prove that
the research framework meets established research standards. Note that the seven guidelines
assist researchers from the information system field in better understanding and assessing design
science research.

e Guideline 1 (Design as an Artifact). Design science aims to create an artifact in terms of a
construct, model, method, or instantiation [49]. This thesis deals with process views (i.e.,
process model abstractions) as construct and provides methods for creating, maintaining,
and updating respective process views as well as for interacting with them. For all methods,
an instantiation is provided by a proof-of-concept prototype to demonstrate their feasibility
in terms of the defined research questions. Furthermore, the evaluation of the developed
constructs and methods is accomplished through case studies and empirical evaluations
(cf. Figure 2.1, Step 2).

e Guideline 2 (Problem Relevance). The relevance of conducted design science research shall
be assessed towards the community [49]. Regarding BPM research, in particular, the
community consists of domain experts who create, evolve, implement, execute, optimize,
and monitor process models that represent real-world business processes (cf. Figure 2.1,
Step la). We address relevant problems of this community that have resulted from the
increasing adoption of process-orientation [66], which has led to process model repositories
comprising large numbers of process models [67]. Any process modeling tool, therefore,
must support domain experts in creating, modeling, and evolving process models.

e Guideline 3 (Design Evaluation). Resulting artifacts must be evaluated based on well-
established methods [49]. This thesis uses descriptive, observational, and experimental
evaluation methods (cf. Figure 2.1, Step 2). In particular, descriptive and observational
evaluation methods are applied for evaluating process model abstractions and the handling
of process model updates on them. Regarding the representation of and the interaction
with (abstracted) process models experimental methods are utilized. Note that evaluation
results, in turn, are applied to optimize research contributions (cf. Figure 2.1, Step 3).

11



2 Research Method

e Guideline 4 (Research Contribution). Design science research must provide a contribution

to the existing knowledge base [49]. This thesis contributes concepts and algorithms to
abstract and visualize process models. In particular, the concepts not only foster pro-
cess model comprehensibility, but allow evolving business processes by changing their
abstracted models in order to enable domain experts to understand and update them.
Furthermore, process interaction concepts are introduced, which support domain experts
interacting with process models on touch-enabled devices. This research contribution is
communicated to the environment (cf. Figure 2.1, Step 4a) and transferred to the knowl-
edge base through scientific publications (cf. Figure 2.1, Step 4b).

Guideline 5 (Research Rigor). Generally, design science research needs to be performed
in a rigorous way [49]. This thesis, therefore, refers to existing literature. Furthermore, it
builds on the existing knowledge base and artifacts (cf. Figure 2.1, Step 1b). In particular,
we make use of prior knowledge about the modeling, visualization, abstraction, evolution
of, and interaction with process models.

Guideline 6 (Design as a Search Process). In order to create both a satisfying as well
as effective solution in respect to the research questions, design science constitutes an it-
erative process (cf. Figure 2.1, Steps 2+3). To be more precise, a solution is required,
which addresses research questions and resulting requirements in the best possible way
[68]. The main issue for information system research is an infinite solution space due to
the size and complexity of research problems [49]. Since it is not possible to specify all
feasible solutions, a solution adequately addressing our research questions has to be deter-
mined. Furthermore, related approaches dealing with process representation, abstraction,
and evolution as well as process interaction have to be evaluated and differences to our
contribution have to be discussed.

Guideline 7 (Communication of Research). The developed results must be communicated
to researchers as well as practitioners. Both groups should benefit from the research results.
Furthermore, the contribution of these results to the existing knowledge base is ensured
through scientific publications.

All design science research guidelines are discussed in relation to this thesis and, as a result,
illustrate that the presented research framework meets the research standards established in
the context of design science. Finally, this thesis contributes to the existing knowledge base of
information system research or—to be more precise—PAIS research.
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Requirements Analysis

This chapter elicits the requirements related to the research questions defined in Chapter 2. In
this context, case studies are conducted to gain insights into real-world business processes (cf.
Section 3.1). Note that this is essential to be able to develop a proper solution in design science
(cf. Chapter 2). Referring to these real-world processes, Section 3.2 derives the requirements to
be met. Section 3.3 concludes with a summary.

3.1 Case Studies

In the following we introduce two case studies. Their goal is to elicit major requirements related
to the research questions described in Section 2.1. To meet confidentiality restrictions, certain
details of the case studies are anonymized, e.g., activity labels are changed. Nonetheless, the
case studies reflect real-world issues in business process modeling.

3.1.1 Case Study CS1: Order Processing in Mechanical Engineering

Case study CS1 is conducted in a medium-sized company producing customized machines. In
particular, we consider the order-to-cash process of this company. In the following, we describe
the company’s situation as well as process models we encounter at project start.

The order-to-cash process constitutes of activities starting with the issuing of an order and
completing with the delivery of the product and, optionally, its first maintenance. Order pro-
cessing comprises activities to check back with the customer, the construction of electrical and
mechanical components, production, packaging, and delivery of the product. Thereby, every
product features a high complexity and needs to be customized according to the customer’s
demands. Figure 3.1 provides a coarse-grained overview of the order-to-cash process as it is
perceived by the upper management of the company. For its representation, Value-Added Chain
Diagrams (VCDs) are used [21]. As can be seen, this process model abstracts from user roles as
well as any details regarding the course of action.
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Figure 3.1: Coarse-grained Overview on Order-to-Cash Process

In addition to the process model shown in Figure 3.1, six more detailed process models exist,
which comprise 70 activities in total. For representing the process models, BPMN is used. Fig-
ure 3.2 shows one of the process models, describing the pre-audit of product requirements. Note
that this process is part of the Order Handling activity in Figure 3.1. Furthermore, the cus-
tomer is represented by the collapsed pool on the top, whereas the company itself is represented
by the rectangle on the bottom. The company’s organizational structure, in turn, is detailed
through five user lanes corresponding to roles, i.e., project manager, project planner, mechanics,
core component designer, and electronics designer. To be more precise, each lane contains a
process fragment describing the activities each user role has to perform. The project manager
(i.e., topmost lane) starts the pre-audit of the order-to-cash process as soon as an order message
arrives and the other user role’s process fragments are initiated through an event. Although
user roles perform almost similar activities (e.g., Perform Pre-Audit must be performed by all
user roles), the company decided to document such activities in separate process fragments. Af-
ter completing the pre-audits, the different process fragments are synchronized through a final
discussion. The latter is visualized as the sub-process Order Discussion, which abstracts from
concrete activities to be performed. The sub-process itself is documented by a separate process
model in another document.

In addition to the six process models, each activity is described in a verbalized way. The latter is
required in the context of an ISO 9000 certification [69]. Furthermore, spreadsheets exists, which
describe information required in the order-to-cash process. To be more precise, the spreadsheets
describe data objects the activities produce or consume. Since information on the order-to-cash
process is scattered over various artifacts, an update of the latter must be manually propagated
to all artifacts, i.e., the existing process models, text documents, and spreadsheets. As a con-
sequence, not all process models, text documentations, and spreadsheets of the order-to-cash
process were updated consistently updated in the past. Figure 3.3 shows the relation between
the various artifacts and the procedure how updates are propagated between these artifacts.

Note that the various types of process-related artifacts refer to the same business process (i.e.,
order-to-cash) on different levels of detail. Furthermore, they are intended for different groups
of domain experts, each requiring a specific perspective on the business process. Unfortunately,
process information is scattered over a set of artifacts that must be kept up-to-date causing a
high maintenance effort and being an error-prone task.
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3.1.2 Case Study CS2: Payroll Processing in an Accountant Company

Case study CS2 investigates the payroll process of an accountant company. The latter offers the
service of processing payrolls to small and medium-sized companies. We describe the current
situation of the company as well as how its process models looks like. In detail, the payroll
process consists of three major phases: Preparation, Review, and Delivery (cf. Figure 3.4). Each
of them is detailed by a specific sub-process model.

?

> | Preparation

A 4

Review Delivery

-

Figure 3.4: Overview of Payroll Process as Flow Chart

Phase Preparation comprises activities for fetching and pre-processing information of the employ-
ees (e.g., working hours) the payroll is processed for. Furthermore, working hours are registered
in an accounting information system and payment schedules are defined. Finally, the available
payroll information is merged for reviewing. The Review phase comprises activities for cross-
checking payroll information with employee records as well as the time sheets provided by the
customer. This phase must be performed by another accountant (i.e., separation of duties). In
this context, the contract of the employee as well as financial data of the customer are checked.
If any of the checks fails, the process loops back to the Preparation phase to correct the payroll
information. Phase Delivery finalizes all documents and payrolls are transferred to the customer
either by email or a personal pick up. In the latter case, the customer is called to pick up the
documents in the office of the accountant company.

The accountant company captures its payroll process in process models of different levels of
granularity. Furthermore, different process representations are used. More precisely, two kinds
of graph-based process models exist—one providing a high-level view on the business process
using flow charts as process modeling language (cf. Figure 3.4) and the other describing the
course of action more detailed. Figure 3.5 depicts these detailed process models for each payroll
phase, i.e., Preparation, Review, and Delivery.

In turn, Figure 3.6 shows excerpts of the textual descriptions of the payroll process. Figure 3.6a
depicts work instructions for individual activities. More precisely, it describes which informa-
tion system is used by specific activities and which user form shall be used in this context. In
particular, the work instructions shall support less experienced accountants. Figure 3.6b shows
checklists to be used in the different phases of the payroll process. These checklists refer to
selected activities that were omitted frequently in the past and do not comprise all the process
models’ activities (cf. Figure 3.5). Particularly, the checklists shall be used on a daily basis and
reduce error rates.
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Figure 3.6: Payroll Process Descriptions

Altogether, the accountant company employs four different ways to document its payroll process.
In turn, this results in high efforts for capturing as well as maintaining the business processes. In
particular, the accountants complained that the update of process models due to organizational
changes or changes of tax laws constitutes an error-prone task. Hence, the accountant company
has decided to reduce the number of documents despite the fact that all of them are considered
as being valuable.

3.1.3 Discussion

Case studies CS1 and CS2 indicate that process models of different levels of granularity exist,
describing one and the same business process. In both case studies, process participants with
varying knowledge in process modeling can be identified and different process representations are
employed to them (i.e., graph-based, verbalized, table-based, and checklist-based). In both case
studies, process models are maintained manually, which not only constitutes a time-consuming
task, but also results in inconsistencies and errors as well. For example, when changing a
particular artifact of the business process, this change is not always correctly propagated to all
other artifacts related to the same business process. In turn, this leads to outdated process
model versions. Another serious issue concerns versioning, i.e., to identify which version of a
process model corresponds to which version of the textual documentation or spreadsheet.

The case studies further reveal that there exists no proper tool support for process designers
to create and update process models. When creating a process model, the designer starts with
only rudimentary information about the business processes. Then, process participants are
interviewed in order to collect information about their activities. Based on these interviews and
the notes made, a process model is created stepwise or—to be more precise—multiple process
models of different granularity are created. However, no tool support exists when interviewing
process participants or discussing process updates on-site (i.e., at the users’ workplaces).
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3.2 Requirements

Based on the described case studies CS1 and CS2 as well as the insights gained from literature
study major requirements for a process modeling framework addressing the described research
questions are elicitated. To stay focused, we exclude requirements related to (process-aware)
information systems in general [70, 71, 72].

The case studies have revealed that domain experts involved in documenting and evolving busi-
ness processes have limited process modeling knowledge although it is relevant to all of them.
As a consequence, different process-related artifacts are (manually) created. In case study CS2,
for example, the accountant company provides detailed activity descriptions to new staff mem-
bers. In general, a process modeling tool to create, visualize, and change process models should
involve all domain experts (cf. Requirement REQ-1).

Requirement REQ-1 (Accessible for Domain Experts)
Domain experts should not need to have specific process modeling knowledge to create, com-
prehend, or update process models.

3.2.1 Process Abstraction and Update

All relevant information of a business process must be documented in process models. For
example, in the context of case study CS2, activities, data objects, user roles, and required
information systems are described. In general, a process modeling tool should enable domain
experts to properly capture all process information required (cf. Requirement REQ-2).

Requirement REQ-2 (Process Model Elements and their Representation)
All relevant process information should be captured and represented in process models.

Case studies CS1 and CS2 further show that one and the same business process may be captured
in different process models using different levels of granularity; e.g., process models providing
a coarse-grained view on the business process and other ones describing parts of the business
process in detail. Furthermore, process models have been created for specific groups of domain
experts showing only the activities relevant for them (e.g., case study CS2). Finally, a process
model should be as compact as possible, i.e., unnecessary elements should not be displayed (cf.
case study CS1 and CS2). For example, [73, 74] have shown that the size of a process model has
an impact on its understandability as well as the number of errors caused by process designers
(cf. Requirement REQ-3).

Requirement REQ-3 (Process Model Abstractions)

It should be possible to abstract process models by hiding or aggregating information. In
particular, personalized (i.e., user- or role-specific) process abstractions are required. Process
model abstractions should be compact to ease their understanding.

In general, business processes evolve over time. Hence, the corresponding process models and

related abstractions need to be updated continuously. In particular, the latter should be auto-
matically and consistently handled. Note that the case studies have revealed that several process
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models have been outdated compared to the actual process version. In turn, outdated process
models are not useful for domain experts. Consequently, domain experts should be enabled to
change process models—mno matter which level of abstraction the latter offers—in order to rep-
resent the change of the business process (cf. Requirement REQ-4). In turn, all process models
referring to the same business process should be updated as well (cf. Requirement REQ-5).

Requirement REQ-4 (Process Model Updatability)
Domain experts should be enabled to evolve process models or even process abstractions.

Requirement REQ-5 (Up-to-Date Process Models)
When updating a process model all process models and process model abstractions, respec-
tively, referring to same business process should to be updated as well.

3.2.2 Process Representation

Case studies CS1 and CS2 have confirmed that process models not only vary in their level
of granularity, but in the way they are represented (i.e., visualized) to the user as well. The
intention behind this is to take the vocational background and process modeling knowledge of
domain experts, i.e., process models shall be presented in a shape that it is easy to understand
(cf. Requirement REQ-6).

Requirement REQ-6 (Intuitive Process Representations)
Process models should be visualized in a way easily understandable for domain experts not
having specific process modeling knowledge.

To still allow domain experts to change process models, respected update functionality should
be available for process representations (cf. Requirement REQ-7). Both case studies have shown
that it is important that process models can be updated no matter which process representation
is applied.

Requirement REQ-7 (Updatability of Process Representations)
Process models should be updatable by domain experts independent from the kind of process
representation applied .

In practice, different process representations are used to cope with the varying process modeling
knowledge (cf. case study CS2). The respective representation is selected depending on the given
application scenario. For example, in case study CS2 textual representation is applied for new
employees and checklists for experienced employees. Hence, a process representation should not
be static, but chosen depending on the current application scenario (cf. Requirement REQ-8).

Requirement REQ-8 (Adjustable Process Representations)
Domain experts should be able to dynamically adjust the process representation of process
models.
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3.2.3 Process Interaction

Touch-enabled devices, like smartphones, tablets, and touch tables, are becoming more common
in companies [46]. In turn, the use of these devices requires advanced user interaction concepts
[75]. In both case studies domain experts complained that process modeling tools require desktop
computers or notebooks to evolve process models, i.e., they usually print process models discuss
with process participants the process activities they are involved. As a consequence, hand-
written notes must be manually transferred to a process modeling tool after completing the
interviews. In general, touch-enabled devices should be supported when creating and evolving
process models (cf. Requirement REQ-9).

Requirement REQ-9 (Intuitive Process Interaction)
Domain experts should be enabled to interact with process models using touch-enabled devices.

3.2.4 Discussion

The elicitated requirements are not specific to two case studies, i.e., they can be identified in
other domains and related work as well. For example, [31] deals with a large business process
of a health insurance company. The considered process model comprises 150 activities and 300
process elements (i.e., activities, data objects, user roles, and temporal constraints). The au-
thors state that the involvement of all domain experts in process management increases process
knowledge in a company. Furthermore, abstractions of process models are requested as well as
methods to keep them consistent. These problems are addressed by REQ-1-REQ-5.

The need for sophisticated process model abstractions (i.e., REQ-1-REQ-3) and representations
(i.e., REQ-6+REQ-8) has been discussed in [50, 76] as well. Furthermore, [32] demands for an
appropriate interaction concept for process models (i.e., Requirement REQ-9).

Requirements to change process models (i.e., REQ-4+REQ-7) and keeping associated process
models up-to-date (i.e., Requirement REQ-5) have been discussed in the context of business-1T
alignment [24], process variability management [26], and process flexibility [15]. Finally, the re-
quirement to keep process models as compact as possible is referred by process model refactoring
[18] or process mining [77].

Obviously, the presented list of requirements is not complete in respect of a fully featured process
modeling tool. Instead, we focus on requirements in the context of our research questions.

3.3 Summary

This chapter presents two case studies to illustrate emerging challenges that need to be tackled
when facing large process models. The case studies underline that several process models of dif-
ferent levels of granularity, referring to the same business process, exist in companies. Usually,
the process models are created for different domain experts or application scenarios (e.g., ISO
certification). Furthermore, different process representations (e.g., graph-based, textual, and
checklists) are employed to cope with varying process modeling background of domain experts.
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Table 3.1 summarizes the requirements elaborated in the case studies and relates them to the
research questions presented in Chapter 2. Generally, the requirements not focus on a specific
application domain, but aims to be generic.

Requirement Description

Functional Requirements - General

Requirement REQ-1  Accessible for Domain Experts
Functional Requirements - Research Question 1
Requirement REQ-2  Process Model Elements and their Representation
Requirement REQ-3  Process Model Abstractions
Requirement REQ-4  Process Model Updatability
Requirement REQ-5  Up-to-Date Process Models

Functional Requirements - Research Question 2
Requirement REQ-6  Intuitive Process Representations
Requirement REQ-7  Updatability of Process Representations
Requirement REQ-8  Changeability of Process Representations
Functional Requirements - Research Question 3
Requirement REQ-9  Intuitive Process Interaction

Table 3.1: Requirements Overview
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Process Modeling Tools: State-of-the-Art

4.1 Introduction

This chapter gives an overview on contemporary business process modeling tools, which provide
a variety of process representation, modeling , and interaction concepts. In general, one can
distinguish between drawing and process modeling tools [32]. Drawing tools (e.g., Microsoft
Visio, Microsoft PowerPoint) are not explicitly developed with the goal to create process mod-
els. In practice, however, respective tools are frequently used for process modeling as well [17].
By contrast, the functions of process modeling tools are specifically designed for the purpose of
documenting business processes. Hence, the latter target at an integrated support for creating,
maintaining, and representing process models. This chapter focuses on selected process model-
ing tools and their functions related to the requirements set out in Chapter 3. The respective
selection is based on process modeling surveys [56, 78].

Table 4.1 depicts the process modeling tools considered. The latter may be categorized as desk-
top, cloud, and mobile tools. Desktop modeling tools need to be installed on the computer of the
process designer, but may have a sever-side counterpart as well; e.g., to enable access to a pro-
cess repository or to allow for collaborative process modeling. As a representative of this type,
we consider IBM Business Process Manager (IBM BPM for short) [79], which offers a broad
range of functions for modeling, executing, and monitoring business processes. As opposed to
IBM BPM, ARIS Business Designer solely provides process modeling functions [21], but can
be integrated with other tools to simulate and execute process models as well. Another desktop
modeling tool is MID Innovator for Business Analysts [80]. Finally, Bizagi Process Modeler
allows creating executable business process models [81].

Cloud-based process modeling tools are hosted on a web server. Usually, a browser is required
to interact with them, i.e., respective modeling functions are provided as Software as a Ser-
vice (SaaS). IBM BlueworksLive provides a web front-end for creating business process models.
In particular, it focuses on users having no or only little process modeling knowledge [82]. The
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Vendor Product Tool Type Address

IBM Corporation Business Process Manager Desktop www.ibm.com

Software AG ARIS Business Designer Desktop www.softwareag.com
MID GmbH MID Innovator for Business Analysts | Desktop www.mid.de

Bizagi Bizagi Process Modeler Desktop www.bizagi.com

IBM Corporation BlueworksLive Cloud-based | www.ibm.com

Signavio GmbH Signavio Process Editor Cloud-based | www.signavio.de

semture GmbH Cubetto Mobile cubetto.semture.de
Orchard ebusiness Pty Ltd. | Orchard Mobile Process Designer Mobile www.orchardprocess.mobi
Tabtou Ltd. Process Craft Mobile www.showgen.com

Table 4.1: Overview of Process Modeling Tools

Signavio Process Editor, in turn, offers a broad range of process modeling languages (e.g., BPMN,
FEvent-driven Process Chains (EPC)) as well as collaboration features [83].

Mobile tools developed for mobile operation systems (e.g., Apple iOS or Google Android). Cu-
betto, for example, constitute an Apple iOS app, which supports BPMN, EPC, and UML [84].
In turn, Orchard Mobile Process Designer is a simple process modeling tool supporting BPMN
[85]. Process Craft allows creating process models with BPMN using special gestures [86].

Section 4.2 analyzes process representation and modeling features of the aforementioned tools.
Section 4.3 introduces concepts current tools provide for abstracting process models. Section 4.4
presents interaction concepts provided by the tools. Section 4.5 summarizes the chapter.

4.2 Process Representation and Modeling

All considered process modeling tools support a core set of BPMN 2.0 process modeling ele-
ments, whereas only three of them provide full BPMN 2.0 support [87]. Furthermore, five tools
provide other process modeling languages like EPC, Unified Modeling Language (UML), and
Petri-Nets. Once a user has chosen a particular process modeling language, it can no longer be
changed. Furthermore, in tools like ARIS the elements of the process modeling language can be
restricted to meet, for example, company standards in terms of process documentation. Finally,
certain tools allow modeling different perspective of a business process: data, organizational,
functional, or process perspective.

IBM BlueworksLive provides a proprietary process modeling language (i.e., discovery map) to
capture the activities of a business process. The discovery map allows grouping the activities
in milestones (i.e., logical phases of the business process). In particular, ordering constraints
need not to be provided at this modeling stage. Following this phase, a BPMN process model
can be generated automatically based on the activities specified in the discovery map. As an
extension, defined milestones are visible in the BPMN process model as well. Afterwards, for
example, the temporal ordering of activities or data objects can be provided. If a user adds an
activity to the process model, it appears in the corresponding discovery map and vice versa.
Furthermore, documentation provides a textual description of the created process model. For
this purpose, activities are represented as a bullet list. For each activity, a subordinated bullet
list describes corresponding activity attributes. When adding new bullet items (i.e., activities),
these are synchronized to the other process representations. In contrast to all other analyzed
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tools, changes in a process representation are propagated to other representations. Thus, out-
dated process models can be prevented.

Users are assisted in creating process models in various ways. Modeling aids shall enable users
with limited process modeling knowledge to interact with process models. In particular, recom-
mendations regarding the use of the process model elements in the next steps and applicable in
the given context are provided. Furthermore, automatic layouting contributes to arrange pro-
cess model elements. Especially, tools for mobile devices provide an automatically layout (e.g.,
Cubetto). Syntax checks support users to create syntactically correct process models to increase
process model quality [88].

Table 4.2 compares process representation and modeling features provided by the process mod-
eling tools. Although the tools focus on the creation of process models, alternative process
representations fostering model comprehensibility are not supported. In particular, once a pro-
cess modeling language is chosen, a transformation to other representations is no longer possible
(except for IBM BlueworksLive). Finally, users only get limited support to interact with process
models. Rudimentary modeling aids and syntax checks are the only features provided.
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Table 4.2: Process Representation and Modeling Features

4.3 Process Abstraction

Contemporary process modeling tools provide a number of techniques to abstract process mod-
els. IBM BPM offers two levels of granularity for process models. The first one allows modeling
the process activities from a business perspective, whereas in the second level each of these
high-level activities is refined by providing, e.g., processing data from a database or integrating
different user forms). In turn, ARIS Business Designer and MID Innovator allow for the hierar-
chical structuring of process models in process hierarchies [45]. Thereby, a particular hierarchy
level comprises process models at the same level of granularity.

Process models may be interlinked across hierarchy levels to enable users to navigate between
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them. Generally, an activity on a higher level may be refined by a process model on a lower
one. Accordingly, the linkage between different levels is based on sub-process activities. Once
a process hierarchy has been fixed, it can not be changed anymore or this would require huge
efforts. This means that the set of activities assigned to a particular level is fixed. A notable
exception is Signavio, which allows creating sub-processes dynamically based on existing process
models, i.e., a set of activities may be dynamically selected and then integrated in a sub-process.
As another abstraction feature, Signavio allows users to manually specify process views. In this
context, single process elements (e.g., activities) may be hidden or pools (i.e., the activities of a
particular process participant) be collapsed to reduce overall complexity for users.

Table 4.3 summarizes the abstraction features provided by the various tools. As can be seen,
most tools support process hierarchies. Furthermore, support for navigating across process
models is provided. Furthermore, certain tools allow users to expand sub-processes, i.e., the
sub-process model is then displayed within the sub-process activity. In turn, this helps users to
better understand the context of a sub-process. However, only Signavio provides features for
hiding process elements. No tool enables personalized process abstractions.
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Table 4.3: Abstraction Features

4.4 Process Interaction

The user interfaces of the presented process modeling tools are clear and intuitive. Obviously,
more sophisticated tools (e.g., ARIS Business Designer) show a higher complexity of their user in-
terface compared to tools with only limited functionality (e.g., Bizagi Process Modeler). Desktop
and cloud tools provide menu-based interaction, while not considering the specific characteris-
tics of mobile devices (e.g., small display size and multi-touch capabilities). By contrast, mobile
modeling tools provide specific user interfaces addressing these characteristics.

Cubetto provides specific interaction concepts with respect to process modeling. When inserting
a process element, the latter is positioned according to a specific process layout, i.e., the layout
algorithm chooses an optimal position and no manual positioning of process elements is required.
Instead of a menu bar offering process elements, a context menu solely offers process elements,
which may be inserted next. The layout of the resulting process model is always appropriate
due to the automatic layouting.
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ProcessCraft and Process Designer are mobile tools providing a limited set of multi-touch ges-
tures to interact with process models. More precisely, multi-touch gestures are provided to zoom
and pan process models. Gestures for modifying a process model or interacting with it are not
supported; instead users must use menus when inserting or deleting process elements.

Table 4.4 summarizes the interaction capabilities of the presented process modeling tools. In
a nutshell, the provided user interfaces are intuitive to use, but lack multi-touch support. In
particular, no specific multi-touch gestures for creating or changing process models are provided.
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Table 4.4: User Interaction Features

4.5 Summary

This chapter evaluates state-of-the-art process modeling tools. In this context, selected tools of
various categories are considered.

The nine tools support a wide range of process modeling languages. Once a particular language
is selected for process modeling, however, the created process model is bound to the notation
provided by that language. If the notation of another process modeling language shall be used,
the process must be remodeled. All tools provide modeling aids, i.e., process designers are rudi-
mentarily assisted in creating process models. Still considerable process modeling knowledge is
required to create and change process models. IBM BlueworksLive provides more sophisticated
support for users without profound process modeling knowledge.

Process hierarchies shall structure large business process models. In particular, process models
may be linked across several levels through sub-process activities. However, only Signavio pro-
vides more advanced abstraction concepts (i.e., process views hiding process information). All
process modeling tools provide interaction concepts known from standard desktop applications.
No dedicated support of mobile devices exists to assist users in creating process models.

Table 4.5 evaluates the tools based on the requirements presented in Chapter 3. Contemporary
process modeling tools target at process designers rather than domain experts (cf. REQ-1).
Further, they support various process modeling languages. Although all tools provide BPMN
2.0 support, only three consider all BPMN elements (cf. REQ-2 and REQ-6). Switching between
the notations of different process modeling languages is not supported (cf. REQ-8). Process
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hierarchies are used to abstract process models according to users’ needs (cf. REQ-3). Updates
in process model collections must be performed manually on all process models affected (cf.
REQ-4, REQ-5, and REQ-7). Although mobile tools exist, process modeling on mobile devices

is only rudimentary supported (cf. REQ-9).

Requirement

Support in Process Modeling Tools

REQ-1 Accessible for Domain Experts

Tools are made to be used by process designers.

REQ-2 Process Model Elements and their Representation

Not all tools support the BPMN 2.0 full set, i.e., not all
process information can be documented.

REQ-3 Process Model Abstractions

Only supported by process hierarchies and by simple pro-
cess views in Signavio.

REQ-4 Process Model Updatability

Updates in process hierarchies are possible. No updates
are allowed in process views (in Signavio).

REQ-5 Up-to-Date Process Models

Not supported

REQ-6 Intuitive Process Representations

Process designers require process modeling language
knowledge. Exception: process landscapes and discovery
maps in IBM BlueworksLive.

REQ-7 Updatability of Process Representations

Not supported

REQ-8 Changeability of Process Representations

Only basic support in IBM BlueworksLive.

REQ-9 Intuitive Process Interaction

Optimized for desktop PCs; insufficient for mobile devices.

Table 4.5: Tool Support of Requirements

Note that we do not present related research in this chapter. The latter is separately discussed
in the context of process views (cf. Chapter 6), process view updates (cf. Chapter 7), process
representation (cf. Chapter 9), and process interaction concepts (cf. Chapter 10).

28




An Overview on the proView Framework

5.1 Introduction

Chapter 3 elicitated the requirements relevant in the context of the considered research ques-
tions. The goal is to enable domain experts to understand the models of the business processes
they are involved in. In particular, they shall be enabled to evolve and, hence, to update the
process models at a high level of abstraction. Parts II and III of this thesis introduce the pro View
framework, which addresses introduced requirements. In order to reduce process model complex-
ity as well as to increase model comprehensibility two strategies are applied. First, techniques
are provided to abstract from unnecessary details regarding the structure of a process model.
Second, domain experts are enabled to customize the representation of a process model. Ab-
stracting a process model requires techniques for reducing (i.e., hiding) process elements as well
as for aggregating (i.e., combining) them. The process model resulting from such an abstraction
is denoted as process view. For a given process model, specific views may be created reflecting
the needs the different domain experts and use cases.

Customizing the representation of a process model or process view, in turn, shall allow varying
the way the model is displayed to the user. For example, a graph-based process model may be
visualized using various layouts, process element visualizations, or process modeling languages.
In turn, this enables us to cope with the vocational background and varying process modeling
knowledge of domain experts. Process model abstractions and representations can be consid-
ered as independent concepts, but may be applied in combination with each other to allow for
personalized process views. Moreover, domain experts shall be enabled to perform changes on
process model abstractions (i.e., updates on process views) independent from the representation
used. As shown in the case studies, respective process modeling tasks may be performed on
touch-enabled devices as well. When updating a process view, the change is propagated to the
related process model. Furthermore, other process views are updated accordingly.

Section 5.2 gives an overview on the proView framework and its components. Section 5.3
discusses ways to store process views in a PAIS. Section 5.4 summarizes the chapter.
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5.2 Components of the proView Framework

We first show how process models can be abstracted and visualized. Following this, we deal with
changes of the respective process abstractions and representations.

5.2.1 Abstracting and Visualizing Process Models

We rely on fundamental methods of information visualization research to create process views
and realize process representations. In particular, the data state model—a data visualizing pro-
cedure for complex data collections—is applied [89, 90, 91, 92]. Thereby, data visualization is
performed in three phases: data transformation, visualization transformation, and visual map-
ping transformation (cf. Figure 5.1). Data transformation loads selected raw data from various
data sources and merges them. Visualization transformation further abstracts the data (i.e., it
hides or combines selected data). Finally, visual mapping transformation visualizes the data by
a dedicated graphical representation presented to the user.

Legend:
Raw __ Data | ___Analytical __ | Visualization | __Visualization _| Visual Mapping | _ Final |:| Transformation Phases
Data Transformation Abstraction Transformation Abstraction Transformation Visualization
- =% Data States

Figure 5.1: Data State Model

Taking the data state model, Figure 5.2 gives an overview on the proView framework. The
different phases for creating, visualizing, and updating process views as well as the interacting
with them, together with their relation to the data state model, will be discussed in the following.
Furthermore, the phases are correlated with the elaborated requirements (cf. Chapter 3).

To set a focus this thesis excludes the data transformation phase, i.e., we assume that the
process model of the respective business process already exists [93]. To distinguish the origi-
nal process model from the models representing process views, we denote it as Central Process
Model (CPM). Thereby, CPMs may be stored in the Central Process Repository (CPR) (cf.
Figure 5.2a), saving as basis for creating process views. Note that there exists considerable work
to derive a CPM through the mining of process execution and change logs [77, 94, 95, 96] or
the application of techniques like model merging [32, 97]. In addition, process views may be
used to initially document a business process. Therefore, one may start with an empty CPM
as well as an associated process view and apply view updates to it to document a business process.

Visualization transformation is performed in the view creation phase, which applies concepts to
abstract a CPM (i.e., a process model). In turn, this leads to the creation of the structure of a
process view (cf. Figure 5.2b). In particular, a process view abstracts from process information
by reducing (i.e., hiding) or aggregating (i.e., combing) process elements of the CPM. Finally,
unnecessary control flow structures (e.g., empty branches) resulting from the transformation are
refactored in the view creation phase to obtain compact process view models (cf. Chapter 6).

The representation mapping phase generates a process representation for a specific user (cf. Fig-

ure 5.2¢), i.e., a visual mapping transformation is applied. Examples of such a process represen-
tation are graphical process modeling languages or textual process descriptions (cf. Chapter 9).
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Figure 5.2: Overview on the proView Framework

5.2.2 Updating Process Models and Interacting with them

Enabling users to create and evolve process models requires process interaction support (cf. Fig-
ure 5.2d), i.e., authorized users should be enabled to evolve process models through updates of
related process views, e.g., using multi-touch gestures. Such an interaction support is required
to enable users to intuitively update and evolve process models and process views. Chapter 10
introduces corresponding process interaction concept for touch-enabled devices.

If a user triggers a view update, the latter must be propagated to the CPM (cf. Figure 5.2¢).
This propagation is required to guarantee the up-to-dateness of the CPM. In order to ensure
that process views refer to the most recent version of the CPM, all associated process views then
need to be updated as well. Chapter 7 and Chapter 8 presents an approach enabling updates
on process views and ensuring up-to-dateness of all other process views associated with this CPM.

Generally, the phases of view creation, view update, representation mapping, and user interaction
are orthogonal. Hence, they may be applied independently from each other. For example,
process representations may be directly utilized to process models in the CPR. Alternatively,
view creation and user interaction may be combined to enable intuitive interactions with process
views. Independence of the phases enables us to provide a powerful and flexible framework for
process representation and modeling.

5.3 Materialized and Virtual Process Views

Before introducing concepts for creating and updating process views, we discuss how the latter
may be represented in a CPR. Generally, process views and their relationship to a given CPM
must be maintained in a way that allows propagating process view updates to the CPM (cf.
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REQ-4). Furthermore, all other process views associated with the CPM have to be migrated to
the new CPM version (cf. REQ-5). For representing process views, two alternatives exits, i.e.,
materialized or virtual views (cf. Figure 5.3) [32].

In case of materialized process views, the CPR stores the process models of the CPMs as well as
their related process views. Furthermore, references are maintained describing the relationship
between CPMs and associated process views. However, following this approach no information
is available on how (i.e., by which view creation operations) a process view was created (cf. Fig-
ure 5.3a). As opposed to materialized database views, no information is maintained on how the
views are created [98]. If a user wants to access a process view, it will be directly fetched from
the CPR. Operations to create process views in the view creation phase are only required to
create new process views. Applying updates to materialized process views requires to determine
corresponding updates in the model of the CPM and all associated process views. Note that, this
is far from being trivial since the relations between the nodes in the CPM and the process views
are not maintained. If unnecessary control flow structures are refactored, for example, determin-
ing a corresponding update of the CPM is not straightforward. Certain updates may concern
large regions in a process view (e.g., parallel insertion). In particular, [99, 100] have shown that
it is not always possible to determine corresponding CPM updates when applying a view update.

View Creation
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Figure 5.3: Representation of Process Views

Virtual process views are created based on the CPM as well as a set of view creation operations.
The latter express the process information to be reduced or aggregated. If a user wants to
access a particular process view, the latter is derived in the view creation phase by applying a
set of view creation operations to the CPM (cf. Figure 5.3b). In particular, there is no need to
maintain the relations between the CPM elements and the ones of the associated process view.
These relations are specified by the set of view creation operations. Thus, updates on process
views can be propagated to an update of the CPM. In turn, associated process views can be
re-created based on the set of view creation operations.

In this thesis, we apply virtual process views to allow for updates based on process views.

Chapter 6 provides details on the creation of process views and Chapter 7 deals with updates
triggered on a process view and their propagation to the CPM and associated process views.
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5.4 Summary

This chapter gives an overview on the proView framework, which allows creating and updating
personalized process abstractions (i.e., process views). Furthermore, it discusses alternatives for
representing and maintaining process views in a process repository. Figure 5.4 gives an overview
of chapters and shows their relation to the components of the proView framework. In Part
II, Chapter 6 introduces operations to create process views. Chapter 7 provides operations to
update process views as well as the migration of associated process views. Chapter 8 discusses
more advanced process view updates. Part III introduces in Chapter 9 process representations.
Finally, Chapter 10 presents interaction concepts for touch-enabled devices to interact with pro-
cess models and process views.
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Creating Process Views

6.1 Introduction

Companies must support a large variety of business processes comprising different organizational
units, user roles, business objects, and business functions (i.e., activities). Usually, information
about a business process is captured in a process model that is stored in a process repository. In
practice, such a repository may comprise hundreds or thousands of process models. In turn, a
single process model may include numerous activities, business objects, and different user roles.
Typically, each user role has a specific perspective on the respective business process requiring a
different level of process information granularity. For example, managers prefer an abstract view
on a business process, whereas process participants require a more detailed view on those parts
of the business process they are involved in. To reflect this need, it is common to manually create
specific process models for the various user roles, which then have to be explicitly maintained.
Obviously, creating and maintaining separate process models representing the same business
process (or parts of it) causes high efforts for process designers. Consequently, the automated
provision of personalized views on process models, which abstract or hide certain process infor-
mation, is a much needed feature in contemporary Process-aware Information Systems (PAISs)
to properly support all domain experts involved in a business process (cf. Requirement REQ-3).

This chapter introduces well-defined operations for creating abstractions of process models,
which we denote as process views. A process view abstracts a process model by reducing (i.e.,
hiding) or aggregating (i.e., combining) parts of it. Thereby, we restrict aggregations on ac-
tivities having a direct precedence relation (i.e., “adjacent” activities in the process model).
Respective aggregations ensure that no additional precedence relations are added when creating
a process view. This restriction guarantees that the order in which the process activities shall be
performed is not distorted in the process view. Furthermore, it enables us to apply well-defined
update operations on process views.

Example 6.1 illustrates how process views may be used in context of the credit application process.
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Example 6.1 (Application of Process Views)

Consider the credit application process of a bank, which involves: a customer, a clerk, and
a manager. Furthermore, a PAIS is used to coordinate the process activities (including
automated activities). The corresponding process model is depicted in Figure 6.1.

The credit application process starts with the customer filling out an inquiry. If the customer
has not been registered yet, a corresponding record is created in the database. Otherwise,
the existing customer record is retrieved by the PAIS. Next, the address and credit rate are
provided by the clerk and the credit risk is determined. Based on the information provided,
the manager decides whether the credit shall be granted. Afterwards, the PAIS notifies the
customer and updates the customer database. Finally, the clerk calls the customer to discuss
next steps.

Personalized process views are provided for the customer as well as the clerk to foster their
understanding of the credit application process. In detail, the process view of the customer
solely shows the major phases of a credit application, i.e., Customer Inquiry, Inquiry Screening,
Decision Making, and Customer Notification. Three of the four phases aggregate major parts
of the credit application process (cf. Figure 6.1). In turn, the process view of the clerk
hides automated activities, which are executed by the PAIS and aggregates the activities the
manager has to perform (cf. Figure 6.1).
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Figure 6.1: Credit Application Process and its Process View

Creating a process view on a process model might result in control flow structures no longer
needed (e.g., empty parallel branches) and making the resulting process view unnecessarily com-
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plex. In general, a process view should be as compact as possible to reduce complexity for users
(cf. Requirement REQ-3). In order to tackle this challenge, in addition to view creation oper-
ations, this chapter provides process model refactorings that allow simplifying the structure of
the created process view. In particular, refactorings preserve the behaviour of a process view.
Thus, they do not influence the meaning of a process view.

Figure 6.2 gives an overview on how process views are created. First, a CPM is retrieved from
the CPR (i.e., Central Process Repository) and a set of view creation operations are applied to
it. Then, refactoring rules are applied to the resulting process view. In order to further structure
process views, these steps are repeated to create flexible process hierarchies, i.e., process views
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Figure 6.2: Details on View Creation

The chapter is structured as follows: Section 6.2 introduces basic notions and fundamentals of
process models and process views. Section 6.3 then introduces elementary operations for creating
process views, whereas Section 6.4 provides behaviour-preserving refactorings that simplify the
control flow structure of a process view. Section 6.5 introduces flexible process hierarchies.
Related work is discussed in Section 6.6. Section 6.7 concludes the chapter.

6.2 View Creation Fundamentals

This section presents basic notions and definitions related to process models and process views.

6.2.1 Process Model

In PAISs, a business process is described in terms of a process model. In this thesis, the latter
corresponds to a directed graph that comprises a set of process elements and a set of edges
connecting them (cf. Definition 6.1).
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Definition 6.1 (Process Model)
A process model is defined as a tuple P = (N, D, NT,CE, EC, ET, DE, DET') where:

e N is a set of process nodes, i.e., activities, gateways, and start/end nodes.

e D is a set of data elements.

o NT : N — NodeType with NodeType := {StartFlow, EndFlow, Activity, AN Dsplit, AN Djoir
XORsplit, XORjoin, LOOPsplit, LOOPjoin} assigns a node type NT'(n) to each noden € N.
N can be divided into disjoint sets of activity nodes A (NT (n) = Activity) and structural nodes
S (NT(n) # Activity), i.e., N=A U S.

e CE C N x N is a set control edges expressing precedence relations (e := (Ngyc, Ndest) € CE with
Nsre, Ndest € N A Nigpe 7é ndest)-

e FC :CE — CondsU{TRUE} assigns to each control edge either a branching condition or TRU E
(i.e., the branching condition of the control edge always evaluates to true).

e ET : CE — EdgeType with EdgeType := {ET_Control, ET_Sync, ET_Loop} assigns to each
control edge e € C'E an edge type ET(e).

e DE C (D x N)U (N x D) is a set of data edges between activities and data elements. For
n € N,d € D we denote (n,d) € DE as write data edge and (d,n) € DE as read data edge.

e DET : DE — DEdgeType with DEdgeType := {mandatory, optional} assigns to each data
edge its type of data access.

The control flow of a process model connects process nodes through control edges. Hence, it
describes the stream of action within a process model. Process nodes may be further divided
into node types Start-/EndFlow, activity, and gateway. Start-/ EndFlow nodes correspond to
start /end points of a process model. Without loss of generality, we restrict a process model to
have exactly one StartFlow and one EndFlow node. In turn, activities represent elementary
actions of the business process (e.g., fetching information from a database or a user form to be
filled out). Finally, gateways of different semantics are used to define parallel/conditional splits
and joins of the control flow. An XORsplit gateway allows choosing exactly one of its outgoing
edges (i.e., branches) based on the branching conditions assigned to them. In turn, an ANDsplit
gateway splits the control flow into a set of concurrently executed parallel branches. Accord-
ingly, an XORjoin (ANDjoin) gateway joins multiple branches and corresponds to an XORsplit
(ANDsplit). Finally, a LOOPsplit gateway enables backward “jumps” in the control flow based
on an explicit branching condition. In particular, a LOOPsplit has exactly one outgoing edge of
type ET_Loop connecting it with the corresponding LOOPjoin gateway. Synchronization edges
are described below in the context of the structure of a process model.

Definition 6.1 further covers the data flow perspective of a process model; i.e., data elements and
data edges. Data elements share process information between process nodes. In particular, data
elements are connected with process nodes through data edges. In turn, a data edge expresses
that a certain data element is either read or written by a particular process node. In Figure 6.3,
for example, activity A writes data element d1, which is then read by activity C. Furthermore,
for each data edge de, function DET(de) indicates whether the corresponding data element is
accessed mandatorily or optionally when executing the respective activity.
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Note that Definition 6.1 serves as basis for representing the structure of a CPM as well as its
corresponding process views (cf. Chapter 5). Moreover, it can be used in combination with
any activity-centered process modeling language, i.e., Definition 6.1 is not language-dependent.
Generally, this thesis visualizes process models in terms of the Business Process Model and Nota-
tion (BPMN) 2.0 due to its widespread use (cf. Figure 6.3). To set a focus only selected BPMN
elements are considered. These correspond to the ones most frequently used in practice [101].
Furthermore, based on the selected process elements, more complex process structures may be
composed if required. For example, an ORsplit gateway may be expressed by the combined use
of ANDsplit and XORsplit gateways [102]. Finally, to comply with BPMN, we use the same
visualization for XORsplit, LOOPsplit, XORsplit, and LOOPsplit gateways.

ET_Loop

Node Types:

QO startFow QO Endriow

n XORjoin; »@ ANDsplit @)ANDjoin
°o@ 0 oo o
B XORsplit XORjoin
LOOPsplit LOOPjoin
Q L Data
Actlvny D

Element

Edge Types:

—— ET_Control ———» ET_Sync
—> DataEdge

Process Model P

Figure 6.3: Example of a Process Model

To further characterize the structure of a process model, the notion of a Single Entry Single
Ezit (SESE) block is introduced in Definition 6.2.

Definition 6.2 (SESE Block)

Let P = (N,D,NT,CE,EC,ET,DE,DET) be a process model and P =
(N,D,NT,CE',EC,ET,DE,DET) be the subgraph of P that excludes synchroniza-
tion edges, i.e., CE' := CE \ {e € CE | ET(e) = ET_Sync}. Further, let Ns C N be a
subset of process nodes in N.

Then, a subgraph Ps = (Ng,Dg,NTs,CEg, ECs, ETs, DEg, DETs) of P’ is called SESE
(Single Entry Single Exit) block iff:

1. Ps is the subgraph of P’ induced by node set Ng,
2. Pg is connected considering control edge set C'Eg and node set Ng, and

3. there is exactly one node in Ng without any incoming control edge and one node without
any outgoing control edge.

Finally, (ns,ne) = MinimalSESE(P, Ng) denotes the start and end node of the minimal
SESE block comprising all activities from Ng C N.
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As example consider Figure 6.3. Based on Definition 6.2, the subgraph induced by node set
Ng = {XORsplity, D, E, XORjoin,} constitutes a SESE block. Moreover, the minimal SESE
block comprising activities C' and D in Figure 6.3 has start node C' and end node XORjoiny,
i.e., MinimalSESE(P,{C,D}) = (C, XORjoiny).

The approach developed by this thesis is restricted to well-structured (i.e., block-structured)
process models; i.e., activity sequences, parallel branchings (i.e., AND branchings), conditional
branchings (i.e., XOR branchings), and loops are expressed in terms of SESE blocks (cf. Def-
inition 6.2) with well defined start and end nodes having the same gateway type (or the same
node type for activity sequences). SESE blocks may be nested, but must not overlap [103, 104].
Since we presume well-structured process models, a minimal SESE can always be determined.
How SESE blocks can be determined in an efficient way is described in [105].

In practice, well-structured process models do not really limit process designers [106, 107]. In
particular, block-structuring is a well-known concept from programming languages [108] as well
as process composition languages like WS-BPEL [109]. Furthermore, modern process manage-
ment systems (e.g., AristaFlow BPM Suite [110] and Cake II [111]) that rely on well-structured
process models have been successfully introduced in a variety of application domains [112].
Moreover, well-structured process models are easier to understand and are less error-prone com-
pared to unstructured process models [74, 113, 114, 115, 116]. This is of particular importance
when users having limited process modeling knowledge shall change process models. Finally, it
has been shown that most unstructured process models can be transformed to well-structured
ones [117, 118, 119], i.e., the applied structuring does not actually constitute a limitation of the
presented approach. As will be shown, however, it fosters user-driven process changes.

To increase expressiveness of the process modeling language, synchronization edges (i.e., ET(e) =
ET _Sync), as originally introduced in [120], are used. The latter allow for a cross-block syn-
chronization of activities from parallel branches (similar to the link concept known from Web
Service Business Process Erxecution Language (WS-BPEL) [121]). In Figure 6.3, for example,
activity £ must not be executed before G is completed.

Definition 6.3 summarizes the aforementioned constraints on structuring process models. Fur-
ther, it introduces a correctness notion for process models.
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Definition 6.3 (Correctness of a Process Model)
Let P=(N,D,NT,CE,EC,ET,DE,DET) be a process model. Then:

a) P describes a structurally correct control flow, iff Constraints 1-4 are met:

)
2)

3)

4

P has exactly one start node ng (i.e., 3Ins € N : NT (ns) = StartFlow) and exactly
one end node n. (i.e., 3n, € N : NT(n.) = EndFlow).

Each process node n € N \ {ns,n.} has at least one incoming and one outgoing
control edge e € CFE' := {e € CE|ET(e) # ET_Sync}, i.e., Vn € N \ {ns,ne} :
d(n,e) € CE' A3(e,n) € CE'.

Moreover, an activity n (i.e., NT(n) = Activity) has exactly one incoming and one
outgoing control edge e € CE’, i.e.,

Vn € N\ {ns,ne}t, NT(n) = Activity : 3!(n,e) € CE' AJl(e,n) € CE'.

Let Psy = (Ns1,Ds1,NTs1,CEs1, ECs1,ETs1, DEs1, DETs1) and Psy =
(NSQ, DSQ, NTSQ, CESQ, ECSQ, ETSQ, DESQ, DETSQ) be two different SESE blocks
induced by node sets Ng1 and Nso respectively (cf. Definition 6.2).1

Then: Node sets Ng1 and Ngy are either disjoint (i.e., N1 N Ngo = ()) or one is
contained within the other (i.e., Ng1 C Ngo V Nga C Ngi).

Let P = (N,D,NT,CE',EC,ET,DE, DET) be a subgraph of P with CE" =
{e € CE|ET(e) # ET_Loop}. Then: P’' must be an acyclic graph. Particularly,
the use of control and synchronization edges must not lead to cycles.

b) P describes a correct data flow, iff Constraints 5 and 6 are met:

5)

6)

For any activity linked to a data element d € D through a mandatory read data
edge de € DE (i.e., DET(de) = mandatory), it must to be ensured that d will be
always written by preceding activities independent of the execution path chosen.?

For any data element d € D, d must not connect two activities ny,ny € N through
write data edges (i.e., (ni,d), (n2,d) € DE), iff ny and ng are located on parallel
branches of the same AND branching, i.e., lost updates will not occur.?

¢) P describes a structurally correct process model, iff Constraints 1-6 are met.

1Sequences of activities must be of maximal length to be considered.
2A formal definition and respective validation algorithms may be found in [104].

In the following, functions are introduced that are applied in the context of view creation and
view update operations.

Given a process model P and a SESE block induced by node set N’, function first(P, N') returns
the entry node of the SESE block, i.e., the node whose single incoming control edge connects
the SESE block with a preceding fragment of P. Accordingly, function last(P, N') returns the
last node of the SESE block that connects it with a directly succeeding fragment P.
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Definition 6.4 (First/Last SESE Node)

Let P = (N,D,NT,CE,EC,ET,DE,DET) be a process model and N' C N be a set of
nodes. Let further CE' be the set of control edges of the minimal SESE block containing all
nodes from N'. For n € N', it then holds:

o first(P,N') =ny with A(e,n;) € CE’
e last(P,N') = ng with A(ng,e) € CE’
As example consider Figure 6.4a and the SESE block induced by node set N = { XORsplity, B, C,

D, XORjoiny, E}. Then, first(P, N') returns XORsplit; as first node and last(P, N') returns
E as last node of the SESE block.

XORsplit=first(P,{XORspliti, B, C, D XOR 0iny, E}) A=pr ed(P, { XORsplit,, B, C, D, XOR 0ini})
i / E=succ(P, XOR oi n;)

(a1
3y i
Yt (3

XORspliti” /_~ XORjoin;
E=l ast (P, { XORspli t1, B, C, D, XOR oi ny, E}) {B, D} =succ(P, XORspli t 1)

a) First/Last SESE Node b) Direct Predessor/Successor

Figure 6.4: Examples of Auxiliary Functions

Regarding a process model P, pred (succ) returns the direct predecessors (successors) of a process
node or node set. As example consider Figure 6.4b: pred(P,{XORsplit,, B,C, D, XORjoin.})
returns A. Moreover, succ(P, X ORsplit;) returns B and D. Finally, succ(P, XORjoin;) returns
E (cf. Figure 6.4D).

Definition 6.5 (Direct Predecessor/Successor)
Let P=(N,D,NT,CE, EC,ET,DE, DET) be a process model.
i) Forn € N we define:
— pred(P,n) := {n, € N|(np,n) € CE}
— succ(P,n) := {ns; € N|(n,ns) € CE}
If pred (succ) returns a single node set as result,
we use pred(P,n) = ny, (succ(P, N) = ns) as simplified notation.
ii) For a SESE block with node set N' C N we define:
— pred(P,N') := pred(P, first(P,N"))
— succe(P, N') := succ(P,last(P,N"))

6.2.2 Process View

Process views abstract from particular details of a process model by reducing or aggregating
process elements. To create a process view on a given CPM (i.e., process model), well-defined
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are required. For this purpose, elementary view creation operations are provided. At the elemen-
tary level, two kinds of operations are distinguished: reduction and aggregation. An elementary
reduction operation hides a specific process element (e.g., data element or activity), i.e., an ele-
ment present in the CPM will be hidden in the respective process view. In turn, an elementary
aggregation operation combines a set of process elements to an abstracted element. For example,
a set of activities (data elements) may be aggregated to an abstract activity (business object).
An overview of the elementary view creation operations considered as well as their formal se-
mantics are presented in Section 6.3.

A process view on a CPM is created through the consecutive application of elementary view
creation operations. In general, for a given CPM, multiple process views may be defined (cf.
Definition 6.6).

Definition 6.6 (Process View)

Let CPM be a process model and let OP be the set of available elementary view creation
operations.! Then:

A process view V on CPM is represented by a creation set C Sy = (CPM,Op) with:

o C'PM being the Central Process Model (i.e., process model) based on which V' is created,

e Op = (op1,...,0pk), op; € OP is a sequence of elementary view creation operations
consecutively applied to CPM.

The process model of V' can be created through the consecutive application of the elemen-
tary view creation operations: CPM = Py 2% py 2% . OPLQ Py 25 P, =V with
Py, P1, ..., Py_1 being intermediate process models (C’PM ~% V for short).

las introduced in Section 6.3

Figure 6.5 shows an example of the consecutive application of view creation operations.

CPM=P ops=“aggregate A and B* op,="hide E" P ops="hide C* Sy
0 2 3=
-B-B- +[ABH Mo el Plaeplch{op Hlrepoh
ODNNode(V AB) ={ A, B}f | M
GPMNode(V, D) =D i sAggregat edNode(V, AB) =t r ue

isAggregatedNode(V, D)=fal se
Figure 6.5: Consecutive Application of View Creation Operations
For any process node n of process view V., CPM Node(V,n) determines the corresponding nodes
of the underlying CPM (cf. Definition 6.7). Note that n either corresponds to a particular pro-

cess node n in the CPM or abstracts from a set of C'PM nodes. Figure 6.5 shows the application
of CPM Node.
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Definition 6.7 (CPMNode)

Let CPM = (N,D,NT,CE,EC,ET,DE, DET) be a process model and

V = (Ny,Dy,NTy,CEy,ECy,ETy,DEy, DETy) be a process view with creation set
CSy = (CPM,Op) and Op = {(op1, . ..,0pg). Then:

For any process node n € Ny, CPMNode(V,n) either returns node n € N (i.e., the same
node) or node set N,, C N after applying view creation operation op;:

eN
CPMNode(Vin)=4{ " " ,
N, dop; € Op : op; aggregates N, ton in V

Function isAggregatedNode(V,n) returns true, if node n has been the result of applying an
aggregation operation op; to a node set. Otherwise, isAggregatedNode(V,n) returns false (cf.
Figure 6.5 for example).

6.3 Process View Creation Operations

This section presents elementary view creation operations for reducing and aggregating process
elements, i.e., activities, gateways, and data elements. Then, we show how the respective opera-
tions affect process attributes. For sake of readability, we solely show the application of a single
view creation operation at a time. In general, however, a process view may be created through
the consecutive application of a set of view creation operations (cf. Definition 6.6).

6.3.1 Creating Process Views Through Model Reduction

In order to hide certain elements of the original process model, the view creation framework
shall allow reducing process elements. In particular, irrelevant or confidential process informa-
tion may be hidden from particular users. For example, “technical data elements” (e.g., database
connection data) or confidential data elements (e.g., user names or passwords) must not be dis-
played to certain users in their process views. For this purpose, two elementary operations are
provided: RedActivity and RedDataFlement.

RedActivity(CPM,n). View reduction operation RedActivity(CPM,n) creates a process view on
CPM, which corresponds to CPM except for activity n € N (i.e., NT'(n) = Activity), which
is hidden from the user together with its incoming and outgoing control edges. Furthermore,
the operation re-inserts a control edge linking the direct predecessor of n with its direct succes-
sor in the resulting process view!. Furthermore, RedActivity(CPM,n) removes all data edges
associated with activity n. Note that this might result in a process model with an “incorrect”
data flow (cf. Definition 6.3). In Figure 6.6, for example, activity B is reduced (i.e., removed
from process model CPM) by applying RedActivity(CPM, B). After removing the data edges
associated with B, data element d2 is not written by any activity from the perspective of process
view V1 (i.e., a loss of information occurs when applying RedActivity).

!Note that activity nodes have exactly one direct predecessor and one direct successor in a process model
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=

Figure 6.6: View Creation Operation RedActivity

Algorithm 6.1 formally defines RedActivity. First of all, InitializeView(CPM) (cf. Algo-
rithm A.1) clones CPM, which serves as starting point. Then, activity n is removed from
the model of the process view (Line 3). In this context, Lines 4-8 update the set of control and
data edges accordingly.

Algorithm 6.1: RedActivity(CPM,n)

Input: Process model CPM = (N,D,NT,CE,EC,ET,DE, DET)
Activity n € N (with NT(n)=Activity) to be reduced
Output: Process view V = (N’, D', NT',CE', EC',ET', DE', DET")

=

2 begin
3 V = InitializeView(CPM);
4 N’ := N'"\ {n};
5 e’ := (pred(CPM,n), succ(CPM,n)); ET(e'):= ET_Control;
6 // Removes control edges connecting node n and adds control edge e’
7 CE' :=CE' U{}\{e€ CE' |e=(o,n)Ve=(n,o)};
8 // Removes data edges connected to node n
9 DE' := DE’'\{e € DE' | e = (o,n) Ve = (n,e)};
10 return V;
11 end

RedDataElement(CPM,d). View creation operation RedDataElement(CPM,d) creates a pro-
cess view on CPM hiding data element d € D as well as all data edges associated with d (cf.
Algorithm 6.2). As opposed to RedActivity, data flow correctness of the process view (cf. Def-
inition 6.3) is preserved since all data edges associated with d (i.e., both read and write data
edges) are removed together with the data element (cf. Figure 6.7).

=

Figure 6.7: View Creation Operation RedDataElement

Algorithm 6.2: RedDataElement(CPM,d)
Input: Process model CPM = (N,D,NT,CE,EC,ET,DE, DET)

1 Data element d € D that shall be reduced
Output: Process view V = (N’, D', NT',CE',EC',ET', DE’', DET")
2 begin
3 V = InitializeView(CPM);
4 D’ := D'\ {d};
5 DE’':=DE’'\{e € DE' | e =(o,d)Ve=(d,e)};
6 return V;
7 end
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6.3.2 Creating Process Views Through Model Aggregation

In order to enable abstractions of certain process model information, a view creation component
should allow aggregating the respective process elements to an abstracted one. As opposed to
reduction operations, which hide process information, aggregation operations preserve the re-
spective process information in an abstracted way. In particular, this allows presenting certain
process information to a specific user group in a more abstract way compared to the original
process model. Specifically, it should be possible to aggregate the nodes of a SESE block or sev-
eral branches of a branching. For example, the activities processed by a particular department
may have to be abstracted. Moreover, aggregation may affect the data flow of a process model
as well. For example, a set of atomic data elements (e.g., describing attributes of a person) may
be aggregated to a business object (e.g., representing a customer).

To support these different use cases, a set of elementary aggregation operations are provided:
AggrSESE, AggrComplBranches, and AggrDataFElements.

AggrSESE(CPM,N,). Let N, be the node set of any SESE block of the CPM. View cre-
ation operation AggrSESE(CPM, N,) replaces this SESE block by an abstracted activity
node in the resulting process view. For example, Figure 6.8 shows the aggregation of node
set N, = {AN Dsplit1, B,C, D, E, AN Djoin, } and the SESE block induced by N, respectively.
In the resulting process view V, therefore, the SESE block is replaced by activity BCDE. In
turn, this abstract activity is then embedded in the view model by connecting it with the direct
predecessor and the direct successor of N,. In addition, edge condition ¢l of the control edge
connecting the SESE block with its predecessor in the original model must be set for the edge
connecting BC'DE with its predecessor as well. Only then a proper control flow is guaranteed.
Finally, any synchronization edge connecting a node from N, with another node of the process
model must be reconnected to activity BCDE. Note that for the sake of readability, the labels
of aggregated activities are concatenated to label the abstracted activity. The labeling of aggre-
gated nodes is described in Section 6.3.3 since activity labels are described by process attributes.

CPM: Process View V:

ANDsplit; ANDjoin,

Figure 6.8: View Creation Operation AggrSESE

In general, an aggregation may affect the data flow of a process model as well. For example,
the data edges that connect data elements with nodes in N, must be reconnected with the
abstracted activity. Moreover, data elements solely written or read by nodes from N, are not
relevant for the process view. This behavior corresponds to private variables in object-oriented
programming, which are only accessed and visible within the respective class. Respective data
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elements and their data edges are hidden in the process view as well. In Figure 6.8, for example,
data element d1 is kept in the process view as it is written by activity A, which is still contained
in the process view. By contrast, data element d2 is removed in the process view as it is only
accessed by the aggregated process nodes.

Algorithm 6.3 formally specifies view creation operation AggrSESE. First, the set of process
nodes is updated (cf. Line 3), i.e., the nodes to be aggregated are removed from the set of
nodes and the abstracted node n,,, is inserted instead. In Line 7, updateControl FlowEdges is
called. It removes control edges connected with nodes in N, and it adds new control edges that
connect node npe, with its new predecessor and successor. If applicable, synchronization edges
are reconnected with node ny,e,. Lines 827 show how the data flow is updated. First, the data
elements associated with nodes from N, are determined. Then, for each of these data elements
it is checked whether it is solely written by nodes from N,. For this case, the data element is
removed. Otherwise, it is determined whether all branches of XOR branchings induced by node
set N, access the respective data element or not. In case all branches access the data element, a
mandatory data access between the aggregated node and the data element is added. Otherwise,
an optional data access is added.

In Figure 6.9, for example, data element d1 is read by both branches (i.e., the two branches in-
duced by {B,C} and {D} respectively). To be more precise, no matter which branch is chosen
at run-time, d1 will be always read. Hence, d1 is connected through a mandatory read data edge
with the abstracted activity BC'D in process view V. By contrast, d2 is only read by one XOR
branch (i.e., the branch containing D). Therefore, an optional data edge is used to connect d2
with BCD in V.

Process View V:

Aggr SESE( CPM { XORspl i t 4,
B, C, D, XOR oi n})

Figure 6.9: View Creation Operation AggrSESE Affecting Data Flow

Finally, Line 29 shows how obsolete data flow edges are removed. Note that a list of supportive
functions used in Algorithm 6.3 together with their description, is provided in Appendix A.
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Algorithm 6.3: AggrSESE(CPM, N,)
Input: Process model CPM = (N,D,NT,CE,EC,ET,DE,DET)

1 SESE block described by node set N, to be aggregated
Output: Process view V = (N', D', NT',CE', EC',ET', DE’, DET")

2 begin

3 V = InitializeView(CPM);

4 N’ := N'\ Ny U{nnew}; // Nnew represents the abstracted node
5 NT' (nnew) := Activity;

6 // removes control flow and synchronization edges connecting the SESE,
7 // adds control and synchronization edges connecting node nnew
8 CE'’ := updateControl FlowEdges(CE', Ng, nnew);

9 D, :={d € D'|3de € DE' : de = (d,®) Vde = (o,d)};
10 forall (d € D,) do
11 // checks whether data edge d is accessed (i.e., read or written)
12 // by process nodes not in N,
13 if isOnlyAccessedInSet(d, DE’, N,) then

14 D' := D'\ {d};
15 else

16 if (isReadAccess(d, DE’, N,)) then

17 DE’ := DE' U {(d,nnew)};

18 // checks whether data element d is accessed by all branches
19 // in the SESE

20 if (accessedByAllTraces(d, DE', N,)) then
21 | DET'((d,nnew)) := mandatory;
22 else
23 | DET'((d,nnew)) := optional;
24 end
25 end
26 if (isWriteAccess(d, DE’, N,)) then

27 ‘ // analogous for write access
28 end

29 end
30 DE’' := DE’'\ {de € DE’ | 3n € N4 : de = (d,n) Vde = (n,d)};
31 end
32 return V;
33 end

AggrComplBranches(CPM, N,). This view creation operation aggregates multiple branches
of a given branching to one branch with exactly one abstracted activity (cf. Figure 6.10a). The
operation is applied, for example, if a user does not want to aggregate the complete branching,
but only selected branches; e.g., an XOR branching of a business process may consist of one
standard branch and several exceptional branches. A process view may then aggregate all ex-
ceptional branches. Data flow is treated the same way as in the context of AggrSESE.

The behaviour of AggrComplBranches is similar to the one of AggrSESE. In particular, N, must
comprise all activities of the branches to be replaced by a single branch with one abstracted
activity. To be more precise, as can be seen in the following preconditions, N, corresponds to a
disjoint union of node sets Ny; (i = 1...k). Each of these node sets comprises the activities of
a particular branch that, in turn, which constitutes a SESE block itself. Furthermore, all node
sets Ng; have the same predecessor (successor), which is the split (join) gateway of corresponding
branching block.
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Process View V:

Aggr Conpl Branches

(CP'\SVB,C})

Process View V:

Aggr Conpl Branches c2ve

(CPM{A B C)
g .
(o]

b) Aggregating XOR Branches

Figure 6.10: Operation AggrComplBranches

Preconditions AggrComplBranches(CPM, N,).

Let CPM = (N,D,NT,CE,EC,ET, DE, DET) be a process model. Further, let N, C N a set of nodes to be aggregated.
Then: The following preconditions must be met in order to apply AggrComplBranches(CPM, Ng).

Node set Ng = Ng1UNgoU...UNg, k € N

Vi=1,...,k: subgraph induced by node set Nq; is a SESE block of CPM

VN : pred(CPM, Ng;) =: gs with NT(gs) € {AN Dsplit, XORsplit}

VNg; : succ(CPM, Ng;) =: gj with NT(g;) € {ANDjoin, XORjoin}

Lines 2-6 of Algorithm 6.4 show how the node set of the process model is updated and the new
activity is connected with the corresponding split and join gateway. In Line 8, the branching
condition of control edge €/, which connects the split gateway with activity n,ey, is set by using
logical disjunction (cf. Figure 6.10b). In case of an AND branching, the branching condition of
each branch is TRUFE and, therefore, the new branching condition is TRUE as well. Function
updateControl FlowEdges removes control edges connecting nodes in N, and reconnects syn-
chronization edges, if applicable. Data flow is handled as set out in Algorithm 6.3 (cf. Lines 8-29).

Algorithm 6.4: AggrComplBranches(CPM, N,)

Input: Process model CPM = (N,D,NT,CE,EC,ET,DE,DET)
1 Node set Ny = Ng1UNg2U...UN,k, k € N=number of branches to be aggregated.
Output: Process view V = (N', D', NT',CE', EC',ET', DE’, DET")
begin
V = InitializeView(CPM);
N := N'U{nnew} \ Na; NT'(nnew) := Activity;
// Connecting nnew with the split/join gateway
e’ := (pred(CPM, Nq1), Nnew); € := (Npew, succ(CPM, Nq1));
CE' :=CE' ' U{e,e"};
// Updating branching condition of split gateway
EC'(e') := EC’'((pred(CPM, Nga1), first(CPM,Ng1)))V ...V EC'((pred(CPM, N,y), first(CPM, Nug)));
CE'’ := updateControl FlowEdges(CE', No, nnew);
// adaptation of data flow like in Algorithm 6.3, Lines 8-29
/...

return V;

© 0N O oA W N

o e
N = O

-
w

end

=
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In the following, aggregation operations related to the data perspective of a process model are
presented.

AggrDataElements(CPM, D,). This view creation operation aggregates a set of data elements
to an abstract data element (cf. Figure 6.11). As example consider a health care process for
which a set of data elements related to a particular patient (e.g., name, birth date, address) shall
be combined to one abstracted patient data element. In general, Aggr DataFElements(CPM, D)
removes all data elements from set D, C D and re-inserts an abstract data element d,,e, in-
stead. Furthermore, the corresponding data edges are reconnected with the new data element.
Afterwards, the edge type of the new data edge is updated; e.g., aggregating both optional and
mandatory read data elements results in a mandatory abstract read data element (e.g., data
edge (d1d2, B) in Figure 6.11b). Aggregating two optional read data elements, in turn, results
in an optional read data edge (e.g., data edge (d1d2,C)). In particular, the resulting data edges
do not express which elementary data element is accessed.

a) Process View V:
Aggr Dat aEl ement
(OPM {d1, d2})
b) Process View V: Data Edge Type (DET):

Aggr Dat aEl ement

(PMidLd2) N e > optional

—> mandatory

Figure 6.11: View Creation Operation AggrDataElement

Algorithm 6.5: AggrDataFElement(CPM, D,)

Input: Process model CPM = (N,D,NT,CE,EC,ET,DE,DET)
Set of data elements D, to be aggregated
Output: Process view V = (N’, D', NT',CE’', EC',ET’, DE’, DET")

=

2 begin
3 V = InitializeView(CPM);
4 // removes data elements to aggregate; adds data element dypew
5 D' := D'\ Dg U {dnew};
6 DE, :={de € DE'|3d € D, : de = (d,e)}; DE, := {de € DE’|3d € D, : de = (e,d)};
7 // write access
8 forall (n,d) € DE,, do
9 if ((DET'((n,dnew)) = mandatory) V (DET’((n,d)) = mandatory)) then
10 | DET'((n,dnew)) := mandatory;
11 else
12 | DET'((n,dnew)) := optional;
13 end
14 DE = DE' U {(n, dnew)} \ {(n, d)};

end
// read access
forall (d,n) € DE, do
‘ ...// analogous for read access
end
return V;

e e
© W N O w

[
(=]

end

N
=
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6.3 Process View Creation Operations

Algorithm 6.5 describes operation Aggr DataFElement. Initially, the data element set is updated
(Line 2). Afterwards, data edges are reconnected and their types are updated (Lines 3-17).

6.3.3 View Operations for Handling Process Attributes

In general, process elements constitute complex objects characterized by a number of process
attributes. For example, a particular attribute of an activity may reflect the costs to execute the
activity. When applying view creation operations, process attributes need to be considered as
well. As example consider Figure 6.12: activities A, B, and C are aggregated to one abstracted
activity ABC. Thereby, the attributes of the respective activities must be aggregated as well.
For this purpose, several attribute functions are provided; e.g., CONCAT concatenates the val-
ues of textual attributes as applied for labels of aggregated activities.

label: B
start: 14-08-05 ; ione:
Attribute Functions:
end: 14-08-06 label = CONCAT(n;.label)
cost: 4100 start = MNn.start)
end = MAX( n;. end)
cost = SUMn;. cost)
(8]
Aggr SESE
(CPM {A B, G)
label: A label: C label: ABC
start: 14-08-01| |start: 14-08-06 start: 14-08-01
end: 14-08-05| end: 14-08-14 end: 14-08-14
cost: 2500 cost: 600 cost: 7200

Figure 6.12: Aggregation of Attributes

In order to also cover attributes, we extend our definition of process models (cf. Definition 6.1).
Referring to Definition 6.8, we illustrate the application of attribute functions.

Definition 6.8 (Process Model with Attributes)
Let AS be the set of all possible attributes of process elements. Then: A process model is
defined as tuple P = (N,D,NT,CE,EC,ET,DE, DET, attr,val) with:

e N.D,NT,CE,EC,ET, DFE, and DET corresponding to the notions from Definition 6.1.

eattr : N UD UCE U DE — AS assigns to each process element an attribute set
AS C AS.

e val: (N U D UCE U DE) x AS — valueDomain(AS) assigns to attribute z € AS of
process element elem € (N U D U CE U DE) a respective value or null:

value(z)!, x € attr(elem)

null?, x & attr(elem)

val(elem,z) = {

Lvalue(x) denotes the value of process attribute =
Zattribute is not available for the respective process element
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6 Creating Process Views

Furthermore, elem.z refers to process attribute x of process element elem. For example, A.label
refers to attribute label of activity A.

In general, a view creation operation may abstract from process attributes in an explicit or
implicit way. FExplicit abstraction aggregates or reduces the process attributes of a particular
process element by applying view creation operations ReduceAttr or AggrAttr. By contrast, an
implicit abstraction of process attributes occurs when applying aggregation operations to the
control or data flow (e.g., AggrSESE). In the following, these view creation operations will be
discussed in more detail:

ReduceAttr(CPM,elem,attr). This view creation operation reduces attribute attr of process el-
ement elem in the resulting process view, i.e., a specific attribute shall not be displayed to a
particular user (e.g., for privacy reasons). For example, in Figure 6.13 attribute A.z is hidden
in process view V.

Process View V:

Aggr SESE(CPM { B, C})
ReduceAt tr (CPM A, z)
AggrAttr(CPM A {x,y}, SUM

Figure 6.13: View Creation Operations Dealing with Process Attributes

Algorithm 6.6 summarizes ReduceAttr(CPM,elem,attr). Particularly, in Line 5 attribute attr of
process element elem is reduced in the resulting process view.

Algorithm 6.6: ReduceAttr(CPM,elem, attr)
Input: Process model CPM = (N,D,NT,CE, EC,ET,DE, DET, attr,val)

1 Attribute attr of process element elem € N U D U CE U DE to be reduced.
Output: Process view V = (N’, D', NT',CE', EC',ET', DE’, DET’ attr’ ,val’)

2 begin

3 V = InitializeView(CPM);

4 AS := attr(elem); // get the set of attributes AS of process element elem

5 //removes attribute attr in set AS

6 attr’ (elem) := AS \ {attr};

7 return V;

8 end

AggrAttr(CPM,elem, AS,, attr Func). This operation aggregates a set of attributes AS, =
{attry,...,attry} of process element elem to an abstracted process attribute based on given
attribute function attrFunc (cf. Algorithm 6.7). In the resulting process view, therefore, all
attributes from AS, are removed from elem and an aggregated attribute attrye, is added (cf.
Algorithm 6.7, Lines 2-4). Based on the values of the attributes from AS, the new value of
attrpew is derived by applying attrF'unc. Depending on the type of the attribute to be ag-
gregated, different attribute functions may be applied. Table 6.1 gives an overview of selected
attribute functions, e.g., SUM is defined on numerical attributes. It returns the sum of selected
attribute values (cf. Figure 6.13).
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Algorithm 6.7: AggrAttr(CPM,elem, AS,, attr Func)

Input: Process model CPM = (N,D,NT,CE, EC,ET,DE, DET, attr,val)
1 Set of attributes AS, = {attr1,...,attry} of process element elem € N U D U CE U DE that shall be
be aggregated using function attr Func.
Output: Process view V = (N', D', NT',CE', EC',ET', DE', DET’ attr’,val’)
2 begin

3 V = InitializeView(CPM);

4 AS := attr(elem); // get the set of attributes AS of process element elem
5 //remove attributes in set AS,; add abstracted attribute attrpew

6 attr’(elem) := AS \ ASq U {attrnew};

7 //calculating new attribute value

8 val’ (attrpew) = attr Func({val(attri), ... ,val(attry)});

9 return V;
10 end

Note that operation AggrAttr neither affects the control nor the data flow of a process model
and process view, respectively.

Attribute Functions for Numeric Values Attribute Functions for Textual Values
SUM Sum of attribute values CONCAT Concatenation of attribute values
AVG Average of attribute values FIRST First value of attributes applied
MIN Minimum of attribute values LAST Last value of attributes applied
MAX Maximum of attribute values MAXFREQ  Most frequent attribute value
COUNT  Number of attributes MINFREQ Fewest frequent attribute value

Table 6.1: Attribute Functions for Attribute Values

Implicit Aggregation of Attributes. When aggregating nodes (e.g., when applying AggrSESFE)
the attribute values of the nodes to be aggregated must be aggregated as well. In Figure 6.13,
for example, the values of attribute = of activities B and C must be aggregated when applying
AggrSESE(CPM,{B,C}). A trivial solution may be to “copy” attributes B.z and C.z sepa-
rately to the aggregated activity BC'. Since this solution might not be appropriate, attribute
functions (cf. Table 6.1), must be applied. However, for such an aggregation, default attribute
functions are required in order to automatically aggregate respective attributes. Thereby, each
type of attribute has a specific default function. For example, attribute start (end) time may
be aggregated using the MIN (MAX) attribute function (cf. Table 6.1).

When aggregating branches of an XOR branching (i.e., AggrComplBranches), it must be taken
into account that only one branch will be executed. In Figure 6.14, for example, the branches
containing A and B are aggregated. When aggregating the values of the related attribute cost
based on attribute function SUM, we obtain attribute value AB.cost = 3000. However, since
only one branch will be executed, the calculated value is not appropriate.

Moreover, in the CPM from Figure 6.14, the highest possible value of attribute cost will be
2000 when selecting the branch containing B. To provide a more realistic representation, ex-
pected attribute values should be calculated, i.e., each branch will be executed with the same
probability at run-time. Consequently, in our example from Figure 6.14, an attribute value of
AB.cost = (2000 + 1000)/2 = 1500 results. If the probability for selecting a particular branch
is known (e.g., based on historical run-time information), however, a more realistic aggregated
attribute value can be calculated. However, in certain scenarios it might be required to apply
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CPM: Process View V:

A.cost: 1000 B.cost: 2000 AB.cost: 1500

Aggr Conpl Branches
(CPM{A B})

C.cost: 1000

C.cost: 1000

Figure 6.14: Combining Operations AggrComplBranches and Attribute Aggregation

attribute functions in order to provide a worst/best case perspective in the process view. Re-
garding textual attribute values, the branching probability may be taken into account as well;
e.g., to display only attributes values of the branch chosen most frequently.

Attribute functions may not only perform simple calculations (e.g., SUM), but more complex
ones as well (e.g., to find an appropriate activity label after applying aggregation operation
AggrSESE or AggrComplBranches). For the sake of simplicity, we have applied function CON-
CAT when aggregating activity labels, e.g., when aggregating activities labelled “A”, “B”, and
“C”, the abstracted activity is labelled “ABC”. Obviously, when aggregating activities with real
activity labels (like “Print Letter” or “Send Letter”), such a simple concatenation results in a
long activity label that might be hard to comprehend.

Addressing this issue, a (custom) attribute function could match the activity labels to extract
similarities, which are then used as new value for attribute label [97, 122]. In the example above,
a match of “Print Letter” and “Send Letter” will return “Letter”. However, such an attribute
function might be useless, if there is no match between aggregated activity labels or the match
is not meaningful enough (e.g., like the articles “the” and “a”).

As an alternative, an attribute function handling activity labels may rely on aggregations made
in the context of other process views. To be more precise, when aggregating activity set N,
in process view V1, which (or a sub-/superset of it) has already been aggregated in process
view V2, the label of the aggregated activity in V2 is applied to the one in V1. If N, is not
aggregated in other process views, the user can be asked to provide a value for attribute label of
the aggregated node.

Such a behaviour increases the expressiveness of aggregated node labels in process views and
introduces an example of a more complex and intelligent attribute function.

6.4 Process Model Refactorings
Applying view creation operations to a CPM might result in unnecessarily complex control flow

structures due to the generic nature of the operations applied. For example, single branches of a
parallel branching might become empty or a parallel branching might have only one remaining
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branch after applying a number of reduction operations. In such scenarios, AND gateways
no longer required should be removed in order to obtain a more comprehensible control flow
structure of the process view without affecting its behaviour. In particular, simplifying a process
model reduces its cognitive complexity [123]. Figure 6.15 shows the creation of a process view V
by applying view creation operation RedActivity to activities B, C, and G. The resulting view
contains an empty AND branching in parallel to D and E as well as an empty AND branch
organized in parallel to H. Both can be removed to simplify the structure of the process view.
As it can be seen in Figure 6.15, the refactored model of V' is more compact compared to the
original one.

Process View V:

Opv={
RedActivity(CPM,B),

RedActivity(CPM,C),
RedActivity(CPM,G)} ‘ Refactoring
Rules

Process View V
after Refactoring:

Figure 6.15: Example of Applying Refactoring Rules

This section introduces refactoring rules that allow simplifying the structure of a process model.
Furthermore, such refactorings must not change the behaviour of the respective process model.
In particular, refactoring rules may be applied on both a CPM and on the models of related
process views. In order to describe the behaviour of a process model and to show that the
applied refactorings are behaviour-preserving, first of all, we introduce the notion of execution
trace (trace for short). Thereby, a trace describes events related to the execution of a process
model (e.g., start/end events of activities). Moreover, a trace describes a wvalid and complete
execution sequence regarding a given process model. Definition 6.9 formally introduces the
notion of execution trace [124].

Definition 6.9 (Execution Trace)
Let P= (N,D,NT,CE,EC,ET,DE, DET) be a process model and t a sequence of activities
with t = (a1,a9,...,ax),a; € N AN NT(a;) = Activity. Then, t constitutes a trace of P iff:

e ¢t is valid, i.e., the given execution sequence reflects a possible temporal order in which
activities may be completed on P.

e { is complete, i.e., ay is executed immediately after completing the StartFlow node, and
ay, is executed immediately before executing the EndFlow node of P.

Furthermore, we define Tp as the set of all traces producible by a process model P.
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6 Creating Process Views

Consider process model P1 from Figure 6.16a: traces tp;1 = (A, B,C,E) and tp12 = (A, D, E)
can be both produced on P1. As known from process mining [125], we assume that the behaviour
of a process model P can be described in terms of its set of traces Tp.

a) Process Model P1: b) Process Model P2: c¢) Process Model P3:

C C E C
(o) (o) (o)

Traces: Traces: Traces:
tp11=(A,B,C,E) tp24=(A,B,C,E) tp3.1=(A,B,C)
tp12=(A,D,E) tp22=(A,D,E) tp32=(A,D,E)

Figure 6.16: Trace Equivalence of Process Models

Two process models are called trace equivalent, if and only if both are able to produce the same
set of execution traces [126, 67, 127]. Note that trace equivalence can also be shown for process
models containing loops. In particular, trace equivalence does not mean that process models
are structurally equal (i.e., graph equivalent [128]). However, they show the same (execution)
behaviour. Note that graph equivalence is not appropriate in our case as refactoring rules intend
to change the structure of a process model.

In Figure 6.16, for example, process models P1 and P2 are trace equivalent since both are able
to produce traces (A, B,C, E) and (A, D, E). By contrast, P3 is neither trace equivalent to P2
nor to P1. A formal description of this notions is provided by Definition 6.10.

Definition 6.10 (Trace Equivalence)
Two process models P1 and P2 are trace equivalent iff for the corresponding set of executions
traces Tp1 and Tpy on process models P1 and P2, respectively, it holds Tp1 = Tpo.

In order to show that refactoring rules preserve the behaviour of a process model, trace equiva-
lence has to be checked between the process model before and after applying refactoring rules.

Section 6.4.1 introduces refactoring rules RR1-RR5 that remove empty branches or simplify
unnecessary empty branchings. Section 6.4.2 defines refactorings simplifying consecutive gate-
ways of the same type (i.e., RR6-RR8). Section 6.4.3 deals with refactoring rules RR9-RR10 to
simplify process structures synchronized through synchronization edges. Section 6.4.4 presents
refactoring rule RR11 removing unconnected data elements. Section 6.4.5 discusses trace equiv-
alence of process models before and after appyling refactoring rules.

6.4.1 Refactoring Empty Gateways and Branchings

Figure 6.17 shows an example of an AND branching with an empty branch. This branch may
be a leftover of a previously applied reduction operation. Since the empty branch is no longer
required, the process model may be simplified using refactoring rule RR1 (cf. Figure 6.17).
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Process Model P1: Process Model P2:

Traces:
tp14=(A,B,C,D)
tp12=(A,C,B,D)

Traces:
tp21=(A,B,C,D)
tp22=(A,C,B,D)

Figure 6.17: Refactoring Rule RR1

Refactoring rule RR1 removes an empty AND branch of an AND branching to obtain a more
comprehensive model. Note that RR1 is comparable to refactoring RF10 as presented in [18, 67].
As can be seen in Figure 6.17, both process models P1 and P2 have the same trace set (i.e.,
T ={(A,B,C,D),(A,C,B,D)}). Hence, they are trace equivalent.

While refactoring rule RR1 only removes empty AND branches, refactoring rule RR5 may be
applied to empty XOR branches. In particular, in the context of XOR branchings and Loops
empty branches must not be simply removed in order to ensure control flow correctness. If the
XOR branching is empty, i.e., all branches are empty, RR3 removes the respective block as well.
In particular, RR1 is applied, if an ANDsplit gateway g, and an ANDjoin gateway g; exist as
well as a direct edge (gs,g;) (i.e., an empty branch) between them. Furthermore, there must be
another non-empty branch. Otherwise, a non-connected process model might result. Then, the
empty branch is removed from the process model.

Refactoring Rule RR1 (Empty AND Branch)
Let P=(N,D,NT,CE,EC,ET,DE, DET) be a process model.
Precondition:
3gs,9; € N : NT(gs) = ANDsplit N NT(g;) = ANDjoin A (gs,g;) € CE;
dn € N : (gs,n) € CE An # gj N ET((gs,n)) = ET_Control;

Postcondition!:
CE:=CE\{(95,9j)};

Refactoring rule RR2 removes unnecessary AND branchings. For example, the AND branching
surrounding activity B in Figure 6.18 is no longer needed since no other parallel branches exist
anymore. Note that the depicted process model is valid according to Definition 6.1. It may
result when applying RR1 or deleting AND branches.

Process Model P1: Process Model P2:

>
RR2

Figure 6.18: Refactoring Rule RR2

Hence, RR2 removes the ANDsplit and ANDjoin gateways and replaces them by control edges
that re-connect the respective preceding and succeeding nodes of the respective process view.

!Note that postcondition describes the effect on process model P when applying the refactoring rule.
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Refactoring Rule RR2 (Unnecessary AND Block)
Let P = (N,D,NT,CE,EC,ET,DE, DET) be a process model. Further, let gs be an
ANDsplit gateway with corresponding ANDjoin gateway g;.
Precondition:
dln € N : (gs,n) € CE, NT(n) # AN Djoin A ET((gs,n)) = ET_Control;

Postcondition:
ng1 = pred(P, gs); nsy := succ(P, gs); nj1 = pred(P, g;); njo := succ(P, g;);
e = (ns1,ms2); € = (nj1,n52); ET(¢') := ET(e") := ET_Control;
EC(¢) := EC((ns1,9s));
CE :=CFE \ {(nslvgs)v (gsan82)7 (nﬂ’gj)? (gj’nﬂ)} U {6,, e”};
N := N\ {gs,9;};

Since RR2 removes a pair of ANDsplit and ANDjoin gateways, which are solely connected by a
single branch, the set of producible traces does not change. Note that gateways are not repre-
sented in an execution trace.

An empty AND or XOR branching (i.e., all branches are empty) may be removed completely
(cf. Figure 6.19), i.e., the respective split and join gateways may be removed from the process
model. In this scenario, no differentiation needs to be made between AND/XOR branchings.

Process Model P1: Process Model P2:
Trace:

NS = e

RR3

Figure 6.19: Refactoring Rule RR3

Refactoring rule RR3 removes empty AND or XOR branchings as well as respective control
edges. In turn, loops need to be handled separately (cf. refactoring rule RR4). Since an empty
branching block has no effect on the traces producible by a process model, it can be removed
without changing the behaviour of a process model (i.e., trace equivalence is ensured).

Refactoring Rule RR3 (Empty AND/XOR Branching Block)
Let P = (N,D,NT,CE,EC,ET,DE,DET) be a process model. Further, let g5 be
a split gateway (i.e., ANDsplit or XORsplit) with corresponding join gateway g; (i.e.,
ANDjoin or XORjoin).
Precondition:
3(gs,9;) € CE APn € N : (gs,n) € CE An # gj A ET((gs, g;)) = ET-Control;

Postcondition:
ng := pred(P, gs)§nj := succ(P, gj)%
¢ = (ns,n); ET(¢) := ET_Control; EC(e) := EC((ns, gs));
CE:=CE \ {(gsagj)7 (nsvgs)? (gj’nj)} U {6/};
N =N \ {9879j}§
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Similar to RR3, an empty loop may be removed (cf. Figure 6.20). As opposed to an AND/XOR
branching, for loops, the split gateway (i.e., LOOPsplit) succeeds the join gateway (i.e., LOOPjoin).
Hence, an empty loop refers to a loop block, which does not contain any activity between its
join and split gateways.

Process Model P1: Process Model P2:

=
RR4

Figure 6.20: Refactoring Rule RR4

Refactoring rule RR4 removes empty loops, including corresponding control and loop edges (i.e.,
ET(e) = ET_Loop). In the context of loops, however, it must be taken into account that there
exists another edge pointing from the “second” gateway (i.e., LOOPsplit) back to the “first” one
(i.e., LOOPjoin). Similar to RR3, trace equivalence is ensured since no activities are enclosed
within the loop anymore.

Refactoring Rule RR4 (Empty Loop Block)
Let P = (N,D,NT,CE,EC,ET,DE,DET) be a process model. Further, let gs be a
LOOPsplit gateway with corresponding LOOPjoin gateway g;.
Precondition:
In € N:(g;,n) € CE An # gs A ET((gj,n)) = ET_Control;

Postcondition:
ns := succ(P, gs); nj := pred(P, g;);
¢ := (nj,ns); ET(') := ET_Control; EC(€') := EC((n;,g;));
CE:=CFE \ {(g&gj)7 (gths)a (gsa ns)v (nj’gj)} U {el};
N := N\ {gs,9;};

As discussed, RR1 cannot be applied to XOR branches as the resulting process model would
violate control flow correctness (cf. Definition 6.3). Figure 6.21 shows how to deal with multiple
empty XOR branches in order to reduce the complexity of a process view, while guaranteeing
control flow correctness. In particular, the branching conditions (e.g., r and s in Figure 6.21) of
the empty XOR branches need to be concatenated with logical disjunction operators.

Process Model P1: Process Model P2:

Traces:
9 S () B
RR5

Figure 6.21: Refactoring Rule RR5

Traces:
tp1.4=(A,D)
tp12=(A,C,D)

Refactoring rule RR5 allows performing such a union of empty XOR branches. Note that this
refactoring rule may be only applied if two or more empty XOR branches are present. Compared
to RR1, when refactoring multiple empty XOR, branches, always an empty branch remains.
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Otherwise control flow correctness is violated. Moreover, since the branches the refactoring rule
is applied to are empty, RR5 has no effect on the traces producible by a process model, i.e.,
trace equivalence is ensured.

Refactoring Rule RR5 (Empty XOR Branches)
Let P=(N,D,NT,CE,EC,ET,DE, DET) be a process model and gs be an XORsplit
gateway with corresponding XORjoin gateway g;.
Precondition:
CExor = {e e CFE ’ @= (gs,gj)} with ‘ CExor |Z 2;

Postcondition:
Cnew = (9379]');
EC(enew) = VeieCEXOR EC(e:);
CE :=CE\CExor U {€new};

6.4.2 Refactoring Connected Branchings

Nested branchings of the same type are denoted as connected branchings if no activities are
enclosed between the respective split (join) gateways. More precisely, the direct predecessor of
the inner split gateway must be the outer split gateway. Similarly, the direct successor of the
inner join gateway must be the outer join gateway (cf. Figure 6.22). Without loss of generality,
we restrict ourselves to two kinds of nested branchings .

Traces: Process Model P1: Process Model P2: Traces:
tp1_1=<A,B,C,D,E> tp2_1=<A,B,C,D,E>
tp1_2:<A,B,D,C,E> tp2_2:<A,B,D,C,E>
tp1_3:<A,C,D,B,E> tp2_3:<A,C,D,B,E>
tp1.4=(A,C,B,D,E) tp24=(A,C,B,D,E)
tp1.5=(A,D,B,C,E) tp25=(A,D,B,C,E)
tp1_6=<A,D,C,B,E> tp2_6=<A,D,C,B,E>

Figure 6.22: Refactoring Rule RR6

Refactoring rule RR6 combines gateways of connected AND branchings in such a way that only
one split and one join gateway remains, i.e., it refactors pairs of gateways. If there are more
than two connected branchings, RR6 is applied recursively. As RR6 combines a pair of ANDsplit
and a pair of ANDjoin gateways, the set of traces is not affected. In Figure 6.22, for example,
activity A is executed first; afterwards, one may execute B, C, and D in parallel (i.e., arbitrary
order). Finally, F must be executed. When applying RR6, this behaviour is not changed.
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Refactoring Rule RR6 (Connected AND Branchings)
Let P= (N,D,NT,CE,EC,ET,DE, DET) be a process model. Further, let gs1 and gs3
be ANDsplit gateways with corresponding ANDjoin gateways g;1 and g;2, respectively.
Furthermore, let g5 and gjo represent an AND branching nested with the AND branching
represented by gs1 and gj1.
Precondition:
3(g51,g52) e CE N H(le,gjg) e CEN ET((gsl,gsg)) = ET((gjl,ng)) = ET _Control;

Postcondition:
CEoiq = {(gs1,9s2), (91, gj2) } U {(gs2,n) | n € suce(P, gs2)} U
{(n,g52) | n € pred(P, gj2)};
CEpew := {(gs1,n) | n € suce(P, gs2)} U{(n,gj1) | n € pred(P, gj2)};
CE =CF \ CEg qU CEnew;
N = N\ {gs2,9j2};

Similar to RR6, refactoring rule RR7 combines connected XOR branchings. Figure 6.23 shows an
example of refactoring such connected XOR branchings. Particularly, when combining XORsplit
gateways, branching conditions of the outgoing edges must be combined in order to guarantee
control flow correctness.

Process Model P1: Process Model P2:

Traces: Traces:
tp14=(AB,E) tp21=(A,B,E)
tor2=(A.C.E) =) tea2=(A.C.E)
tp13=(A,D,E) RR7 tp23=(A,D,E)

Figure 6.23: Refactoring Rule RR7

Accordingly, refactoring rule RR7 deals with connected XOR branchings. In contrast to refac-
toring rule RR6, the branching conditions for the added control edges must be set. The new
branching conditions concatenate the original branching conditions between the first and sec-
ond XORsplit gateway (i.e., gs1 and gs2) with the one of the respective branch succeeding the
second gateway (i.e., gs2) using a logical AND operator (cf. Figure 6.23). This way, control flow
correctness is further guaranteed.
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Refactoring Rule RR7 (Connected XOR Branchings)
Let P = (N,D,NT,CE,EC,ET,DE, DET) be a process model. Further, let gs; and
gs2 be XORsplit gateways with corresponding XORjoin gateway g;1 and gja.
Furthermore, let gs2 and gj2 represent an XOR branching nested with the XOR branching
represented by gs1 and gj1.
Precondition:
3(g51,g52) e CE N H(le,gjg) e CEN ET((gsl,gsg)) = ET((gjl,ng)) = ET _Control;

Postcondition:

CEOld = {(9817952)7 (gjlang)} U {(9827n) | ne SUCC(P7 982)} U
{(n,gj2) | n € pred(P, gj2)};
CErew = {(gs1,n) | n € succ(P, gs2)} U{(n, gj1) | n € pred(P, gj2)};
CE =CF \ CEg qU CEnew;
N := N\ {gs2,9j2};
Ve := (gs1,n) € CEpew : //i.e., only the edges with gs1 as source.
EC(e) :== EC((gs1,9s2)) N EC((gs2,n));

The set of traces producible by a process model is not changed when applying RR7, since gate-
ways are not represented in a trace and the overall branching conditions are preserved. Consider
the process model from Figure 6.23 before applying RR7. The first XORsplit either selects the
branch containing B or the one with the nested XOR branching. In the latter case, either the
branch containing C' or the one containing D is chosen. Hence, only one of the activities B, C,
and D will be executed. By contrast, A and E will be always executed when applying RR7, i.e.,
the same behaviour results (cf. Figure 6.23).

Finally, when dealing with connected branchings, nested loops must be taken into account as
well. Figure 6.24 shows an example. Further, it demonstrates how RR8 simplifies respective
structures without modifying the behaviour of the process model.

Traces: Process Model P1: Process Model P2: Traces:
te1.4=(A,B,C) s sv tp2.1=(A,B,C)
tp12=(A,B,B,C H tp22=(A,B,B,C
ks 8 = () rese
tp14=(A,B,...,.C) u RR8 tp2k=(A,B,...,.C)

Figure 6.24: Refactoring Rule RR8

As opposed to RR7, the branching condition of the added loop edge must be concatenated using
the logical OR operator, since the backward jump may be triggered by the first or second loop.
This behaviour is defined by refactoring rule RR8. Again the process models before and after
applying RR8 are trace equivalent (cf. Figure 6.24).
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Refactoring Rule RR8 (Connected Loop Branchings)
Let P = (N,D,NT,CE,EC,ET,DE, DET) be a process model. Further, let gs; and
gs2 be LOOPsplit gateways with corresponding LOOPsplit gateways g;1 and gja.
Furthermore, the loop represented by gateways gs2 and g;2 is nested within the loop
represented by gs1 and gj1.
Precondition:
3(g51,g52) e CE N H(le,gjg) e CEN ET((gsl,gsg)) = ET((gjl,ng)) = ET _Control;

Postcondition:

CEoq = {(gs2: 1), (951, 9j2), (952 gj2), (pred(P, gs2), gs2), (952, suce(P, gja)) };
CFEnew = {(pred(P, gs2), gs1), (951, succ(P, gj2)) };

CE := CE\ CEq U CEpey;

N = N\ {gs2,9j2};

EC((gs1,951)) = EC((gs1,951)) V EC((9s2, 952));

EC((gs1, succ(P, gs1))) := ~EC((gs1, 951));

6.4.3 Refactoring Synchronization Edges

Synchronization edges are used to synchronize the execution of activities belonging to different
parallel branches of a process model. Figure 6.25 shows an example for which such a synchro-
nization is no longer needed as A, B, and C' are executed in sequential order. The following
refactoring rules address process fragments, which result from the application of view update
operations.

Process Model P1: Process Model P2:

.A a .C ) Trace:
* Q Q tp21=(A,B,C)
RR9

Figure 6.25: Refactoring Rule RR9

Trace:
tp14=(A,B,C)

Consider Figure 6.25: A and C are connected through a control edge. Furthermore, A and B
as well as B and C are connected through a synchronization edge. Consequently, B is executed
directly after A and C' cannot be executed before finishing B. Obviously, the three activities
are ordered sequentially, i.e., exactly one trace t = (A, B,C) exists in the process model of
Figure 6.25. Such a situation might occur in a process view due to the application of reduction
operations. Refactoring rule RR9 inlines respective activities on parallel branches if no other
control flow dependencies exist (e.g., an activity between the ANDsplit and B), while preserving
the behaviour of the process model (i.e., trace equivalence is ensured). Note that the remaining
empty AND branch may be refactored by applying RR1.
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Refactoring Rule RR9 (Unnecessary Synchronization Edges)
Let P=(N,D,NT,CE,EC,ET,DE, DET) be a process model and CE' C CE be sub-
set of control edges excluding synchronization edges, i.e., Ve € CFE' : ET(e) # ET_Sync.
Precondition:
dnyi,ng,n3 € N :

(nl, n2), (ng, ng) € CEN

ET((n1,n2)) = ET((n2,n3)) = ET_Sync A

3(gs, n2), (n2,9;), (n1,n3) € CE' : NT(g5) = ANDsplit N NT(g;) = ANDjoin;

Postcondition:
ET((n1,n2)) := ET((n2,n3)) := ET_Control,
CE := CE\ {(gs, n2), (n2,9;), (n1,n3)} U {(9s,95) };

Similar to RR9, refactoring rule RR10 simplifies synchronization edges, which synchronize a set
of activities in sequential order. In Figure 6.26, D and E are synchronized in sequential order.
Although, both activities are located on parallel branches, synchronization edges enforce their
sequential execution.

Process Model P1: Process Model P2:
Traces: Traces:

t1.4=(A,B,D,E,C) B te21=(A,B,D,E,C)

tp12=(D,AB,E,C) B - tp22=(D,AB,E,C)
tp15=(D,E,A,B,C) n tr25=(D,E,A,B,C)
to1~(ADBE.C) <P % = - :" to2~(AD BE.C)
1 s=<(ADEB.C) RR10 tr25~AD EB.C)

tp16=(D,A,E,B,C) tr26=(D,A,E,B,C)

Figure 6.26: Refactoring Rule RR10

Refactoring rule RR10 removes the respective synchronization and inlines E after D. Figure 6.26
shows the set of possible traces for both process models, i.e., P1 and P2. Note that these are
equivalent. Such a situation might occur after reducing activities, e.g., between D and the
ANDjoin gateway. The remaining empty AND branch is simplified by refactoring rule RR1.

Refactoring Rule RR10 (Simplifying Synchronization Edges)
Let P=(N,D,NT,CE,EC,ET,DE, DET) be a process model.
Precondition:
dni,ngo,ng € N :
(n1,n2), (n1,mn3), (n2,n3) € CE A
ET((n1,n2)) = ET((n1,n3)) = ET((n2,n3)) = ET_Sync A
3(gs,n2), (n2,9;), (n1,95) € CE : NT(g5) = AN Dsplit A NT(g;) = AN Djoin;

Postcondition:

ET((n1,n2)) := ET_Control;
CE = CE\{(gs,n2), (n1,n3), (M1, ;) } U {(n2,95) };
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6.4.4 Refactoring Data Elements

This section introduces refactoring rules addressing the data flow perspective. Figure 6.27 shows
a data element no longer connected to any activity. This scenario results when reducing or
deleting activities that have read or write access to the respective data element.

Process Model P1: . D1 Process Model P2:
(&) = (&)
RR11

Figure 6.27: Refactoring Rule RR11

RR11 removes unconnected (or unused) data elements from a process model. Obviously, remov-
ing data elements not affects the set of traces producible by a process model.

Refactoring Rule RR11 (Unconnected Data Elements)
Let P= (N,D,NT,CE,EC,ET,DE, DET) be a process model. Further, let d € D be
a data element.

Precondition:
Vn € N : #(d,n) € DE A A(n,d) € DE;

Postcondition:
D :=D\ {d}

6.4.5 Discussion

Refactoring rules RR1-RR11 contribute to simplify process models without changing their be-
haviour, i.e., the set of producible execution traces (cf. Definition 6.9) does not change when
applying refactoring rules [123]. The presented refactorings do not remove activities from process
models, but focus on simplifying the control flow structure by removing or combining gateways,
branches, or synchronization edges. Furthermore, RR11 simplifies the data perspective by re-
moving unconnected data elements.

6.5 Constructing Flexible Process Hierarchies

Process hierarchies are commonly used to structure the process landscape of a company [114,
129]. Thereby, a top-level process model, which usually contains only few activities in sequential
order, is decomposed through sub-process activities. Such a sub-process activity is detailed
by another process model, i.e., sub-process. Figure 6.28, for example, shows a process model
describing a credit application (as introduced in Figure 6.1). The process model on the top-most
level contains sub-process activity Inquiry Screening. The latter is detailed by the respective
sub-process that describes which activities must be executed for performing an Inquiry Screening.
Utilizing sub-processes in this way, process hierarchies having multiple levels can be constructed.
Thereby, sub-processes at lower levels detail sub-process activities of the respective upper level.
A major drawback of such an approach is that once a process hierarchy has been designed,
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sub-process

Process Model Level O
- activity
O Customer Inquiry Make Customer
Inquiry Scremng Decision | |Notification
& Customer §Bank & Bank &Bank
Sub-Process for Inquiry Screening \ Level 1

Select H Fetch
Customer] ~ ( Database
... &Clerk & PAIS
Existing
Customer?

Create Update Choose
Customer| | Database Rate
& Clerk &PAIS & Clerk

Figure 6.28: Example of a Sub-Process

a modification of its structure requires changes of multiple process models. For example, if a
process designer wants to include process elements from process models at level n + 1 in mod-
els at level n, he must modify process models on both levels. Consider Figure 6.28: if the
AND branching containing activities Edit Address and Choose Rate shall be moved from the
sub-process (i.e., Level 1) to the superordinated process model both the sub-process and the
superordinate process model have to be modified. Moreover, if one intends to adjust the number
of levels in a process hierarchy or wants to move different activities to a new sub-process, even
more process models must be changed.

Another drawback of such a manually constructed process hierarchy is that only one process
hierarchy for a particular business process may exist. In particular, it is not possible (or requires
a high effort) to provide multiple process hierarchies based on the same business process to users.
Regarding Figure 6.28, for example, one may want to have an alternative process hierarchy, in
which all activities between the ANDsplit gateway in sub-process Inquiry Screening and activity
Customer Notification in the top-most level process are shown in a sub-process.

In this context, process views enable us to provide more flexible process hierarchies. In particu-
lar, each aggregated activity (i.e., activities that result from the application of the aggregation
operations AggrSESE or AggrComplBranches) may be interpreted as a sub-process activity,
which refers to another process view (i.e., the sub-process). The process view associated to
such an activity may then comprise those elements abstracted by the corresponding aggregation
operation. As an example consider Figure 6.29: activity ABCD in process view V2 results
from view creation operation AggrSESE(CPM,{A, B,C,D}). In turn, process view V2.1 rep-
resents the sub-process referred to by activity ABCD and consists of activities A, B,C, and D,
i.e., all other activities of the CPM are reduced by respective reduction operations. Finally,
further view creation operations may be applied to such a sub-process (view) in order to further
abstract the latter (cf. Figure 6.29), e.g., RedActivity(CPM,C) or AggrSESE(CPM,{A, B}).

Note that in a process hierarchy based on process views both the superordinate process model
and the sub-process constitute process views defined on the same C'PM. Furthermore, each
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CPM:
O A p(e p{e p(o 1E
CS\/2=(CPM, CSv2,1=(CPM,
(AggrSESE(CPM,{A,B,C,D}), (RedActivity(CPM,E),
RedActivity(CPM,F), RedActivity(CPM,F),
RedActivity(CPM,G), RedActivity(CPM,G),
RedActivity(CPM,H))) RedActivity(CPM,H),
RedActivity(CPM,C),
‘ AggrSESE(CPM,{A,B})))

Process View V2: ‘
M2 )0

Sub-Process of ABCD Process View V2.1:

. oo

Figure 6.29: Process Hierarchy Utilizing Process Views

sub-process (view) is limited to the set of nodes, which is aggregated by a respective aggregation
operation applied to the superordinate process view. Definition 6.11 introduces the notion of
sub-process in the context of process views.

Definition 6.11 (Sub-Process)

Let CPM = (N,D,NT,CE,EC,ET,DE, DET) be a process model. Furthermore, let V,, =
(Np, Dp, NT,,, CE,,, ECy,, ET,,, DE,, DET,,) be a process view on C PM with creation set C'Sp,.
Then, process view Vy with creation set C'Ss = (CPM, (op1,...,0p;, 0pit+1,...,0p)) is a sub-
process of node n € N, in process view V), iff:

e CPMNode(V,,n)=N' A |N'|>1

e Vn' € N\ N': RedActivity(CPM,n') € (op1,...,0p;)

Consequently, a process hierarchy PH = (CPM,CS,CSy, subpr) is defined by a set of creation
sets CS on a CPM. Thereby, creation set CS; refers to the process view representing the pro-
cess model on the top-most level of the process hierarchy. Function subpr(CSy,n) returns the
creation set of the sub-process with respect to an aggregated node n in process view V), where
the latter is given by its corresponding creation set C'S,. Definition 6.12 introduces the notion
of a process hierarchy as used in the context of this thesis.
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Definition 6.12 (Process Hierarchy)
Let N be the set of all possible process nodes. Then: A process hierarchy is defined as a tuple
PH = (CPM,CS,CS,, subpr) where:

e C'PM is the process model based on which all process views are created,

e CS is a set of creation sets CSy,...,CSy (cf. Definition 6.6) representing the sub-
processes of the process hierarchy,

o CS; € CS is the creation set of the top-most level process view of the process hierarchy,

o subpr : CS x N — CS with

CSs isAggregatedNode(V),, n)

subpr(CS,,n) =
pr(CSp,n) {null otherwise

assigns to each aggregated node n € N, of a process view V, =
(Np, Dp, NT,,,CE,, ECy, ET,,, DE,, DET,) with creation set CS, a creation set CSj
representing sub-process Vs; if n is not an aggregated node it returns null, i.e., no sub-
process exists.

In particular, a process hierarchy is defined by a set of creation sets required to create the in-
dividual (sub-)process models of each hierarchy level. Thereby, it becomes possible to create
multiple process hierarchies on a given CPM. Figure 6.30 shows two process hierarchies PH;
and PHs based on a common CPM and their hierarchical dependencies between the individual

creation sets.
! ! Process Hierarchy PH,

= (CPM{CSv+,CSy11,CSv12},
CSyy1,subpry)

subpri(CSvs,nv12) subprz(CSvz,nv2) Process Hierarchy PH,
= (CPM, {CSy2,CSy21,CSv21.1},

CSyy,, subpry)

subpri(CSvs,nv1.1)

PH, subpra(CSvz.1,nv2.1)

PH,

Figure 6.30: Hierarchy of Creation Sets

Figure 6.31 details the process hierarchies PH; and PH> introduced in Figure 6.30. Process
view V1 represents the top-most level of PH; and aggregates activities A, B, and C to ABC' as
well as activities F' and G to F'G. Aggregated activity ABC is refined by process view V1.1 and
F'G by process view V'1.2. In order to preserve control flow correctness, V1.2 not only comprises
the aggregated activities, but also the surrounding XOR branching block.

70



Process Hierarchy PH;
= (CPM,{CSy1,CSv1.1,CSv1.2},CSvs,subprs)

CSy=(CPM,
(AgQrSESE(CPM,{A,B,C},
AggrComplBranches(CPM{F,G})))
C8v1.1=(CPM,
(RedActivity(CPM,D), RedActivity(CPM,E),
RedActivity(CPM,F), RedActivity(CPM,G),
RedActivity(CPM,H)))
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RedActivity(CPM,C), RedActivity(CPM,D),
RedActivity(CPM,E), RedActivity(CPM,F)))
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6.6 Related Work

Process Hierarchy PH;
= (CPM, {CSv2,C8y2.1,CSv2.1.1}, CSvz,subprz)

CSv.=(CPM,
(AggrSESE(CPM,{AB,C,D}),
RedActivity(CPM,F), RedActivity(CPM,G),
RedActivity(CPM,H)))
CSv21=(CPM,
(RedActivity(CPM,E), RedActivity(CPM,F),
RedActivity(CPM,G), RedActivity(CPM,H),
AggrSESE(CPM,{A,B}),RedActivity(CPM,C)))
CSv211=(CPM,
(RedActivity(CPM,C), RedActivity(CPM,D),
RedActivity(CPM,E), RedActivity(CPM,F),

RedActivity(CPM,G), RedActivity(CPM,H)))

Figure 6.31: Process Hierarchy based on Process Views

Process view V2 represents the top-most level of process hierarchy PH,. Activity ABCD in
V2 aggregates activities A, B, C, and D of the CPM. Process view V2.1 further refines activity
ABCD. Moreover, in process view V2.1 view creation operations reduce activity C' and aggre-
gate A and B. Finally, activity AB is further refined by (sub-)process view V2.1.1.

Generally, process views allow defining multiple process hierarchies based on the same CPM.
Hence, it becomes possible to provide personalized process hierarchies for individual users or
user roles. Adapting the structure of a process hierarchy can be accomplished by modifying
creation sets of individual process views and does not require modifying multiple process models.
Furthermore, we later show that when defining all sub-processes based on a CPM, updates to
individual sub-processes can be easily propagated to all other process views (i.e., sub-processes).
Hence, all process models in such a process hierarchy are kept up-to-date.

6.6 Related Work

IEEE 1471 recommends user-specific viewpoints for software architectures [130]. These view-
points constitute templates from which individual views are created for a concrete software
architecture. Since this standard does not define any methods, tools, or processes, this thesis
provides a powerful framework for this requirements in the context of PAISs. [131] introduces a
meta model for process views and shows a general overview of process view patterns. However,
no view operations are provided.

Some approaches for creating process views deal with inter-organizational processes and apply
views to create abstractions of private processes by hiding implementation details [132, 133, 134,
135, 136, 137]. However, views are specified by the process designer and cannot be easily defined
by the user. A notable expection is presented in [138]. Moreover, process views are not intended
for internal users, but only for documenting the inter-organizational communication.

Other approaches align business and technical process models [23, 25, 139, 140] to keep them
aligned over time (i.e., when evolving them). However, these approaches are limited to estab-
lish a mapping between business and technical process models and do not provide personalized
process views to users.
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In [76], an approach with predefined view types (i.e., human tasks, collaboration view) is pre-
sented. Opposed to this thesis, it is limited to pre-specified view types. Furthermore, it is not
possible to define user-specific views. In turn, [141] applies graph reduction techniques to verify
structural properties of process models. However, aggregation operations as well as other process
aspects (i.e., data flow and attributes) are not addressed. Process model abstraction based on
SPQR-tree decomposition are presented in [142]. This approach does not cover other process
aspects (i.e., data flow and attributes) as well.

Semantic similarity between different process nodes is determined by analyzing the structural
information of a process model and its attributes [31, 143]. The discovered similarities are then
used to abstract the given process model. However, the approach neither distinguishes between
different perspectives of a process model nor does it provide concepts for creating process views.

An approach for creating aggregated views is provided by [144]. It proposes a two-phase proce-
dure for aggregating parts of a process model that must not be exposed to the public. It focuses
on block-structured graphs. Neither data flow nor process attributes are considered.

View models for monitoring purposes at run-time are presented in [145, 146]. These approaches
focus on the propagation of run-time information to process views in order to visualize the exe-
cution progress. In particular, respective process views have to be pre-specified manually by a
process designer.

[147] introduces an approach to create process views on a CPM based on reduction operations
and merges several process variants into one CPM. Reduction operations are then used to ex-
tract process variants again. Aggregation operations are not provided.

Subject-oriented Business Process Management (S-BPM) aims to provide a dedicated view for
each user role in the business process [148, 149]. Individual views are connected by a superor-
dinate process model visualizing the communication between the user roles. However, neither
a global view (i.e., CPM) is provided nor is it possible to define additional process views. Fig-
ure 6.32 documents the credit application process of Example 6.1 utilizing S-BPM.

A set of process view operations addressing control flow, data flow, and process attributes is pro-
vided in [32]. However, these operations may destroy the ordering of process nodes in the CPM
when creating a process view, e.g., by aggregating activities located on different branches and
inserting the aggregated node in front of the respective split gateway. This kind of operations
may influence the behaviour (and meaning) of a process model. Furthermore, this approach
introduces refactorings for process models, which constitute a subset of the refactoring rules
introduced in this thesis.

In the context of process model refactoring various approaches exist. In particular, refactorings
for process models stored in process repositories are introduced in [18, 67]. Besides refactorings,
which simplify the structure of a process model, the authors introduce operations to maintain
(e.g., by renaming) process nodes in such repositories. Refactorings specific to EPCs are defined
by [150]. Furthermore, refactorings are also known in the context other graph-based models
(e.g., UML) to increase the quality of the resulting model [151, 152]. In software programming,
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Figure 6.32: User Orientation based on S-BPM

refactorings are used to maintain the source code of information systems [153, 154].

A general introduction to create process hierarchies is given in [155]. [22] introduces how to con-
struct process hierarchies in the context of EPCs. In [116], it is suggested to structure process
model based on sub-processes to reduce the complexity for users. Furthermore, the benefit of
sub-processes is investigated in [129, 156]. An overview on process hierarchies and their realiza-
tion is given in [114].

This thesis provides a holistic framework for user-centric view creation based on elementary op-
erations addressing the control and data perspective as well as process attributes. Refactoring
rules are introduced to simplify the structure of resulting process views. Based on process view
creation, we are able to construct process hierarchies, which are easy to define and maintain.
Existing approaches neither provide the same expressiveness nor covers all these aspects.

6.7 Summary

Process models describing real-world business processes are complex and may comprise a large
number of process nodes (e.g., activities, data elements) [18]. Supporting users with limited
background on process modeling requires a framework that provides personalized process views
to reduce complexity for respective users. In this chapter a view creation framework is presented,
which meets the requirements for creating personalized process views (i.e., REQ-2 and REQ-
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3). We have presented aggregation- and reduction-based view creation operations abstracting
control flow, data flow, and process attributes. Based on these view creation operations, per-
sonalized process views can be created for supporting the individual needs of users.

Finally, this chapter discusses how process views can be used to construct process hierarchies.
In this context, aggregated activities may be further refined through a sub-process, i.e., another
process view. In particular, process hierarchies based on process views enable us to create mul-
tiple process hierarchies based on a given CPM.
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Changing Process Models Through
Process View Updates

7.1 Introduction

As discussed in Chapter 6, process views abstract from complex process models supporting
users in better understanding their role in business processes. However, business processes and,
hence, the corresponding process models change over time as well; e.g., due to emerging market
situations, new legislative regulations, or process reengineering efforts [38, 157]. To reflect the
business changes, the respective process models need to be updated accordingly. In this context,
business analysts and domain experts having only limited process modeling knowledge should
be enabled to update process models on an abstract level to keep them up-to-date when business
processes change [15]. Generally, end-users are unable to perform updates of large process mod-
els (i.e., Central Process Models (CPMs)) containing hundreds or even thousands of elements.

A promising approach is to enable end-users to update and evolve process models based on
related abstractions, i.e., process views (cf. Requirement REQ-4). As an advantage, users need
not understand all details of a large process model (i.e., CPM), but can focus on a more compact
process view when changing the parts of the process relevant for them. In general, a process view
update may affect both the CPM and its associated process views (cf. Requirement REQ-5);
i.e., a process view update must be applied to the CPM as well as to other related process views
(cf. Figure 7.1a). However, manually updating a CPM as well as its associated process views is
not appropriate. First, sophisticated modeling skills and high efforts by the user performing the
update would be required. Second, users having only limited process modeling knowledge might
be unable to update multiple process models. Third, performing the same update on multiple
process models is an error-prone task.

In general, an update of any process view must be automatically propagated to the underlying
CPM as well as to all other process views associated with the CPM. Accordingly, a view update
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Figure 7.1: Strategies to Propagate View Updates

must be first propagated to the CPM (cf. Figure 7.1b). Then, associated process views must
be migrated to the new CPM version. This becomes necessary to guarantee that all process
views remain consistent after updates performed by a particular users. Furthermore, a change
propagation shall ensure that users work on an up-to-date version of the CPM and of their
personalized process views.

First, this chapter formally introduces well-defined view update operations. Thereby, a view
update triggered by a user is directly applied to the underlying CPM. Second, the creation sets
of other process views associated with the updated CPM need to be migrated to the new CPM
version of the CPM, and then be re-created.

Section 7.2 introduces fundamentals of updating process models. Section 7.3 describes view
update operations for changing process views and their propagation behaviour to the CPM.
Section 7.4 presents rules for migrating process views from an old to a new CPM version after
applying an update. Section 7.5 discusses how creation sets of process views can be optimized to
improve view creation and view update. Section 7.6 discusses related work. Section 7.7 presents
limitation of the introduced concepts. Finally, Section 7.8 summarizes this chapter.

7.2 Fundamentals of Updating Process Models

This section introduces basic update operations that may be applied to process models. We do
not introduce a complete set of update operations for process models (see [104] for details), but
restrict the approach to those operations required for realizing view updates.

Generally, updates of process models may require adding or deleting process nodes, data ele-
ments, control edges, and data edges. Furthermore, process attributes may be changed. Basic
update operations solely refer to single aspects of a process model. As example consider Fig-
ure 7.2a: Activity X shall be inserted into the given process model. To realize this change, a
sequence of basic update operations needs to be applied, e.g., to add node X as well as to delete
and add related control edges. More precisely, the control edges connecting activities A and
B are deleted. Then, activity X is added to the set of process nodes. Finally, control edges
connecting X with its predecessor A and successor C respectively are added.
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Jnsert Activity X
‘ ,Add Node X* between activities

a) Basic Update Operations b) Combined Update Operations

Figure 7.2: Alternatives to Update Process Models

When applying basic update operations process models may result that are not connected any-
more (i.e., Constraint 2 of Definition 6.3 is violated). However, basic operations may be combined
to more complex ones [103]. Figure 7.2b shows an example that inserts activity X between A
and C based on such a combined update operation. Still, combined update operations might
violate control flow correctness. For example, when solely inserting an ANDsplit gateway with-
out adding a corresponding ANDjoin gateway the control flow is not correct (i.e., Constraint 3
of Definition 6.3 is violated).

Combined update operations may be further assembled to change patterns [158]. For example,
a change pattern allows inserting or deleting a complete process fragment into a process model.
In particular, change patterns allow updating process models without violating control flow cor-
rectness. Furthermore, they allow assisting users in updating process models [159]. However,
the presented view update operations are transformed to combined update operations used to
modify the structure of the CPM. In the following, we introduce in the following update opera-
tions AddNode, AddCEdge, and AddDFEdge.

Update operation AddNode(P, ny,ng, Npew, node_type) adds process node nyeq, with type node_type
between nodes n; and ny in process model P (cf. Algorithm 7.1). As a precondition, nodes n;
and ny must be direct neighbours in P (i.e., 3(n1,n2) € CE). Figure 7.2b provides an example
of applying this update operation.

Algorithm 7.1: AddNode(P,ni,n2, Npew, node_type)
Input: Process model P = (N,D,NT,CE,EC, ET,DE, DET)

1 Activity nnew to be inserted between n1 and na ({n1,n2} C N) with node type node_type
2 begin

3 N := NU{nnew};

4 NT (npew) := node_type;

5 e1 := (N1, Nnew); EC(e1) := EC((n1,n2)); ET(e1) := ET_Control,

6 €2 := (Npew,n2); ET(e2) := ET_Control;

7 CE :=CE\ {(ni,n2)}U{er,ea};

8 end

Update operation AddC Edge(P, ce, edge_type, edge_condition) adds a control edge ce = (n1,ng)
to process model P (cf. Algorithm 7.2). As a precondition, the process nodes to be connected
must be already part of the process model (i.e., nj,ny € N). Control edge ce may have edge
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type ET_Control, ET_Sync, or ET_Loop. Finally, an edge condition is assigned in case the
source of the edge corresponds to an XORsplit or LOOPsplit gateway (i.e., the edge represents
a conditional branch). In all other cases, edge_condition is set to TRUE.

Algorithm 7.2: AddC Edge(P, ce, edge_type, edge_condition)

Input: Process model P = (N,D,NT,CE,EC,ET,DE, DET)
Control edge ce of type edge_type and edge condition edge_condition to be inserted

1
2 begin

3 ET(ce) := edge_type;

4 EC(ce) := edge_condition;
5 CE := CEU/{ce};

6 end

Update operation AddD Edge(P, de,det) adds a data edge de = (n1,n2) to process model P (cf.
Algorithm 7.3). As a precondition, n; € N and ng € D (or vice versa) must hold, i.e., data edge
de connects a process node with a data element or vice versa. Finally, det defines whether the
data element may accessed mandatorily or optionally.

Algorithm 7.3: AddD Edge(P,de,det)

Input: Process model P = (N,D,NT,CE,EC,ET,DE, DET)
Data edge de to be added and data edge type det € DEdgeType = {mandatory, optional}

1
2 begin

3 DE := DE U {de};
4 DET(de) := det,;

5 end

We omit details regarding the operations to remove control or data edges from a process model.
Removing such an edge e from a process model is straightforward, i.e., edge e with be removed
from the set of control edges (i.e., CE := CE \ {e}) and data edges (i.e., DE := DE\ {e}).

7.3 View Update Operations

When allowing authorized users to update a CPM based on associated process views, it must
be ensured that this can be accomplished without violating the correctness of the CPM and the
update is propagated to the CPM as desired by the user. In this context, view update operations
should allow for the proper propagation of view updates to the underlying CPM.

Propagating view updates to the corresponding CPM is not straightforward. In particular, am-
biguities might occur in this context that need to be resolved. Example 7.1 demonstrates that
it is not always possible to determine a unique insert position when propagating a view insert
operation to the respective CPM. Note that such ambiguities are caused by the information loss
that occurs due to the application of reduction operations or refactoring rules (cf. Section 6.4)
when creating the process view. In particular, ambiguities not only occur in the context of the
control flow, but also when applying updates on aggregated data elements.
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Example 7.1 (Updating Process Views)
Consider the credit application process from Example 6.1 and the corresponding process view
V' displaying solely the activities of user role clerk (cf. Figure 7.3). In this process view,
all activities performed by the PAIS as well as the customer (i.e., al, a2, a5, all, and al3)
are reduced and the activities of user role manager (i.e., a8-al0) are aggregated to abstract
activity Credit Decision.

CPM:

al
Customer

&Customer

&Clerk SPAIS &Clerk &Manager &PAIS
v=( RedActi vi ty(OPM al), RedActivity(CPM a3),
RedActi vi ty(CPM a5), RedActivity(CPM all),
RedActi vi ty(CPM al2), Aggr SESE(CPM { a8, a9, al0}) )

Process View V:

&Clerk &Clerk

a4
Create

&Manager &Clerk

a14 T sClerk ;15 &Clerk

&Clerk &Clerk

InsertSerial R . InsertSerial Mbde
4[(\/' XORSpl i t s, a4, ald) InsertSerial (V,a2, XOR oin;, a15)]—‘

CPM" I nsertNode( CPM a3, XOR oi n,, a15) &J)

al5 a6 a9 all
XORjoiny "

&Manager

3 50 8 & N
Customer & P »Credit Decision?

&Customer

&Clerk &Clerk
AddNode( CPM XORspl i t 4, a4, al4)

CPM*:

I nsert Node( GPM a2, a3, a15) EARLY?
XORsplit; a2 315 a3

&Customer

&Clerk &Clerk &Manager
AddNode( CPM XORspl i t 1, a4, ald)

Figure 7.3: Ambiguity when Propagating View Changes to the CPM

Assume that the clerk inserts activity Create File (i.e., al4) between gateway FEzisting
Customer? (i.e., XORsplity) and activity Create Customer (i.e., ad). When propagating this
update to the underlying CPM, the corresponding insert position in the CPM is unique, i.e.,
this view update can be automatically propagated to the CPM without any problems.

Consider activity Send Customer ID (i.e., al5) and assume that it shall be inserted between
Select Customer and the succeeding XORjoin; gateway in process view V. When trying to
propagate this update to the CPM, multiple insert positions are possible, i.e., there occur
ambiguities regarding the transformation of the view update to a corresponding update of
the CPM. To be more precise, al5 may be inserted directly after a3 (as shown in CPM') or
directly after a2 (as shown in CPM").
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In order to enable an automated propagation of process view updates to a CPM, configurable
propagation policies are supported; in particular, view update operations may be configured
based on a respective set of configuration parameters (parameters for short). In particular, the
latter allow for the automatic resolution of ambiguities, if required. In particular, these param-
eters describe the propagation behaviour of a view update operation, e.g., they control whether
an activity shall be inserted at the earliest/latest possible position in the CPM.

Consider view update operation InsertSerial in Figure 7.3. Parameter InsertSerialMode defines
whether activity al15 shall be inserted directly after activity a2 (i.e., InsertSerialMode=FEARLY")
or directly before activity a3 (i.e., InsertSerialMode=LATE). Generally, each parameter has a
default value, but may be set specifically for a process view. In order to manage this view-specific
parameter settings, we replace Definition 6.6 (i.e., process view) by Definition 7.1. Particularly,
the creation set is extended by a parameter set PS.

Definition 7.1 (Process View with Parameter)
Let CPM = (N,D,NT,CE,EC,ET,DE,DET) be a process model. Then: A process view
V' is represented through a creation set C'Sy = (CPM,Op, PS), where

e CPM is the central process model on which V is created,

e Op = (op1,...,0pk), op; € OP is a sequence of elementary view creation operations
applied to CPM . Thereby, OP comprises all elementary view creation operations (cf.
Section 6.3),

e PS = {PSy,...,PS,} is a set of parameters with corresponding parameter values
defined for a specific process view.

As opposed to basic update operations (cf. Section 7.2), in the following, we deal with elemen-
tary view update operations enabling more complex changes, e.g., insert an activity X or an
entire branching block. These allow for a more convenient way to update process views; i.e.,
users do not operate with primitive changes (e.g., insert single edges) when inserting an activity.
These view update operations are denoted as elementary. In particular, elementary view update
operations ensure correctness of both the process view and the CPM (cf. Definition 6.3). This
is crucial if users have limited process modeling knowledge, i.e., this way users are prevented
from modeling an invalid control flow. However, view update operations may violate data flow
correctness (cf. Definition 6.3). In the context of data flow updates, therefore, we discuss which
view update operations may violate data flow correctness (cf. Section 7.3.3).

According to Figure 7.4, elementary view update operations can be categorized in operations
inserting (cf. Section 7.3.1) and deleting process elements (cf. Section 7.3.2) as well as operations
updating the data flow (cf. Section 7.3.3) and process attributes (cf. Section 7.3.5). Furthermore,
view update operations are based on change patterns introduced in [158]. Chapter 8 discusses
the completeness of our view update operations regarding change patterns for process models
[158]. Additionally, we discuss the effects of view update operations on the correctness of process
models in Section 7.3.4.
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Process View
. B

Elementary View Update Operations

Control Flow Data Flow Process Attributes

Insert Process Elem. | Delete Process Elem.

Figure 7.4: Overview on View Update Operations

7.3.1 Inserting Process Nodes and Control Edges

To extend the control flow of a process model, process nodes and control edges may be added
to describe new tasks in the respective business process. First, an activity n,e, may be sequen-
tially inserted between two activities (i.e., InsertSerial(V,ni,na, Npew)). Second, npe, may be
inserted in parallel to an existing process fragment (i.e., Insert Parallel(V,n1,na, npew)). Third,
Nnew May be inserted as alternative to an existing process fragment, i.e., n,¢, may be executed
alternatively to the process fragment (i.e., InsertCond(V,ny,na, Npew, €)).

Another elementary view update operation allows inserting a loop (i.e., InsertLoop(V,ny,na,c))
that encloses an existing process fragment. This way, it can be expressed that the fragment may
be executed repeatedly. Furthermore, a new branch may be inserted to an existing branching
block (i.e., InsertBranch(V,gs,g;,c)). Finally, a synchronization edge may be added by ap-
plying InsertSyncEdge(V,ns,ne). This operation allows synchronizing activities that belong
to different branches of an AND branching. Table 7.1 summarizes the elementary view update
operations for adding process nodes and control edges to the control flow of a process view
and CPM, respectively. For each view update operation, column configuration parameter €&
value contains configuration parameters together with the values that may be assigned to them.
Default parameter values are emphasized in bold font. However, for some operations (e.g., In-
sertSyncEdge) no parameter is required since ambiguities can be resolved. In the following, we
describe these operations in more detail.

InsertSerial(V,ny,ng, npew). View update operation InsertSerial(V,nq,ng, Npew) adds an ac-
tivity npew to process view V' and propagated the update to CPM: ng,e, is sequentially in-
serted between activities nq and mo. For example, Figure 7.5 illustrates the application of
InsertSerial(V, A,C, X) on process view V. The latter was derived from the C'PM by reducing
activity B. Note that propagating this view update to the C PM results in ambiguities regarding
the exact position the new activity shall be inserted in the CPM.

In order to resolve such ambiguities, parameter InsertSerialMode needs to be set. It allows
selecting the earliest (i.e., InsertSerialMode = EARLY) or latest (i.e., InsertSerialMode =
LATE) insert position in the CPM. Moreover, the activity may be inserted in parallel to the
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View Update Operation

Configuration
Parameter & Value

Description

InsertSerial(V,n1,n2, new)

InsertSerialMode € {
EARLY,

LATE,
PARALLEL}

Inserts activity npew between ny and ng in process
view V. Parameter InsertSerial Mode character-
izes the propagation behaviour of the operation.

InsertParallel(V,ni,n2, Nnew)
InsertCond(V,ni,n2, nnew, C)

InsertBlockMode € {
EARLY _EARLY,
EARLY_LATE,
LATE_EARLY,
LATE_EARLY}

Inserts activity nnew as well as an AND/XOR
branching block surrounding the SESE block de-
fined by n1 and ng in view V. Before (after) the
underline, the parameter value specifies the prop-
agation behaviour of the split (join) gateway.

InsertLoop(V,n1,n2,c)

InsertBlockMode € {
EARLY _EARLY,
EARLY_LATE,
LATE_EARLY,
LATE EARLY}

Inserts a Loop block surrounding the SESE block
defined by n1 and ng in process view V. Before
(after) the underline, the parameter value speci-
fies the propagation behaviour of the LOOPsplit
(LOOPjoin) gateway.

InsertBranch(V, gs, g;,c)

InsertBranchMode € {
EARLY,
LATE}

Inserts an empty branch between split gateway gs
and join gateway g, in process view V. In the
context of conditional branchings or loops, in ad-
dition, branching condition ¢ is has to be provided.

InsertSyncEdge(V,ns,ne)

Inserts a sync edge from ns to ne in V, where ng
and n. belong to different branches of a parallel
branching.

Table 7.1: View Update Operations - Inserting Process Elements

process fragment causing the ambiguity (i.e., InsertSerialMode = PARALLEL). As exam-
ple consider Figure 7.5. Based on the setting of parameter InsertSerialMode, process models
CPM',CPM", or CPM" result. To show the update in process view V, the latter may be
re-created by applying view creation operation RedActivty(C'PM, B) to the CPM. Independent
from the setting of parameter InsertSerialMode, the resulting process view model V' is similar
to the one that is obtained when inserting activity X directly into process view V. Note that
in the context of CPM"’, refactoring rule RR8 is applied, which inlines activity X between A

and C (cf. Section 6.4).

View update operation InsertSerial(V,ny,ng, Nuew) is applicable if n,e, constitute an activity

and nodes n; and no are direct neighbours connected by a control edge in process view V:

Preconditions InsertSerial(V,ni,ng, npew)-

LetV = (Ny,Dy,NTy,CEy, ECy, ETy, DEy, DETy) be the process model of a process view

with CSy = (CPM,Opy, PSy). Then:

o NT(npew) = Activity

e J(n1,n2) € CEy : ET((n1,n2)) = ET_Control

Algorithm 7.4 formally presents view update operation InsertSerial(V,ni,na, Nyew). First, the
nodes of the CPM corresponding to n; and ng are determined (Line 2). If one of them is an
aggregated node, CPMNode returns the set of aggregated nodes. In this case, first (last) returns

the first (last) node regarding the control flow within this set (cf. Definition 6.4).
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Figure 7.5: View Update Operation: InsertSerial

Algorithm 7.4: InsertSerial(V,ni,na, npew)
Input: Process View V based on creation set C'Sy = (CPM, Opy, PSy).

1 CPM = (N,D,NT,CE,EC,ET,DE,DET) and activity nnew to insert between activities ni,nas € N.
2 begin
3 n} :=last(CPMNode(V,n1)); nb := first(CPMNode(V,nz2));
4 if (succ(CPM,n}) = n})) then
5 ‘ AddNode(CPM,n,nl, npew, Activity);
6 else
7 switch InsertSerialMode
8 case FARLY:
9 |  AddNode(CPM,n), succ(CPM,{n}}), nnew, Activity);
10 case LATE:

[
[

|  AddNode(CPM, pred(CPM,{n}}), nly, npew, Activity);

case PARALLEL:
(ns,nj) := MinimalSESE(CPM,{n’,n}});
AddNode(CPM,pred(CPM,{ns}),ns, gs, AN Dsplit);
AddNode(CPM,nj, succ(CPM,{n;}), g;j, ANDjoin);
AddCEdge(CPM, (gs, 95), ET_Control, TRUE);
AddNode(CPM,gs, gj, nenew, Activity);
AddCEdge(CPM, (0, nnew), ET_Sync, TRUE);
AddCEdge(CPM, (nnew,nb), ET_Sync, TRUE);

e e
© W N0 WA WN

end

[
(=]

end

[
=

end

N
N

end

[
w

Afterwards, it is checked whether nodes n} and n), (i.e., the nodes in CPM corresponding to
ny and ng) are direct neighbours (Line 3). In this case, n,¢, may be directly inserted between
ny and ng by applying the basic change operations AddNode (cf. Algorithm 7.1) and AddCEdge
(cf. Algorithm 7.2) to the CPM. In turn, if n] is not directly preceding nf, in the CPM, it must
be decided at which position in the CPM n,,, shall be inserted. Note that this is controlled
through parameter InsertSerialMode. When setting this parameter to EARLY, nyey is directly
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inserted after n) (Line 8). In turn, when setting it to LATE, nye, is inserted directly before nf
(Line 10). Finally, when using parameter value PARALLFEL, the minimal SESE block contain-
ing n) and n} is determined. Then, an AND block surrounding the SESE block is added. The
SESE block is created by adding ANDsplit and ANDjoin gateways as well as an empty branch
between them (Lines 12-18). Finally, 7,y is inserted into this empty branch. To ensure that
the same precedence relations as for the process view are obeyed, synchronization edges pointing
from n to npey as well as from nype,, to nfy are inserted as well.

In the following, we show that the propagation of a process view update (based on InsertSerial)
to the CPM, followed by the re-creation of the process view, results in the same process view
model as can be obtained when directly inserting this activity in the process view. We consider
this as a fundamental quality property of the view update propagation approach. Note that
the user expects the inserted activity at exactly that position in the process view on which he
performed the insert operation.

To demonstrate this based on execution traces (cf. Definition 6.9), we introduce the notion of
dependency set to express direct control flow dependencies (cf. Definition 7.2).

Definition 7.2 (Dependency Set)

Let P=(N,D,NT,CE,EC,ET, DE, DET) be a process model and let Tp the set of execu-
tion traces producible on P. Then:

Dp = {(n1,n2) € N x N | 3t = (...,n1,na,...) € Tp} is denoted as dependency set. Dp
reflects all direct control flow dependencies between two activities.

Consider Figure 7.5. The dependency set of CPM’ corresponds to Depyy = {(D, E), (A, X),
(X,B),(B,C),(C,E)}. Theorem 7.1 expresses that, when propagating view update operation
InsertSerial to the CPM, we obtain the same process view in respect to the dependency set
compared to the direct insertion of respective process node in the process view.

Theorem 7.1 (Equivalence of Applying InsertSerial to CPM and Process View)
Let CPM be a process model with dependency set Dopys. Further, let V' be a process view
on CPM with creation set CSy = (CPM, Opy, PSy) and dependency set Dy .

Then: Adding npey, to V' can be realized based on InsertSerial(V,ni,ns, Nyew). Propagating
this update to the CPM and re-creating V results in the same dependency set for V as can
be obtained when inserting nye,, directly in V.

View creation operations based on process element reduction (e.g., RedActivity) and related
refactorings might cause ambiguities. Therefore, we discuss their impact on the dependency
set of resulting process views. Applying RedActivity(CPM,ng) with (n/,ng), (na, n//) € CFE to
CPM with dependency set D results in D' = D\ {(n,ng), (n2,n )} U{(n,n")}, n',n" € N.
Applying refactoring rules can then be interpreted as reducing dependencies in the process view.
Hence, it can be interpreted as part of the view create operations Op in creation set C'S.
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Proof 7.1 (InsertSerial Equivalence)
Dependency set Dy = Dy U {(n1, nnew), (Mnew,n3)} \ {(n1,n3)} results after inserting nnew directly in view V. When

inserting npew in the CPM, we must distinguish four cases:

Case 1. No activity is reduced between ni and n3, ie., no parameter is required and Dgppy =
Depa U{(n1, nnew), (Mnew, n3)} \ {(n1,n3)} = Dy/.

Cases 2-4. An activity (activity set) is reduced between ni and ng, i.e., ambiguities occur and parameter InsertSe-
rialMode becomes relevant.

Case 2. ImsertSerialMode=EARLY: We obtain Dgpyy = Deopar U {(n1, nnew), (Rnew,n2)} \ {(n1,n2)} and
RedActivity(ne) € Op with {(n1,n2),(n2,n3)} C Dcpa.  Without loss of generality, we may assume that
exactly one activity is reduced between nj and ns. Then, V is recreated with RedActivity(ne) resulting
in Dyr = Depyr \ {(mnew,n2), (n2,n3)} U {(nnew,n3)} = Dopum U {(n1,7new), (Mnew, n2)} \ {(n1,n2)} \

{(nneuu n2)7 (77'27 n3)} U {(nnewa 77«3)} = DV’ °
Case 3. InsertSerialMode=LATE: Similar to Case 2 with nyeq inserted directly before ns.

Case 4. InsertSerialMode=PARALLEL: We obtain Dgpy = Dopay U{(n1, Nnew), (Rnew,n3)} and RedActivity(na) €
Op with {(n1,n2), (n2,n3)} C Doprr. Then, V is re-created with RedActivity(nz). This results in Dy = Doparr \
{(n1,n2), (n2,n3)} U {(n1,n3)}. Note that the parallel branching remains in the process view model, i.e., one branch
containing npew and another branch containing nq and no synchronized by sync edges. Finally, refactoring rule RR9 (cf.
Section 6.4) removes the unnecessary branching: Dy = Dy \ {(n1,n3)} = Dy

Proof 7.1 shows that inserting a node directly or indirectly in a process view (i.e., by inserting
in the CPM) based on InsertSerial results in the same process view.

InsertParallel(V,n1,n2, Nuew). When inserting an activity, it might become necessary to insert
it in parallel to existing activities. This is covered by view update operation InsertParallel(V,ny,
N2, Npew). Again, the transformation of the respective view update to an update of the cor-
responding CPM may raise ambiguities regarding the positions the respective ANDsplit and
ANDjoin gateways shall be inserted. To deal with this ambiguity, parameter InsertBlockMode
is used. It allows configuring the positions at which the ANDsplit (i.e., EARLY *, LATE x)
and the ANDjoin (i.e., *_-FARLY, x_ LATFE), shall be inserted. For example, InsertBlock-
Mode=FEARLY_LATE expresses that the ANDsplit gateway shall be inserted at the earliest and
the ANDjoin gateway at the latest possible position in the CPM.

Consider Figure 7.6. Activity X is inserted in parallel to the SESE block induced by activities
C and D. When propagating this update to the CPM, a proper insert position for the newly
added AN Dsplit and AN Djoin gateways has to be determined. In Figure 7.6, the AN Dsplit
gateway of the branching with activity X may be inserted between A and B, B and AN Dsplity,
or between AN Dsplit; and C. To resolve this ambiguity, parameter InsertBlockMode needs
to be set. In Figure 7.6, dotted boxes above CPM' show the possible insert positions for the
ANDsplit and ANDjoin gateways depending on the parameter setting. For parameter setting
EARLY x (i.e., EARLY _EARLY and FARLY LATE), for example, the ANDsplit gateway
is inserted between A and B in CPM’. When inserting the ANDsplit and ANDjoin gateway,
in addition, well-structuredness of the CPM must be preserved. For example, when setting In-
sertBlockMode to FARLY_EARLY, the ANDsplit gateway will be inserted between A and B,
and the ANDjoin gateway between D and E. In this case, well-structuredness of C'PM’ would
be violated since the resulting AND branchings are not nested anymore (cf. Constraint 3 in
Definition 6.3). Hence, the ANDjoin gateway has to be inserted between AN Djoiny and G.
Possible AND branchings resulting from respective parameter settings are shown below CPM’.
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Figure 7.6: View Update Operation: InsertParallel

As can be seen, independent from the concrete parameter value and insert position, re-creating
the process view and applying refactoring rules, results in the same process view than applying
the update directly to process view V. Before applying view update operation InsertParallel(V,
N1, M2, Nnew ), the following preconditions has to be met.

Preconditions InsertParallel(V,ny,na, Npew)-

Let V = (Ny,Dy,NTy,CEy,ECy, ETy, DEy, DETy) be the process model of process view
V with CSy = (CPM,Opy,PSy). Then: the following preconditions must be met to apply
view update InsertParallel(V,ni, na, Npew):

o NTy(npew) = Activity
o NTy(ny) # StartFlow N NTy(n2) # EndFlow
e N’ C Ny : MinimalSESE(V,N') = (n1,n2)

Algorithm 7.5 presents the formal behaviour of InsertParallel(V,ny,ng, Npew). Activity ny de-
notes the start and no the end of the SESE block to which 7., shall be added in parallel.
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Algorithm 7.5: InsertParallel(V,n1,n2, Npew)

Input: Process View V based on creation set C'Sy = (CPM,Op, PS).
1 CPM = (N,D,NT,CE,EC,ET,DE, DET) and activity nnew to be inserted in parallel to SESE block
described by start node n; and end node na.

begin
n} :=last(CPMNode(V,n1)); nb := first(CPMNode(V,nz2));
if (pred(V,last(CPMNode(V,n1))) # last(CPM Node(V, pred(V,n1)))) then
switch InsertBlockMode
case FARLY_FEARLY or EARLY_LATE:
| n} :=succ(CPM,CPMNode(V,pred(n1)));
case LATE_EARLY or LATE_LATE:
| n}:=last(CPMNode(V,n1));
end
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end
if (pred(V,last(CPM Node(V,n2))) # last(CPM Node(V, pred(V,n2)))) then
switch InsertBlockMode
case FARLY _FEARLY or LATE_EARLY :
| nb = first(CPMNode(V,n2));
case FARLY _LATE or LATE_LATE:
| nb = succ(CPM,CPMNode(V,pred(V,n2)));
end
end

S s
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end

(ns,nj) := MinimalSESE(CPM,{n/,n}});
AddNode(CPM,pred(CPM,{ns}),ns, gs, AN Dsplit);
AddNode(CPM,n;, succ(CPM,{n;}), gj, AN Djoin);
AddCEdge(CPM, (gs, g5), ET_Control, TRUE);
AddNode(CPM,gs, gj, nnew, Activity);

NN N NN
S NI CR VI

[
(=]

end

N
N

When transforming this view update to a corresponding CPM update, it is first checked for the
CPM whether the direct predecessor of n; is the same node as the one in V' (Line 3). If this
does not apply, parameter InsertBlockMode is used to decide whether to insert the ANDsplit
gateway at the earliest or latest possible location in the CPM (Lines 4-11). The same procedure
is applied in respect to the ANDjoin gateway (Lines 12-20). After having determined the insert
positions in the CPM, a minimum SESE block is calculated to properly insert the AND branch-
ing and to preserve well-structuredness of the CPM (Line 21). Finally, respective process nodes
and edges are inserted (Lines 22-25).

Again, it is guaranteed that the application of InsertParallel to the CPM results in the same
process view (according to Definition 6.10) as the one we obtain when applying it directly to the
process view. The proof is similar to the one provided in the context of operation InsertSerial
(cf. Proof 7.1) since InsertParallel can be interpreted as inserting an ANDsplit and ANDjoin
gateway serially, i.e., positions of the gateways are in the process view are the same as inserting
it directly in the process view.

InsertCond(V,ni,ng, Npew, ¢). Similar to InsertParallel, the propagation of an update expressed
in terms of operation InsertCond(V,ni,ng, npew, c) can be accomplished. In addition to the in-
sertion of XORjoin and XORsplit gateways, branching condition ¢ has to be set to guarantee
control flow correctness (cf. Table 7.1). To be more precise, branching condition ¢ is assigned to
the branch on which 7,¢,, is located. Accordingly, the branching condition of the other branch
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(containing n1 and ng) is set to —c. At run-time, this guarantees that exactly one branch can
be selected and no deadlock occurs. As a specific precondition to the ones of InsertParallel,
the branching condition has to be a valid logical expression in first order logic.

InsertLoop(V,ny,ne,c). View update operation InsertLoop(V,ni,ns,c) inserts a loop enclos-
ing the SESE block induced by n; and nge. Branching condition c is set for the branch that
loops back and —c is set for the edge connecting LOOPsplit with the succeeding node of no.
In order to control the propagation of the view update to the CPM and to avoid ambigui-
ties, parameter InsertBlockMode needs to be set. As opposed to operation InsertParallel,
however, InsertLoop does not insert an activity. Figure 7.7 shows an example of applying
InsertLoop(V, B, D,c) to V. Dotted boxes above CPM’ show insert positions of LOOPsplit
and LOOPjoin gateways that may be chosen, when propagating the update to the CPM. In
particular, determining the position of the LOOPsplit gateway results in a unique insert posi-
tion between A and B. Due to the reduction of activities £/ and F' as well as the application of
refactoring rules, inserting LOOPsplit gateway results in ambiguities regarding its insert posi-
tion. Depending on InsertBlockMode, the LOOPsplit gateway is either inserted between activity
D and FE (i.e., x EARLY') or between AN Djoin; and G. However, to preserve control flow
correctness, the latter position has to be selected in both cases. To be more precise, independent
of the parameter setting, only one insert position is possible in the example.

CPM: P Process View V:

RedActi vi ty(CPM O),
RedActi vi ty(CPM E),
RedActi vi ty(CPM F) )+

(F )
lLJ Refactoring Rules RRL, RR2
m-- =) (A {8 {0 ]{c]
) S

ANDsplity 7 \ANDjO\m

[InsertLoop(V, B, D, c)

CPM"; Process View V"

| EARLY_* |

| LATE * | I * EARLY | | *_LATE |

C

= JELER
RedActi vi ty(CPM, O),
RedActi vi ty(CPM , E),

RedActi vity(CPM , F) )+
Refactoring Rules RRL, RR2

Figure 7.7: View Update Operation: InsertLoop

InsertBranch(V,gs, gj,c). View update operation InsertBranch(V,gs,gj,c) inserts an empty
branch between split gateway gs and corresponding join gateway g;. If the gateways are aggre-
gated due to the application of refactoring rules RR5, RR6, or RR7 (i.e., connected branchings),
parameter InsertBranchMode determines whether the branch is added to the earliest (i.e.,
EARLY) or the latest (i.e., LATE) possible split gateway and, accordingly, to the latest (i.e.,
EARLY) or earliest (i.e., LATE) join gateway.

Figure 7.8 shows an example of applying InsertBranch(V, gs, g;,c) to the XOR branching de-
scribed by split gateway gs and join gateway g;. Due to the application of refactoring rule RR7,
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7.3 View Update Operations

gs (gj) correspond to gateways gs1 and gs (gj1 and gj2) in the CPM. Hence, propagating the
update to the CPM leads to an ambiguity regarding the insert position of the branch. Parameter
Insert BranchM ode can be used to deal with this ambiguity. If Insert BranchMode = FEARLY
holds, a branch is added to the XOR branching built by gateways gs1 and gj1 (i.e., CPM’ in
Figure 7.8). In turn, if InsertBranchMode is set to LATE, a branch is added to the XOR
branching built by gs» and gjo (i.e., CPM" in Figure 7.8). Moreover, branching condition ¢
has to be added to the new branch. For all other branches, branching conditions have to be
extended by a logical AND operator and the negation of branching condition ¢ (i.e., —=¢). Thus,
we guarantee correctness of the control flow, i.e., no deadlock will occur at run-time.

CPM: Process View V:

RedActivity(CPM C) +
Ref actori ng Rul e RR6

[ InsertBranch(V, gs, g;, ¢)

Process View V*:

rA-c
RedActivity(CPM , C) +
Ref actoring Rul e RR6

CPM": I nsertBr anchMode=LATE RedActivity(CPM *, O +
> B | Ref actoring Rul e RR6
— N

Figure 7.8: View Update Operation: InsertBranch

The listed preconditions must be met to apply view update operation InsertBranch(V, gs, g;, ¢).

Preconditions InsertBranch(V, g, g;,¢).

Let V = (Ny,Dy,NTy,CEy,ECy,ETy, DEy, DETy) be the process model of process view
V with CSy = (CPM, Opy, PSy). Then: The following preconditions must be met to apply
InsertBranch(V, gs, gj, c):

® Js,35 € NV

e (NTy(gs) = ANDsplit AN NTy(g;) = ANDjoin) V
(NTv(gs) = XORsplit N NTy (g;) = XORjoin)

e g5 and g; are the corresponding gateways of the same XOR/AND branching.

e Branching condition c is a valid logical expression in first order logic or TRUE for AND
branchings.
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Algorithm 7.6 describes this operation. Initially, it determines the branching the branch shall be
added to (Lines 2-13). In turn, for XORsplit gateways, the branching conditions of all branches
must be adapted (Line 18). In case of an AN Dsplit, the edge condition is set to TRUE.

Algorithm 7.6: InsertBranch(V, gs, g5, c)

Input: Process view V = (Ny, Dy, NTy,CEyv,ECy, ETy,DEy, DETy ) based on creation set
CSy = (CPM,Op, PS).

1 CPM = (N,D,NT,CE,EC,ET, DE, DET) and split/join gateway gs/g;.
2 Branching condition c¢ in case of an XOR branching; Otherwise: ¢ = TRUE
3 begin
4 if [CPMNode(V,gs)| =1 then
5 | gt =955 9 =95
6 else
7 Gs := CPMNode(V,gs); Gj := CPMNode(V, g;);
8 switch InsertBranchMode
9 case FARLY :
10 ‘ gl = first(CPM,Gs); g;- = last(CPM,Gy);
11 case LATE:
12 ‘ gs = last(CPM,Gs); g = first(CPM,Gj);
13 end
14 end
15 end
16 switch NT'(g)

i
<

case AN Dsplit:
‘ AddCEdge(CPM, (g5, 9;), ET_Control, TRUE);
case XORsplit:
forall ¢, := (g.,¢) € CE do
| EC(ep) := EC(ep) A —c;
end
AddCEdge(CPM, (g., g;.), ET _Control, c);

end

NN NN
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N
N

end

N
5]

end

[
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InsertSyncEdge(V,ns,ne). View update operation InsertSyncEdge(V,ns,ne) inserts a syn-
chronization edge from n, to n.. Note that propagating this update to the CPM is not straight-
forward (i.e., ambiguities might occur) since ng or n. are aggregated nodes in the process view.
Consider the example from Figure 7.9. A synchronization edge shall be inserted between activi-
ties DEF and BC'in V. Since both activities correspond to abstract nodes that were aggregated
using view creation operation AggrSESE, the synchronization edge may origin either from D,
E, or F and target at either B or C.

Pv=(

Aggr SESE(CPM {B, G}), Process View V:
Aggr SESE(CPM { D, E, F}))

=)

AddCEdge( CPM (F, B), ET_Sync, TRUE) [ nsert SyncEdge(V, DEF, BC)

Figure 7.9: View Update Operation: InsertSyncEdge

No parameter is required to resolve this ambiguity. The the synchronization edge expresses that
ne can be activated after ns has been finished. To be more precise, D, E, and F have to be
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7.3 View Update Operations

finished before B and C may start (cf. Figure 7.9). Accordingly, the synchronization edge must
be inserted between activities /' and B, i.e., it links the last activity of CPM Node(V, DEF)
with the first one of CPM Node(V, BC).

When applying InsertSyncEdge to an activity that aggregates several activities of the CPM
based on view creation operation AggrCompl Branches, multiple synchronization edges have to
be added to CPM. Figure 7.10 shows an example of inserting a synchronization edge between B
and aggregated activity EFGH. The latter aggregates the branches containing ., F', G, and H.
Propagating the update to the CPM requires to insert a synchronization edge for each branch.

CPM: Process View V:

Qpv=(
Aggr Conpl Branches
(CPM{E F}{G H}))

[ I'nsertSyncEdge(V, B, EFGH)

CPM*: Process View V'

Qv=(
Aggr Conpl Branches
(CPM, {E F}U{G H}))

Figure 7.10: View Update Operation: InsertSyncEdge and AggrComplBranches

To apply view update operation InsertSyncEdge(V,ns, n.), nodes ns and n. have to be activities
located on parallel branches.

Preconditions InsertSyncEdge(V,ng, ne).

Let V = (Ny,Dy,NTy,CEy,ECy, ETy, DEy, DETy) be the process model of process view
V with CSy = (CPM,Opy,PSy). Then: The following preconditions must be met to apply
operation InsertSyncEdge(V,ng,ne):

e ng,ne € Ny A NTy(ng) = NTy (ne) = Activity

e dpi,p2 € Ty (ooyngyeeyNeyo o ) Ao ey ooy Ngy .. .), G.€., activities ns and ne are
located on parallel branches

Algorithm 7.7 presents view update operation InsertSyncEdge(V,ng, n.) formally. In Line 2, it
is checked whether ng results from the application of view creation operation AggrCompl Branches.
If this applies, for each branch the last node is determined and added to node set Ny (Lines
3-7). Otherwise, either ny is not an aggregated node or view creation operation AggrSESE is
applied. In both cases, the last node regarding the control flow of the corresponding CPM node
(set) is added to Ny (Line 9). Accordingly, node set N, is determined (Lines 11-19). In Lines
20-24, synchronization edges are added to the CPM based on nodes from node sets Ng and N,.
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Algorithm 7.7: InsertSyncEdge(V,ns, ne)

Input: Process View V based on creation set CSy = (CPM, Op, PS).
CPM = (N,D,NT,CE,EC,ET,DE,DET) and start/end activity ns/ne of the synchronization edge.

begin
if (3AggrComplBranches(V,Nq) € Op) A (Nqg = CPMNode(V,ns)) then
// Ng corresponds to a disjoint union set Ng;,7 =1,...,k where each node set comprises
// all activities of a single branch
forall N,; C N, do
| Ns:=NsU{last(CPM, Ng;)};
end
else
| Ns:={last(CPM,CPMNode(V,ns))};
end
if (3AggrComplBranches(V,Ng) € Op) A (No = CPMNode(V,ne)) then
// Ng corresponds to a disjoint union set Ng;,7 =1,...,k where each node set comprises
// all activities of a single branch
forall N,; C N, do
| Ne:= NeU{first(CPM,Na;)};
end
else
|  Ne:={first(CPM,CPMNode(V,n.))};
end
forall n’, € N; do
forall n/, € N, do
| AddCEdge(CPM,(n,n.), ET_Sync, TRUE);
end
end
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7.3.2 Deleting Process Nodes and Control Edges

From a user perspective two alternatives exist to “delete” a process element in a process view.
First, view creation operations reducing process elements may be applied. In Figure 7.11, for
example, activity F' is deleted by reducing it from V' (i.e., by applying Red Activity(CPM, F)).

CPM: Process View V:

Qv
RedActi vi ty(CPM Q)

[ DeleteActivity(V,D

i—[RedActi vi ty(CPM F)
Pv=(

RedActi vi ty(CPM, F), Process View V'
RedActi vity(CPM, G)

Figure 7.11: Alternatives to Remove an Activity in a Process View

As second alternative, process elements may be removed from a process view by applying view
update operations. In Figure 7.11, for example, activity D is deleted by applying view update
operation DeleteActivity(V, D). As a result, D is deleted in the CPM as well as in all asso-
ciated process views. Note that there is no difference between the two alternatives from the
perspective of a user interacting with a process view. However, the second alternative modifies
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the CPM as well as all other process views. In the following, we focus on operations modifying
the underlying CPM as well. View creation operations reducing process elements have been
described in Section 6.3. Table 7.2 gives an overview of operations deleting process elements
from both a process view and respective CPM.

View Update Operation Configuration Description
Parameter & Value
DeleteActivity(V,n) - Deletes activity n in process view V.
DeleteBranch(V, gs, gj,C) - Deletes an empty branch between gateways gs and
gj in process view V.
DeleteSyncEdge(V,ns,ne) - Deletes a synchronization edge between activities
ns and ne in process view V.
DeleteBranching(V, gs, g;) DeleteBranchingMode € | Deletes an AND/XOR/Loop branching block en-
{INLINE, DELETE} closed by gateways gs and g; in process view
V. The parameter describes whether elements re-
maining in the block shall be inlined or deleted.

Table 7.2: View Update Operations - Deleting Process Elements

DeleteActivity(V,n). View update operation DeleteActivity(V,n) deletes activity n in pro-
cess view V. Figure 7.11 has demonstrated the application of Delete Activity(V, D). To apply
Delete Activity, the following precondition has to be meet.

Preconditions Delete Activity(V,n).

LetV = (Ny,Dy,NTy,CEy,ECy, ETy, DEy, DETy ) be the process model of a process view
V with CSy = (CPM, Opy, PSy). Then: The following preconditions must be met in order
to apply DeleteActivity(V,n):

e ne€ Ny A NTy(n) = Activity

Algorithm 7.8 defines Delete Activity(V,n) formally. If activity n has resulted from the appli-
cation of a view creation operation op that aggregates process nodes (Lines 2-4), all aggregated
nodes are deleted. Furthermore, view creation operation op must be removed from operation
sequence Opy (Line 4). In Lines 8-12, the respective nodes and edges are removed from CPM.

Algorithm 7.8: Delete Activity(V,n)

Input: Process view V based on creation set CSy = (CPM,Opy, PSy).
CPM = (N,D,NT,CE,EC,ET,DE, DET) and activity n to be deleted.
1 begin
if Jop € Opy A
(op = AggrSESE(CPM,CPMNode(V,n)) V op = AggrComplBranches(CPM,CPMNode(V,n))) then

M

3 Np := CPMNode(V,n);

4 Opv := Opv \ {op);

5 else

6 | Np:={n};

7 end

8 N := N\ Np;

9 enew = (pred(CPM, Np), succ(CPM,Np));
10 EC(enew) == EC((pred(CPM, Np), first(CPM, Np));
11 ET(enew) := ET((pred(CPM,Np), first(CPM,Np));
12 CE:=CE\{e=(n1,n2) € CE|n1 € NpVna € Np}U{enew};
13 end
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DeleteBranching(V, gs,g;). View update operation Delete Branching(V, gs,g;) removes the
branching block represented by split gateway g, and join gateway g;. When applying operation
Delete Branching, however, the respective branching block may enclose further process nodes.
In this case, parameter Delete BranchingMode defines whether remaining activities shall be
deleted (i.e., DELETE) or inlined sequentially (i.e., INLINE). Particularly, the latter dis-
cards branching conditions of XOR branchings or loops. Another issue deals with combined
gateways resulting from the application of refactoring rules RR6, RR7, and RRS8. Figure 7.12
shows an example of deleting a non-empty AND branching in process view V. The latter re-
duces activity C'in CPM. Due to the application of refactoring rule RR6, gateways gs1/¢gs2 and
gj1/gj2 are combined to gateway gs and g; in V.

v=(

/ Process View V:
91 RedActi vity(CPM Q)

{ Del eteBranching(V, g, g;)

CPM": Del et eBr anchi ngMbde=DELETE Process View V*:
-+ (> =

CPM": Del et eBr anchi nghMbde=I NLI NE

Process View V*:

(A p(a P{cP{ob{ep{r) = {ap{e]{op{e{F]

Figure 7.12: View Update Operation: DeleteBranching

Applying view update operation DeleteBranching(V,gs,g;) to V in Figure 7.12 leads to the
deletion of all nodes between A and F in CPM' (i.e., DeleteBranchingMode = DELETE).
As an alternative, only the gateways gs1, gs2, gj1, and gjo are deleted and enclosed activities are
inlined (i.e., DeleteBranchingMode = INLINE), i.e., CPM" in Figure 7.12.

In the following, preconditions for view update operation Delete Branching are introduced:

Preconditions Delete Branching(V, gs, g;)-
LetV = (Ny,Dy,NTy,CEy, ECy, ETy, DEy, DETy) be the process model of a process view
V with CSy = (CPM,Opy, PSy). Then: The following preconditions must be met in order

to apply DeleteBranching(V, gs, g;):

® gs,9; € Ny

e (NTy(gs) = ANDsplit N NTy (g;) = ANDjoin) V
(NTv(gs) = XORsplit N NTy (g;) = XORjoin) V
(NTv(gs) = LOOPsplit N NTy(gj) = LOOPjoin)

e gs and g; gateways of the same branching block.
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Algorithm 7.9 defines this behaviour formally. When parameter Delete BranchingMode is
set to DELETE, in Lines 3-9, gateways g, and g; in the CPM are determined and, subse-
quently, all enclosed process nodes (i.e., function NodesInSESE) are deleted from the CPM. If
DeleteBranchingMode is set to INLIN E, the respective gateways are deleted. Furthermore,
enclosed process nodes are reconnected with each other in a sequential manner.

Algorithm 7.9: DeleteBranching(V, gs, g;)

Input: Process view V based on creation set C'Sy = (CPM,Op, PS).
CPM = (N,D,NT,CE,EC,ET,DE, DET) and SESE block represented by split gateway gs and join

gateway g;.
1 begin
2 switch DeleteBranchingMode
3 case DELETE:
4 gs = first(CPM,CPMNode(V,gs)); gj := last(CPM,CPMNode(V,g;));
5 //returns node set of SESE described by start node g, and end node g;-
6 Ny := NodesInSESE(CPM,g;,g;-);
7 N := N\ Ny;
8 CE := CEU{(pred(CPM, g), succ(CPM, g}))};
9 CE :=CE\{e=(ni1,n2) € CE|ni1Vna € Np};
10 case INLINE:
11 forall gateways g’, in CPM Node(V,gs) do
12 N:=N'\{ge, 95}
13 Npre := pred(CPM, gl );
14 forall outgoing edges es = (g.,ns) of gateway g, do
15 €e = (ne,gé-); // last edge on same branch as e; before join gateway g;-
16 CE := CE\ {es,ec} U{(npre,ns)};
17 Npre = Ne;
18 end
19 CE := CEU{(npre, succ(CPM, g7))} \ {(g}, succ(CPM, g})) };
20 end
21 end
22 end
23 end

DeleteBranch(V, gs, gj, EC"). View update operation Delete Branch(V, gs, gj, EC') removes an
empty branch between split gateway g, and join gateway g; (i.e., 3(gs,9;) € CE). Removing
such an empty branch is straightforward for AND branchings, but branching conditions of re-
maining XOR and Loop branches need to be adapted to guarantee control flow correctness. For
this, function EC’ provides adapted branching conditions for all remaining branches. Particu-
larly, all branching conditions must be valid logical expressions in first order logic. We omit a
formal definition of view update operation Delete Branch(V, gs,gj, EC").

DeleteSyncEdge(V,ng,n.). Deleting a synchronization edge by applying view update operation
DeleteSyncEdge(V,ng,n.) is required to remove a control flow dependency between activities
on different parallel branches. However, its definition is straightforward, i.e., the corresponding
synchronization edge is removed from the set of control edges CE in CPM.

7.3.3 Updating the Data Flow

This section describes operations for updating the data flow of a process view as well as the re-
lated CPM. In particular, new data edges may have to be inserted or data elements be inserted
or deleted. Table 7.3 summarizes these operations as well as their parameters.
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View Update Operation Configuration Description
Parameter & Value
InsertDataFEdge(V,de, det) InsertEdgeMode € Inserts a data edge de of type det in process view

{EARLY, LATE, ALL} V. Parameter InsertEdgeM ode controls the prop-
agation behaviour in case of ambiguities.
InsertDataElement(V,d, de,det)| InsertEdgeMode € Inserts data element d in process view V' and con-
{EARLY, LATE, ALL} nects it with data edge de = (d,n) (de = (n,d)) to
activity n. Parameter InsertEdgeM ode controls
how to propagate the insertion of data edge de in
case of ambiguities.

ChangeDEType(V, de, det) - Changes the data edge type of data edge de to type
det in process view V.

DeleteDataFElement(V, d) - Deletes data element d in process view V' as well
as all associated data edges.

DeleteDataFEdge(V, de) - Deletes data edge de in process view V.

Table 7.3: View Update Operations - Update Data Flow

InsertDataEdge(V,de, det). View update operation InsertDataEdge(V,de,det) inserts data
edge de to process view V and its CPM. Data edge de = (ns, n.) indicates whether a read/write
data edge is considered. If ng is a process node, a write data edge is inserted. In turn, if ng
is a data element a read edge is inserted. In particular, it is not allowed that both ns and n.
constitute either process nodes or data elements. Furthermore, det denotes the data edge type
(i.e., mandatory or optional). When inserting a data edge in a process view, ambiguities may
occur in respect to the transformation of this view update to the CPM if the activity the data
edge is connected with constitutes an aggregated one.

Consider the example from Figure 7.13. Operation InsertDataEdge(V, (d, BC), always) is ap-
plied to process view V. Since BC constitutes an aggregated activity (i.e., it represents a set
of activities of the CPM), a proper insert position of the data edge has to be determined. In
the CPM, data edge de may be connected to B (i.e., InsertEdgeMode = FARLY), C (i.e.,
InsertEdgeMode = LAST), or to both activities (i.e., InsertEdgeMode = ALL). The ambi-
guity is caused due to the aggregation of the CPM activities B and C in V. Independent of the
value of parameter InsertEdgeMode, the same process view V' results (cf. Figure 7.13).

Preconditions InsertDataEdge(V,de = (ns, ne), det).

LetV = (Ny,Dy,NTy,CEy,ECy, ETy, DEy, DETy ) be the process model of a process view
V with CSy = (CPM,Opy,PSy). Then: The follwoing precondition must be met to apply
InsertDataEdge(V, (ns,n.), det):

e (ns € Ny ANT(ns) = Activity An. € Dy)Vi(n. € Ny ANT(n.) = Activity Ans € Dy)

'Logical operator V stands for exclusive OR

Algorithm 7.10 describes this update operation formally. First, it is checked whether the data
edge writes or reads a data element (Line 2). In the latter case, the activity n reading the data
element in V is identified. If d corresponds to an aggregated data element (cf. Section 6.3.2),
the respective reading edge is set for all aggregated data elements (Line 3).
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CPM: i d ProcessView V: i d
Aggr SESE(OPM { B, C})
.Jni = =N *»'

[InsertDat aEdge(V, (d, BC), al ways)

CPM": I nsert EdgeMde=EARLY

> Adli:. c

CPM": I nsert EdgeMode=LATE

i d Process View V- . s
- =) ->

Aggr SESE(CPM * , { B, C})
CPM“: I nsert EdgeMode=ALL

[ N
- e M e e

Figure 7.13: View Update Operation: InsertDatakdge
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Algorithm 7.10: InsertDataEdge(V, de, det)

Input: Process View V based on creation set CSy = (CPM, Opy, PSy).
CPM = (N,D,NT,CE,EC,ET, DE, DET) and data edge de to be inserted as well as data edge type det.

begin
if (de = (d',n) An € N) //i.e., reading data edge then
forall (d € CPMNode(V,d')) do
if (isAggregatedNode(V,n)) then
N’ := CPMNode(V,n);
switch InsertEdgeM ode
case FARLY:

| AddDEdge(CPM, (d, first(CPM,N")),det);
case LATE:

| AddDEdge(CPM, (d,last(CPM,N')),det);
case ALL:

forall (n’ € N’) do
| AddDEdge(CPM,(d,n’),det);
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15 end

16 end

17 end

18 else

19 ‘ AddDEdge(CPM, (d,n), det);
20 end

21 end

22 end

23 else //analogous for a writing edge;

24 end

For each data edge, isAggregatedNode (cf. Section 7.3) checks whether the associated activity
n results from an aggregation (Line 4). If n is not an aggregated node (i.e., the activity is
contained in CPM as well), the insertion is straightforward (Line 18). In turn, if n constitutes
an aggregated node CPMNode (cf. Section 6.2) is applied to obtain the nodes N’ from CPM
corresponding to activity n. Depending on the value of InsertEdgeMode, the data edge is added
to the CPM at the earliest/latest position based on node set N’ (Line 5). If InsertEdgeMode
is set to ALL, data edges are added to all nodes of N’.
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InsertDataElement(V,d,de,det). View update operation InsertDataFElement(V,d, de, det) in-
serts data element d in process view V together with a corresponding data edge de of type det.
Inserting a new data element and connecting it directly with an activity contributes to avoid
unconnected data elements in the process view or CPM. If a user solely wants to insert a data
element, he will most likely connect it to one of the activities in the following modeling steps.

Inserting a new data element is straightforward, i.e., the data element is added to the set of
data elements D of the CPM. To insert a corresponding data edge, view update operation
InsertDataEdge (cf. Algorithm 7.10) is used. Analogously, parameter InsertEdgeMode re-
solves ambiguities when inserting a data edge.

ChangeDEType(V,de,det). View update operation ChangeDEType(V,de,det) changes the
type of data edge de to det; the latter describes whether the data element is accessed mandatorily
or optionally. However, if either the associated activity or data element is result of an aggre-
gation operation, the types of all data edges are updated. For example, consider Figure 7.14.
Data element d is optionally read by B and C' in CPM. In turn, B and C are aggregated in
process view V. Applying ChangeDEType(V, (d, BC), mandatory) to V and propagating this
change to the CPM then requires updating the type of data edges (d, B) and (d,C) in CPM'.
We omit a formal definition of ChangeD E'Type here.

Process View V: d
Aggr SESE(CPM { B, C})
T -y

[ChangeDEType(V, (d, BC), mandat ory)

CPM" i d Process View V* i d
Gy T

Figure 7.14: View Update Operation: ChangeDEType

DeleteDataFEdge(V,de). View update operation DeleteDataFEdge(V,de) deletes data edge de
from process view V and the related CPM. Due to the application of aggregation operations on
data elements or activities associated with de, it might be required to delete multiple elementary
data edges in the CPM. In particular, removing write edges might violate data flow correctness
of the CPM as well as the process view. Figure 7.15 shows an application of this operation in
the context of deleting data elements. In the following, preconditions of view update operation
DeleteDataFEdge(V,de) are introduced.

Preconditions DeleteDataEdge(V, de).
Let V.= (Ny,Dy,NTy,CEy,ECy,ETy,DEy, DETy) be the process model of a process

view with CSy = (CPM, Opy, PSy). Then: The following precondition must be met to apply
DeleteDataEdge(V, de):

e de € DEy
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If the precondition is met, DeleteDataEdge may be applied (cf. Algorithm 7.11).

Algorithm 7.11: DeleteDataEdge(V, de)
Input: Process View V based on creation set C'Sy = (CPM, Opy, PSy).

1 CPM = (N,D,NT,CE, EC, ET, DE, DET) and
2 data edge de = (ns,ne) to be deleted.
3 begin
4 forall (n, € CPMNode(V,ns)) do
5 forall (n,, € CPMNode(V,n.)) do
6 if (n},n,) € DE then
7 | DE'= DE\ {(n,nl)};
8 end
9 end
10 end
11 end

DeleteDataElement(V,d). View update operation DeleteDataElement(V,d) deletes data el-
ement d from process view V together with its associated data edges. For deleting the latter,
view update operation DeleteDataFdge may be used. In case of aggregated data elements,
elementary data elements as well as their associated data edges are removed. Figure 7.15
shows an example of deleting an aggregated data element (i.e., d12). Propagating the respec-
tive update to the CPM requires the deletion of data elements d1 and d2, as well as data
edges (A,dl),(B,d2), and (d1,C). Note that Delete DataElement preserves the correctness of
the data flow since all reading and writing edges of the data element are removed. Finally,
AggrDataElement(CPM,dl,d2) must be removed from operation sequence Opy .

CPM: d1 d2 QJAgg(r SESE M (B, )., Process View V: [T 412
Z Aggr Dat aEl enent s(CPM {d1, d2}))
GPERD -

[Del et eDat agl enent (V, d12)

Dv=( Process View V'
Aggr SESE(CPM , {B, G}))

CPM*
L (e} =)
Figure 7.15: View Update Operation: DeleteDataElement

The following precondition for operation Delete DataFElement(V,d) ensures that d constitutes a
data element present in process view V.

Preconditions DeleteDataElement(V,d).
LetV = (Ny,Dy,NTy,CEy,ECy, ETy, DEy, DETy) be the process model of a process view

V with CSy = (CPM,Opy, PSy). Then: The following preconditions must be met in order
to apply Delete DataElement(V,d):

e de Dy

Algorithm 7.12 presents DeleteDataFElement formally. In Lines 2-6, both data elements and
data edges are deleted in the CPM. If applicable, in Lines 7-10 view creation operation aggre-
gating deleted data elements is removed from operation sequence Op of creation set C'Sy .
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Algorithm 7.12: DeleteDataElement(V,d)

Input: Process View V based on creation set C'Sy = (CPM, Opy, PSy).

CPM = (N,D,NT,CE,EC,ET,DE,DET) and
data element d € D to be deleted.

begin

forall (d € CPMNode(V,d)) do

| DeleteDataEdge(V,de);
end
Di=D\{d'}

end

© W N0 A W N
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| Opv :=Opy \ (op);
end

funy
N

end

=
w

forall de € {(d',n) € DEV (n,d') € DE|n€ N Ad € D} do

if Jop := AggrDataElements(CPM,CPMNode(V,d)) € Opy then
99

7.3.4 Process Model Correctness

This section discusses the impact view update operations have on the correctness of process
models. In general, view update operations might violate the correctness of the control flow
(cf. Constraints 1-4, Definition 6.3) or the data flow (cf. Constraints 546, Definition 6.3) of a
process model. For example, one might delete the data edge solely writing a data element. Con-
sequently, succeeding activities might fail when reading the respective data element at run-time.

Table 7.4 gives an overview on the properties of view update operations. Consider a CPM with
correct data and control flow. Data flow correctness preserving denotes that applying the re-
spective operation on a process view and corresponding CPM the data flow correctness is not
violated. Finally, control flow correctness preserving expresses whether control flow correctness

may be violated by a view update operation.

View Update Data Flow Control Flow
Operation Correctness Correctness
Preserving Preserving
InsertSerial v v
InsertParallel v v
InsertCond X v
InsertLoop v v
InsertBranch X v
InsertSyncEdge v X
DeleteActivity X v
DeleteBranch v v
DeleteSyncEdge v v
DeleteBranching X 4
InsertDataElement X v
InsertDataEdge X v
ChangeDE Type X v
DeleteDataElement v v
DeleteDataEdge X 4

v =property fulfilled, X=property violated

Table 7.4: Overview of View Operation Properties
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7.3 View Update Operations

Data flow correctness might be violated when applying operations that update the control or
data flow. For example, when inserting an XOR branching with InsertCond in Figure 7.16a,
activity B, solely writing data element d, will only be executed conditionally after inserting the
XOR branching. Another example is shown in Figure 7.16b: activity B, solely writing data
element d, is deleted. As a result, d is not written anymore.

a) CPM: d b) CPM: d c) CPM: d
Cpe e e

‘ InsertCond(V, B, B, X c) ‘ Del eteActivi ty(V, B) ‘ l(r\]/S((E;t g)at ﬁgitory)
AN AN
CPM" d CPM" . d

e

Figure 7.16: View Update Operation Affecting Data Flow Correctness

Most of the view update operations changing the data flow may violate data flow correctness.
For example, when inserting a mandatory read data edge (d, A) in Figure 7.16¢, data element
d will not be written before being read by A. By contrast, Delete DataElement preserves data
flow correctness since the data element and its data edges are removed entirely.

Control flow correctness (cf. Definition 6.3) is preserved by most of the view update operations
(cf. Table 7.4). To be more precise, InsertSyncEdge might violate control flow correctness,
since the insertion of a synchronization edge could lead to a deadlock-causing cycle in the CPM.
However, the other operations ensure control flow correctness. In particular, users cannot create
process models with an incorrect control flow. If data flow correctness is required in addition
(e.g., for process execution), it has to be checked when applying operations not preserving data
flow correctness, if data flow correctness is still given.

7.3.5 Updating Process Attributes

In the following, we introduce operations to insert or delete attributes of process nodes. Further-
more, view update operations are introduced to update the value of existing parameters. The
latter, for example, are required to change the label of an activity. Table 7.5 gives an overview
of these operations.

View Update Operation Configuration Description
Parameter & Value

UpdateAttribute(V, n.z,val) - Changes the value of attribute = at process node
n to val in process view V.

InsertAttribute(V, n.z, val) - Inserts an attribute x to process node n and as-
signs value val to x in process view V.

DeleteAttribute(V,n.x) - Deletes attribute z of process node n in process
view V.

Table 7.5: View Update Operation: Updating Process Attributes
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UpdateAttribute(V,n.x,val). This operation changes the value of an attribute x of node n to
val. Propagating this view update operation to the associated CPM results in three cases:

Case 1 (Direct Update). Attribute value val can be directly propagated to the CPM (i.e., up-
dated in the CPM) if neither n nor = result from the application of an aggregation operation (cf.
Section 6.3). Consider the example from Figure 7.17. Applying Update Attribute(V, A.label, X)
to V and propagating this update to C'PM results in a changed label “X” of A.

Process View V:

label=BC

[ 1abel=x | | label=C |

Figure 7.17: View Update Operation: UpdateAttribute

Case 2 (Aggregated Nodes). Process node n in V represents an aggregated set of nodes N’ =
{ni,...,ni} from CPM, i.e., the actual value of attribute x has been calculated based on the
attribute values of all nodes in N’ (cf. Section 6.3.3). In this context, attribute function
attr Func is applied to aggregate respective attribute values: attr Func (cf. Algorithm 6.7):
val(ny.x),...,val(ng.z) = val(n.z).

Consider the example from Figure 7.17. The value of attribute BC.label is calculated by ap-
plying attribute function CONCAT. The latter concatenates textual attribute values. When
applying UpdateAttribute(V, BC.label, BZ) it has to be determined, which part of the new value
“BZ” corresponds to attribute B.label and which to attribute C.label. Hence, an inverse function
CONCAT™! calculating attribute values in the CPM is required. When applying CONCAT !,
a trivial solution might be to try to match the updated value to respective process nodes (in
Figure 7.17, value of C.label is changed to “Z”). Another solution may simply divide the text of
the new attribute value into parts of equal length.

A similar issue occurs when applying UpdateAttribute to numeric values. Consider transforma-
tion function SUM that sums up a set of attribute values, i.e., n.x = Zle n;.x, n; € N'. An
inverse function SUM ~! might assign a new value val, = val/ | N’ | to each attribute or the
value of attribute n;.x is calculated proportionally to the old value of attribute n;.x. Further-
more, if node set N/ contains an XOR branching, the branching probability has to be taken into
account as well. To be more precise, each branch of an XOR branching may be executed with
a different probability. In turn, this has an impact on the inverse attribute function. Similar
issues arise for loops regarding the number of loop iterations.
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Case 3 (Aggregated Attributes). If an attribute n.x has been aggregated in a process view, i.e.,
view creation function AggrAttr has been applied, like in Case 2 the inverse attribute function
needs to be defined.

Note that we do not provide a generic solution to determine inverse attribute function for Cases
2 and 3.

Insert Attribute(V,n.x,val). In certain situations, it may be required to insert an attribute to a
process node. For example, a user wants to insert an attribute describing the risk of executing
the respective process node. View update operation Insert Attribute(V,n.x,val) allows inserting
an attribute x to process node n. Furthermore, attribute value val is assigned to n.xz. Note that
such an attribute is not available for all process nodes of the same type (e.g., all activities), but
only for that specific node n the operation is applied to.

DeleteAttribute(V,n.xz). View update operation DeleteAttribute(V,n.z) deletes an attribute x
of process node n in process view V. In case of aggregated attributes (e.g., due to the aggregation
of activities), all associated attributes are deleted in the CPM as well.

7.3.6 Summary

This section has introduced view update operations for modifying control and data flow elements
of a process model. These operations may be applied to a process view and then be automat-
ically propagated to the CPM. However, regarding process attributes an automated update
propagation is not always possible. Furthermore, the impact of view update operations on the
correctness of the control and data flow correctness has been discussed. This is required to de-
termine for which view update operations additional checks regarding process model correctness
should be applied.

7.4 Migration Rules

After applying a view update operation to the corresponding CPM, all other process views
associated with this CPM must be updated accordingly, i.e., it must be guaranteed that all
process views created on this CPM are kept up-to-date and that users always interact with the
current version of the CPM and its related process views. Formally, after propagating a process
view update to the CPM, the creation sets of all other process views must be migrated to the
new CPM version (cf. Definition 6.6). Example 7.2 describes such a situation.
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Example 7.2 (Migrating Process Views)

Consider the credit application process as introduced in Example 6.1 as well as process views
V2 and V3 from Figure 7.18. V2 displays the activities of user role customer and aggregates
activities of other users. In turn, V3 is created for user role Manager and only shows the

activities of this specific user role, i.e., all other activities are reduced.

Consider the application of InsertSerial(V, XORsplity, a4,al4) as described in Example 7.1:

Activity Create File (i.e., alj) is inserted between gateway “Existing Customer?”

XORsplity) and activity Create Customer (i.e., a4) in the CPM. Subsequently, V2 and V3
have to be migrated to the new CPM version. Regarding V2, the branching in which al4 is
inserted, is aggregated. Accordingly, view creation operations in Opyo need to be adopted.
Otherwise, operation AggrSESE(CPM,{a2,a3,a4,a5,a6,a7}) € Opye would not be applied
to a SESE block and, hence, its precondition is not met anymore. Therefore, either the set
of nodes aggregated by AggrSESE must be extended (i.e., V2') or the aggregation operation

must be removed from Opys (ie., V2").

Regarding V'3, the activities surrounding al4 in CPM' are reduced, i.e., they are not relevant
for the Manager. Hence, al4 may be reduced as well (i.e., V3'). Alternatively, al4 may be

shown to the user when migrating process view V3 (i.e., process view V3').

Process View V2:

pv=(Aggr SESE( CPM { a2, a3, a4, a5, a6, a7}),
Aggr SESE( CPM { a8, a9, a10}),
Aggr SESE(CPM { all, al2, al3}))

Customer Inquiry e Customer
. P Decision PG
Inquiry Screening (Notificatior

& Customer &Bank &Bank &Bank

Process View V3:
ve=(RedActi vi ty(CPM x):
vxe{al, a2, a3, a4, a5, a6, a7, all, al2, al3})
a9

& Manager
Credit Decision?

CPM*:
e \ ZClrk
Customer -
?
Inquiry <@ Existing Customer?

&Customer

a7

M gr at © Clerk NFSFAEIA\ e

Choose
Rate
&Clerk

e . . .
IW[I nsertSerial (V, XORspliti, a4, ald)t Update?

Credit Decision?

al3

&Manager

&Manager

Process View V2"
P—> vz =(Aggr SESE(CPM , { a2, a3, al4, a4, a5, a6, a7}),
Adgregate?  aggr SESE(CPM , { a8, a9, a10}),
Aggr SESE(CPM , { all, al2, al3}) )

a2-a7.a14
Inquiry

Screening
&Bank

& Customer &Bank

Process View V3"

>va,}:<FédActi Vi ty(CPM x):
UCC? yxe{al, a2, a3, a4, a5, a6, a7, all, al2, al3, ald})

decli

a8

Review &Manager
O Credit Decision?

&Manager ald

accept

& Manager

Process View V2":
Fonp Pw=( g -adrad-as;
Show? Aggr SESE(CPM |, { a8, @9, a10}) ,
Aggr SESE( el {al1, a12, a1§}))
a. a

no

all-al3

Process View V3":

Qpva=(RedAct i vi ty(CPM x):
Vxe{al, a2, a3, a4, a5, a6, a7, all, al2, al3})

w?

& Manager
? O»<Credit Decision? Q> ‘

Review
Account
&Manager

& Manager

Figure 7.18: Migrating Process Views
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Example 7.2 reveals some challenges that arise when migrating process views to a new CPM
version. In particular, after applying a CPM it may be required for a process view to adapt their
operation sequence or to apply new view creation operations. For this purpose, we introduce
migration rules, which allow migrating creation sets of process views associated with an updated
CPM. In particular, these migration rules are configurable through parameters to control their
behaviour. For example, AggrComplMode = {AGGR, SHOW } specifies whether activity al4
in process view V2 (cf. Figure 7.18) shall be aggregated (i.e., V2’) or the respective aggregation
operation shall be removed from the operation sequence of process view V2 (i.e., V2”). Analo-
gous to view update operations, for each process view V', the parameters describing the migration
behaviour are maintained in parameter set PSSy of creation set C'Sy = (CPM, Opy, PSy). Con-
sequently, an individual migration behaviour may be configured for each process view.

In order to describe the influence of migration rules on operation sequences of process views,
Definition 7.3 describes the concatenation and subtraction of operation sequences.

Definition 7.3 (Concatenation,Subtraction)

Let Op; and Opy two operation sequences. Then:

The concatenation of Opy = (op1, .. .,o0p;) and Opy = (0pi+1, . ..,0pg) is defined as:
Op1 @ Opz := (0p1, . - ., 0Di, OPi41, - - - , OPk)

The subtraction of Op1 = (op1, . ..,opk) and Opy = (op;,0p;),1 < i < j < k is defined as:
Opl o Op2 = <0p17 <o 0Pi—1,0Pi41y -+, 0Pj—1,0P541,5-- -, Opk>

In the following eight migration rules are introduced: MR1-MR4 may be applied after inserting
process nodes to a CPM (cf. Section 7.4.1). Migration rules MR5 and MR6, in turn, may be
required when deleting process nodes in the CPM (cf. Section 7.4.2). Migration rule MR7 is
required when updating the data flow (cf. Section 7.4.3) and migration rule MR8 is required
when updating process attributes in the CPM (cf. Section 7.4.4). Figure 7.19 summarizes these
migration rules. Finally, Section 7.4.5 discusses the introduced migrations rules with respect to
their completeness.

CPM (updated)

R 2
Migration Rules
Control Flow Data Flow
Inserting Process Elements Deleting Process Elements _

| MR (Insertin Aggregation) || | MRS (Deleted Process Node)

| MR2 (Insert Affecting Aggregation) | MR6 (Deleted Branching) | Process Attributes

| MRS (Insertin Reduced PF)

MR (Insert Affecting Reduced PF) | MR8 (Deleted Attiibute) |

R 2 . 2 R 2

[ Process View V1| [ Process View V2| Process View Vn

Figure 7.19: Overview on Migration Rules
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7.4.1 Migration after Inserting Process Nodes

Inserting a process node in a process fragment, which is aggregated in a process view, requires
updating the creation set (cf. Example 7.2). For this purpose, migration rule MR1 is applied.

Let N. denote the set of process nodes added to the CPM by a view update operation. As
example, consider N, = {al4} in Figure 7.18. If the direct predecessors and successors of all
process nodes from N, are aggregated to the same abstracted node', migration rule MRI1 is
applied to migrate the process views to the new CPM version. In this context, two alternatives
exist: either NV, is included in the respective aggregation operation or the latter is removed from
the process view definition (i.e., Opy of creation set C'Sy = (CPM,Opy, PSy)). The latter
alternative shows all aggregated nodes as well as the inserted process nodes in the respective
process view. For each process view, this behaviour is controllable with parameter AggrCom-
plMode. 1f this parameter is set to SHOW, the respective aggregation operation is removed
from the creation set. In turn, if the parameter is set to AGGR (default), the node set of the
respective aggregation operation is extended with the process nodes in N.. In the latter case,
the user might be notified about the update within the aggregation (cf. Migration Rule MR1).

Migration Rule MR1 (Insert in Aggregation)
Let CPM = (N,D,NT,CE,EC,ET,DE,DET) be a process model and V' be a process
view with C'Sy = (CPM,Opy, PSy). Further, let N. C N be the node set inserted to
CPM.
Precondition:
dopy € Opy :
(opr = AggrSESE(CPM,N,) V op1 = AggrComplBranches(CPM, N,)) A
Ny D {pred(CPM, N.), succ(CPM,N.)} N (N, C N)

Postcondition:
AggrComplMode=SHOW: Opy := Opy © (op1)
AggrComplMode=AGGR: op; := AggrSESE(CPM, N, U N,)
(or op1 := AggrComplBranches(CPM, N, U N.) depending on type of op; )

Figure 7.20 illustrates the application of migration rule MR1. A user inserts activity X in
parallel to C in process view V1. Afterwards, process views V2 and V3 are migrated to the
new version of the CPM. Obviously, both process views require the migration of their creation
sets since both aggregate B, C, and D. When applying MR1 to operation sequence Opy o, the
aggregation operation is updated to also consider activity X. Note that for V2, parameter
AggrComplMode is set to AGGR. In turn, aggregation operation AggrSESE is removed from
Opys in V3 since AggrComplMode is set to SHOW . This results in dissolving the aggregation
in which the update occurred.

Similar to MR1, migration rule MR2 handles the case in which either the predecessor or suc-
cessor of nodes from N, is part of an aggregation. Similar to parameter AggrComplM ode,
AggrPartlyMode expresses whether the aggregation shall be expanded by process nodes in N,

!To be more precise, both are element of node set N, that has been aggregated by AggrSESE(CPM,N,) or
AggrComplBranches(CPM, N,)
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CPM: CPM":
(2] (o} = &) .' (D]

Update through

Aggr Conpl Mde=
Vi ew V1 SHOW
Pr2=( CP Qv < Q3v3 =
Aggr SESE l & Aggr SESE Aggr SESEI s
(ePM{B,C D)) (ePM{B,C D)) (CPM ,{B,C X D})) (—G:‘M-{-B—&D}-H
Process View V2: Process View V3: Process View V2" Process View V3"

L ERr  GEE (e

Figure 7.20: Migration Rule MR1

(i.e., AGGR) or the aggregation operation shall be removed (i.e., SHOW). As example consider
Figure 7.21. Activity X is inserted between A and B in the CPM. Subsequently, V2 and V'3
need to be migrated to the new version of C PM. Both process views aggregate activities A, B,
and C. Migration rule MR2 with parameter setting Aggr PartlyMode = AGGR is applied to V2,
which leads to the inclusion of X in view creation operation AggrSESE(CPM',{B,C, X, D}).
However, V3 applies migration rule MR2 with parameter setting Aggr PartlyMode = SHOW .
As a result, operation sequence Opy3 is not modified and X is shown in V3.

CPM: CPM":

(A p(ep{cp(lop = (8 pcP{o]

L,pda\;eevtvh\;lough Aggr Par t| yMode=

SHOWNV
Qo=( QJ Qv <( Qe <
Aggr SESE l y Aggr SBE Aggr SESEI s Aggr SESE
(ePM{B,C D})) (CPM{B,C D})) (CPM {B,C X D})) (CPM . {B,C D}))
no action required
Process View V2: Process View V3: Process View V2" Process View V3"

Figure 7.21: Migration Rule MR2

Note that migration rules MR1 and MR2 allow specifying a different behaviour if an update
happens completely within an aggregated process fragment (i.e., the predecessor and successor
of inserted process fragment are part of the same aggregation) or at the start/end of an ag-
gregated process fragment (i.e., migration rule MR2). In the following, migration rule MR2 is
introduced formally.
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Migration Rule MR2 (Insert Affecting Aggregation)
Let CPM = (N,D,NT,CE,EC,ET,DE, DET) be a process model and V' be a process
view with C'Sy = (CPM,Opy, PSy). Let N. C N be the node set inserted to CPM.
Precondition:
Jop1 € Opy :
(op1 = AggrSESE(CPM,N,) V op; = AggrComplBranches(CPM, N,)) A
(pred(CPM,N.) € N, V succ(CPM,N.) € N,) AN, C N

Postcondition:
AggrPartlyMode=SHOW: no action required
AggrPartlyMode=AGGR: op; := AggrSESE(CPM, N, U N,)
(or opy := AggrComplBranches(CPM, N,UN,) depending on op1)

Migration rules MR3 and MR4 deal with updates of CPM process fragments not present in a
process view.

Similar to the handling of aggregation operations, MR3 is applied if the predecessors as well
as successors of N, are removed due to the application of reduction operations. In this case,
parameter RedComplMode and its values (SHOW and RED (default)) determine whether N,
shall be shown or hidden in the respective process view. As example consider Figure 7.22: X
is inserted between B and C' in the CPM. B and C are neither contained in V2 nor in V3.
Since the predecessor and successor of activity X is reduced in process view V2, it might be
desired to reduce activity X as well. Therefore, migration rule MR3 adds view creation oper-
ation RedActivity(CPM’', X) to the operation sequence of process view V2, in case parameter
RedComplMode is set to RED.

CPM: CPM"

PPl = (A PE{c M)

Update through _
Process View V1 Redpart |y Mode=

RED SHOWNV
Qra=( Qva=( - Qs =(
RedAct i vi ty(CPM B l & RedActi vi ty(CPM B, I%dActivity(ODMQJ,vIZB) ,< l RedAct i vi ty(CPM , B),
RedActi vi ty(CPM Q) RedActi vity(CPM Q) ) RedActi vi ty(CPM , O , RedActi vi ty(CPM, )
RedAct i vi ty(CPM, X)) no action required
Process View V2: Process View V3: Process View V2" Process View V3"

Figure 7.22: Migration Rule MR3

In certain scenarios it is required to show an inserted activity X in a process view. To reflect
this, parameter RedComplMode must be set to SHOW (e.g., process view V3 in Figure 7.22).
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Migration Rule MR3 (Insert in Reduced Process Fragment)
Let CPM = (N,D,NT,CE,EC,ET,DE, DET) be a process model and V a process

view with C'Sy = (CPM,Opy,PSy). Let N. C N be the node set inserted to CPM.
Precondition:

Jop1, 0p2 € Opy :
op1 = RedActivity(CPM,pred(CPM,N.)) A
op2 = RedActivity(CPM, succ(CPM, N.))

Postcondition:
RedComplMode=SHOW: no action required
RedComplMode=RED: Opy := Opy & Opn, Opn = (0Pn,, - - -, 0Pn,,) With
opn, := RedActivity(CPM,n;), n; € N, Vi=1,...,k

Migration rule MR4 is applied when reducing either the predecessor or successor of node set
N.. Then, parameter RedPartlyMode determines whether N, is visible (i.e., SHOW) or reduced
(i.e., RED) in the respective process view.

Figure 7.23 illustrates the application of MR4. A user inserts activity X between B and C' in
process view V1. In turn, process views V2 and V3 reduce activity C, i.e., the successor of X
(i.e., C) is reduced, but not its predecessor.

CPM: CPM':

(e p{c (o] => (2P pER{c (o}
Update through

Process View V1 RedPart | y Mde=

RED SHOW

Pra=( Qva=( vz =( Pe =(
I%dActivity(ODMvén l \ Re\éigActivity(CPMC)) RedActi vity(CPM, O, ( y RedActi vity(CPM, O))
RedActi vity(CPM, X))

Process View V2: Process View V3: Process View V2'": Process View V3"

Figure 7.23: Migration Rule MR4

A reduction operation (i.e., to reduce X) is added to operation sequence Opy2 (since parame-
ter RedPartlyMode is set to RED). When parameter RedPartlyMode is set to SHOW , no
adaptation of Opy3 is required. Accordingly, X is visible to users interacting with V3.
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Migration Rule MR4 (Insert Affecting Reduced Process Fragment)
Let CPM = (N,D,NT,CE,EC,ET,DE, DET) be a process model and V' be a process
view described by CSy = (CPM,Opy,PSy). Further, let N. C N be the node set
inserted to CPM.
Precondition:
Jop1, op2 € Opy :
op1 = RedActivity(CPM, pred(CPM, N.)) V
op2 = RedActivity(CPM, succ(CPM, N.))

Postcondition:
RedPartlyMode=SHOW: no action required
RedPartlyMode=RED: Opy := Opy @ Opy, Opn = (0pn,; - - -, 0pp, ) With
opn, ‘= RedActivity(CPM,n;), ni € N, Vi=1,...,k

7.4.2 Migration after Deleting Process Nodes

CPM updates deleting process nodes have to migrated as well. Otherwise, view creation opera-
tions may be applied on process nodes not existing in the CPM anymore. As example consider
Figure 7.24. Amongst others, V2 reduces C and V'3 aggregates B, C, and D. However, activity
C is deleted in CPM. Accordingly, operation sequences of both process views need to be adapted.

CPM: CPM":

(A P P (e =

Update through
Process View V1

Pro=( Pre=( Oz =( Pz =(
RedActivity(CPMéz), l & Ag\;rSESE(CPM{B, C. D})) RedActivity(CPM ,vé), l & Ag\éBrSESE((PM,{B,&D}))
RedActi vity(CPM O, RedAeti-vi-tyH{-EPM-SF,
RedActi vi ty(CPM E) ) RedActi vity(CPM , E))

Process View V2: Process View V3: Process View V2" Process View V3"

Figure 7.24: Migration Rule MR5

Migration rule MR5 may be applied when a process node n is deleted in CPM. If n has been
reduced in a process view V, the respective reduction operation needs to be removed from the
corresponding operation sequence Opy in the creation set (cf. V2 in Figure 7.24). If n is affected
by an aggregation operation, this operation has to be adapted by removing n from the node set
N, to be aggregated (cf. V3 in Figure 7.24).

110



7.4 Migration Rules

Migration Rule MR5 (Deleted Process Node)
Let CPM = (N,D,NT,CE,EC,ET,DE, DET) be a process model and V' be a process
view with C'Sy = (CPM,Opy, PSy). Further, let n € N be the node deleted in CPM.
Precondition:
Jop1 € Opy :
(op1 = RedActivity(CPM,n) V opy = AggrSESE(CPM,N, U {n}) V
opy = AggrSESE(CPM,N,U{n})) A N, C N

Postcondition:
op1 Is reduction operation: Opy := Opy © (op1)
opy Is aggregation operation:
Opy = Opy S (op1)D(AggrSESE(CPM, N,)) (analogous for AggrComplBranches)

When applying view update operation DeleteBranching to a process view V', operations aggre-
gating multiple branches with AggrComplBranches have to be migrated. Therefore, MR6 may
be applied. Since the DeleteBranching operation removes split gateway gs and join gateway
gj from a branching and either deletes or inlines the remaining activities of its branches (cf.
Section 6.3.2), AggrComplBranches operations aggregating this branching have to removed in
operations sequence Opy of respective process views. In case of inlining remaining activities, Ag-
grComplBranches operation may be replaced by an AggrSESE operation aggregating the same
node set. However, this causes problems when the node set of AggrComplBranches is not a SESE
block after the inlining. Since this can not be guaranteed, AggrComplBranches is removed.

Migration Rule MR6 (Deleted Branching)
Let CPM = (N,D,NT,CE,EC,ET,DE, DET) be a process model and V' be a process
view with CSy = (CPM,Opy,PSy). Further, let gs,9; € N be the split and join
gateways of a branching deleted in CPM.
Precondition:
Jop1 € Opy :
op1 = AggrComplBranches(CPM, N.) A
N.C N A (9s,95) = MinimalSESE(CPM, N,)

Postcondition:
Opy := Opy © (op1)

7.4.3 Migration after Updating the Data Flow

Migrating process views after data flow updates must be considered as well. Inserting data
elements in the CPM, however, does not require any migration. As opposed to the insertion of
process nodes, no ordering relation between data elements exists. Hence, already aggregated or
reduced data elements are not affected by a newly inserted data element.

When deleting a data element, migration is required to remove view creation operations that
reduce or aggregate the data element from the operation sequence. Migration rule MR7 removes
respective operations from operation sequences to ensure that view creation operations do not
contradict with the corresponding CPM.
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Migration Rule MR7 (Deleted Data Element)

Let CPM = (N,D,NT,CE,EC,ET,DE, DET) be a process model and V' be a process

view with CSy = (CPM,Opy, PSy). Further, let d € D be the data element deleted in

CPM.

Precondition:

dopy € Opy :

(op1 = RedDataFElement(CPM,d) V opy = AggrDataElement(CPM, D, U {d})) A
D, CD

Postcondition:
op; is of type RedDataElement : Opy := Opy © {op1}
op1 is of type AggrDataFElement :
Opy := Opy & (op1) & (AggrDataElement(CPM, D,))

Finally, when inserting or deleting data edges in the CPM, the operation sequences of associated
process views need to be migrated. In particular, no view creation operations exist to aggregate
or reduce data edges (cf. Section 6.3). Note that data edges are implicitly aggregated or reduced
when aggregating or reducing process nodes or data elements. Hence, there is no need to migrate
process views when inserting or deleting data edges.

7.4.4 Migration after Updating Process Attributes

Analogous to the data flow, process attributes have no ordering relation among each other.
Hence, when inserting process attributes to the CPM no migration of associated process views
is required. Furthermore, updates of process attribute values require to update them in all as-
sociated process views as well. This can be accomplished by re-creating the process views not
requiring explicit migration rules.

However, deleting process attributes in the CPM requires the migration of associated process
views and their operation sequences. Migration rule MR8 removes aggregation and reduction
operations for process attributes in operation sequences after deleting attribute A.del in the
CPM. The behaviour is similar to MR5.

Migration Rule MR8 (Deleted Attribute)
Let CPM = (N,D,NT,CE,EC,ET,DE, DET) be a process model and V be a process
view with C'Sy = (CPM, Opy, PSy). Further, let A.del be a process attribute of process
node A € N, which is deleted in CPM.
Precondition:
Jop1 € Opy :
op1 = ReduceAttr(CPM, A.del) V opy = AggrAttr(CPM, AS U {A.del}, func)

Postcondition:

op1 Is of type ReduceAttr: Opy := Opy © (op1)
op; is of type AggrAttr:  Opy = Opy © (op1) ® (AggrAttr(CPM, AS, func))
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7.4.5 Summary

Migration rules MR1-MRS8 ensure that the creation set or—to be more precise—the operation
sequence of a process view will be migrated to the new CPM version after updating the CPM.
In particular, this becomes necessary to guarantee that the CPM does not contradict with op-
eration sequences, e.g., when reducing a process node not existing in the CPM anymore.

Obviously, not all migration rules have to be applied each time a view update operation is
performed. For example, when deleting a data element in the CPM, MR8 needs not to be
applied. When deleting a data element, in turn, MR7 is only required if RedDataFElement or
AggrDataFElement is present as creation operations in the operation sequence of a process view.

Table 7.6 describes the relation between specific view update operations and migration rules.
Further, it shows which migration rule has to be applied after performing a certain view update
operation. For example, when deleting an activity with view update operation DeleteActivity,
in the corresponding operation sequence, the view creation operations RedActivity, AggrSESE,
and AggrComplBranches may be affected. To be more precise, the deleted activity might have
been aggregated or reduced in the context of a process view creation. Hence, MR5 must be
applied to prevent that an operation sequence of a process view contradicts the CPM.

Affects View Creation Operation
£ 2
& g g5

Z = E = g £

2 n g < b < =

£ & S £ 5 5 | %

< @ ' a 2 E B

3 & B 3 & 3 &
Applying View ~ < < ~ < ~ <
Update Operation
InsertSerial MR3,MR4 | MR1,MR2 | MR1,MR2 v v v v
InsertParallel MR3,MR4 | MR1,MR2 | MR1,MR2 v v v v
InsertCond MR3,MR4 | MR1,MR2 | MR1,MR2 v v v v
InsertLoop MR3,MR4 | MR1,MR2 | MR1,MR2 v v v v
InsertBranch v v v v v v v
InsertSyncEdge 4 v v v v v v
DeleteActivity MR5 MRS5 MRS5 v v v 4
DeleteBranch v v v v v v v
DeleteSyncEdge v v v v v v v
DeleteBranching v v MR6 v v v 4
InsertDataElement v v v v v v v
InsertDataEdge v v v v - v v
ChangeDEType v v v v v v 4
DeleteDateElement v v v MR MR v v
DeleteDataEdge v v v v v v v
InsertAttribute v v v v v v v
ChangeAttribute v v v v v v v
DeleteAttribute v v v v v MR8 | MR8

v =not affected

Table 7.6: Relationship Between Migration Rules and View Creation Operations

After migrating all process views associated with the CPM, the process views are re-created. Ap-
plying view update operations to the CPM and re-creating the process views afterwards allows
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7 Changing Process Models Through Process View Updates

us to guarantee that all process views are up-to-date. Figure 7.25 shows an example of the inter-
action of view creation and view update operations, including refactoring and migration rules.
First, process views V1,V2, and V3 are created based on operation sequences Opy1, Opya, and
Opys. Afterwards, refactoring rules are applied to simplify the resulting process views through
purging of unnecessary control flow structures.

3 3 <

S e -

@

4 4 N =

l ‘ ’ Mrgration Rule MR4 Mgration Rule MRL Mgration Rile MR4 %

(RedPart | yMode=RED)  ( Aggr Conpl Mbde=AGER) (RedPart | yMode=SHOWN | 5

5|

3 3 3
Qui=( Qra=( Qre=( Qv =( vz =( Qe =(

RedActi vi ty(CPM A), | RedActivity(CPM D), | RedActivity(CPM D), RedActi vi ty(CPM , A), |RedActi vi ty(CPM, D), | RedActivity(CPM,D), | <

S | RedActivity(CPM B)) | Aggr SESE(CPM {B, G)) | RedActi vi ty(CPM B)) RedActi vi ty(CPM , B), |Aggr SESE(CPM , {B, X, G)) RedActi vi ty(CPM , B)) | &
*ais 3 RedAct i vﬂ( CPM, X)) &
=4 -‘
O @
E BXC A g
' S RS S T S S 5 SR S JuCa dFrt o
I | o Refactoring | ~ Refactoring | refactoring | | | W No Refactoring |  Refactoring | Refactoring [ |
o Rul e Rules RR1, RR2 Rules RR1, RR2 Rule Rules RRL, RR2 Rules RRIL, RR2 Pyl
g 3 &
| (o) :
© (o} C 151
g (] g
5 <>H <>H E

Process View V1 Process View V2 Process| /iew V3 Process View V1' Process View V2' Process View V3'

—_——
InsertSerial (V3,A C X
(InsertSerial Mde=LATE)

Figure 7.25: Interaction of View Creation and View Update Operations

Then, a user triggers an update by inserting activity X in V3, i.e., he applies view update op-
eration InsertSerial(V3,A,C, X). Parameter set PSy3 includes parameter InsertSerial Mode
set to LATFE, i.e., if ambiguities occur when propagating operation InsertSerial, the respective
activity will be inserted at the latest possible position in the CPM. Hence, X is inserted between
B and C in CPM. Afterwards, operation sets Opy 1, Opy2, and Opyg need to be migrated. In
particular, MR1 and MR4 has to be applied. Subsequently, process views are re-created based
on migrated operation sequences Opy 1/, Opyor, and Opyz. Finally, the application of refactor-
ing rules ensures compact process views.

Generally, re-creating of all process views after a CPM update is expensive, especially when
considering complex process models with a large number of associated process views. Therefore,
a number of optimization techniques exists. First, only those process views are re-created, which
are directly affected by an update. For example, V1 in Figure 7.25 will not change after inserting
activity X in the CPM. Second, when migrating the operation sequence of a process view, the
visualization component knows which parts of the process view has changed. Accordingly, only
those parts are re-created in the process view.
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7.5 Optimizing Process View Definitions

This section discusses maintenance issues. In particular, the creation set or—to be more
precise—the operation sequence of a process view needs to be maintained over time. Gener-
ally, multiple elementary view creation operations are applied to a CPM when constructing
a process view. Respective operations are stored in operation sequence Opy of creation set
CSy = (CPM,Opy, PSy). Figure 7.26 shows the application of Opy = (op1, op2) to a CPM.

CPM: Process View V:

ANDsplity N '. s ANDjoin,
-

e |

op1 Qov=(
op1=Aggr SESE(CPM { C, D, B}),
op2 op2=Aggr SESE( CPM { ANDspl i t 1, CDE, F, ANDj 0i n;}) )

Figure 7.26: Applying an Operations Sequence to a CPM

For example, view creation operation ops is defined based on the application of operation opq
on process view V', i.e., C, D, and E aggregated by op; are further aggregated by ops, including
nodes AN Dsplity, F, and AN Djoiny. This may result when a user first applies op; and then
ops. Therefore, the specific order in which elementary view creation operations are applied is
important to ensure for a proper creation of the respective process view.

Operation sequences containing view creation operations, which are applied on each other, have
drawbacks. First, creating the structure of a process view is inefficient. For example, in Fig-
ure 7.26, activities C, D, and FE are first aggregated and, subsequently, nodes AN Dsplit,, CDE, F,
and AN Djoin, are aggregated. Obviously, it would more efficient to aggregate all nodes at once.
As another drawback, applying a view update operation, which require to update an operation
sequence Opy (e.g., DeleteActivity), may affect multiple operations in Opy . Therefore, migra-
tion rules have to be applied to multiple view creation operations in an operation sequence.

Addressing these drawbacks require to optimize operation sequences, i.e., process view defini-
tions are optimized. Therefore, in the following a set of optimization rules are introduced, which
eliminate the dependencies between view creation operations in an operations sequence.

Optimization Rule OR1 (Aggregation on Aggregation). Two aggregation operations op; and ops
may be applied on top of each other. In this context, optimization rule OR1 may be used if
the node set to which ops is applied contains an aggregated node produced by op;. As example
consider Figure 7.27. Activities B and C are aggregated through view creation operation op;.
Subsequently, BC' and D is aggregated by operation ops. When applying rule OR1, operations
op1 and ops are removed and a new operation aggregating activities B, C, and D is added. From
a user perspective, the structure of the process view does not change.
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(2 pERE{ 0 (2 pED-EE{ 0 )

op:1=Aggr SESiO’M {B. Q) Opnew=Aggr SESE(CPM { B, C, D})

sy |

op,=Aggr SESE( CPM { BC, D})
8

v=(0p1, 0p2) Qv=(0Pnew)

Figure 7.27: Optimization Rule OR1: Aggregation on Aggregation

Optimization Rule OR1 (Aggregation on Aggregation)
Let CPM be a process model. Further, let Opy = (op1,0p2) be an operation sequence
to create process view V on CPM, ie., CPM = F, o, P RN P, =V with P, =
(N;, D;, NT;, CE;, EC;, ET;, DE;, DET;).
Precondition:
op1 = AggrSESE(Py, N') A opa = AggrSESE(P1,N") A
N'NCPMNode(P,,N"Y#£0 N NNC Ny AN N"C N

Postcondition:

Opy = Opy © (op1,0p2) © (OPnew)
OPnew = AggrSESE(Py, N'UCPMNode(Py,N"))

In case of view creation operation AggrComplBranches, the definition of the respective optimiza-
tion rule is analogous to OR1.

Optimization Rule OR2 (Aggregation on Reduction). If a process node is reduced and, subse-
quently, surrounding nodes are aggregated during a process view creation, the corresponding
view creation operations may be optimized as well. As example consider Figure 7.28. Activity
C is reduced by view creation operation op;. Afterwards, operation opo aggregates B and D.
This can be optimized by aggregating all activities at once. Again, the structure of the process
views does not change when applying the optimization rule Optimization Rule OR2. As a result,
in Figure 7.28 operations op; and ops are merged into a single aggregation operation (including
the reduced activity C).

opi=RedAct i vi ty(CPM O Oprew=AgQr SESE(CPM { B, C, D})
3

M@ 9 1

op,=Aggr SESE( CPM{B, D})

Qv=(0p1, 0p2) P v=(0pnew)

Figure 7.28: Optimization Rule OR2: Aggregation on Reduction
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Optimization Rule OR2 (Aggregation on Reduction)
Let CPM be a process model. Further, let Opy = (op1,0p2) be an operation sequence
to create process view V on CPM, i.e., CPM = Py — P p 2 Py =V with P, =
(N;, Di, NT;, CE;, EC;, ET;, DE;, DET,).
Precondition:
op1 = RedActivity(Py,n),n € No A
(opa = AggrSESE(P1, N')V opy = AggrComplBranches(Py, N')) A
pred(Py,n) € N' A succ(Py,n) € N N N' C Ny

Postcondition:
OPnew ‘= AggrSESE(Py, N' U{n}) // analogous for AggrComplBranches

OpV = OpV S (01717 01’2) @ <Opnew>

Optimization Rule OR3 (Reduction on Aggregation). As opposed to OR2, optimization rule
OR3 will be applied, if a node set is first aggregated and the aggregated node is reduced after-
wards. In particular, the aggregation operation is not required anymore. Figure 7.29 shows an
example aggregating B and C' by operation op;. Subsequently, ops reduces abstract activity BC'.

~(» @ 0 ) (o]
0p1=Aggr SESE( CPM{B ) OPrem=RedAct i Vi ty( CPM B)
Opree=RedAct i vi ty(CPM Q)

()@@ 4 |

op,=RedActi vi ty( CPM BC) 3
<L
v=(0op1, 0p2) Qv=(0Pnew1,0P newz)

Figure 7.29: Optimization Rule OR3: Reduction on Aggregation

Activities B and C are aggregated by operation op1, and the aggregated node BC' is reduced by
ops. Optimization rule OR3 removes the aggregation operation and adds a respective reduction
operation for each aggregated node.

Optimization Rule OR3 (Reduction on Aggregation)
Let CPM be a process model. Further, let Opy = (op1,0p2) be an operation sequence
to create process view V on CPM, ie., CPM = F, o, P RN P, =V with P, =
(NZ,DZ,NTZ,C’EZ,EC'“ET“DE@,DETZ).
Precondition:
(op1 = AggrSESE(Py, N') Vv AggrComplBranches(Py, N')) A
op2 = RedActivity(Pi,n) AN N' = CPMNode(P;,n) A N' C Ny

Postcondition:

OpN := (OPnys - - -, OPn,) With opy, == RedActivity(Py,n;), n, € N',Vie 1,...,k
Opy := Opy S (op1,0p2) ® Opn

117



7 Changing Process Models Through Process View Updates

Optimization rules are required in respect to data flow and process attributes as well. Simi-
lar to OR1, optimization rule OR4 is applied in case two aggregation operations aggregate an
overlapping set of CPM data elements (cf. Figure 7.30a). In turn, optimization rule OR5 is
applied if an aggregated process attribute is reduced by another view creation operation (cf.
Figure 7.30b). A formal definition of these optimization rules in provided in Appendix B.

2 d1 d2 d3 d1 d2 d3 ®) d1 d2 d1 2
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- opreve=RedDat aBl enent (CPM d2)
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Qv=(0p1, Op2) Qv=(0Pnew) Qpv=(0p1, Op2) QP v=(0P new,0P newz)

Figure 7.30: Optimization Rules OR4-OR7

Optimization rule OR4 is applied if a set of process attributes is aggregated by view creation
operation AggrAttr and, subsequently, the result of the latter is further aggregated (cf. Fig-
ure 7.30c). Note that process attributes aggregated by these operations must be assigned to the
same process node (e.g., A in Figure 7.30c). Finally, OR7 is applied if an aggregated process
attribute, i.e., the result of aggregating a set of process attributes by operation AggrAttr, is
reduced by applying view creation operation RedAttr. Figure 7.30c shows an example. A formal
definition of these optimization rules are provided in Appendix B.

By applying optimization rules, the dependencies between view creation operations captured in
the operation sequence Opy of a creation set C'Sy = (CPM,Opy, PSy) are removed. Hence,
the order in which view creation operations have to applied on CPM to create process model
V' is not required anymore, i.e., the operations are commutative. Therefore, view creation oper-
ations can be stored in a set Opy = {op1,...,op} as defined in Definition 7.4.
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Definition 7.4 (Process View with Operation Set)
Let CPM be a process model. Then: A process view V is represented through a creation set
CSV = (CPM, Opv,PSV) where:

e CPM = (N,D,NT,CE,EC,ET, DE, DET) is the process model based on which pro-
cess view V' is created,

e Opy = {op1,...,0p;} is a set of elementary view creation operations applied to CPM:
op; € OP. OP comprises all elementary view creation operations (cf. Section 6.3),

e PSy = (PSy,...,PS,,) is a tuple of parameters and corresponding parameter values
defined for a specific view.

Table 7.7 gives an overview of overlapping node (and attribute) sets that might occur due to
the consecutive application of view creation operations defined in an operations sequence. Fur-
thermore, it is shown which optimization rule removes the respective overlap. In some cases, an
overlapping node (or attribute) set does not occur. For example, two RedActivity operations
can not reduce the same process node in the same operations sequence. Furthermore, two view
creation operations addressing, for example, the control and data flow do not have overlapping
node sets as well.

View Creation Operation op2 overlaps. ..
I

>, as) g < .y

S = g ) g = .

2 19 g < = = B

g | = S 5 5 s | =

< 7z T g | g s | %

3 & b g & ki &
...operation opj. ~ < < ~ < ~ <
RedActivity v OR2 | OR2 v v v v
AgegrSESE OR3 | OR1 | OR1 v v v v
AggrComplBranches OR3 | OR1 | OR1 v v v 4
RedDataElement v v v v v v 4
AggrDataElements v v v OR5 | OR4 v v
ReduceAttr v v v v v v v
AggrAttr v v v v v OR7 | OR6

v'=no overlap

Table 7.7: Optimization Rules Removing View Creation Operations Overlaps

7.6 Related Work

Work related to process view updates can be categorized into process model update, process view
updates, and view updates in databases.

Process Model Updates. For defining and updating process models, various approaches and
process modeling languages exist, e.g., EPC [160], UML activity diagrams [161], WS-BPEL
[162], or workflow nets [163, 164]. Currently, BPMN constitutes the most established process
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modeling language [165]. These process modeling languages have in common that the complexity
of the created process models is high, which results in large efforts when updating the process
models. In addition, large process models may result in erroneous process models [19].

As opposed to imperative process modeling languages, declarative process modeling allows defin-
ing the behaviour of a business process based on a set of constraints [166, 167, 168, 169, 170, 171].
In general, declarative process models can be updated by inserting or deleting constraints. How-
ever, the more constraints a declarative process model has, the harder it is to understand [170]
and, hence, to maintain. A comparison between imperative and declarative process modeling
is provided in [172]. Furthermore, in [173] a process modeling language is introduced, which
focuses on the data flow, i.e., about the processing of data within a business process.

Workflow patterns comprise control and data flow patterns that need to be supported by process
modeling languages [174, 175]. [176] introduces Yet Another Workflow Language (YAWL), which
realizes all workflow patterns. However, it is not discussed whether non-technical users are able
to document business processes based on the patterns. In order to facilitate process modeling for
users various patterns are suggested in [177, 178]. Furthermore, in [116, 179] modeling guidelines
are introduced to ensure a high quality of resulting process models. In particular, such modeling
guidelines assist users in understanding and updating process models. None of the approaches
is able to reduce complexity of process models before performing updates on them.

Frequently used patterns for updating process models are presented in [158]. In [18, 180] a subset
of these patterns are used for refactoring process models in repositories, while preserving their
behaviour. Furthermore, [15] summarizes approaches enabling flexibility in PAISs. In particular,
[103] presents an approach for adapting well-structured process models without affecting their
correctness properties. Based on this, [39] presents concepts for optimizing process models over
time and migrating running processes to new model versions properly. Finally, [181] investigates
concurrent changes of running processes and their synchronization.

Recommendation systems and social networks based on process model repositories may be used
to support users in updating process models [182, 183]. Furthermore, social networks are used
to notify users about process model update. In order to enable non-technical users to change
process models, an easy to understand process modeling language targeting at business users
may be used [184]. However, these approaches do not support the abstraction of large process
models for the various domain experts.

An approach for updating process attributes and, in particular, labels of activities is introduced
by [185]. Furthermore, [122] presents an approach for automatically automatic labeling activities.

Process View Updates. Most process view approaches (cf. Section 6.6) do not support updat-
able process views. Few exceptions are provided by business I'T alignment approaches: [100, 186]
align technical workflows with business processes. This approach analyzes updates through be-
havioural profiles and propagates them to change regions of the corresponding technical model.
These regions indicate the process model region the change belongs to. An automated propaga-
tion of updates is not supported. Similarly, [23] describes a mapping model between a technical
workflow and a business process. This approach does not support an automated propagation of
updates. [187, 140, 188] are able to synchronize technical workflow descriptions with business
process models and to propagate relevant changes between them. However, all these approaches
are limited to business I'T alignment. In particular, they do not take multiple personalized pro-
cess views into account.
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7.6 Related Work

The view approach suggested by [144] is extended to update process views as well [189]. The
approach is limited to the control flow perspective. It does neither supports data flow nor pro-
cess attributes nor the migration of associated process views.

In the following, we introduce an example, which intends to demonstrate the effort required to
update process models contemporary. Figure 7.31 visualizes Example 6.1 in terms of S-BPM
[190, 148]. Assume user role manager wants to update his process model by inserting activity
Load Contract Template between activities Review Account and Create Contract (i.e., between
XORsplit Credit Decision? and activity a9 in Figure 7.3). In Figure 7.31, this update affects the
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Figure 7.31: Updating S-BPM Process Models

process models of several subjects (i.e., users). In particular, a message has to be sent from the
manager (i.e., Figure 7.31c) to the PAIS (i.e., Figure 7.31e) to trigger the latter to load the con-
tract template. Then, the contract template has to be sent back to the manager. Furthermore,
the superordinate communication diagram has to be adapted (i.e., Figure 7.31a). Coloured ele-
ments show updated process fragments. In particular, no automatic migration or propagation is
supported by S-BPM and, hence, such updates require a high effort by non-technical users and
might lead to wrong updates.
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7 Changing Process Models Through Process View Updates

View Updates in Databases. Database Management Systems (DBMS) provide two kinds of views:
read-only and updatable views [98, 191]. Read-only views must not be changed. In turn, up-
datable views are solely supported if the DBMS is able to determine an unambiguous mapping
between the view on one hand and the corresponding database table on the other, i.e., in case
of aggregated database columns an ambiguous mapping exists.

Other domains deal with similar issues. Concurrent engineering, for example, provides concepts
for maintaining various artifacts describing the same product from a different point of view
[192, 193]. In particular, it is stated that concurrent engineering increases the quality of the
resulting product, while decreasing development time.

The proView framework enables users to change business processes based on their views and
guarantees that other views of the CPM are adapted accordingly. None of the existing approaches
covers all these aspects or is based on rigid constraints not considering practical requirements.

7.7 Limitations

This chapter introduces operations to update process models (i.e., CPMs) based on process
views. Furthermore, rules are provided to migrate process views after updating the CPM. Fi-
nally, optimization rules are introduced to optimize process view definitions (i.e., creation sets).
In the following, limitations of the approach are discussed.

View update operations update single aspects of a process model, e.g., solely inserting an activity.
However, users may require a more convenient and advanced way to update process models and
process views, respectively. For example, users may want to insert an entire process fragment
to a process view or move a process fragment to another position within the process view. Such
more advanced update operations are covered by the change patterns desired in [158].

To resolve ambiguities when propagating view updates to the underlying CPM, parameters
for view update operations are introduced. For example, parameter InsertSerialMode defines
whether an activity shall be inserted at the earliest or latest possible position, or in parallel to
existing activities. Default values for parameter settings may be overwritten for each process view
and stored in the respective creation sets. However, to provide a more intelligent propagation
behaviour parameter settings must be defined each time a view update operation is applied.
Thus, it can be decided individually how to resolve an ambiguity based on, for example, the
definition of the respective process view.

Parameters can be used to define how process views shall be migrated to a new version of the
CPM after an update. Again, these parameters must be specified individually for each process
view. The migration must take view creation operations as well as the applied view update oper-
ation into account to provide a more intelligent migration behaviour. Consequently, parameter
settings need to be adjusted individually when migrating process views.

These limitations are addressed in Chapter 8, which introduces advanced view update operations
as well as a more advanced migration behaviour.
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7.8 Summary

Allowing multiple users to update a CPM based on their process views, requires a concept for
handling concurrent updates. Thereby, it must be guaranteed that an update is properly prop-
agated to the CPM and, subsequently, all process views are migrated. Otherwise, when dealing
with concurrent updates of different process views, these updates may influence each other. In
general, updates on process models are rather rare. Hence, an optimistic technique may be
applied to synchronize concurrent updates; as known from optimistic concurrency control in
databases [194, 194, 195]. Furthermore, in case of a conflict it is “cheap” to abort an update
instead of locking a process model for other users.

Another aspect is access control. To be more precise, a proper access control is required to
prevent non-authorized users to read, create, or update process views. However, existing research
on access control of PAISs does not take process views into account and must be extended to
address questions that arise when dealing with process views [196, 197, 198, 199, 200]. However,
initial research exist addressing access control in the context of process views [201, 202].

7.8 Summary

This chapter introduces operations for view-based updates of process models (i.e., CPMs), i.e.,
process abstractions not only serve visualization purposes, but also lift process updates up to a
higher semantical level. A set of view update operations enables users to update their process
view and to propagate the respective update to the related CPM representing a holistic view
on the business process. For this purpose, view update operations are introduced. A flexible
parameterization of these operations allows for the automated resolution of ambiguities when
propagating view changes to the CPM; i.e., the update propagation behaviour may be defined
for each process view. Finally, the view update operations not only address the control flow
perspective, but data flow and process attributes as well.

Migration rules to update all process views associated with an updated CPM are presented.
Similar to update propagation, for each process view, it can be decided how much information
about the update shall be displayed to the user. Finally, optimization rules have been introduced
to optimize the creation of process views by optimizing process view definitions.
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Advanced View Operations
and their Application

8.1 Introduction

Previous chapters introduced elementary operations for creating, updating, and migrating pro-
cess views. In particular, each of these operations covers a single perspective like control flow,
data flow, and process attributes (e.g., resources). However, creating and updating process views
solely based on elementary operations causes high user efforts. Therefore, high-level view cre-
ation operations combine elementary ones to provide a more convenient way to create process
views for users, e.g., “Show all my activities”. However, there exists no abstract view update
operations. In particular, respective operations should properly combine elementary operations
to provide users a more comfortable way for updating their process models. For example, a view
update operation may insert an entire process fragment comprising multiple activities into a
process view. Furthermore, such advanced view update operations can be semantically enriched.
For example, a user may want to insert an activity directly after another one. Semantically
enriching view update operations may provide information that allows resolving ambiguities
when propagating view updates to the CPM. Note that the automatic resolution of ambiguities
based on elementary view update operations might result in non-intended updates of the CPM.
In turn, knowing what the user intends to update enables a more appropriate propagation be-
haviour when facing ambiguities. Furthermore, when creating a process view based on high-level
view creation operations, additional information (e.g., about the criteria applied for filtering out
(i.e., reducing) activities) will be available to resolve ambiguities. Example 8.1 gives insights
into how advanced view update operations foster process view updates.
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8 Advanced View Operations and their Application

Example 8.1 (Advanced View Updates)

Consider the CPM describing a credit approval process (cf. Example 6.1). Furthermore,
assume that a related process view V1 is created with a high-level view creation operation,
which only shows activities of user role Clerk, while aggregating the ones of user role Manager
and reducing the ones of any other user role (cf. Figure 8.1).

Assume that activity Send Customer ID (i.e., activity al5) shall be added to V1 by inserting
it directly after activity Select Customer (i.e., activity a2). As opposed to Example 7.1, propa-
gating this update to the CPM does not result in any ambiguity. To be more precise, the infor-
mation that alb shall be inserted directly after a2 may be used to map the update to (elemen-
tary) view update operation InsertSerial(V1,a2, XORjoiny,al5) with InsertSerial Mode
being set to EARLY .
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Figure 8.1: Advanced Process View Update

Knowing the intended use of a process view, provides important information to decide whether
or not an update on a CPM is relevant for an associated process view. To be more precise, in
case high-level view creation operations are applied to create a process view, migrating process
views after an update of the CPM may be accomplished more appropriately. Example 8.2 gives
insights of advanced process view migration.
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8.1 Introduction

Example 8.2 (Advanced View Migration)
Consider the view update described in Example 8.1. When propagating it to the CPM,
associated process views V2 and V3 may have to be migrated as well.

V2 has been constructed based on a high-level view creation operation showing solely
the activities of user role Customer, while aggregating all other activities. Consequently,
the inserted activity alb is not relevant for V2, but is aggregated as well (cf. V2" in Figure 8.1).

V'3 has been constructed based on a high-level view creation operation reducing all activities
except the ones of user role Manager. This update is not relevant for V3. Accordingly, al5 is
reduced (cf. V3 in Figure 8.1).

Figure 8.2 illustrates the relation high-level view creation and advanced view update operations
have with elementary operations. In particular, high-level view creation operations are applied
on a CPM (cf. Figure 8.2a). These operations are then mapped to a sequence of elementary
view creation operations for deriving a process view (cf. Figure 8.2b). If a user updates V; by
applying an advanced view update operation (cf. Figure 8.2¢), the latter is mapped to a sequence
of elementary view update operations, which are then applied to the CPM (cf. Figure 8.2d). In
case of ambiguities, mapping from advanced to elementary view update operations is influenced
by high-level view creation operations used to create the respective process view.

Process View V; . Process View V,
Mte ‘wte Ae migrate
(c) Advanced View (b) Elementary View
Update Operations Create Operations
l ‘M influence
(d) Elementary View (a) High-level View < A
Update Operations Create Operations influence (e) Migration Rules
CPM

Figure 8.2: High-Level View Creation and Advanced Update and Migration

Following this, all process views are migrated from the old to the new CPM version (cf. Fig-
ure 8.2e). In this context, migration rules are affected by high-level view creation operations,
i.e., respective parameter settings of migration rules are set accordingly.

Section 8.2 introduces fundamentals on high-level view creation operations. Section 8.3 provides
advanced view update operations. Section 8.4 then introduces advanced view migrations. Sec-
tion 8.5 discusses advanced view updates and Section 8.6 summarizes the chapter.
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8 Advanced View Operations and their Application

8.2 Fundamentals of High-Level View Creation Operations

In the following, high-level view creation operations and their mapping to elementary operations
are presented. These operations are partially based on concepts presented in [32, 4].

Manually selecting the elementary view creation operations to be applied to a CPM may not be
convenient for end-users. In particular, this would require in-depth knowledge of these operations
as well as their semantics. Therefore, [32, 4] provides high-level view creation operations, which
hide as much complexity from the user as possible. In particular, these operations provide a
predicate-based way of selecting the process elements to be aggregated or reduced. For example,
operation “Show only activities of user (role) X” eliminates all activities not assigned to user
X. To provide such built-in intelligence, view creation operations are organized in four layers.
Figure 8.3 gives an overview of the layers and their interactions. In order to define a process
view on a CPM, operations from all layers may be applied in a combined way [32].

| Process View |

T )
Elementary Operations ==—

|Single-Aspect Operations INAGGTEGEIEGEI NREGIGECEINES > 5.0
|Mu|ti-Aspect Operations . Aggregate — Reduwe .

A
|High-level Operations * | AggrExecutedPart | ...
[

CPM

*do moj4 eleqg
do enqupy

Figure 8.3: Multi-Layer View Creation Operations

Elementary view creation operations are tailored for a specific ordering of the selected node set
in the CPM (cf. Chapter 6). Single-aspect view creation operations aggregate or reduce a set of
unconnected process nodes of the same type (e.g., activities or data elements). These operations
analyze the structure of CPM process nodes and select appropriate elementary operations based
on a given parameterization. In turn, multi-aspect view creation operations consider multiple
process perspectives (e.g., activities or data elements) and apply respective single-aspect oper-
ations for each of them. Finally, high-level operations abstract from aggregations or reductions
necessary to build a particular process view. Instead they provide a more intelligent way of
creating process views. Figure 8.4 shows an example illustrating the way high-level operation
ShowActivitiesOfUser(CPM, Manager) is translated into elementary view creation operations
that aggregate respective process fragments.

Mappings of single-aspect to elementary view creation operations are not always straightfor-
ward. For example, the node set {al,a2,a3,a4,ab,ab,a7,al3} (cf. Figure 8.4) is mapped to
elementary view creation operations. The given node set cannot be aggregated at once since
it neither constitutes a SESE block (i.e., AggrSESE can not be applied) nor does it form the
branches of a branching block (i.e., AggrComplBranches can not be applied). Accordingly, it is
required to either split up or extend the given node set in order to obtain SESE blocks. Regard-
ing the example from Figure 8.4, the node set to be aggregated is split up into two groups, i.e.,
{al,a2,a3,a4,ab,ab,a7} and {all,al2, al3}.
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Figure 8.4: Example of Applying a High-Level View Creation Operation

Details on the mapping of high-level view creation operations to elementary ones can be found
in [32]. In the following, high-level operations are introduced, which are used in the remaining
chapter. Table 8.1 gives an overview of high-level view creation operations.

High-Level Operation

Description

ViewByPredicate(CPM, p)

GroupByPredicate(CPM, p)
Subgraph(CPM, Ny)

SubgraphRange(CPM,ng,ne)
ShowActivitiesO fUser(CPM,u)

AggrEzecutedPart(i)
ShowExecutedPath(t)

ViewByRelevance(CPM, fr)

The process nodes of CPM, which satisfy predicate p, are kept in the process
view. All other nodes from C'PM are either reduced or aggregated depending on
parameter NoShowMode € {AGGR, RED}.

The process nodes of CPM, which satisfy predicated p, are selected and either
reduced or aggregated depending on parameter NoShowMode € {AGGR, RED}.
The process view correspond to the subgraph of CPM induced by node set Ng;
all other activities are reduced.

All activities not located between nodes ns and ne are reduced.

Activities of user (role) u are kept in the process view. All other activities are
reduced.

Activities of process instance i already executed or skipped are aggregated to an
abstract activity.

The activities executed by process instance i are kept in the process view. Skipped
and not yet executed activities are reduced.

Activities of CPM are selected depending on their relevance described by rele-
vance function f,.. Then those activities are either aggregated or reduced in the
resulting process view depending on parameter NoShowMode € {AGGR, RED}.

Table 8.1: Overview of High-Level View Creation Operations

A process view created with high-level view creation operation View By Predicate(CPM, p) only
depicts those activities of CPM that satisfy predicate p. For example, when applying operation
ViewByPredicate(CPM,User = Manager) to process model CPM in Figure 8.5, the result-
ing view only comprises activities whose assigned user role corresponds to Manager. Other
activities not matching with predicate p are either reduced (i.e., parameter NoShowM ode is set
to RED) or aggregated (i.e., parameter NoShowMode is set to AGGR).
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8 Advanced View Operations and their Application

As opposed to operation ViewByPredicate, GroupByPredicate(CPM,p) selects those activi-
ties of process model CPM, which fulfill predicate p and either aggregates or reduces them in
the resulting process view. Figure 8.5 depicts the process view resulting from the application
of operation GroupByPredicate(CPM,p) with predicate p = [User = Manager]. Similarly,
parameter NoShowMode € {AGGR, RED} specifies whether or not selected activities shall be

aggregated or reduced in the resulting process view.
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Figure 8.5: View Creation Operations ViewByPredicate and GroupByPredicate

High-level view creation operation Subgraph(CPM, N) shows the subgraph of C PM induced
by node set Ny (cf. Table 8.1). Applying this operation, the user is able to select those activities
relevant to him. Similarly, SubgraphRange(CPM,ng,n.) shows the subgraph between first
node ng and last node n.. If nodes ngs and n. are not the first and last node of a SESE block, a

minimal SESE block is determined (cf. Definition 6.2).

Based on these high-level view creation operations users may create process views in a more

convenient way compared to elementary view creation operations.
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8.3 Advanced View Updates

8.3 Advanced View Updates

Applying elementary view update operations, which only modify single aspects of a process
view and its corresponding CPM, may be too fine-grained requiring in-depth knowledge by
users about elementary view update operations. Advanced view update operations shall enable a
more abstract way to update process views. These operations either combine a set of elementary
view update operations (e.g., to insert a process fragment) or provide a more intelligent way to
update a process view (e.g., insert a node directly after another one).

Advanced view update operations address two limitations of elementary ones. First, user may
require a more convenient way to update process views. To achieve this, an advanced view
update operation should combine elementary ones. Figure 8.6 provides an example: activity
Call Customer shall be moved to another position in process view V by applying advanced view
update operation MoveActivity. The latter deletes the respective activity (i.e., Delete Activity)
and re-inserts it at the desired new position (i.e., InsertActivity).
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Figure 8.6: Advanced View Update Operations

Another limitation of elementary view update operations concerns ambiguities when propagat-
ing view updates to the CPM. Parameters are used to resolve such ambiguities and to enable
automatic propagation of updates to the CPM. However, semantically enriched view update
operations may be used to resolve such ambiguities.

In certain situations, a user may want to resolve such ambiguities himself. In Figure 8.7, for
example, a user wants to insert activity Check Credit Risk (i.e., activity al4) in process view V1.
Since the activity shall be inserted in a process fragment, which is reduced, an ambiguity occurs.
To resolve the latter, the reduced process fragment is shown to the user who then decides on
the desired insert position.
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Figure 8.7: Semi-Automatic Propagation of View Changes

Obviously, such a semi-automatic propagation requires a minimum of process modeling knowl-
edge to be able to select the desired insert position. Depending of the process modeling knowledge
of the user, it might be more adequate to hand the decision over to a process owner or a ded-
icated process designer. However, to resolve ambiguities automatically, advanced view update
operations may provide helpful information to resolve such ambiguities. In Figure 8.6, for ex-
ample, the ambiguity that occurs when inserting activity Check Credit Risk can be resolved by
applying operation InsertActivityAfter. Note taht high-level view creation operations provide
additional information for resolving ambiguities. For example, if a process view only shows the
activities of a particular user, inserting an activity in a process fragment assigned to other users
will not be adequate.

In the following, we discuss how high-level view creation operations contribute to improve the
propagation of updates on a process view to the corresponding CPM (cf. Section 8.3.1). Sec-
tion 8.3.2 provides a set of advanced view update operations. Finally, Section 8.3.3 evaluates
the completeness of view update operations.

8.3.1 Influence of High-Level Operations on Update Propagation

The propagation of a view update to the CPM may result in ambiguities regarding the exact
update position (i.e., the position in the CPM to which the update is applied to). To be able
to automatically resolve ambiguities for elementary view update operations, parameters (e.g.,
InsertSerialMode) are used (cf. Section 7.4). As a drawback, however, these parameters only
consider structural aspects of an update (e.g., to insert an activity at the earliest or latest pos-
sible position), but does not take any other information into account to resolve ambiguities. An
automated resolution of ambiguities based on the parameter value set for elementary operations
may lead to an undesired update position in the CPM.
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8.3 Advanced View Updates

In order to provide a more precise way for propagating view updates to the CPM, the meaning
of an update and its context need to be taken into account as well. Thereby, precise refers to
how close the actual update position in the CPM to the intended position by the user is.

A more precise propagation behaviour may be achieved by utilizing high-level view creation
operations, i.e., utilizing the information on how a process view is constructed. In addition,
in certain situations, high-level view creation operations need to be adapted after performing
an update, e.g., by reducing an inserted activity being not relevant for the respective process
view. Figure 8.8 shows an example of how high-level view creation operations allow resolving
ambiguities.
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Figure 8.8: Update Propagation based on High-Level View Creation Operations

In process view V1, activity Check Credit Risk is inserted between StartFlow node and activity
Review Account. Propagating this update to the CPM results in an ambiguity regarding the
insert position (i.e., somewhere between the two nodes). However, since V'1 is created by apply-
ing operation SubgraphRange (cf. Section 8.2), it is more likely that inserted activity al4 shall
be positioned at the beginning of the selected range (i.e., between nodes a8 and XORjoing).
Hence, al4 is inserted directly before a8. Furthermore, a8 will not be shown in the process
view, since high-level view creation operation SubgraphRange(CPM,a8, XORjoinz) reduces
it. Hence, the view creation operation SubgraphRange must be adapted in order to show the
newly inserted activity (i.e., SubgraphRange(CPM,al4, XORjoiny)).

8.3.2 Advanced View Update Operations

Advanced view update operations combine a set of elementary view update operations to pro-
vide a more convenient way for updating a process view and CPM respectively. Furthermore,
advanced view update operations may be categorized into two categories: Category AU1 (CPM
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8 Advanced View Operations and their Application

Update) groups operations only affecting the structure of the CPM and process views respec-
tively (cf. Figure 8.9a). By contrast, operations belonging to category AU2 (CPM-CS Update)
affect both the CPM and the creation set C'S of the process view on which the update is applied
to (cf. Figure 8.9b). Note that the update of creation set C'S is performed by the update oper-
ation itself, but is not result of any view creation operations (cf. Section 8.3.1) or migration rules.
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Figure 8.9: Categories of Advanced View Update Operations

Category AUI (CPM Update). Operation InsertActivityAfter(V, nnew,n) constitutes an ad-
vanced view update operation belonging to category AUI (CPM Update). It inserts activity
Nnew directly after process node n in process view V. Therefore, operation Insert ActivityAfter
is mapped to elementary view update operation InsertActivity(V,n, succ(V,n)) with parameter
setting InsertSerialMode = FARLY , i.e., it is inserted between n and its direct successor in
the CPM (cf. Figure 8.6). Similar to InsertActivityAfter, InsertActivityBefore(V, npew,n)
inserts an activity npe, directly before n in process view V.

Operation InsertProcessFragment(V, P,ni,ny) inserts a SESE fragment P into process view
V between nodes n1 and ne of V. The operation is split up into a sequence of elementary view
update operations (op1, ..., opx) inserting the nodes of P stepwise.

Note that InsertProcessFragment corresponds to process change pattern AP1 (Insert Process
Fragment) as described in [158] and formally specified in [180]. As opposed to AP1, however,
operation InsertProcessFragment not only affects the control flow perspective, but data flow
and process attributes as well. Figure 8.10 shows an example of inserting a process fragment P
into process view V. Three elementary view update operations are required. Note that these
operations are able to deal with ambiguities when propagating the change to the CPM due to
its mapping to elementary update operations.

View update operation Delete ProcessFragment(V, N') deletes the SESE block induced by node
set N’ in process view V/, i.e., nodes contained in set N’ and respective edges are deleted. Note
that this operation corresponds to change pattern AP2 (Delete Process Fragment) [158, 180)].

View update operation ReplaceProcessFragment(V, P, N'), in turn, replaces the SESE block
induced by node set N’ with process fragment P (i.e., SESE block) in V. To be more precise,
N’ is removed and the nodes from P, together with their precedence relations, are inserted in V'
and corresponding CPM. Figure 8.11 exemplarily shows the application of this operation. Note
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Figure 8.10: Advanced View Update Operation: InsertProcessFragment

that ReplaceProcessFragment(V, P, N') corresponds to change pattern AP4 (Replace Process
Fragment) [158, 180].
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Figure 8.11: Advanced View Update Operation: ReplaceProcessFragment

P Process View V'

As illustrated in Figure 8.6, view update operation MoveProcessFragment(V, N, ny,ny) moves
the SESE block induced by node set N’ to the position between process nodes n; and ng. Note
that this operation can be also realized by the combined application of view update operations
DeleteProcessFragment and Insert ProcessFragment. Furthermore, MoveProcessFragment
corresponds to change pattern AP3 (Move Process Fragment) as described in [158].

Table 8.2 summarizes the advanced view update operations from category AUI (CPM Update).

Category AU2 (CPM-CS Update). Compared to operations provided by category AU1 (CPM
Update), operations of category AU2 (CPM-CS Update) modify the CPM as well as the cre-
ation set of the process view on which the update is applied to. Figure 8.12 shows an example
of inserting a business object d1d2 (i.e., an aggregation of elementary data elements d1 and d2)
in process view V. Data elements d1 and d2 are inserted to the CPM together with related data
edges by applying the respective elementary view update operations. Afterwards, operation set
Opy of creation set C'Sy is extended by view creation operation AggrDataFElement aggregating
elementary data elements d1 and d2 to business object d1d2.
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8 Advanced View Operations and their Application

Advanced View Update Operation | Description

InsertActivityAfter(V, npew,n) Inserts activity nnew directly after activity n in process view V.
InsertActivityBe fore(V, nnew,n) Inserts activity nnew directly before activity n in process view V.
InsertProcessFragment(V, P,ni,n2) Inserts process fragment P into process view V between nodes ni and na.
DeleteProcessFragment(V, N') Deletes the SESE block induced by node set N’ in process view V.
Replace ProcessFragment(V, P,N") Replaces the SESE block induced by node set N’ with process fragment P.

MoveProcessFragment(V, N',ni,n2) Moves the SESE block induced by node set N’ to its new position between
nodes n1 and na in process view V.

Table 8.2: Overview of Advanced View Update Operations of Category AU1 (CPM Update)
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=
Aggr SESE(CPM { B, C}) }

] =

Elementary View Update Operations I nsertBusi ness (hj ect
InsertDat aBl ement (V, d1, (A dl1),a ways) V. d1d2={d1. d2 did2 |
I nsertDat aBl ement (V,d2, (A, d2), a ways) v {d1. dz. (A ) alvays)

Elementary View Creation Operation
Aggr Dat aEl ement (CPM , { d1, d2})

Process View V*:

CPM*: Qv =

Aggr SESE(CPM , {B, G4) ,
Aggr Dat aEl ement

(CPM, {d1,d2})}

Figure 8.12: Advanced View Update Operation: InsertBusinessObject

View update operation InsertSubProcess(V, P,n) inserts a sub-process model P in process view
V by refining activity n. Accordingly, activity n is deleted in the CPM and P is inserted instead.
Afterwards, the creation set of process view V is extended with a view creation operation that
aggregates all nodes of P. Hence, there is no visible difference for the user of process view V
(cf. Section 6.5). Moreover, other process views may display the inserted nodes.

View update operation Locallnsert(V,op) enables a user to apply an insert operation op €
{InsertSerial, InsertParallel, InsertConditional, ...} solely to his process view V, i.e., all
other process views based on the same CPM reduce the inserted nodes. Accordingly, for process
view V; with C'S; = (CPM, Op;, PS;) the set of view creation operations Op; is extended with
a reduction operation hiding the update performed by op.

Table 8.3 summarizes advanced view update operations from category AU2 (CPM-CS Update).

The application of advanced view update operations of both categories to the CPM must not be
interrupted. To be more precise, elementary view update operations representing the advanced
update must be executed as a transaction. This is especially required, if multiple users interact
and update a CPM based on their views (cf. Section 7.8).
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Advanced View Update Operation | Description

InsertBusinessObject(V, D', de, det) Inserts a business object represented by set D’ = {d1,...,dn} to
process view V. Furthermore, data edge de connecting the business
object to the nodes of V' is inserted with type det.
InsertSubProcess(V, P,n) Inserts a sub-process model P refining activity n of process view V.
LocalInsert(V, op) Applies insert operation op to process view V. Inserted nodes are
hidden in all process views associated to the same CPM except pro-
cess view V' by inserting respective reduction operations.

Table 8.3: Overview of Advanced View Update Operations of Category AU2 (CPM-CS Update)

8.3.3 Expressiveness of View Update Operations

This section evaluates the expressiveness of view update operations. We compare the set of view
update operations with process change patterns as introduced in [158, 180]. Change patterns
describe frequently used updates on process models. In particular, change patterns were em-
pirically evaluated [158]. Table 8.4 summarizes change patterns as well as related view update
operations. In particular, a change pattern may be expressed by one advanced view update
operation or by multiple elementary operations.

Change patterns API (Insert Process Fragment), AP2 (Delete Process Fragment), AP3 (Move
Process Fragment), and APJ (Replace Process Fragment) can be directly realized based on ad-
vanced view update operations (cf. Table 8.4). These patterns may also be carried out by a set
of elementary view update operations inserting or deleting process nodes. Change pattern AP5
(Swap Process Fragment) swaps two process fragments. It is not directly supported by an ad-
vanced view update operation, but can be realized by applying operation MoveProcessFragment
once or twice (depending on whether the process fragments succeed each other).

Change pattern AP6 (Extract Sub Process) extracts a process fragment and transforms it to a
sub-process. By contrast, change pattern AP7 (Inline Sub Process) inlines a sub-process. These
patterns can be simulated by adding or deleting operations, which aggregate the respective pro-
cess fragment to the view definition, i.e., the underlying CPM needs not be changed.
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8 Advanced View Operations and their Application

Change Pattern View Update Operation
Advanced Elementary
AP1 (Insert Process Fragment) InsertProcessFragment Insert{Serial, Parallel, Conditional, Loop,
DataElement, DataEdge}
AP2 (Delete Process Fragment) DeleteProcessFragment DeleteActivity, DeleteDataElement
AP3 (Move Process Fragment) MoveProcessFragment Insert and Delete Operations
AP4 (Replace Process Fragment) ReplaceProcessFragment Insert and Delete Operations
AP5 (Swap Process Fragment) 1-2x MoveProcessFragment Insert and Delete Operations
APG6 (Extract Sub Process) View Creation Op: AggrSESE, | -
AggrComplBranches
AP7 (Inline Sub Process) Delete View Creation Op: Ag- | -
grSESE, AggrComplBranches
AP8 (Embed PF in Loop) - InsertLoop
AP9 (Parallelize Activity) - InsertParallel
AP10 (Embed PF in Cond. Br.) - InsertConditional
AP11 (Add Ctrl Dependency) - InsertSyncEdge
AP12 (Remove Ctrl Dependency) | - DeleteSyncEdge
AP13 (Update Condition) - ChangeAttribute
AP14 (Copy Process Fragment) InsertProcessFragment Insert{Serial, Parallel, Conditional, Loop,
DataElement, DataEdge}

Table 8.4: Relation Between Change Patterns and View Update Operations

Change pattern AP8 (Embed Process Fragment in Loop) embeds a process fragment in a loop.
This pattern is not supported by an advanced view update pattern, but by elementary view up-
date operation InsertLoop. The latter inserts a loop surrounding a SESE block. Change patterns
AP9 (Parallelize Activity) and AP10 (Embed Process Fragment in Conditional Branch), which
embed activities in an AND or XOR branching, can be realized like pattern AP8. Optionally, a
move operation is required to move an existing process fragment to the newly inserted branching.

Change patterns AP11 (Add Control Dependency)/AP12 (Remove Control Dependency) insert
and remove control dependencies in a process model. In particular, AP11 is used to synchronize
the execution of activities from parallel branches. In our framework, this pattern can be realized
by elementary view update operations InsertSyncEdge and DeleteSyncFEdge.

Change pattern AP13 (Update Condition) updates the branching condition of an XOR, branch.
For this purpose, the elementary view update operation ChangeAttribute may be applied to
update the respective branching condition. Change pattern AP14 (Copy Process Fragment)
copies an existing process fragment to a new position in the process model. To simulate this
change, the advanced view update operation InsertProcessFragment may be applied referring to
an existing process fragment as parameter. Alternatively, elementary view update operations
inserting process nodes may be applied.

The comparison of view update operations and change patterns shows that most of the change
patterns are directly supported. Furthermore, some of them (e.g., AP5 (Swap Process Frag-
ment)) can be realized by combining multiple advanced or elementary view update operations.
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8.4 Advanced Process View Migration

Information related to applied high-level view creation operations and advanced view update
operations can be used to automatically decide whether a CPM update is relevant for a given
process view, e.g., inserted nodes are shown, reduced, or aggregated. Subsequently, improve-
ments based on the application of advanced view update operations are presented.

Presence of high-level view creation operations. High-level view creation operations may provide
information whether an inserted process node shall be shown, reduced, or aggregated in a pro-
cess view to be migrated.

Consider the example from Figure 8.14. Process view V1 is created based on elementary view
creation operation RedActivity, whereas V2 is based on high-level view creation operation
ShowActivitiesO fU ser. When inserting activity al4 between AN Djoin; gateway and activity
a8 in the CPM, both process views (i.e., V'1,V2) need to be migrated to the new CPM version
by applying migration rule MR4. The latter decides whether a14 shall be shown in respective
process views. Note that the process fragment preceding al4 has been reduced in both pro-
cess views. In this example, parameter RedPartlyMode of migration rule MR4 is set RED,
i.e., inserted activities are reduced. Hence, view creation operation RedActivity(CPM,al4) is
added to the respective operation set of V1. By contrast, for V2 we know that it shall only
show activities of user role Manager. Hence, parameter RedPartlyM ode is automatically set to
SHOW for this migration, i.e., al4 is shown in V2 since al4 is assigned to user role Manager.
If the information of the high-level view creation operation had not been used, migration rule
MR4 would have added operation RedActivity(CPM,al4) to the operation set of V2.

al4
CPM
&Manager
a2 a3 a6 a9 ail
Select Fetch l
al Customer |~ | Database a8

&Clerk SPAIS

Customer
®

&Customer

a4
Create

Customer

&Clerk

ab
Update
Database
&PAIS &Clerk ‘ &Manager &PAIS

&Manager
ANDjoin4

Migration Rule MR4

RedPartlyMode=RED
Process View V1: Process View V2:
RedAct i vi t y( CPM x) l——[ShowN:ti vitiesCf User (CPM Manager )
vxe{al, ..a7, all, ...al3, al4}

‘ RedPartlyMode=SHOW ‘

al4
— @l -

&Manager

a8 a8
Review Review
Account Account ® 10
a

&Manager & Manager

Create
Contract Contract

&Manager &Manager

Statement,
A ©Manager X
® &
al0
Figure 8.14: Advanced View Migration: ShowActivitiesOfUser

Another example is illustrated in Figure 8.15. Information about high-level view creation oper-
ations of the process view, which shall be migrated, is used to influence migration behaviour as
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8 Advanced View Operations and their Application

well as about view creation operations of the process view, which triggers the update. V1 is cre-
ated by applying operation SubgraphRange(CPM, a8, al3), whereas V2 applies high-level view
creation operation SubgraphRange(CPM, a8, XORjoin). Both process views select a range
in the CPM with the same first node and differ in their last node. Then, activity al4 is in-
serted between nodes StartFlow and a8. This update is propagated to CPM (with parameter
setting InsertSerialMode = LATE). When migrating V2 to the new CPM version the in-
formation about how V1 has been constructed may be used to decide whether this update is
relevant for V2. In Figure 8.15, both process views apply the same high-level view creation
operation having overlapping ranges. Hence, it is more likely that the update is relevant for V2
as well. Accordingly, view creation SubgraphRange is modified in order to show activity al4
(i.e., SubgraphRange(CPM,ald, XORjoin)).
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Figure 8.15: Advanced View Migration: SubgraphRange

Presence of advanced view update operations. In the following, the migration behaviour is dis-
cussed after a CPM update performed by advanced view update operations.

Consider Figure 8.16. Regarding V'1, activity al4 is inserted through advanced update operation
Locallnsert. In turn, this leads to the reduction of the inserted node in all associated process
view except V1. Accordingly, the operation set of V2 is extended with view creation operation
RedActivity(CPM,al4).

A more sophisticated example is shown in Figure 8.17. Activity al4 is inserted directly before
a8 in process view V1 (cf. Figure 8.17). When migrating process view V2 to the new CPM
version, this information can be used to determine whether a14 shall be shown in V2. Since the
user inserts al4 directly before a8, both activities may belong together. Hence, it is more likely
that al14 is relevant for V2, i.e., migration parameter RedPartlyM ode shall be set to parameter
value SHOW.
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This advanced view migration behaviour needs to be specified in further advanced migration
rules. However, these rules are highly dependent on advanced view update and high-level view
creation operations, i.e., these rules rely on the presence (or absence) of individual operations.

8.5 Discussion

The introduced high-level view creation and advanced view update operations improve the prop-
agation and migration behaviour of updates. In particular, exploiting the information on how
the process view triggering an update or the process views to be migrated are constructed,
(i.e., by which high-level view creation operations) allows for a more precise propagation and
migration behaviour. Furthermore, if updates are triggered through advanced view update op-
erations, even more information becomes available for providing a precise propagation behaviour.

Figure 8.18 shows the dimensions of view updates and migrations. The axes represent the pre-
cision regarding update propagation and view migration. If elementary view update operations
and migration rules are applied, a rudimentary user support can be provided with a low update
and migration precision.
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High-Level VC
Elementary Rudimentary Improved Update
Migration
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Figure 8.18: Propagation and Migration Dimensions

An improved migration behaviour can be provided, if process views are created with high-level
view creation operations. In turn, an improved view update and migration behaviour can be
provided, if advanced view update and/or high-level view creation operations are used. In case
the process views to be migrated are built with high-level view creations, a good user support
can be provided. Finally, an optimal precision regarding view update and migration can be
provided if all process views are created by high-level view creation operations and a change is
triggered through advanced update operations.

The highest precision regarding view update and migration can be achieved, if the user triggers
updates and migrates process views manually (i.e., as-is situation). In this case, no ambiguities
occur and the user decides on his own whether or not he wants to migrate a process view after an
update in the CPM. This behaviour may be non-suitable for end-users, but for a process designer.
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8.6 Summary

Although advanced view update operations and advanced migration rules are based on corre-
sponding elementary operations and rules, it is not straightforward to implement them in a
PAIS. Particularly, they have to take the circumstances (i.e., the structure of the CPM as well
as associated process views) into account.

8.6 Summary

This chapter addresses the limitations of the view update operations and migration rules intro-
duced in Chapter 7. First, high-level view creation operations are presented, which allow defining
process views in a more convenient way compared to elementary view creation operations. Then,
improvements of view update propagation are discussed by utilizing the semantics of advanced
view update operations as well as high-level view creation operations. Finally, insights into
improvements regarding view migrations are provided. Such advanced update propagation and
migration may improve applicability of a framework providing process abstractions based on
process views.
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Process Representations

9.1 Introduction

The visualization of process models constitutes an integral part of any process modeling tool.
Usually, process models are visually represented as process diagrams, e.g., using graphical lan-
guages like BPMN [87], EPC [53], or Workflow Nets [203]. In turn, respective process modeling
languages were designed semantics and expressiveness in mind [204], whereas graphic design
conventions and guidelines have not been considered yet [204, 205, 206]. However, the latter are
required to reduce model complexity as well as to increase model comprehensibility [54].

Using process views to abstract process models constitutes one building block to foster process
model comprehensibility by end-users. Another one concerns the visualization of the process
models, denoted as process representation in the following, which should address the specific
needs of end-users (cf. Requirement REQ-6). In particular, the large number of modeling ele-
ments in languages like BPMN 2.0 causes high efforts for users when comprehending or modeling
process models. Exactly for this reason, in practice, often only a subset of the available modeling
elements is used [101, 207]. Another issue affecting process model comprehensibility concern the
degree of connectivity (i.e., number of control edges). Several studies have shown that process
models with a low degree of connectivity are easier to comprehend than models with a high
degree of connectivity [208, 209, 210].

Before any process modeling initiative, a process modeling language has to be chosen. Re-
placing this language at a later stage, is hardly supported by contemporary process modeling
tools (cf. Chapter 4). Particularly, the same kind of process model visualization is provided to
all users, independent from their needs and vocational background. Since each process model-
ing language may be used in different application domains [211], process modeling tools should
allow dynamically switching between different process representations (cf. Requirement REQ-8).

The chosen representation of process models is crucial for enabling end-user process model up-
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dates as well (cf. Requirement REQ-7). Thus, users can work with the same process visualization
to view and update process models without the need for switching their context (i.e., process
modeling language). It may be not suitable for users to use a different process modeling language
to perform process updates. Furthermore, guidance shall be provided to support non-technical
users to create correct process models and achieve a high process model quality [184].

This chapter introduces alternative process representations for CPMs and process views respec-
tively. Since process views themselves are represented as process models (cf. Definition 6.1), any
process representation may be used for visualizing process views as well. Hence, this chapter
needs not distinguish between CPM and related process views. A process representation aims
to visualize a process model in an easy-to-understand representation. In particular, it should be
possible to dynamically switch between the various process representations without the need of
manually transforming process models. In the proView framework, four different process rep-
resentations are supported (cf. Figure 9.1): BPMN 2.0, hierarchical representation, form-based
representation, and verbalized process description. Note that we do not intend to develop new
process representations, but adapt existing ones from other domains to address aforementioned
issues.
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Figure 9.1: Overview of Visualization Component

Visualizing a process model in terms of BPMN 2.0 has been already described in Section 6.2.
This chapter focuses on how process models can be transformed to these process representations
on the one hand and on the use of these representations for enabling process updates on the other.

Example 9.1 (Process Representations)

Consider the credit application process and the related process views V1,V2, and V3 from
Example 8.1. In addition to Example 8.1, the CPM comprises a loop structure enclosing
activities Select Customer (i.e., a2) and Fetch Database (i.e., a3), i.e., the two activities are
repeated until the desired customer is found in the database.

Assume that activity Create File (i.e., activity al4) is inserted in V'1 (see Examples 7.1 and
7.2 for a description of the respective update propagation and migration). Figure 9.2 shows
the corresponding process models before and after this update.
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Figure 9.2: Credit Application Process

An effective way of reducing the complexity of diagrams is to decompose them into smaller
parts [54]. This is also known as modularization [212] or divide and conquer [213]. To adopt
this principle, Section 9.2 presents a hierarchical representation, i.e., a tree-based representation
of a process model. The latter is based on Concurrent Task Trees (CTT) [214], which originate
from end-user development in software engineering [215]. In particular, the chosen hierarchical
representation allows for a top-down structuring of process models as suggested in [116].

The graphic complexity of diagrams may be reduced as well. The latter is described by the num-
ber of graphical conventions, i.e., syntactical rules of process modeling languages [216]. Hence,
graphical complexity may be reduced by hiding certain graphical process model elements (e.g.,
control edges). In this context, Section 9.3 presents a form-based representation. It eliminates
control edges and reduces the number of different shape types for visualizing process elements.
Note that this form-based representation is related to Nassi-Shneiderman-Diagrams, which use
nested rectangles for visualizing the behaviour of program code [217].

Section 9.4 suggests a verbalized process description, which presents a process model in terms of
text expressed as natural language. In particular, utilizing natural language minimizes process
modeling knowledge required. Finally, Section 9.5 summarizes further process representations.
Section 9.6 discusses related work and the chapter is concluded in Section 9.7.
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9.2 Hierarchical Representation

The hierarchical representation presented in the following is based on Concurrent Task Trees
(CTT), which provide a widely used task modeling language for describing the behaviour of
end-user interfaces [218, 219, 214, 220, 221]. In particular, CTT has been used in the area of
End-User Development (EUD) [222]. When creating a CTT, the user specifies a hierarchical task
model (i.e., a tree). Thereby, lower level tasks refine upper level ones. This hierarchical struc-
turing addresses the demand to structure complex conceptual models in a top-down manner [54].

Temporal relations between tasks on the same level specify the order in which these tasks shall
be executed. Thus, a CTT allows specifying the behaviour of a user interface in a top-down and
left-right direction. Accordingly, a CTT complies with the “usual” reading and writing direction
of text in Western countries (i.e., from left to right and from top to bottom) [223].

9.2.1 Creating Hierarchical Representations

First of all, we describe how a process model can be mapped to a hierarchical representation.

Activity. A CTT uses tasks to describe changes of the state of a user interface and associated
information system, respectively. Thereby, a task represents “work” accomplished by a user of
the information system. Since the activities of a process models describe the behaviour of a
business process, we map them to CTT tasks (cf. Definition 6.1).

In general, a CTT may comprise five types of tasks (cf. Figure 9.3): A wuser task represents
a task to be performed by a user without need for interacting with an information system
(e.g., a clerk interviewing a customer). If the user shall interact with an information system
(e.g., filling data into a user form), in turn, an interaction task is used. Note that interaction
tasks must be triggered by a user. Furthermore, cooperation tasks may involve more than one
user. An application task can be executed by an information system without need for any user
interaction (e.g., storing data in a database). Finally, an abstraction task is used, if none of
the aforementioned task types applies. Its semantics may be specified by refining it through
subordinated tasks. When generating a hierarchical representation for process models, the user
assignment may determine the task type. For example, if a human user is assigned to an activity,
an interaction task is used. By contrast, an application task is used when assigning a PAIS to
the task. Each task type is visualized through a specific icon (cf. Figure 9.3) [224].

B B BH B E

User Application Interaction Cooperation Abstraction
Task Task Task Task Task

Figure 9.3: Task Types of Hierarchical Representation

Creating a hierarchical representation based on CTT constitutes a top-down approach. The root
task describes the name of the process model and may be refined through lower-level tasks. The
different levels are connected by hierarchical relations. After having specified the hierarchical
relations between the tasks of the different tree levels, the temporal relations among tasks of the
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same tree level need to be specified. Temporal relations describe the order in which the tasks of
a particular level shall be executed. CTT allows for eight different kinds of temporal relations of
which only a subset is used in this thesis [214, 218]. The enabling relation, which is represented
by a temproal relation edge with symbol “>”, corresponds to a sequence flow in a process model.
Figure 9.4 shows an example of transforming process model P to the hierarchical representation.
Particularly, the sequential control flow between activities A, B, and C' is mapped to enabling
temporal relations. Note that the edges between abstraction task P and tasks A, B, and C
symbolize hierarchical relations.

P

Temporal Hierarchical
Process Model P: Relation 7~ Relation
&) - o N I

A B C

Figure 9.4: Visualizing a Sequence of Activities in Hierarchical Representations

Enabling with information passing (i.e., symbol “[] >”) constitutes another temporal relation. It
has the same semantics as the enabling relation, but additionally expresses a data flow between
the two tasks. More precisely, A[] > B expresses that when completing A, task B will be en-
abled and respective data be passed. However, it is not explicitly documented, which particular
data elements are passed over.

AND Branching. Parallelism of the control flow is expressed through the temporal relation
parallel visualized by three vertical lines “|||” (cf. Figure 9.5). For each branch of the AND
branching another level is introduced. This allows users to read a process model top-down with
increasing level of detail.

Process Model P:

Figure 9.5: Visualizing an AND Branching in Hierarchical Representations

XOR Branching. Another relation type of the CTT is the choice relation (expressed by symbol
“[]”). For example, A[]B expresses that the user may decide whether A or B shall be executed.
As soon as one of the two tasks is selected, the other one is no longer enabled. Note that this
behaviour corresponds to the one expressed by the deferred choice workflow pattern [174]. In
particular, it constitutes the only way in CTTs to express an alternative relation. Usually, in
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a process model a choice is based on transition conditions on data values. However, since this
workflow pattern (i.e., ezclusive choice) is not supported by CTT, we extend the set of temporal
relations. In Figure 9.6, the XORsplit gateway is represented by task Choice?, whereas its child
tasks c1 and c2 represent the respective associated branches.

=
P

Process Model P: 8) o (%

A Cioife? F
1 2
>> >>
B C D E

Figure 9.6: Visualizing a XOR Branching in Hierarchical Representations

Synchronization Fdge. Control edges synchronizing tasks from parallel branches are not directly
supported in CTTs. However, they may be realized by connecting two tasks through an en-
abling temporal relation. Note that such a connection between different levels of a hierarchical
representation might affect its understandability.

Loops. Temporal relation iteration allows repeating a task until it is terminated by a user (i.e.,
A*) or a pre-specified number n of iterations (i.e., A[n]) is reached. Note that the iteration rela-
tion is not represented by an edge in the hierarchical representation, but directly assigned to a
task executed repeatedly. However, to express a loop in a hierarchical representation a branch-
ing condition must be defined. For this purpose, relation conditional iteration is introduced.
Figure 9.7 shows conditional iteration Choice?[cl]. Corresponding child tasks (i.e., A and B)
are executed as long as branching condition ¢l evaluates to true. Otherwise, its succeeding task
D is activated.

Process Model P: P

i 3010_2,.
A o Mo Chce? » & o &

A Chojce?[c1] D
>>
Cc

B

Figure 9.7: Visualizing a Loop Branching in Hierarchical Representations
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Data Flow and Process Attributes. Data elements and process attributes can not be visualized
in CTT, but need to be described in separate documents [214]. Hiding data flow in a process
model reduces complexity for users. Therefore, we do not introduce new elements visualizing
data flow and process attributes in the hierarchical representation.

Figure 9.8 visualizes the process model from Example 9.1 in terms of a hierarchical representa-
tion (i.e., CTT) comprising five levels. The root task represents the entire process model. Level
1 comprises seven sequential tasks: abstraction task Preparation corresponds to the first XOR
branching of the credit application process. The respective XOR branches as well as their tasks
are mapped to subordinated levels. In analogy to this, abstraction tasks Credit Conditions,
Decision and Notification correspond to respective XOR branchings (cf. Figure 9.2).

Credlt Application

m:-a//\@

Customer Preparation Credit Review Decision Notification Call
Inquiry i Conditions Account i i ‘: Customer
Existing Not Edlt Choose erte Create send Update

Address  Rate Statement Contract Message Database

CustEmer Custpms

Correct Create  Update
Customer?  Customer Database
[not correct]

Select Fetch
Customer Database

Figure 9.8: Credit Application Process Visualized Using Hierarchical Representation

Figure 9.9 visualizes process views V'1-V 3 of the credit application process (cf. Example 9.1) as
hierarchical representation. As can be seen, unbalanced trees may result.

The tree-based structure of the hierarchical representation allows for a top-down decomposition.
In particular, this structure may be abstracted (etailed) by folding (unfolding) sub-trees (cf.
Figure 9.10). As example consider Figure 9.10a: the tree may be unfolded step-by-step by the
user, e.g., using a zoom slider to refine the level of detail. Numbers in (red) circles right next to
a task symbolize how many tree levels are folded. When reaching the leaf level of a hierarchical
representation, the most detailed level is shown to the user. We denote this decomposition as
leveled exploration method. In particular, it assists users in understanding or exploring processes
step-by-step. When refining an activity-oriented process model (like BPMN) by opening a sub-
process, in turn, the superordinate process model is no longer displayed. Thus, the latter might
loose the context of the sub-process. By contrast, the context is kept when using the leveled
exploration method in the hierarchical representation.
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Prooess View V1 Process View V2 Process View V3
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Figure 9.9: Credit Application Process Views Visualized Using Hierarchical Representation

Figure 9.10b shows another method for exploring hierarchical representations. In the depth
exploration method, the user may click on a folded task (e.g., task Preparation). Then, the
corresponding sub-tree is unfolded. Using this exploration method, users are able to interactively
explore process models. Starting with an abstract tree the user may decide which parts shall be
refined. Clicking on the same task again will unfold this sub-tree. This way the user may decide
which region of the process model shall be explored at which level of granularity.

N s
Credlt AE ication ‘x’ Credm A:ncauon

Custamer Prepaauon ion Now ication Call Customer Prep -ation Dec\s\on Notification Call

a) Leveled Exploration Method

Inquiry Gondtans Reount Customer Inquiry Copdicrs rcaoumt Customer
0
Oy & & & O &
Existing Not Edit  Choose Wite  Create  Send Update
Customer  Customer Address ~ Rate Statement Contract ~ Message Database
b) Depth Exploration Method
E/ CreduAElcanon / rea.wc%\
Customer  Prepars % Credit Review Nourcanon Cal Customer  Preparatior Review Dedision Notification Call
Inquiry %._J  Condions Account Customer Inquiry Condins Account Customer
0
BT Not

Custéy_ ’s Customer

Figure 9.10: Exploration of Credit Application Process

9.2.2 Updating Hierarchical Representations

In general, it should be possible to update process models based on a hierarchical representation,
i.e., without need to switch the representation to a BPMN model. In the following, we describe
how a process model can be modified through adaptations of the hierarchical representation.

Inserting Process Elements. Inserting a task in a hierarchical representation corresponds to the
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addition of an activity to the respective process model. To determine whether the activity shall
be inserted sequentially, in parallel, conditionally, or iteratively, respective temporal relations
need to be defined for the inserted task. As example consider Figure 9.11a. B is first added and
then connected with A using an enabling temporal relation. In turn, this update sequentially
inserts B after A. By contrast, connecting B with A using a parallel temporal relation will be
accompanied by inserting B in parallel to A in the process model (cf. Figure 9.11b). If there
already exist other tasks connected by parallel relations on the same tree level, another branch
will be inserted in the process model. Similarly, loops and XOR, branchings may be handled.

Enabling Parallel Process Model P:
temporal Process Model P: temporal

relanon relanon

s
&
\ Inserted \ Inserted
task B task B
New Sequential Activity b) New Parallel Activity

Figure 9.11: Inserting a Task as well as a Temporal Relation

When inserting tasks and respective temporal relations, ambiguities might occur. In particular,
this applies when introducing different kinds of temporal relations at the same tree level. As
example consider Figure 9.12: A, B, and C are located on the same tree level with temporal
relations A >> B|||C}; i.e., A and B are connected by an enabling relation, whereas B and C
are connected with a parallel relation. Hence, there are two ways of interpreting these relations:
((A >> B)|||C) or (A >> (B]||C)) (cf. Figure 9.12). In any case, such ambiguity should be
resolved in a unique way, i.e., either process model P’ or P” in Figure 9.12 results. CTTs offer
two options in this context [214]: either the priority order defined by LOTOS [225] may be
used (i.e., choice > parallel > enabling) or another tree level may be added to resolve the ambi-
guity. In this thesis, the second option is applied as it requires no additional modeling knowledge.

Process Model P‘: Process Model P*:
(A>>B)||IC A>>B|||C A>>B]|IC)

Figure 9.12: Ambiguity after Inserting a Temporal Relation

Inserting Branches. When using the hierarchical representation, the insertion of a new branch to
an existing AND branching is not supported since there is no distinct representation of an AND
branch. In order to insert an XOR branch, in turn, a task representing the branching condition
has to be inserted. For example in Figure 9.13, a task representing branching condition ¢3 is
added to the hierarchical representation on Level 1. In turn, this leads to the insertion of a
conditional branch to the respective process model. Note that branching conditions cl and ¢2
must be adapted to guarantee control flow correctness (cf. Section 7.3.1).
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Figure 9.13: Inserting a Conditional Branch

Deleting Process Elements. Removing a task in a hierarchical representation triggers the deletion
of the respective activity in the corresponding process model (cf. Section 7.3.2). Depending on
the temporal relations connecting the deleted task with tasks on the same tree level, branchings
have to be removed as well. In Figure 9.14, for example, task C is deleted. Afterwards, the
temporal relation expressing that B and C shall be executed in parallel must be removed to
obtain a valid tree again. In turn, this triggers an operation for deleting the AND branching.
In the hierarchical representation, the respective abstraction task is removed and the tree level
reduced. Note that the removal of the AND branching must not be applied if the latter contains
other branches. In this case, however, empty branches should be removed.

Delete activity C Delete AND branching
0}5{0 P = 5 (o» =

Figure 9.14: Delete a Task in Hierarchical Representation

Changing Temporal Relations. When changing the type of temporal relations between tasks in
the hierarchical representation, in the corresponding process model complex structural changes
might be required. In Figure 9.15, for example, the type of the temporal relation between A
and B are changed from enabling to parallel in order to express that associated tasks shall be
executed in parallel. In turn, an AND branching has to be inserted in the process model and
activity B be moved in parallel to activity A.
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Figure 9.15: Changing Temporal Relations in Hierarchical Representation

Updating Data Flow and Process Attributes. As discussed in Section 9.2.1, data flow and process
attributes are not considered in the hierarchical representation. If these shall be changed, there-
fore, additional dialogs need to be provided. As an alternative, data flow and process attributes
may be changed directly in the process model.

Note that the tree corresponding to a hierarchical representation will increase the number of
levels when inserting new branchings. By contrast, inserting sequential tasks or branches to
existing branchings, the tree width will be increased. Especially, trees with many levels will
become too complex for users.

In Figure 9.16, view updates are applied to the credit application process (cf. Example 9.1).
Furthermore, the effects of propagating this update to the respective CPM (cf. Figure 9.8) and
view migration (cf. Figure 9.9) are shown. As can be seen, for process views V2" and V3’ a
new sub-tree subordinating task Preparation must be added when propagating the update of
V1 to them. In particular, the user may comprehend which parts of the tree structure has not
changed. Note that this increases understandability.

9.2.3 Discussion

The hierarchical representation allows visualizing process models as a tree-based structure.
Thereby, it addresses the requirement of modularization as discussed in [54]. In particular,
this allows exploring process models either level-by-level (i.e., leveled exploration) or selectively
by following specific sub-trees (i.e., depth exploration).

A hierarchical representation increases the number of elements required to visualize a process
model. In turn, this might increase its complexity as well. Concerning process updates, however,
it is easier to modify (i.e., delete, move, replace) large process fragments since the respective
sub-tree may be deleted, moved, or replaced in the hierarchical representation. Furthermore,
updates requiring a set of update operations in process models can be easily performed in the
hierarchical representation by switching the type of temporal relation (e.g., moving a sub-tree
in parallel to another one).

Table 9.1 shows how change patterns match to updates in such a hierarchical representation.
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Figure 9.16: Credit Application Process Update in Hierarchical Representation

158



9.3 Form-based Representation

In particular, change patterns related to sub-processes are not applicable to the hierarchical
representation, since the latter does not consider the sub-processes. All other change patterns
are applicable.

Change Patterns

Counterpart in Hierarchical Representation

AP1 (Insert Process Fragment)

Inserting a sub-tree and connecting it with a temporal relation. De-
pending on the type of temporal relation, the respective tasks are in-
serted conditionally, sequentially, or in parallel.

AP2 (Delete Process Fragment)

Deleting the respective sub-tree in the hierarchical representation.

Moving a sub-tree to another position in the hierarchical representation.

(
AP3 (Move Process Fragment)
AP4 (Replace Process Fragment)

Replacing a sub-tree of the hierarchical representation by another one.

AP5 (Swap Process Fragment)

Swapping two sub-trees in the hierarchical representation.

AP6 (Extract Sub-Process)

Not applicable.

APT7 (Inline Sub-Process)

Not applicable.

AP8 (Embed PF in Loop)

Inserting a superordinate task to a sub-tree representing a loop.

AP9 (Parallelize Activity)

Changing the temporal relation between respective tasks to a parallel
relation.

AP10 (Embed PF in Conditional
Branching)

Inserting a superordinate task to the sub-tree representing the condi-
tional branching.

AP11 (Add Ctrl Dependency)

Inserting a respective synchronization edge.

AP12 (Remove Ctrl Dependency)

Deleting the respective synchronization edge.

Updating the abstraction task representing the respective branch.
Duplicating a sub-tree of the hierarchical representation.

(
AP13 (Update Condition)
AP14 (Copy Process Fragment)

Table 9.1: Change Patterns in Hierarchical Representations

9.3 Form-based Representation

The form-based representation for visualizing process models is based on Nassi-Shneiderman-
Diagrams [217] presuming well-structuredness of the process models (cf. Section 6.2). More
precisely, the form-based representation visualizes process models through nested rectangles
[226], requiring a minimal set of visualization symbols compared to BPMN. Note that reducing
the amount of symbols may increase model comprehensibility [216].

9.3.1 Creating Form-based Representations

We first show how to transform a process model to a form-based representation. Then, the
form-based representation is applied to Example 9.1.

Activity. In a form-based representation, an activity is visualized as a rectangle. Its label is
added to the center of the rectangle (cf. Figure 9.17). Subsequent activities, in turn, are placed
below this rectangle, i.e., activities of a sequence are not connected through edges. Instead, their
order is represented through the vertical (i.e., top-down) placement of the rectangles. Finally, a
form-based representation has no explicit start and end nodes.

AND Branching. Figure 9.18 shows the form-based representation of an AND branching. As
can be seen, each branch is visualized as a separate column, which contains all activities of the
respective branch. Note that neither ANDsplit nor ANDjoin gateways are explicitly visualized,
which might increase process model comprehensibility.
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Representation

(&) - |

Figure 9.17: Sequence of Activities in Form-based Representations

A Parallel
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Figure 9.18: AND Branching in Form-based Representations

If the drawing area of the form-based representation is not wide enough to visualize all branches,
only a subset of them are shown. The presence of additional branches is then indicated through
narrow columns. As example consider Figure 9.19. Activity A is succeeded by an AND branch-
ing with four branches. The branches with activities B and C (and D and E respectively) are
visible, whereas the other two branches are only visualized as narrow columns. If the user clicks
on one of the narrow columns, it (i.e., the respective branch) is unfolded; e.g., G and H may
then be visible (cf. Figure 9.19).

indicating further
e 1 v |

T NS

Figure 9.19: Unfolding a Nested Branching

XOR Branching. As opposed to ANDsplit gateways, XORsplit gateways and their branching
conditions need to be explicitly visualized (cf. Figure 9.20). To be more precise, an XORsplit
gateway is visualized in terms of a rectangle showing the branching expression (i.e., Choice? in
Figure 9.20). For each conditional branch, another rectangle, displaying the condition of the
respective branch, is added (i.e., ¢l and ¢2 in Figure 9.20). In turn, the columns below these
rectangles comprise the activities (or nested branchings) of the respective branch. Again, in case
of limited width narrow columns may be used. As opposed to AND branchings, the correspond-
ing XORjoin gateways of XOR branchings are visualized. Note that this becomes necessary to
visualize the join (i.e., XORjoin gateway) of an XOR branching. Otherwise, no visual indicator
to a succeeding AND branching exists.

Loops. In the form-based representation, a loop is visualized as thick arrow around the loop
activities (cf. Figure 9.21). Particularly, that arrow provides the branching condition of the
backward jump. The branching condition to continue in the control flow (i.e., not to jump
back), is not explicitly visualized in form-based representation.
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Figure 9.20: XOR Branching in Form-based Representations

Loop

(A pc Y0 =

Choice?

Figure 9.21: Loop in Form-based Representations

Synchronization Fdge. As opposed to control edges, synchronization edges of a process model
must not be omitted when transforming the model to a form-based representation. Therefore,
a synchronization edge is mapped to a directed edge connecting two rectangles.

Data Flow and Process Attributes. As opposed to BPMN, for example, data flow is not explicitly
visualized. Therefore, data elements read or written by an activity are visualized underneath
the respective rectangle when clicking on the latter. This unfolded area provides additional
information to users (cf. Figure 9.22). Its left-hand side shows data elements read or written by
the activity, whereas its right-hand side displays process attributes.

Data elements read and
written by activity A

List of process
attributes

| a1 | a2
(8] =)

Figure 9.22: Data Elements in a Form-based Representation

The form-based representation could be extended with an interaction concept that allows visual-
izing data flow, e.g., if the user clicks on a data element in the unfolded area, all other activities
accessing this data element may be colored accordingly.

At run-time, the data elements of an unfolded area are replaced by form fields to enter or display
data values. In this context, well-known techniques for automatically creating user forms can

be used [2, 7, 227, 228).
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Figure 9.23 shows the form-based representation of the credit application process (cf. Exam-
ple 9.1). As can be seen not all rectangles representing activities have same height due to the
varying number of process elements on different branches. Note that neither the height nor the
width of a rectangle is correlated with the duration or importance of the respective activity. In
turn, Figure 9.24 shows the form-based representation of the process views related to the credit
application process (cf. Example 9.1). Note that V2 does not comprise branchings anymore
and, thus, allows for a compact process representation.

Customer Inquiry
Existing Customer?
Yes No

Select Customer Create Customer
FEEDEEEES Update Database
Correct Customer?

Credit Decision?
Accept Decline

Create Contract Write Statement

Send Message Update Database

Call Customer

Figure 9.23: Form-based Representation of the Credit Application Process
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Select Gustorrer I R Bt e T
Correct Customer? Inquiry Screening Credit Decision?

... Accept Decline

Choose Rate Edit Address pecs on Create Contract | Write Statement

Customer Notification . S

Credit Decision
Call Customer

a) Process View V1 b) Process View V2 c) Process View V3

Figure 9.24: Form-based Representation for Views of the Credit Application Process

9.3.2 Updating Form-based Representations

Since a form-based representation visualizes a process model based on well-nested rectangles,
users can easily perform updates by inserting or deleting rectangles. Remember that the rect-
angles correspond to SESE blocks in the corresponding process model.

Figure 9.25 shows a user interface that supports the modification of a process model based on its
form-based representation. The column on the left depicts the list of available modeling elements.

The column on the right, in turn, displays the form-based representation to be modified. If the
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9.3 Form-based Representation

user drags a modeling element from the left to a position close to a rectangle in the form-based
representation, possible insert positions are indicated by empty rectangles with dotted lines.
When inserting an activity above activity Create Customer in Figure 9.25, this corresponds to a
serial insertion. By contrast, inserting the new activity on the left of activity Create Customer is
accompanied by the insertion of an AND branching, i.e., activity Create Customer and the newly
inserted activity are then located on parallel branches. If there is already an AND branching,
another parallel branch will be added.

Modeling Elements Process View V1

Activity v Existing Customer?
c1 XOR?CQ Activity ™ Empty boxes representing
| Seleot Gustarmer [\t cusomer serial inserton

OTTE
Correct Customer? i

Choose Rate Edit Address [T Empty boxes representing
" P parallel insertion
- Credit Decision

Call Customer

Figure 9.25: Performing Updates in the Form-based Representation

In the same way, XOR branchings and loops may be added (cf. Figure 9.25). Finally, synchro-
nization edges may be inserted, which requires specifying their start and target rectangle.

Process elements may be also removed through drag&drop in a form-based representation. Note
that this results in a well-structured process model again.

In order to define the data flow or process attributes values the respective activity is unfolded.
Then three types of buttons are displayed right next to the data elements and process attributes:
edit, add, and delete (cf. Figure 9.26). The add button (displayed using a plus symbol) allows
inserting data elements and process attributes. When inserting a data element, in turn, a drop
down menu appears in which existing data elements may be selected. Alternatively, the user
may enter a new data element name, which triggers respective operations to insert data elements
(e.g., InsertDataFElement for process views). The delete button removes the selected data ele-
ment or process attribute. Finally, the edit button (i.e., displayed as a pencil) allows updating
values of process attributes, e.g., the label of the activity.

Again, for updating a form-based representation change patterns are supported (cf. Table 9.2).

9.3.3 Discussion

The form-based representation provides an easy to understand top-down visualization of process
models. Particularly, the number of different shapes representing process elements is reduced
and not all elements of a process model are visualized (e.g., ANDsplit gateway) [216]. Note that
this is not contradicting the theory of symbols that requires a 1:1 matching of symbol and its
meaning [229]. In turn, data flow and process attributes are only visualized if required. Another
strength of the form-based representation is the ease of performing updates by end-users, which
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Modeling Elements

Activity

Process View V1

Existing Customer?
Yes No

Activity

Attributes:
o label: Activity

Select Customer

Correct Customer?

Create Customer

Choose Rate Edit Address
Credit Decision

Call Customer

Figure 9.26: Updating Data Flow and Process Attributes of Form-based Representation

Change Patterns

Counterpart in Form-based Representation

AP1 (Insert Process Fragment)

Dragging the respective process elements from the sidebar to the form-
based representation.

AP2 (Delete Process Fragment)

Deleting the respective rectangle from the form-based representation.

AP3 (Move Process Fragment)

Dragging respective rectangles to a new position in the form-based
representation.

AP4 (Replace Process Fragment)

Not applicable. Needs to apply AP3 (Move Process Fragment) twice.

AP5 (Swap Process Fragment)

Not applicable. Needs to apply AP3 (Move Process Fragment) twice.

Not applicable.

AP7 (Inline Sub-Process)

Not applicable.

(
(
AP6 (Extract Sub-Process)
(
(

AP8 (Embed PF in Loop)

Inserting a loop element surrounding the respective process fragment
(i.e., rectangles).

AP9 (Parallelize Activity)

Moving the respective rectangle in parallel (i.e., left or right) to an-
other rectangle.

AP10 (Embed PF in Conditional
Branching)

Inserting XOR branching surrounding the respective process fragment
(i.e., rectangles).

AP11 (Add Ctrl Dependency)

Inserting a synchronization edge from the sidebar.

AP12 (Remove Ctrl Dependency)

Deleting the respective synchronization edge in the form-based process
representation.

AP13 (Update Condition)

Updating the rectangles representing branching conditions.

AP14 (Copy Process Fragment)

Duplicating respective rectangles.

Table 9.2: View Update Operations and their Support in Form-based Representations
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utilizes the well-structuredness of process models. Finally, the user obtains direct feedback where
to insert new process elements.

In case a branching has numerous branches, which exceeds the width of the drawing area, the
user is unable to view the complete process model. Then, further action (i.e., clicking on the
narrow columns visualizing hidden branches) is required to explore the process model.

9.4 Verbalized Process Description

In general, domain experts are unfamiliar with process modeling languages and, hence, are
unable to understand process models in detail. By contrast, a verbalization (i.e., textual repre-
sentation) of the process model would enable them to properly understand the process details
relevant for them [230]. This section presents such a verbalized representation, which relies on
well-established methods to create verbalized process descriptions (see [231]). Further, it extends
these methods to support verbalized process updates as well.

9.4.1 Creating Verbalized Process Descriptions

This section describes how a process model may be transformed to a verbalized process descrip-
tion. Figure 9.27 gives an overview of the text generation technique applied in this context. Note
that we apply techniques presented in [232] and integrate them with the visualization component.

Text Planning Sentence Realization
Planning
@ Linguistic @ DSynT-
Information | [~ || Sentence | [~
Extraction Generation 5 ot
AN iy N N urface
E @ Annotated @ s Realization
entence
Process Model RPST Refinement Verbalized Process
Generation | [~ - Description

Figure 9.27: Modules for Deriving Verbalized Process Descriptions

The visualization component is extended by five modules for verbalizing a process model, which
can be categorized into text and sentence planning as well as realization (cf. Figure 9.27). Text
planning modules analyze the structure and contents of the process models (e.g., activity labels,
user assignments). Its results are structured preparing the text generation. Subsequently, the
sentence planning modules are applied to prepare the content and structure of the resulting
verbalized process description (i.e., the structure of the text). Finally, the realization module
creates the verbalized process description.

In the following each module is described in detail:

1. Linguistic Information Extraction. The first module (cf. Figure 9.27, Step 1) applies
a well-known linguistic label analysis technique [232] that utilizes the lexical database
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WordNet [233] and the Stanford Tagger [234] to recognize the various name patterns that
exist for activity labels in a process model. For instance, we are able to decompose an
activity label such as Choose Contact Type into action Choose and object Contact Type.

. Annotated RPST Generation. The Refined Process Structure Tree (RPST) [235] generation

module derives a tree representation from the given process model to provide a basis for
a step-by-step process description (cf. Figure 9.27, Step 2). In particular, the computed
RPST is a parse tree containing a hierarchy of sub-graphs derived from the process model.!
RPST is chosen as well-established transformations to the data structure of the following
module exist [232]. To be more precise, the RPST represents the hierarchical order of the
well-nested SESE blocks of a process model. The result can be visualized as a tree whose
root captures the entire process model and whose leaves contain connections between two
process elements. Then, we annotate each process element with the linguistic information
obtained in the previous phase. For example, the leave node pointing to activity Choose
Contact Type is annotated with action Choose and business object Contact Type.

. DSynT Sentence Generation. The sentence generation module maps the annotated RPST

to a list of intermediate sentences (cf. Figure 9.27, Step 3). More specifically, each sen-
tence is stored as a Deep-Syntactic Tree (DSynT), which corresponds to a dependency
representation introduced by the Meaning Text Theory [237]. Such a deep-syntactic tree
facilitates the manageable, yet comprehensive storage of the constituents of a sentence. In
addition, it can be automatically mapped to a syntactically correct sentence with existing
technologies [238]. Taking the example of activity Choose Contact Type, the corresponding
DSynT consists of a root node pointing to verb choose and two subordinate nodes: the
first specifies contact type as object and the second specifies clerk as subject of choose.

. Sentence Refinement. Within the sentence refinement module, we take care of sentence ag-

gregation, referring expression generation, and discourse marker insertion (cf. Figure 9.27,
Step 4). The need for these measures arises if the considered process model contains long
sequences of activities. In such cases, for instance, we aggregate sentences sharing the
same object. For example, assume that a sequence of activities comprising Choose Con-
tact Type and Select Contact Type shall be performed by a user with role Clerk. Instead of
generating one sentence per activity, these activities are aggregated and described by one
sentence such as "The clerk chooses and selects the contact type.” An alternative aggre-
gation strategy is to insert referring expressions such as he or it to ensure lexical variety.
Regarding the discourse marker insertion, a set of connectors is used to insert markers
such as then and afterwards, i.e., a well readable text with sufficient variety is obtained.

. Surface Realization. The surface realization takes the DSynT of the previous modules and

outputs the final verbalized process description (i.e., text). The complexity of the surface
realization task has led to the development of publically available realizers (cf. Figure 9.27,
Step 5). We decided to use the DSynT-based realizer RealPro from CoGenTex [238],
which requires an XML-based DSynT message as input, transforming it to a grammatically
correct sentence. As a result, the DSynT for activity Choose Contact Type is automatically
transformed into sentence "The clerk chooses the contact type.”

'A detailed introduction on RPST can be found in [236]
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After processing a process model in these modules, the resulting personalized and verbalized
process description may be displayed to the respective user. Figure 9.28 shows the verbalized
process description of the credit application process (cf. Example 9.1). Branchings (i.e., AND,
XOR) and Loops are visualized as an enumeration block with bullet points. Depending on the
type of branching an introducing sentence is provided before; e.g., “...the process is split into
X parallel streams of action:* in the context of AND branchings. Futhermore, in case of nested
branchings, the bullet points are also nested and indentation is increased. Finally, user assign-
ments are integrated with the created sentences.

—

XORsplit

The process begins, when the customer conducts a customer inquiry. Then, one of the —— caepay

following branches is executed:

— XOR Branches

e The clerk creates the customer. Afterwards, the PAIS updates the database. P
e The clerk selects the customer. Subsequently, the PAIS fetches the database.

ANDsplit

Once one of the alternative branches was executed the process is splitinto two parallel —— Gaepay

branches:
e The clerk chooses the rate. /——AND Branches
e The clerk edits the address.

Once all two branches were executed, the manager reviews the account. Then, one of
the following branches is executed:

e The manager writes the statement.
e The manager creates the contract.

Once one of the alternative branches was executed the process is split into two parallel
branches:

e The PAIS sends the message.
e The PAIS updates the database.

Once all two branches were executed, the clerk calls the customer. Afterwards, the
process is finished.

Figure 9.28: Verbalized Process Description of the Credit Application Process

Figure 9.29 shows the verbalized process descriptions of the process views from Example 9.1.
Compared to Figure 9.28, imperative formulations are applied since the process views shall assist
specific users (e.g., V1 is created for the user (role) Clerk). In this way, a personalization of the
verbalized process description can be achieved.

9.4.2 Updating Verbalized Process Descriptions

This section describes how changes of a personalized and verbalized process description (i.e.,
text changes) can be mapped to updates of the corresponding process model (cf. Section 7.3).
More precisely, the changes of a verbalized process description must be interpreted and mapped
to respective updates of the corresponding process model [12, 239].

Inserting a Sentence. When adding a sentence to a verbalized process description, the user
expresses that an action (i.e., activity) shall be added to the process model. Figure 9.30 shows
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_

The process starts with a decision. Then,
one of the following branches is executed:

e Select the customer.
e Create the customer.

Once one of the alternative branches was
executed the process is splitinto two
parallel branches:

1

The process begins, when you conduct a
customer inquiry.Then, the bank screens
the inquiry and decides about the credit.

Afterwards, the bank notifies the
customer. Subsequently, the process is
finished.

_

The process begins, when you review an
account. Then, one of the following
branches is executed:

e Creates the contract.
e Writes the statement.

Afterwards, the process is finished.

e Edit the address.
e Chooses the credit rate.

Once all two branches were executed, the
manager decides about the credit.
Afterwards, call the customer.
Subsequently, the process is finished.

a) Process View V1 b) Process View V2 c) Process View V3

Figure 9.29: Verbalized Process Description of the Credit Application Process Views

an example of such an insertion. Sentence “The clerk prints the details.” is added by the user to
the verbalized process description and analyzed using the Stanford Parser [240]. From the pars-
ing result, the grammatical relation of the words in the sentence can be automatically derived.
Relations nsubj(prints, clerk) and dobj(prints, details) reveal that “clerk” represents the subject
and “details” represents the object for predicate “print”. Consequently, we extract “clerk” as sub-
ject, “details” as object, and “print” as predicate. This information is then used to insert activity
Print Details, which shall be performed by user role Clerk, into the corresponding process model.

Create Update
Customer Database

[...] The clerk creates the customer.
iTh clerk Erﬂﬂ; ‘the aeYaﬁst Afterwards, the PAIS updates the database.
- il

fffffff &Clerk &Clerk &PAIS
Subject: Clerk L
Standford »| Action: Print ";s_e': SC:'V_:W“
Parser det (clerk-2, The-1) Business Object: Details Srrint Detalls
nsubj (prints-3, clerk-2) i}

root (ROOT-0, prints-3)
det (det ail s-5, the-4)
dobj (prints-3, details-5)

Figure 9.30: Inserting a Sentence and Adapting the Corresponding Process Model

Inserting an Enumeration. Inserting an enumeration block into the verbalized process descrip-
tion implies that the user wants to insert multiple actions that shall be performed in parallel or
alternatively. Regarding the corresponding process model, the user intends to insert an AND /X-
OR/Loop branching. However, he must manually add the information whether the bullet points
of the enumeration express parallelism (i.e., AND branching is inserted) or alternative choices
(i.e., XOR branching is inserted). Inserting individual sentences to the bullet points triggers
again updates to insert the respective activities. Figure 9.31 gives an example of inserting a new
enumeration block that performs the bullet points in parallel.

Inserting a Bullet Point. The user adds a bullet point to an existing enumeration in the process
description in order to insert a stream of actions that shall be performed in parallel or alterna-
tively to the already existing bullet points. Inserting a bullet point corresponds to the insertion
of a branch to an existing AND/XOR branching in the corresponding process model. Initially,
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[..1The gleirkicLegtgsitfpggsgomgrjfhgrf the process Ts: CCnteate ]—»‘—»[ DPrtln} M DUFdl;ate ]—>
Isplit into parallel streams of action: | ustomer etal’'s alabase
| | &Clerk &Clerk &PAIS
e _The clerk prints the details.] |
777777777777777777777777777 Insert Parallel
Afterwards, the PAIS updates the database. ?;s:m DZ{:”:“

Figure 9.31: Inserting an Enumeration Block and Corresponding Process Model Update

this branch is empty. Activities may then be added by inserting a corresponding sentence de-
scribing the desired action.

Change the Object or Verb of a Sentence. When the user changes the verb or object of a
sentence, he wants to adapt the activity described by the sentence. Mapping this to the corre-
sponding process model requires the update of activity attributes. The updated sentence is then
re-analyzed using the Stanford Parser and a verb or object is extracted (cf. Figure 9.30). For
example, when changing sentence “The clerk prints the details” to “The clerk prints customer
details.”, this leads to the renaming of activity Print Details to Print Customer Details in the
corresponding process model.

Inserting a Part to a Sentence. Inserting a new part, like “[...] provides information customer
record” to an existing sentence, details the action described through this sentence. In terms of
a process model, such information is captured in the data flow. Therefore, data elements or
data edges may be inserted in the corresponding process model depending on whether or not
the addressed data element already exists. Figure 9.32 shows an example in which the part
“[...] requires the information customer record” is added to a sentence. In turn, this requires
the addition of data element Customer Record as well as a corresponding reading data edge.
Generally, the decision whether a reading or writing data edge is required, respective phrases
like “provides information” and “requires information” are analyzed and the corresponding data
edge is inserted. Note that the phrases are not predefined in a strict sense. Instead, we parse
the inserted part of the sentence with the Stanford Parser and employ a set of signal verbs and
nouns to detect the intention of the user. In order to express whether writing a data element is
optional or mandatory, adjectives like “always” or “sometimes” may be used. If the user changes
the adjectives later on, respective operations updating the data edge type will be triggered.

_ Customer
L-IThe clerk creates the customer which_ _ Tnsert Data Element Record
Irequires the information customer record[ ~Customer Record” Create Update
Afterwards, the PAIS updates the database

& Clerk &PAIS

Figure 9.32: Inserting a Data Element and Corresponding Data Edge
Deleting a Sentence. Deleting a sentence removes the dedicated action from the verbalized pro-
cess description. Accordingly, the respective activity will be deleted in the process model as well.

Deleting an Enumeration. Deleting an enumeration completely in a verbalized process descrip-
tion triggers update operations that delete the respective branching in the process model together
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with all its activities. When deleting only one bullet point of an enumeration, the related branch
is deleted in the process model.

Deleting a Part of a Sentence. When deleting the part of a sentence describing the data elements
provided or required by the activity, the respective data edges have to be deleted in the process
model. If no other activity accesses the associated data elements, these have to be deleted as well.

Changing the Subject of a Sentence. If the subject of a sentence is changed by the user, he
wants to assign the action described by the sentence to another user. For this purpose, the
process attribute describing the user assignment in the corresponding process model is changed.
To detect this text modification, the Stanford Parser analyzes whether the subject is changed.
Since further process attributes are not present, they cannot be updated.

Table 9.3 shows how the various change patterns can be mapped to adaptations of the verbalized
process description. Note that synchronization edges are not explicitly supported since links
between sentences would be hard to comprehend and maintain by users. Since the verbalized
process description shall be intuitive to users, we therefore decided to exclude synchronization
edges in this representation. Furthermore, it is not possible to insert and delete attributes to keep
the textual description easy to understand. However, it is possible to change user assignments
and activity labels by changing the subject or object/verb of a sentence.

Change Patterns Counterpart in Verbalized Process Description

AP1 (Insert Process Fragment) Inserting new sentences to the verbalized process description.

AP2 (Delete Process Fragment) Deleting sentences in the generated verbalized process description.

AP3 (Move Process Fragment) Moving respective sentences to another position.

AP4 (Replace Process Fragment) Modifying or overwriting existing sentences.

AP5 (Swap Process Fragment) Not applicable. Needs to apply AP3 (Move Process Fragment) twice.

AP6 (Extract Sub-Process) Not applicable.

AP7 (Inline Sub-Process) Not applicable.

AP8 (Embed PF in Loop) Inserting an enumeration block comprising the sentences representing
the process fragment to repeat.

AP9 (Parallelize Activity) Inserting an enumeration block comprising the sentences (i.e., activi-
ties), which shall be parallelized.

AP10 (Embed PF in Conditional | Inserting an enumeration block comprising the sentences (i.e., activi-

Branching) ties), which shall be alternatively executed.

AP11 (Add Ctrl Dependency) Not applicable.

AP12 (Remove Ctrl Dependency) Not applicable.

AP13 (Update Condition) Changing the introductory sentence of an enumeration block.

AP14 (Copy Process Fragment) Duplicating respective sentences.

Table 9.3: View Update Operations and their Support in Verbalized Process Description

9.4.3 Discussion

A verbalized process description enables users with limited or no process modeling knowledge
to understand process models. Furthermore, it enables them to realize process updates through
corresponding text changes. In particular, the textual representation of a process models allows
expressing both control and data flow.

However, the presented approach neither supports synchronization edges nor process attributes
(except user assignment and activity labels). Hence, these aspects must be updated using an-
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other process representation. Furthermore, note that the application of diagrams to visualize
process models may be more precise than natural language [241, 242]. Due to the complex-
ity and expressive power of natural language, the updates performed in the verbalized process
description may be propagated in an undesired way, e.g., when writing subordinate clauses.
In order to address this issue, predefined sentence templates may be used as known from user
stories in agile software development (i.e., “As a [role] I want [something] so that [benefit]”) [243].

9.5 Further Process Representations

Other process representations focusing on specific process aspects may be introduced to meet
user needs. For example, in [11] we introduced a Gantt-based representation for visualizing time-
aspects of process models. Figure 9.33 shows an example of this representation. Thereby, the
Gantt-based representation visualizes min/max durations of activities as well as temporal rela-
tions between them [244]. In this context, we extended Gantt diagrams to visualize branchings
as well (cf. Figure 9.33).

Figure 9.33: Gantt-based Process Representation

The modular design of the proView framework allows for the simple integration of additional
process representations. Therefore, process representations should base on the definition of a
process model to be applicable (cf. Definition 6.1).

0.6 Related Work

The work presented in this chapter is related to several streams of research. Accordingly, we
split related work into approaches addressing process visualization in general, approaches related
to hierarchical representations, form-based representations, and verbalized process descriptions.

Process Visualization in General. Several approaches for visualizing process models exist. In
particular, there exist many established process modeling languages, e.g., BPMN 2.0 [87], EPC
[203], UML 2.0 Activity Diagrams [161], or Workflow Nets [203]. However, the variety of mod-
eling elements are overwhelming for users. Moreover, only a small subset of these elements are
actually applied when modeling business processes [101, 207].

Few approaches focus on reducing the variety of process modeling elements. For example, S-BPM
limits its process modeling language to five elements [148, 149]. Similarly, the PICTURE project
suggests a domain-specific language for the public domain comprising a predefined set of process
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building blocks [245], similar to the activity patterns presented in [246]. All approaches have a
limited expressiveness and focus only on human-centric processes.

In [247], an approach based on storyboards and storytelling is suggested. Thereby, a comic strip-
like visualization is chosen to visualize and create process models. However, this approach does
not fit for complex business processes since the storyboards would get too big and complex.

By contrast, several approaches aim at supporting users to better understand their process
models. The niPRO project provides an intelligent process portal using a multi-dimensional
navigation through different process aspects [248, 249, 250, 206, 251, 252]. Particularly, a user
is able to navigate through process models on different levels of abstraction. Next, [253, 254]
introduce three dimensional process models utilizing the third dimension to visualize additional
information. In turn, [255, 256] simulate business processes in virtual environments (e.g., a
virtual hospital) to support users in understanding the tasks they need to perform in the context
of a business process. More precisely, avatars play the role of individual process participants and
show which activities shall be performed. None of these approaches supports process updates.

Regarding process execution, [257, 258] apply sonification techniques to make process models
and their execution performance audible to users. In particular, users need not to learn any mod-
eling language or to have an in-depth knowledge on process dashboards, but can hear whether
or not a process performs well.

Hierarchical Representation. Similar to the hierarchical approach presented in this chapter,
[259] introduces a mapping of CTT process models to UML 2.0 Activity Diagrams. Although
UML provides a rich set of diagram types, none of them supports a model-based design of the
behavior of user interfaces. To bridge this gap the authors introduce a mapping of CTT modeling
elements to UML 2.0 Activity Diagrams. Although UML Activity Diagrams can be used for
modeling business processes, the suggested mapping is more complex than ours. Furthermore,
the resulting process model would be too complex for users since the number of elements are
increased. A similar approach showing the same drawbacks is introduced in [260].

The approach presented in [261] uses BPMN 2.0 for process modeling. However, CTT is used to
refine interactive, human-centric activities in BPMN process models. More precisely, the users
first models the business process using BPMN 2.0. Then, activities requiring user interactions
are refined similarly to the definition of a sub-process by defining a corresponding CTT.

Another CTT use case is presented in [262]. A method for modeling business processes is used
based on the Concurrent Task Tree Environment (CTTE)—a modeling tool for CTT [221]. The
resulting CT'T is then transformed into an imperative process model, which may be edited using a
standard process model editor ( Task Tree Workflow Management System Editor, TTMS Editor).
This way, the process model can be enriched with explicit choices and execution-relevant aspects.
Finally, the process model is exported as XML file to a process engine (TTMS WfMS). This
transformation cannot be reversed to keep models up-to-date. However, [262] neither provides
an explicit mapping to an existing process modeling language nor does it support appropriate
visualizing concepts for users.

In [235, 263, 264] another tree structure, denoted as (Refined) Process Structure Tree (PST),
is introduced. Omn one hand, this tree type is used to analyze a process model in respect to
control flow errors; on the other, the PST structure is applied to detect SESE regions. The
latter allows transforming certain classes of unstructured process models to well-structured ones
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[265]. However, user needs are not addressed by the PST notion.

Form-based Representation. The presented form-based process representation relies on the Nassi-
Shneiderman-Diagram [217]. Similarly, [266] suggests structured process modeling languages
related to this type of diagram.

In turn, [267] presents an approach for visualizing process models as nested rectangles to get
a dense representation. Each nested rectangle represents an individual SESE block in the cor-
responding process model. Activity labels are not displayed on a rectangle, but in a different
area that appears when clicking on the rectangle. Colors symbolize the different types of SESE
blocks (e.g., AND branching). However, the approach neither supports process updates nor a
printable process documentation.

The discovery map provided by IBMs Blueworks Live [82] enables a minimalistic way to initially
capture milestones and activities within a process in a table-based way. This visualization may
be transformed to BPMN 2.0 and allows further specification of the control flow. However, it is
limited to sequential activities which may grouped.

In the context of process execution, [2, 7, 227] present an approach to create user friendly user
forms for complex process models. Thereby, directly preceding activities may be combined in
one user form if they are performed by the same user (role) at the same time. Process updates
are supported by dragging individual form fields or sub-forms.

Verbalized Process Description. [268] presents a study investigating the process of process mod-
eling of users not familiar with process modeling languages. As a result, natural language is
identified as an important alternative to describe process models. Particularly, structured text
may reduce the cognitive load to achieve the transition from informal (i.e., verbal) to formal
process descriptions (i.e., process models). The generation of texts in natural language has a
long tradition and has been utilized in different application fields like weather forecasting [269] or
task documentation [270]. In [271], natural language descriptions are generated based on object
models. Furthermore, UML 2.0 Class Diagrams are then utilized to derive textual specifications
from it [272]. None of these approaches tackles problems associated with process modeling.

As discussed, the verbalized process description is based on [231], which allows creating natural
language descriptions from a given process model. However, it does not support change and
evolution. Transforming graphical models to natural language has been investigated in other
domains as well; e.g., [273] generates textual requirements descriptions, whereas [274] suggests
natural language to define business rules.

Process models are generated based on textual descriptions of corresponding business processes
in [275]. Particularly, the authors describe an unidirectional transformation and apply their
approach for initially creating process models; process updates are not addressed.

A combination of graphical notations and textual descriptions provides a better comprehension
[276]. The proView framework enables this by supporting various representations.

9.7 Summary

This chapter introduces three process representations that aim to visualize and update process
models for end-users in an easy and intuitive. In particular, the representations support users
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in understanding complex process models without requiring specific knowledge about process
modeling elements. The presented process representations can be applied to CPM as well as
to process views. As opposed to existing work, all representations support process updates to
evolve process models.

The hierarchical process representation visualizes process models in terms of a tree-based struc-
ture. For this purpose we utilize CTT known from end-user development. Reading a CTT from
the root to the leafs provides an increasing level of detail on the process model from level to
level. As opposed to hierarchical modeling through sub-processes, this hierarchical representa-
tion keeps the context between super- and sub-processes. Furthermore, inserting new tasks to
the tree of the hierarchical representation or changing relations between tasks, triggers updates
in the corresponding process model.

The form-based representation visualizes a process model in terms of nested rectangles. Thereby,
each rectangle represents an element of a process model (e.g., activity). This reduces the number
of elements needed to visualize a process model. Instead, the control flow is given through the
top-down ordering of the rectangles. Furthermore, users may add process elements by inserting
new rectangles.

Verbalized process descriptions present process models as natural text to users. Although it
increases the amount of text a user must read, it does not require any process modeling knowl-
edge. The target group of this representation are users having no process modeling knowledge.
Changing a verbalized process description, in turn, can be accomplished through text changes.

Table 9.4 emphasizes the strengths and weaknesses of the three process representations. Opposed
to current process modeling approaches, proView allow users to dynamically switch between
process representations. This enables an appropriate visualization of process models. Finally,
updates performed on any of the representations are propagated to the corresponding process
model as well.

Hierarchical Representation

Strengths: Weaknesses:

e Top-down visualization of process models e Increased number of model elements due to tree
(i.e., modularization) structure

e Enables exploration of process models e No visualization of data flow and process attributes

e Complex updates can be accomplished through
simple modifications of sub-trees

Form-based Representation

Strengths: Weaknesses:
e Decreased number of process elements e Implicit visualization of data flow as well as process
attributes

e Control flow correctness supported due to form-
based structure

Verbalized Process Description
Strengths: Weaknesses:
e No specific process modeling knowledge required e High expressiveness of natural language when ap-

e Enables imperative formulation of work for users plying updates

e Might result in long process descriptions

Table 9.4: Strengths & Weaknesses of Introduced Process Representations
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10.1 Introduction

Process models and their optimization are often discussed in the scope of interviews and work-
shops [45]. Identified optimizations are, typically, annotated on printed process models or doc-
umented on paper [47] to lastly transfer them to process modeling tools manually. Due to the
media disruption, the latter is a time-consuming and error-prone task.

Mobile devices may support capturing business processes while interviewing process partici-
pants [277]. Particularly, mobile devices may increase user productivity [278, 279]. In turn,
touch-enabled devices with larger screens (e.g., touch tables) allow for workshops among do-
main experts to collaboratively create and evolve process models [75, 280, 281]. Consequently,
touch-enabled devices offer promising perspectives in respect to process modeling. However,
traditional process modeling tools have not been designed with touch-enabled devices in mind.
Hence, they do not take their specific properties (e.g., small screen size) and interaction capa-
bilities (e.g., gesture-based interaction) into account [46, 282, 283].

Process views and representations might be leveraged to address limited screen sizes of touch-
enabled devices. Regarding interaction support for process modeling, this chapter introduces a
well-designed set of process interaction gestures that allow creating and evolving process models
on touch-enabled devices. The gesture set was derived in a user study we conducted to identify
gestures perceived as intuitive by users. The gesture set is applicable to all screen sizes of touch-
enabled devices. Overall, as will be shown in this chapter, gesture-based modeling complements
the thesis with sophisticated concepts for intuitively interacting with process models and views.

Section 10.2 introduces fundamentals on gesture-based user interaction. Section 10.3 presents an
experiment identifying appropriate and intuitive multi-touch gestures for process modeling tasks.
Section 10.4 then introduces a multi-touch gesture set for modeling, visualizing, and evolving
process models. Section 10.5 discusses how the gesture set can be applied in the context of
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collaborative process modeling and touchless interaction. Section 10.6 discusses results. Finally,
Section 10.7 presents related work and Section 10.8 concludes the chapter.

10.2 User Interaction Fundamentals

User interaction refers to the interaction between humans on the one side and machines or in-
formation systems on the other. Thereby, a user may interact with an information system using
touch-based or touchless interaction. Touch-based interaction applies sensor technologies that
need to be touched to transmit information. Therefore, touch-sensitive screens are required as
present in smartphones or tablets [284]. Touchless interaction, in turn, utilizes sensor technolo-
gies, which do not require a touch-based interaction, e.g., an automatic door that opens when
someone approaches it. Examples of touchless interactions include gestures based on eye move-
ment [285, 286], hand, body movements [287], or muscle contraction [288]. Another example of
touchless interaction is speech recognition [289]. In general, sensors for touchless interactions
might be attached to the human body (e.g., gloves for hand interaction) or observe body move-
ments (e.g., through cameras).

Independent of the applied sensor technology, users may interact in different ways when using
respective multi-touch applications. First, concepts known from traditional desktop applications
can be applied in the context of multi-touch applications as well; e.g., menu-based interactions
are based on menus and toolbars to provide available functions to users. As an advantage, this
concept allows users to easily explore the application when searching for a specific function.
However, displaying menus and toolbars requires space on the screen, which is limited on small
devices (e.g., smartphones) [290]. Hence, menu-based interaction should primarily be used for
multi-touch applications running on larger screens. Besides this, selecting menu items might be
challenging on a small screen when covering them with fingers or hand [291].

Gesture-based interaction, in turn, relies on gestures for selecting functions of the multi-touch
application as well as for interacting with them. Thereby, a (multi-touch) gesture constitutes a
movement of the human body involving arms, hands, head, or body [292]. This movement is
then recognized and interpreted by the respective application. For example, in a slideshow of
pictures, the wipe gesture (i.e., wiping with one finger from right to left) can be used to switch
to the next picture. In general, gestures can be categorized into physical and symbolic gestures
[293]. Physical gestures directly manipulate virtual objects on the screen, e.g., by dragging a
virtual element on the screen. In turn, symbolic gestures are related to the function that shall
be executed (e.g., drawing a plus to add an object). As opposed to menu-based interactions,
gestures do not require any space on the screen in order to display menus or other graphical
elements. However, as a barrier, users do not always know which functions are supported by
a multi-touch application and which gestures shall be applied to select them. Especially, the
latter is crucial for novices and unexperienced users of the multi-touch application. Usually, this
problem is addressed through a tutorial provided the first time the user starts the application.

Finally, a hybrid interaction based on both menu- and gesture-based interactions can be real-
ized. For example, a menu bar may be displayed at the top or bottom of the screen, offering
the most important functions. Additionally, well-known gestures may be supported, e.g., the
aforementioned wipe gesture.
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10.2.1 Characteristics of Multi-Touch Applications

In addition to their interaction concepts, multi-touch applications and their multi-touch capa-
bilities should consider at least the following characteristics in the context of process modeling [1].

C1 (Screen Occlusion). The user interface design of a multi-touch application must consider that
users directly interacting with the application may cover screen areas with their hand [294, 295].
For example, dragging an object from the top-left corner of a tablet to its bottom-right corner
will be a difficult task, if large parts of the screen are covered by the user’s hand.

C2 (Handling Precision). Conventional desktop applications require a mouse pointer to interact
with them. This pointer scales with the screen resolution in order to ensure a high precision
of the interactions. In multi-touch applications, however, the “interaction device” is the user’s
finger [296]. As opposed to the mouse pointer, a finger neither scales up nor down when changing
screen sizes. Accordingly, the handling precision of a multi-touch application changes with the
size of an object the user wants to touch. Studies have shown that an object should have a size
of 11.52 mm or more to have a hit probability of at least 95% [297]. Regarding multi-touch
process modeling a high handling precision is indispensable.

C3 (Fatigue of Extremities). When using a computer mouse, usually, the user’s hand does not
move a lot. Usually, the arm lays on the table and the mouse is moved with the fingers to reach
the corners of the screen with the mouse pointer. Interacting with multi-touch applications,
in turn, frequently requires the movement of the entire arm. Furthermore, the latter does not
lay on a table, but has to be hovered in the air during the interaction with the multi-touch
application [298, 299]. Obviously, the degree of movement strongly depends on the screen size.

C4 (Number of Supported Fingers). Compared to conventional desktop applications with one
single mouse pointer, a multi-touch application typically supports more than one touch point.
Generally, the maximum number of touch points an application supports is limited through the
underlying sensor technology, operation system, and screen size. For example, Apples iPad dis-
tinguishes between 11 touch points (i.e., fingers) [300]. While this number is sufficient for single
user applications, multi-user applications should be able to support even more touch points, e.g.,
to enable concurrent process model updates on a touch table.

C5 (Number of Concurrent Users). Multi-touch applications may be concurrently used by mul-
tiple users. Obviously, the degree of concurrency is limited by screen size. While concurrent
interactions with a tablet would effect each other, the concurrent use of an application on a
touch table (e.g., joint editing or modeling) might improve the way of working collaboratively
[301]. Especially, in the context of concurrent process modeling this should be exploited [302].

C6 (Usage of Common Interaction Concepts). As known from conventional desktop applications,
there are interaction concepts representing de-facto standards. Examples include the menu bar
on the top of the application window or File as first entry of this menu bar. Such recurrent
patterns help users to intuitively interact with various applications. The same applies to multi-
touch applications and especially gesture-based interactions; e.g., the pinch gesture is typically
used for zooming. However, there are only few gestures that have been used in a consistent
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manner so far. Therefore, [303] suggests a gesture dictionary with the purpose that different
applications show similar behavior in connection with a specific gesture.

C7 (Intuitive Gestures). Gestures used in the context of multi-touch applications should be as
intuitive as possible (cf. Requirement REQ-9). This supports the user in memorizing and ap-
plying them. Regarding a simple gesture, studies have shown that eight seconds are required to
plan and perform it. In turn, complex gestures require per average 15 seconds [293]. Generally,
the simpler a gesture is, the more intuitive its use will be [293].

The introduced characteristics of multi-touch applications show their wide range of possible
applications. Obviously, these characteristics should be taken into account when designing
gestures for process modeling tools.

10.3 Experiment on Multi-Touch Gestures

In order to identify multi-touch gestures, which are appropriate to interact with process models,
experimental research is conducted. Experimental research on various BPM issues has already
shown promising results regarding user-centric process support [304, 305, 306, 307].

In this thesis, we conducted two user experiments related to touch-based process modeling. The
goal of these experiments is to derive a proper multi-touch gesture set [1, 13, 308, 309]. Ezperi-
ment 1 focuses on the creation of process models, whereas Fxperiment 2 additionally targets at
gestures for view creation and tool interactions (e.g., undo actions, selecting elements). Using
the Goal Definition Template (cf. [310]), the experiments are defined as follows (cf. Table 10.1):

Analyze multi-touch process interaction
for the purpose of evaluating

with respect to their intuitive usage

from the point of view of the researchers and developers
in the context of students and research assistants.

Table 10.1: Goal Definition Template

Taking this goal definition, the experiments evaluate multi-touch interactions applied by users
(i.e., by students and research assistants) when interacting with process models on touch-enabled
devices. The results of these experiments are then used to develop a consistent set of interaction
and modeling gestures covering view creation and process updates as introduced (cf. Chapter 6
and Chapter 7). Based on this goal definition, the following hypothesis is derived:

Users intuitively use gesture-based interaction when interacting with
process models on touch-enabled devices.

In the following, Section 10.3.1 describes the setting of the experiments. Then, Section 10.3.2
presents and discusses experiment results.
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10.3.1 Experiment Setting

Both experiments have the same setting, but differ in the objects (i.e., process models) and
number of tasks [308, 309]. The experiments are designed as a single object study [310], i.e., hav-
ing one group of subjects and one object to evaluate. Furthermore, each experiment is divided
into two parts. In the first part, demographic and background information of the subjects are
collected (i.e., gender, experience with touch-enabled devices, profession, and handedness). In
the second part, each subject has to modify an existing process model (cf. Figures D.1 and D.2
in Appendix D) in 8 (i.e., Experiment 1) or 14 (i.e., Experiment 2) steps. Each step includes
a description explaining the subjects what they have to do to perform the respective process
modeling task on a given process model. For example, task “Think of a way to create a new ac-
tivity between Make Up Package and XOR Branch” corresponds to inserting an activity serially.

Task
T1 (Insert Activity)

Experiment 1

Think of a way to create a new activity
between Make Up Package and the XOR
Branch.

Experiment 2
Insert an activity between activities 1st Re-
view and 2nd Review.

T2
T3

T4

T5

T6

T7
T8

T9

(Rename Activity)
(Insert Branching)

(Insert Branch)

(Insert Data
Element)

(Insert Data Edge)

(Delete Activity)
(Insert Sync Edge)

(Aggregate
Activities)

T10 (Reduce Activity)
T11 (Create Process

View)

T12 (Select Activity)
T13 (Undo Action)
T14 (Open Help)

Label the new activity with Print Invoice.
Insert an AND branching surrounding the
XOR block and activity Send E-Mail.

Insert an empty branch between the two ex-
isting XOR gateways.

Add a new data element Shipping Number
which is written by activities UPS Shipping
and read by Send E-Mail.

Find a way to connect data element OrderlD
to activity Print Invoice through a reading
data edge.

Delete activity Print Invoice.

Aggregate the XOR block and activity Send
E-Mail to a sub-process.

Rename activity 2nd Review.

Insert an AND branching, which includes ac-
tivity Fill Out Credit Request.

Insert an XOR branch to the first XOR
branching.

Insert a data element.

Insert a reading data edge between data
element CustomerPhone and activity Load
Customer Data.

Delete activity 2nd Review.

Insert a synchronization edge between Cal-
culate Risk and Check Credit Protection
Agency.

Combine activity Fill Out Credit Request
and the first XOR branching to a sub-
process.

Hide activity Calculate and Check.

Create a process view consisting of activity
Fill Out Credit Request as well as the first
XOR branching.

Select activity Load Customer Data.

Undo the last action performed.

Open the help dialog.

Table 10.2: Task Descriptions of Experiments 1 & 2

The response variable of the experiments is the gesture performed by the subject. In particular,
the gesture is recorded through the trace of the respective fingers on the screen. Based on such
a trace, in turn, the interaction category used to perform the required change of the process
model is identified. For each task, therefore, the interaction category has one of the following
values: picture, gesture, or menu-based (process) interaction.

As instrumentation of Experiment 1, an Apple iPad and the multi-touch drawing application
Doodle Buddy [311] are used. Experiment 2 applies a web application on a Google Nexus 7,
which is developed for this experiment setting. In both experiments, for each task the application
displays an image to the subject. This image depicts a process model serving as basis for
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the respective task. In this context, the aforementioned textual explanation is displayed (cf.
Table 10.2). Finger movements of subjects are captured through overlays on the image (cf.
Figure 10.2 of Experiment 1).

Additionally, the gesture is captured through a video camera. The latter records the screen of
the device as well as the hands of the subjects and their movements. Furthermore, subjects
are asked to think aloud about what they are doing and what they are thinking about [312].
This information is used for classifying and interpreting results afterwards. Furthermore, the
supervisor of the experiment stays in the same room as subjects, motivates them to think aloud,
and provides assistance in case of emerging questions. Figure 10.1 gives an overview of the
instrumentation applied.

-
Video
Q Questionnaire O Camera

Apple iPad —

Experiment
Supervisor

Figure 10.1: Experiment Instrumentation

10.3.2 Experiment Analysis and Results

In total, 37 subjects attended the experiments (Experiment 1: 26; Experiment 2: 11). Table 10.3
summarizes background information.

Gender Profession Handedness Multi-Touch
Experience
37 Subjects 29 Male 26 Students 35 Right 25 Yes
(26/11 in Experiment 1/2) | 8 Female 11 Res. Assist. 2 Left 12 No

Table 10.3: Subjects’ Background

We classify the interactions a subject applies in the context of a concrete modeling step into
three interaction categories. Note that this classification is accomplished by two persons; i.e., it
constitutes a subjective measurement. As underlying basis, we choose the trace overlaying the
image of the respective modeling step as well as the video capturing the actual movement of the
subject’s hand.

The first category groups gesture-based interactions. This kind of interaction uses simple move-
ments on the multi-touch screen changing the process model (as physical gestures described in
Section 10.2). Figure 10.2a exemplarily shows a gesture-based interaction, which is applied to
insert an XOR block, which surrounds a given process fragment, in a process model. In this
case, the subject moves two fingers simultaneously up and down to insert the surrounding block.
The second category comprises picture-based interactions, i.e., all interactions drawing a realistic
representation of the final result expected from the application of the respective modeling func-
tion (as symbolic gestures, cf. Section 10.2). Figure 10.2b shows an example of this category.
The third category captures all interactions presuming the presence of a menu bar or context
menu. Figure 10.2c exemplarily shows the result of a subject who is drawing a toolbar at the top
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of the screen and is dragging & dropping the required process elements on the depicted process
model. In general, this category covers menu-based interactions.
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Figure 10.2: Interaction Categories of the Experiment

Figure 10.3 summarizes the results of the experiment and visualizes the distribution of the
interaction categories. On the x-axis, each step of the experiment is represented through its
corresponding task. In turn, the y-axis shows the number of subjects (in %) using interactions
from a specific category. The raw data of the experiment can be found in Appendix D.

Obviously, there is no predominant interaction category covering all process modeling and in-
teraction tasks. However, for certain tasks one can observe a clear preference towards a specific
interaction concept. Task T9 (Aggregate Activities), for example, is applied by 64% of the sub-
jects using gesture-based interaction. In turn, for accomplishing task T12 (Select Activity) 100%
of the subjects use gesture-based interaction. For other tasks (e.g., T6 (Insert Data Edge)), how-
ever, no dominating interaction category can be identified. Hence, multiple interaction concepts
should be provided to optimally support different user groups in applying respective functions.
In total, 47.8% of the subjects use a gesture-based interaction. Therefore, the latter predomi-
nates the other interaction categories.
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Figure 10.3: Distribution of Interaction Categories

In the following, we discuss recorded gestures in detail. Note that we analyzed recorded experi-
ment videos as well as gesture traces to understand what subjects intend to do. Based on this
discussion, we extract multi-touch gestures in Section 10.4.

T1 (Insert Activity). Inserting an activity to a process model is a frequently applied operation
when creating process models. 11 subjects apply picture-based interaction and most of them
draw rectangles on the respective control edge. In turn, gesture-based interaction is applied by
11 subjects. Thereby, subjects apply long tab or vertical swipe gestures on the respective control
edge. Finally, 15 subjects use (context) menus to insert the activity. However, these menus are
invoked in different ways: tapping, drawing lines, or pinching on the respective control edge.
Altogether, all subjects interact with the control edge to insert the activity and not with the
preceding or succeeding activity.

T2 (Rename Activity). Renaming an existing activity is performed by 26 subjects who utilize
an on-screen keyboard. 11 subjects use their hand-writing to rename the activity. However,
the way the on-screen keyboard or hand-writing window is triggered differs. Four subjects use
a menu-based interaction by triggering a context menu. Eight subjects apply a picture-based
interaction by drawing a window to write the activity label. Finally, 25 subjects apply a gesture
to trigger an on-screen keyboard. Thereby, 11 of the 25 subjects use tab gestures. The remaining
14 subjects apply other gestures like double and long tab.

T3 (Insert Branching). Inserting a branching block, which surrounds a set of activities, is
performed by 14 subjects using menu-based interaction. Thereby, they tab on a control edge
and expect to open a context menu. Next, 13 subjects apply a picture-based interaction by
drawing diamonds representing required gateways on the respective control edges. Afterwards,
subjects draw a control edge connecting the gateways. Finally, ten subjects use gesture-based
interaction; e.g., they draw two vertical lines on the control edge to insert split/join gateways.

T4 (Insert Branch). Nine subjects insert a branch to an existing branching by drawing a line
between the corresponding split and join gateways (i.e., picture-based interaction). 12 subjects
use a menu-based interaction by tabbing on the corresponding split gateway. Finally, 16 subjects
perform a gesture-based interaction to connect on the corresponding split and join gateways.

T5 (Insert Data Element). Data elements are inserted by six subjects using a gesture-based
interaction (e.g., tabbing on the background). 12 subjects apply picture-based interactions by
drawing rectangles above the process model. Finally, 19 subjects prefer a menu-based interaction.
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Respective menus are either located on the top of the screen (like a toolbar) or represented as
a context menu.

T6 (Insert Data Edge). Four subjects use menu-based interaction to insert data edges connecting
activities and data elements. In turn, ten subjects prefer picture-based interaction, i.e., lines
with an arrow head are drawn. 23 subjects connect the data element and activity with a line
(i.e., gesture-based interaction).

T7 (Delete Activity). Task T7 shall delete an existing activity from a process model. Six
subjects drag the activity to a trash basket or out off the screen (i.e., picture-based interaction).
In turn, 12 subjects delete the activity by using a context menu that is triggered by tabbing on
the activity (i.e., menu-based interaction). The majority of subjects (i.e., 19 subjects) apply a
gesture-based interaction by drawing a cross or a strike through line to delete the activity.

T8 (Insert Sync Edge). Inserting a synchronization edge between activities from parallel branches
is considered in Experiment 2. One subject uses a context menu to insert the synchronization
edge required. Three subjects apply a picture-based interaction and draw a dotted line between
the two activities. Finally, seven subjects perform a drag and drop gesture to connect both
activities (i.e., gesture-based interaction).

T9 (Aggregate Activities). Users shall enable a set of activities in a sub-process activity. Five
subjects presume a context menu to aggregate respective activities. In turn, nine subjects apply
a picture-based interaction and draw a circle or rectangle around the activities to be aggregated.
Finally, 23 subjects use a gesture-based interaction. Most of them apply a pinch gesture on the
“first” and “last” activity, i.e., they move fingers towards each other.

Note that tasks T10-T14 are only evaluated by Experiment 2.

T10 (Reduce Activity). Subjects are requested to hide an activity in the process model. Three
subjects trigger a context menu. None of them applies a picture-based interaction. Eight subjects
perform a gesture-based interaction applying a pinch gesture to the respective activity.

T11 (Create Process View). Task T11 is performed by one subject through a gesture-based
interaction. Three subjects apply a menu-based interaction. Thereby, respective activities are
selected through a tab gesture, afterwards a context menu is invoked. Seven subjects draw a
rectangle around activities to be included in the process view (i.e., picture-based interaction).

T12 (Select Activity). Selecting an activity is performed by all subjects using a tab gesture (i.e.,
gesture-based interaction). An explanation might be that selections are performed in almost all
mobile applications (and operation systems) through tabs [303].

T13 (Undo Action). In task T13, subjects shall perform a gesture to undo the last action
performed. In turn, two subjects use a menu-based interaction. Furthermore, four subjects
apply a swipe gesture either from left to right or vice versa (i.e., gesture-based interaction). Five
subjects prefer a picture-based interaction, drawing a circle in counterclockwise direction or an
arrow pointing to the left.

T14 (Open Help). Subjects shall open a help dialog through a gesture. Three subjects press a
button on an imaginary menu bar on the top of the screen. Furthermore, three subjects swipe
from the left or top border of the screen to make the help dialog visible (i.e., gesture-based
interaction). Five subjects prefer a picture-based interaction and draw respective symbols on
the background (e.g., “H” or “?7).
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The results of the experiments are only representative to a certain degree due to the rather low
number of subjects (especially for tasks T8, T10-T14) and the chosen experiment setting.

In the following, we focus on end-users being experienced with touch-enabled devices, and pro-
pose a core gesture set enabling intuitive process modeling.

10.4 Multi-Touch Gesture Set for Process Interaction

Taking the results of the experiments into account, we propose a multi-touch gesture set for
creating and updating process models. In this context, we have to cope with the trade-off
between commonly known interaction concepts provided by touch-enabled devices and results
of the two experiments. The goal is to provide an appropriate gesture set suited for all kinds of
interactions with process models on touch-enabled devices.

10.4.1 Gestures to Update Process Models

The experiments have shown that users tend to prefer a menu-based interaction when inserting
elements into a process model (cf. Figure 10.3). Therefore, the suggested gesture set includes
a slider menu enabling the insertion of activities, data elements, and surrounding branching
blocks (cf. tasks T1, T3, and T5). To trigger the slider menu, users wipe with their finger from
an existing process element from left to right (cf. Figure 10.4a). Following this, a slider menu
appears at the position where the user releases his finger from the surface of the device. An
alternative design choice may be the application of a pie menu as suggested in [294].

(a) Wipe to Right (b) Scroll the Menu (¢) Tap on Element

Figure 10.4: Gesture for Inserting New Elements

Through up and down movements in the slider menu, the required process element can be chosen.
In particular, the top-down ordering reduces occlusion through user’s hands (cf. Section 10.2.1).
Finally, to insert a process element, the user taps on the respective icon in the slider menu (cf.
Figure 10.4c). Afterwards, the slider menu disappears and the element is inserted. Obviously,
when inserting a branching surrounding an existing process fragment, a second position needs
to be chosen for adding the corresponding join gateway. For this purpose, the process modeling
tool shows valid positions in the process model where the join gateway may be inserted. The
user then chooses one of these positions by tapping on it. To provide more sophisticated user
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support when inserting a branching, surrounding an existing process fragment, abstractions in
terms of process views are useful, i.e., abstracting the process model to a simpler one that only
comprises those activities relevant for the insertion of a join gateway.

The ordering of process elements depicted in the slider menu can be optimized by considering
their relevance, i.e., frequency of their use. For example, inserting an activity might be more
often required compared to the insertion of a surrounding branching block. Therefore, the re-
spective process element should be positioned on a “central” position in the slider menu that can
be quickly accessed.

Another multi-touch gesture allows inserting edges into a process model (cf. Figure 10.5a). In
the context of well-structured process models (cf. Section 6.2), only three types of edges need to
be “manually” added: data edges, synchronization edges, and empty branches, i.e., edges con-
necting split and join gateways. To insert an edge, the user has to draw a line with his finger,
e.g., from the split to the join gateway in order to insert an “empty” branch between them (i.e.,
task T4) [313]. The gesture matches with the results of our experiments.

(a) Insert Edges (b) Delete Element

Figure 10.5: Gesture to Insert Data Edges and Delete Elements

To insert a data edge, the user has to draw a line between an activity and a respective data ele-
ment or vice versa (i.e., task T6). The direction of the data edge indicates whether it represents
a read or write access of the activity on the respective data element. When inserting a data
edge, the gesture set supports users by suggesting a target element (cf. Figure 10.5a on the left).
If the target element is the desired one, the user lifts his finger and the edge is automatically
completed and inserted. The same behaviour is applied when inserting a synchronization edge
between two activities of parallel branches (i.e., task T8). Note that this gesture is directly
derived from experiment results—for tasks T4, T6, and T8 the majority of participants prefer
gesture-based interactions.

Though 67% of the subjects use gesture-based interaction to rename a process element (i.e., task
T2), most mobile operation systems suggest an on-screen keyboard for text input. The keyboard
is hidden most of the time to save screen space, i.e., it is displayed solely in case a user wants to
add or modify text. To comply with common interaction (de-facto) standards on touch-enabled
devices, in the provided gesture set, renaming a process element can be activated by tapping on
it. Afterwards, the keyboard appears and the user is able to modify the text. After confirming
the text change, the keyboard disappears.
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Finally, the majority of subjects delete process elements using gesture-based interactions. For
realizing this function, a gesture crossing out the element to be deleted is suggested (cf. Fig-
ure 10.5b). Generally, different variants of this gesture can be envisioned (e.g., drawing two
crossing lines or one line from bottom-left to top-right). In the provided gesture set, the user
draws a cross on the respective element without lifting his finger. Generally, this is more accu-
rate regarding recognition compared to the drawing of two separate lines.

10.4.2 Gestures for Creating Process Views

Generally, a multi-touch gesture is required to create a process view (i.e., task T11). 64% of
the subjects prefer a picture-based interaction to create a process view. Most of them draw a
rectangle (or a circle) around the respective process fragment to be included in the process view.
However, with this gesture only directly connected activities can be included, i.e., activities
forming a SESE block. In order to enable the creation of a process view with any activity set,
a two-handed gesture is suggested. Initially, the user tabs with his first finger on an empty area
on the screen. While holding this finger down, respective activities are selected with a second
finger by tabbing on them (cf. Figure 10.6). Releasing the first finger, triggers the view creation
based on selected activities. Obviously, this gesture is not “intuitive” to users (i.e., users do not
intuitively pick such a gesture). Hence, it needs an initial training.

Figure 10.6: Creating a New Process View

To aggregate a set of activities to a sub-process (i.e., task T9), a two-handed gesture is intro-
duced. The user pushes the start and end element of the process fragment towards each other
(cf. Figure 10.7). While doing this, the movement needs to be animated to give direct feedback
to the user. After completing the gesture, a sub-process activity is inserted at the respective
position. The resulting sub-process can then be displayed through a double tap gesture. In
turn, to inline a sub-process the user pulls the sides of the sub-process activity apart. When
doing this, the sub-process appears and is re-inlined in the process model. Note that this gesture
matches with the results of the experiments—62% of the subjects use gesture-based interaction
in the context of task T9.

Reducing an activity (i.e., task T10), in turn, is performed by 73% of the subjects through
a gesture-based interaction. From the perspective of a user, reducing an activity might be the
same than deleting it, i.e., in both cases the activity “disappears” in the process model. However,
in the context of the suggested gesture set, a gesture different from the one used for deleting is
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Figure 10.7: Aggregate Activities

preferred. Hence, the user may draw a rectangle around the respective activity and—without
lifting his finger—a line through that rectangle (cf. Figure 10.8). As an alternative to drawing
a rectangle, drawing a circle may be allowed.

Figure 10.8: Reduce Activities

10.4.3 Gestures Triggering Supportive Functions

All subjects have chosen a gesture-based interaction to select a process element (i.e., task T12).
Note that this corresponds with general gesture sets available on mobile devices (cf. Sec-
tion 10.2). Hence, we suggest a tab gesture to select a process element. Instead of a single
tab on the process element, a long tab or double tab might be useful to avoid a wrong detection
of the gesture. [314] suggests a tactile feedback when selecting an item. However, tactile feed-
back is currently not supported by respective devices.

To undo the action performed last (i.e., task T13), a majority of 45% of the subjects prefer a
picture-based interaction. In the provided gesture set, an arrow pointing back is suggested. To
be more precise, the user draws a line pointing to the left as well as a hook at the end of the
line to the top-right (cf. Figure 10.9). Drawing just the upper part of an arrow head reduces
the duration of the gesture and increases the accuracy of recognition. Generally, it is desired to
draw the arrow on an empty area in the editor to avoid false recognition.
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Figure 10.9: Gesture to Undo and Open Help Dialog

Finally, task T14 intends to identify a gesture to open a help dialog. As for undo, 45% of the
subjects preferred a picture-based interaction. Therefore, we suggest a gesture that draws a
question mark on an empty area. If the start of the gesture is located on a process element, the
help dialog may provide context-sensitive information, e.g., in Figure 10.9 the help dialog could
provide information about activity C' and available modeling operations (e.g., delete, reduce).

10.4.4 Summary

This section introduces a multi-touch gesture set to interact with process models. The developed
gesture set is based on two user experiments in order to determine how users intuitively interact
with process models. The gesture set may be used in any process modeling tool. However, when
applying the gesture set to other process representations (cf. Chapter 9) it must be evaluated
whether the gestures are still appropriate.

10.5 Further Process Interaction Concepts

In the following, we discuss further process interaction concepts required for touchless interaction
and collaborative process modeling.

10.5.1 Touchless Interaction

In certain situations, a touch-based interaction limits users when interacting with process mod-
els, e.g., when standing in front of a projector screen in a meeting room. In such a scenario,
a user wants to interact directly with the projector screen instead of additionally carrying a
touch-enabled device. Moreover, the maturity of touchless interaction technologies increased in
the past (e.g., leap motion [315]) and might be used to equip meeting rooms [316].

Section 10.2 discusses various technologies enabling touchless interaction (e.g., Microsoft Kinect).
In a business environment it might be more appropriate to select a sensor that needs be attached
to the human body to decrease usage burdens. Therefore, we presume bare hand gestures, i.e.,
remote sensors supervise hand movements [317]. We omit steps required to detect bare-hand
gestures (cf. [287, 318, 319]). In the following, we describe the application of the multi-touch
gesture set of bare-hand gestures for process interaction.

188



10.5 Further Process Interaction Concepts

Sensor Location. Providing an environment for recognizing hand gestures, a (monitor or projec-
tion) screen as well as a sensor are required. The sensor detects hand gestures (e.g., Microsoft
Kinect [318]) and may be placed orthogonally or in parallel to the respective screen. An or-
thogonal sensor location enables the recognition of hands and fingers held orthogonally to the
screen, i.e., the user points with his hand towards the screen (cf. Figure 10.10a). In case of a
parallel sensor location, the user has to lift his hand in order to allow the sensor to detect his
finger movements, i.e., hands are positioned in parallel to the screen (cf. Figure 10.10b).

: Screen :

\
\

Detection “
Area

Screen

Detection
Area

Sensor

a) Orthogonal Sensor Location b) Parallel Sensor Location

Figure 10.10: Sensor Location

Regarding process model creation and interaction, we suggest an orthogonal sensor location.
Hence, the user is able to point towards the screen and process elements respectively.

Finger Pointing vs. Finger Position. When using hand gestures, it is useful to provide a
reference for the user’s hand position on the (projection or monitor) screen. Therefore, a pointer
(comparable to a mouse pointer) should be displayed. However, calculating the position of the
latter is not straightforward. A wirtual bozx is specified, which is limited by the range of user’s
limbs (i.e., arm) or the sensor detection area. Thereby, this virtual box differs in position and size
from the real screen (i.e., projector or monitor screen). If the user points on the virtual screen
(i.e., an imaginary screen within the virtual box) with his hand, the position on the real screen
must be determined. For such an interpretation two techniques exist: finger pointing or finger
position. Finger Position takes x- and y-axis position of user’s hand (or finger) on the virtual
screen as well as the virtual screen size, and scales it to the real screen size (cf. Figure 10.11).
If the user points to the center of the virtual screen, for example, he points to the center of the
real screen as well.

Finger Pointing not only takes x- and y-axis positions into account, but also the angle o and
the distance between the virtual and the real screen. Angle a expresses the angle of the hand in
respect to the virtual screen. Based on this information and the Pythagorean theorem the point
on the real screen, the user points to is calculated (cf. Figure 10.11).

Generally, finger pointing is more convenient for users, since all points on the real screen can be
reached with minimal movements of the wrist (cf. C3 (Fatigue of Extremities) in Section 10.2.1).
However, it requires a precise detection of the hand and its movements to enable a “smooth”
pointing experience.
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Real Screen

Virtual Screen

Figure 10.11: Difference between Finger Pointing and Finger Position

Applying the Gesture Set. To apply the developed gesture set, additional steps are required.
Since there is no touchable surface to tab on, it has to be defined whether the user intends to
perform a gesture or he is just moving his hand around (e.g., for pointing purposes). Therefore,
the virtual box is divided into an active and passive area (cf. Figure 10.12). If the user moves
his hand in the passive area, no gesture detection is performed, but the hand is shown as pointer
on the real screen [320]. In case the user moves his hand forward towards the screen entering the
active area, gesture detection starts. If a user moves his hand forward and pulls it back again,
for example, this will be recognized as tab gesture.

Screen  virtual Box
1

| IS | I
Active  Passive

Figure 10.12: Activating Hand Gestures

As opposed to interactions on a tablet, interaction in front of a projector screen often involves
several users. When detecting hand gestures, it must be recognized which hand belongs to which
user to be able to detect gestures by multiple hands. Therefore, distances between the individual
hands can be calculated. Those pairs of hands with lowest distances can belong to the same user.

Using this technique all suggested multi-touch gestures (cf. Section 10.4) can be applied as

touchless interaction concept for process modeling. In particular, this allows us to provide an
intuitive way of process modeling (cf. Requirement REQ-9).
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10.5.2 Process Modeling Using Touch Tables

In certain situations it is desired to work collaboratively on a process model. Such situations
include process discovery meetings or discussions among business analysts and domain experts
about the appropriateness of a process model. Usually, process models are displayed on a projec-
tor screen or drawn on whiteboards. Typically, a projector screen solely enables one participant
to interact with a process model (i.e., the one in front of the presentation computer). White-
boards enable all users to document aspects on the respective business process. However, process
models written on a whiteboard must then be manually transferred to a process modeling tool.

A touch table provides a large screen size as well as the possibility for multiple users to simultane-
ously interact with it [321]. However, designing applications for touch tables requires additional
design guidelines [322, 323]. To be more precise, an application for touch tables shall provide an
interaction experience like being at a desk in the office working with physical objects [323]. If a
touch table provides a “physical” user interaction, it is more intuitive for users that shall interact
with it. Furthermore, touch tables allow working on all sides of the table (cf. Figure 10.13), i.e.,
no “top” exists (despite it is mounted to the wall). This implies that applications shall provide
windows and menus accessible from all sides [324]. Typically, these windows and menus are
movable and rotatable. Enabling users to interact with the table from all sides might motivate
multiple users to concurrently participate in the interaction, i.e., multi-user usage must be sup-
ported. In particular, users should be able to concurrently modify the content of the application.

Figure 10.13: Process Modeling on a Touch Table

Working collaboratively requires separate spaces for personal or group work, i.e., users may first
want to work in a personal space to prepare, for example, a process model. Then, the respective
user shares results with others [325]. Moreover, the transition between personal and group work
shall be seamless [326].
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Applying the Developed Gesture Set. Figure 10.14 shows a user interface supporting multiple
users. A process model window visualizes a process model. The latter is freely movable and
resizable on the screen. Such windows are used on the screen to share process models with other
users at the table [327] and might enable personal and group work [322].

Figure 10.14: Selecting Process Elements on a Touch Table

To support users working with multiple windows and process models, process element selections
should be synchronized across multiple windows. If a user selects a process element in one
window, this element is highlighted in other windows as well (cf. Figure 10.14). Moreover, if
the selected process element is an aggregated one, all elementary process elements are selected
in the other windows. This allows users to deal with different abstraction levels (i.e., process
views). In Figure 10.14, for example, a user selects an aggregated activity in process view V1.
This element is directly highlighted in the process model windows showing process view V'3 and
the corresponding CPM. In this context, it may be useful, if each process model window has its
own color to show which user has selected a respective element.

To update or interact with process models, the introduced core gesture set may be applied.
However, in comparison to user interaction on tablets, windows on touch tables are movable.
If the user tabs on a window and starts moving his finger, we need to distinguish whether he
wants to interact with the process model or to move the surrounding window. It is common that
windows are surrounded by a thick border. This border is used as handle for move gestures [323].

Finally, multi-touch tables may be combined with tablets. In particular, process models (i.e.,
CPMs or process views) may be exchanged between the touch table and one or more tablets.
For example, a user may want to “pick up” a process model or a process fragment, update it on a
tablet, and drop the updated process model back to the touch table (cf. Figure 10.15). Existing
approaches for sharing screens between touch tables and tablets may be used (cf. [326, 328)).
Combining touch table and multiple tablets extends the personal space to the user’s tablet and
increases flexibility when using such a modeling environment.
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Figure 10.15: Combining Touch Table and Tablet for Process Modeling

10.6 Discussion

This chapter introduces a core gesture set for interacting with process models. The gesture set
is developed based on the results of two experiments, which aim to identify an intuitive gesture
set. However, results from experiments involving students and research assistants are only par-
tially transferable to practice. Furthermore, the developed gesture set comprises only a subset
of gestures required to develop a multi-touch-aware process modeling tool. However, frequent
use cases for process interaction are covered.

We further provide insights how the gesture set can be applied to touchless interaction as well
as to collaborative process modeling. Therefore, we discuss issues to be considered applying
touchless interaction. However, further experiments are required to identify all aspects to be
considered when developing a process modeling tool that provides touchless interaction or col-
laborative process modeling on touch tables.

10.7 Related Work

Related work may be divided in approaches related to gesture-based interaction and collaborative
process modeling with touch tables.

Gesture-based Interaction. Differences between the interaction concepts of pointing, touching,
and scanning are analyzed in [329]. As a result, user location (e.g., sitting, standing) is crucial
for interaction concepts. A think aloud experiment evaluating a gesture set on touch tables
and multi-touch devices is introduced in [293]. However, introduced gestures do not consider
process interaction. [330] provides an approach for developing intuitive and ergonomic gesture
sets. Thereby, the approach considers users to find appropriate gestures. Furthermore, it is
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shown that in certain situations users prefer more than one gesture for one and the same task.
In [303], a multi-touch gesture dictionary is suggested.

A multi-touch gesture set for interacting with graphs is provided in [331]. The approach focuses
on the interaction with edges. A manipulation of the graph structure is not investigated. Finally,
[280, 332] analyzes the combination of multi-touch gestures and pen input to manipulate graphs.
As a result, a corresponding gesture set is suggested.

A concept to describe gestures based on examples is introduced in [333]. The latter requires
an algorithm to efficiently detect hand gestures [334]. Finally, [335] compares the performance
of various detection algorithms. The Microsoft Kinect 2D and 3D image can also be used for
gesture recognition [336]. The resolution and accuracy of the Microsoft Kinect in the context
of indoor mapping is analyzed in [337]. [338] introduces techniques and gestures for interaction
remotely with large screens.

Collaborative Process Modeling. An overview on multi-user gesture-based interactions is given in
[339]. In particular, special gestures for multi-user scenarios may increase usefulness of collabo-
rative applications on touch tables. A literature review and challenges in collaborative modeling
are presented in [340]. A particular challenge in this context is the modeling skills of users.

The way a process modeling tool supports the collaboratively creation of process models is crucial
[327]. The difference exists between the absence of tool support and the usage of a collaborative
process modeling tool is evaluated. Altogether, a collaborative process modeling tool increases
model quality, but required time is also increased [327]. An approach for distributed process
modeling utilizing virtual environments is provided in [341]. Users are visualized in a virtual
world and are able to modify a 3D process model. In a collaborative scenario, this approach
allows pointing at process elements and discusses about it.

Tangible business process modeling (TBPM) provides an approach to collaboratively document
process models based on physical (i.e., tangible) elements [302]. The approach is applied in
the clinical domain to demonstrate its appropriateness for non-technical users [342]. However,
TBPM is only applied to initially capture processes, but not to evolve existing process models. In
the context of S-BPM, [343, 344] introduces a touch table that allows users to document process
models based on physical objects. As opposed to TBPM, process models are automatically
stored in a process repository. Moreover, [345] shows that an adequate support of touch tables
enables users with limited modeling experience to create and evolve process models.

An experiment comparing collaborative process modeling with a video projector, vertical-mounted
multi-touch screen, horizontal multi-touch table, and a whiteboard are presented in [346]. As

a result, a (horizontal) multi-touch table is suited best for collaborative process modeling. In

particular, resulting process models are comprehensible and lively discussions become possible.

However, users do not prefer on-screen keyboards for text input.

10.8 Summary

This chapter introduces user interaction concepts for process models and suggests a multi-touch
gesture set, which includes gestures to interact with process models as well as to change them.
This is crucial to enable users to create process models on touch-enabled devices (e.g., tablets).
The developed gesture set is based on experimental results to guarantee for its appropriateness.
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10.8 Summary

The gesture set is applied to touchless interaction. The latter includes technologies not requiring
to touch any screen; i.e., bare-hand gestures are used to interact with a process modeling tool.
In particular, it is shown that the developed gesture set can be used to interact with process
models in front of a projector screen, for example, utilizing the Microsoft Kinect or Leap Motion
Sensor.

Finally, the developed gesture set is applied to collaborative process modeling on touch tables.
The latter allow for the concurrent interaction of multiple users with process models. In this
context, process views are used to reduce the complexity of process models for users as well as
to allow for the concurrent change of process models.
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11

Proof-of-Concept Prototype

11.1 Introduction

The concepts and algorithms presented in Parts II and III are implemented in a proof-of-concept
prototype, which aims to demonstrate the technical feasibility of the proView framework. In
addition, it provides the basis for evaluating core concepts (cf. Chapter 12).

The following functional requirements are met by the proof-of-concept prototype:

Enabling users to create process models (i.e., CPMs) or import existing ones.

Supporting users in creating process views based on elementary as well as high-level view
creation operations.

Dynamically switching between different process representations and ability to easily in-
tegrate additional process representations.

Enabling users to apply view update operations as well as to control their propagation to
the related CPM.

Enabling users to control the migration of other views to an updated CPM version.

Enabling gesture-based process model updates and view creation.

In addition, the following non-functional requirements are met by the proof-of-concept prototype:

Improved usability through advanced visualization and interaction concepts.
Enabling multiple users to interact with process models and views.
Extensibility and changeability of the implemented concepts.

Independence from any device type and operating system respectively.
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First of all, we developed a spike solution to identify required architectural components. Fur-
thermore, we experienced impressions about potential pitfalls when implementing the concepts
of this thesis [99]. Then, another prototype was implemented based on the experiences with the
spike solution [239, 309, 347, 348]. In particular, this prototype provides the described functions.
Initially, a server and a client component were implemented. Then, other process representations
and a touch-enabled user interface were added.

Section 11.2 introduces the general architecture of the prototype. Section 11.3 describes the
server component (i.e., proViewServer) and discusses the implementation of our concepts. Sec-
tion 11.4 presents the proViewClient and various user interfaces. Section 11.5 discusses and
concludes the chapter.

11.2 Architecture Overview

The developed proof-of-concept prototype comprises proViewServer—a central server compo-
nent allowing for the persistent storage of CPMs, process views, and parameter settings. Further-
more, proViewServer supports the creation of process views and handles process view updates.
In particular, the latter may be propagated to the related CPM as well as all other associ-
ated process views. Next, proViewServer provides a RESTful (Representational State Transfer)
communication that enables clients to retrieve process models (i.e., CPMs or process views)
as well as to evolve them over time (cf. Figure 11.1). In particular, proViewServer integrates
AristaFlow BPM Suite!, using its object model to represent process models as well as process
model updates (i.e., to insert an edge or node).

Based on the RESTful communication provided by pro ViewServer, several clients are developed:
pro ViewClient, proViewMobile, proViewKinect, and proViewCollab. First, proViewKinect allows
users to interact with process models and views based on hand-gestures (i.e., touchless inter-
action) [320]. In turn, proViewCollab enables users to collaboratively model processes utilizing
a touch table [321]. Both clients have been implemented using C# and Windows Presentation
Framework (WPF)?. Furthermore, proViewMobile is an Apple iPad app that allows for inter-
acting with process models and process views [349]. In particular, this client provides functions
to create and update process views based on multi-touch gestures.

The proViewClient is a web client based on the Vaadin framework [350]. The latter constitutes an
open source web framework for creating web applications using Java as programming language.
A Vaadin application itself consists of a client and server side. Furthermore, Google Web Toolkit
(GWT) is used to render client-side web pages, whereas Asynchronous JavaScript and XML
(Ajax) enable the communication between client and server side. The proViewClient allows for
a sophisticated visualization of process models (i.e., CPMs and process views) based on various
process representations. Furthermore, the presented view update concept is provided to end-
users. Finally, multi-touch gestures are integrated with proViewClient. Further details can be
found in Section 11.4.

!See http://www.aristaflow.de and [110, 112]
http://msdn.microsoft.com /en-us/library /aa970268.aspx
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Figure 11.1: Architecture Overview

11.3 proViewServer

The proViewServer is responsible for managing clients as well as process models. It consists of
three layers (cf. Figure 11.2).

The Resource Layer encapsulates all services required to provide a RESTful communication
to clients. Thereby, Java objects representing process models as well as related operations are
serialized with XStream?3. ProcessManager supports the creation of process models as well as
interactions with them. ViewManager allows creating, storing, and evolving process views.

The Operational Layer comprises services for creating and evolving process models (i.e., CPMs
and process views). In this context, CPMService provides basic functions to create, load, and
delete CPMs. In turn, ViewService comprises functions to load, save, refactor, and migrate
process views. Furthermore, it coordinates updates on process views by triggering the ViewUp-
dateService and creates process views by triggering the ViewCreationService.

The Persistence Layer and its PersistenceService allow for the persistent storage of all process
model and view artifacts. Process models are stored as XML files in a format supported by
the AristaFlow BPM Suite [70]. The XML files, in turn, are extended with additional XML
elements . In particular, the pluginDataContainer is used to store the Universally Unique
Identifier (UUID) of CPM together with its version (cf. Listing 11.1). Furthermore, for each
configuration parameter, an XML element is added to the respective parameter value for the
CPM (cf. Listing 11.1, Lines 5-12). Note that these parameter values are inherited by each
process view defined on that CPM.

3XStream is a library to (de-)serialize objects to and from XML. See http://xstream.codehaus.org/
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Figure 11.2: Architecture of proViewServer

<pluginDataContainer>
<pluginData pluginlD="cpm” extensionPoint="cpm”>

<pluginDataEntry name="cpmID”>...</pluginDataEntry>
<pluginDataEntry name="processVersion”>1</pluginDataEntry>
<pluginDataEntry name="AggrComplMode”>AGGR</pluginDataEntry>
<pluginDataEntry name="AggrPartlyMode”>AGGR</pluginDataEntry>
<pluginDataEntry name="DeleteBlockMode”>INLINE</pluginDataEntry>
<pluginDataEntry name="InsertBlockMode”>EARLY_EARLY</pluginDataEntry>

9 <pluginDataEntry name="InsertBranchMode”>EARLY</pluginDataEntry>

10 <pluginDataEntry name="InsertSerialMode”>EARLY</pluginDataEntry>

11 <pluginDataEntry name="RedComplMode”>RED</pluginDataEntry>

12 <pluginDataEntry name="RedPartlyMode”>RED</pluginDataEntry>

13 </pluginData>

14 </pluginDataContainer>

Listing 11.1: XML Representation of a Parameter Set

00O Ui WN

Fach process view is represented by an XML document containing a reference to its CPM, its
UUID, and the versions of the CPM as well as its associated process views (cf. Listing 11.2).
Element viewName stores the name of the process view. In element operationSet, in turn, a
set of view creation operations are stored. The latter need to be applied to the CPM to create
the process view. For example, the view creation operation described in Lines 8-19 aggregates
process nodes with ID 18 and ID 83 to an aggregated node with ID 84, and label it as “Prepro-
cessing Steps”. Accordingly, the view creation operation described in Lines 20-25 reduces the
activity with ID 19 in the process view. Finally, element parameterSet describes view-specific
parameter values. In Listing 11.2, no explicit parameters are defined, i.e., all parameter values
are inherited from the CPM.

<view>
<cpmID serialization="custom”>...</cpmID>
<viewID serialization="custom”>...</viewID>
<cpmVersion>1</cpmVersion>
<viewVersion>3</viewVersion>
<viewName>Agent Clerk</viewName>
<operationSet>
<ViewCreateOperation>
<aggrNode>84</aggrNode>
<op class="CreateChangeOperation”>AGGREGATE SESE</op>

O © 00O Uk WN

[y
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11 <nodeSet>

12 <int>18</int><int>83</int>

13 </nodeSet>

14 <optionSet>

15 <entry>

16 <string>nodeName</string><string>Preprocessing Steps</string>
17 </entry>

18 </optionSet>

19 </ViewCreateOperation>

20 <ViewCreateOperation>

21 <aggrNode>0</aggrNode>

22 <op class="CreateChangeOperation”>REDUCE_ACTIVITY</op>
23 <nodeSet><int>19</int></nodeSet>

24 <optionSet />

25 </ViewCreateOperation>

26 <parameterSet />

27 </view>

Listing 11.2: XML Representation of a Process View

11.3.1 Updating a Process View

The sequence diagram depicted in Figure 11.3 illustrates how a view update operation is pro-
cessed in pro ViewServer: the update is triggered through a REST POST sent by pro ViewClient.
The REST POST is received by ViewManager and then de-serialized. This request is forwarded
to ViewService together with the view update operation viewOp to be applied as well as the
UUID of the view to be changed. Then, ViewService fetches the associated CPM and recreates—
if necessary—the process view that triggered the update.

:proViewClient ‘ ’ :ViewManager ‘ ’ :ViewService ‘ :ViewCreationService| ’ :‘ViewUpdateService ‘ ’ :PersistenceService ‘
N N N N
REST Post (XMIL) processViewOperation,,, | ‘ ‘ ‘
i -
updateview (UUD, viewOp) QeICPILLID) > D
o __ S ISR
createView(CPM,CS ‘ ‘ ‘
,,,,,,,,,, | |
processUgdateOperatibn CPM,view,viewOp; » ‘ ‘
calculateParameter(...) ‘
‘ interpretUpdate(...) ‘
<C---—————-- b |
refactorCPM(CPM) \ \ \
updateCPM(CPM) | | . h
] [ I
loop ‘ ‘ ‘
migrateView(view,vi ew(.'fp) ‘ ‘
updateView(view) | | »
x x 'm
K——— - |m————— == ===
REST Response (XML) K-————————-" =

Figure 11.3: Updating a Process View

Based on the process model of the CPM and process view as well as the view update operation
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to be applied, ViewUpdateService determines the parameter values to identify the insert position
in the CPM and updates the latter (i.e., interpretUpdate()). Following this, the updated CPM is
refactored in order to eliminate unnecessary control flow structures. The refactoring was added
subsequently to the prototype in order to keep the CPM comprehensible.

The updated CPM is sent back to PersistenceService to ensure persistence of the applied updates.
Finally, all other process views associated with the CPM are migrated to the new version of the
CPM, and are then stored using the PersistenceService. The migrated model of the process
view, which triggered the update, is sent back to pro ViewClient.

11.4 proViewClient

The proViewClient serves as user interface to create, view, and update process models. More
precisely, this user interface consists of a side bar displaying all accessible CPMs and their
associated process views. Thereby, a process view is shown as child entry of its CPM (cf. Fig-
ure 11.4A). When clicking on one of these entries, the process modeling window (cf. Figure 11.4B)
is opened. The latter then shows the selected process model. Furthermore, a properties win-
dow, which provides attributes of selected process elements and their values, is displayed (cf.
Figure 11.4C). Alternatively, an overview on the data elements is shown. Finally, Figure 11.4D
shows an overview of applied view creation operations and allows undoing them if required.
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Figure 11.4: Screenshot of proViewClient

Menu bar item market allows loading pre-defined CPMs into the current session (cf. Fig-
ure 11.4E). Further, menu bar item settings (cf. Figure 11.4F) allows users to configure various
settings, e.g., [P address of proViewServer. Furthermore, it allows configuring the style and
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11.4 proViewClient

behaviour of process representations (e.g., to adjust vertical or horizontal distances between
process elements). Finally, menu bar item parameters opens a dialog window for setting param-
eter values (cf. Chapter 7) for CPMs and process views (cf. Figure 11.4G).

Figure 11.5a shows the parameter window and the parameter values for a specific process view.
In particular, parameter values with suffix “(CPM)” are inherited from the corresponding CPM.
Parameter values without this suffix are explicitly set for the respective process view. If this
window is opened for a CPM, it shows parameter values for the respective CPM as well as for
all associated process views (cf. Figure 11.5b).
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(a) Process View Parameters (b) CPM Parameter Overview

Figure 11.5: proViewClient - Parameter Settings

Menu item representations allows users to switch between different process representations (cf.
Figure 11.4H). Currently, four process representations are provided. As default representation,
BPMN can be used (cf. Figure 11.4). Furthermore, the ADEPT process modeling language
is supported as alternative graph-based representation (cf. Figure 11.6a) [104]. Both graph-
based process representations use specific layout algorithms. A normal layout positions process
elements as shown in Figure 11.6a. The simulated layout, in turn, positions each process element
at exactly the same position as in the CPM, i.e., a user may see at which parts of a process view
the CPM process elements have been hidden or aggregated.

The verbalized process description introduced in Section 9.4 has been implemented as well (cf.
Figure 11.6b) based on the technology described in [231]. Details about this implementation
can be found in [239]. In addition, proViewClient allows for a form-based representation (cf.
Section 9.3), which visualizes a process model in terms of nested rectangles. Further details
about this implementation are provided in [348].

Finally, menu item windows allows users to arrange multiple process model windows right next
to each other. In turn, this allows for the visual comparison of a CPM with its associated process
views (cf. Figure 11.4J).
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Figure 11.6: Process Representations in proViewClient

11.4.1 Creating and Updating Process Views

FElementary and high-level view creation operations are provided by proViewClient to reduce
process elements and to aggregate them. First of all, a process view is created based on a CPM,
i.e., initially it corresponds to an exact copy of the CPM. When selecting process nodes and
performing a right click on them, a list of view creation operations that may be applied on the
selected node set are displayed. For example, proViewClient checks whether the selected node
set induces a SESE block to which view creation operation AggrSESE can be applied. Fig-
ure 11.8 shows such a context menu, based on the selection of two activities. As can be seen, the
selected activities may be reduced or aggregated. Furthermore, high-level view creation opera-
tion “View from selection” allows creating a process view that only displays selected activities.
Finally, high-level view creation operation “Show my activities” and “Create process views for
each agent” are supported as well.

Aggregated activities are displayed as sub-process activities (cf. Figure 11.7a). Clicking on the
plus symbol of such an activity unfolds the sub-process, which is then displayed inline (cf. Fig-
ure 11.7b). Based on this unfolded sub-process a new process view can be created, i.e., high-level
view creation operation “View from selection” is applied.

In order to update process views, various elementary view update operations are offered to
users (cf. Figure 11.8). View update operations may be applied in combination with all process
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Figure 11.7: proViewClient - Aggregation Operation

representations. Once a view update is applied, the respective operation is sent to pro ViewServer
(cf. Section 11.3). After receiving the updated process view, pro ViewClient provides animations
in order to give the user feedback, which part of the process view was changed.
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Figure 11.8: proViewClient - Triggering View Creation and Update Operations

In order to trigger view creation and update operations to all process representations an imple-
mentation of the IModelingService interface is required (cf. Listing 11.3). Respective methods
are invoked to push selected operations to proViewServer. Furthermore, the interface is imple-
mented for all representations by the ModelingService. Consequently, process representations
are independent from the logic of view creation and update operations. To obtain the updated
process view, all process representations must inherit from abstract class A Apearance. In turn,
method updateModel of AApearance is invoked if an updated process model from the server is
received (cf. Section 11.3).

1 public
2 void
3 void
4 void
5 void
6

7 void
8 void
9 void
10 void
11 void
12 void
13 void
14 void
15 void
16}

interface IModelingService {

renameNode (UUID uuid, ArrayList<Node> nodes);

renameNode (UUID uuid, int nodeid, String newNodeName);
reduceNodes (UUID viewId, ArrayList<Node> nodes, boolean showNotification);
createViewFromSubprocessesAndNodes (UUID uuid ,
Set<LayoutSubprocess>subprocessSet , Set<Integer> set);
aggregateNodes (UUID uuid, ArrayList<Node> nodes);

deleteNode (UUID uuid, ArrayList<Node> nodes);

insertSyncEdge (UUID uuid, ArrayList<Node> nodes);

insertSerial (UUID uuid, ArrayList<Node> nodes);

insertLoop (UUID viewld, ArrayList<Node> selectedNodes);
insertConditional (UUID viewld, ArrayList<Node> selectedNodes);
insertParallel (UUID uuid, ArrayList<Node> nodes);

insertBranch (UUID viewlId, ArrayList<Node> selectedNodes);
undoOperations (UUID viewld, Set<ViewCreateOperation> undoSet);

Listing 11.3: Modeling Service Interface
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11.4.2 Providing Multi-Touch Gestures

In a second step, we extended proViewClient to be able to recognize multi-touch gestures (cf.
Chapter 10) [309]. In turn, this enables us to recognize multi-touch gestures on each (mobile)
device with an installed browser. Note that existing add-ons for detecting gestures within a
Vaadin application (e.g., Vaadin TouchKit*) do not focus on multi-touch gestures. To extend
proViewClient with the presented gesture set and, in particular, symbolic gestures, a Vaadin
add-on, denoted as proViewTouch was developed.

As typical for any Vaadin add-on, proViewTouch consists of a client and server side. The
client side of proViewTouch is represented by the TouchPanelWidget and TouchPanelConnector
components. Thereby, TouchPanelWidget integrates itself in the process modeling window (cf.
Figure 11.4B) in order to capture touch start, move, and end events triggered by the fingers of
users in a browser window. Captured gestures are then sent to the server side by the Touch-
PanelConnector.

The server side part of proViewTouch is represented by TouchPanel. The latter receives the ges-
ture from the client side and runs a recognition algorithm to detect which kind of gesture the user
performed. After recognizing the gesture, the respective operation is called on pro ViewServer.

Figure 11.9 shows the interaction between the components as required to recognize a gesture in
a sequence diagram. The TouchPanelWidget is triggered by the user when he starts touching
the screen. Afterwards, class SymbolicGesture is triggered to capture touch positions, i.e., if the
user starts moving his finger on the screen, new touch positions are sent to SymbolicGesture. If
the user lifts his finger (i.e., a touch end event occurs), detected touch points are sent to the
TouchPanelConnector. The latter bundles the touch points and sends them to the server side
of proViewTouch using a RPC call. In case the user just tabs on the screen (i.e., no move event
occurs), no communication between client and server side is required (i.e., tabs are handled
directly by the client).

i ‘ :TouchPanelWidget ‘ :SymbolicGesture ‘ ‘:TouchPaneIConnector ‘ :TouchPanel ‘

B Event(onTouchSt:
onBrowserEvent(onTouchStal touchStart(pos) |
>
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\ \
| |
| |
touchMove(pos) ‘ ‘
>
| |
\ \
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onBrowserEvent(onTouchEnd
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| I | onGesture(touchPoints gestureExecuted(
- |
‘ ‘ ‘ touchPoirts) gestureRecognition(
‘ \ 1 SO —— touchPoirts)
! |

, ‘ triggerAction(action) —

Figure 11.9: Detecting a Multi-Touch Gesture

*Further information about the Vaadin TouchKit: https://vaadin.com/add-ons/touchkit
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When TouchPanel receives the touch points, it tries to recognize them. Therefore, the $1 Gesture
Recognizer algorithm is applied. It pre-processes the received gesture information and compares
detected gestures with pre-defined gesture templates [334]. The latter are defined in terms of
XML documents. Listing 11.4 represents gesture template RECTANGLE as a set of points on
a two-dimensional screen.

1 <templates>

2 <template name="RECTANGLE”>
3 <pt y="158" x="59"/>

4 <pt y="170" x="59” />

5

6 </template>

7

8 </templates>

Listing 11.4: XML Representation of a Gesture Template

If there is a match with a gesture template, a corresponding event is triggered based on the name
of the template. Then proViewClient handles this event and sends a respective view update and
view creation operation to proViewServer.

11.5 Discussion and Summary

This chapter introduces the proof-of-concept prototype that realizes the concepts and algorithms
of the pro View framework. It allows visualizing and exploring these concepts in a comprehensible
and consistent manner. Furthermore, the prototype can be used in real-world case studies
and experiments as will be shown in the next chapter. In particular, the proof-of-concept
prototype demonstrates the feasibility of the concepts and algorithms developed in Parts II and
IIT of this thesis. The prototype confirms that multiple users are able to interact with the
proView framework to maintain process views. However, we do not consider scalability issues.
In particular, the prototype slows and acquires a lot of memory if too many users are active.
Finally, the proof-of-concept prototype lacks a number of features required for its application
in a practical setting. For example, no access control mechanisms are provided. Finally, the
prototype should be applied in modeling projects within companies and organizations in order
to obtain further feedback.
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This chapter evaluates selected concepts and algorithms of the proView framework. The eval-
uation comprises three parts: First, Section 12.1 demonstrates the application of view creation
and view update operations to practical scenarios.
ment that validates process representations. Third, the presented multi-touch gesture set is
evaluated through an experiment in Section 12.3. Note that due to the modular design of the
proView framework, we are able to evaluate specific parts separately (cf. Figure 12.1). Finally,

Section 12.4 discusses the evaluation results.

1 View Update [«

Case Studies and Experiments

Second, Section 12.2 presents an experi-
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Figure 12.1: Overview of Framework Evaluation

12.1 Case Studies

In this section, we apply the presented view creation and view update operations to real-world
process models in order to demonstrate their relevance, applicability, and benefit in practice.
The considered process models origin from various domains, i.e., finance [139], accounting [351],

and health care [352].




12 Case Studies and Experiments

The considered process models are first created by applying the proof-of-concept prototype pre-
sented in Chapter 11. Then, the resulting models are abstracted, i.e., process views are created
for each user (role) involved in the respective process. Additionally, process views are created,
which represent IS contributing to the execution of a process model. Finally, for some process
models additional process views are created providing an abstract overview.

In order to measure the degree of process abstraction after the application of view creation
operations to a process model, we use well-known process metrics [73, 208, 353]. In detail, the
total number of activities and gateways is counted. Furthermore, the number of AND, XOR,
and Loop gateways are determined separately. Note that we not distinguish between split and
corresponding join gateways in this context. Other process model metrics considered include
diameter, separability, and McCabe. Process metric diameter measures the longest path through
the process model [73]. In turn, process metric separability describes the ratio between the num-
ber of cut-vertices, i.e., the ratio between control edges serving as bridges between otherwise
disconnected graphs (i.e., process models) and the total number of nodes in a process model.
In particular, in [73] a high significance between process metric separability on one hand and
process model understanding on the other is identified, i.e., a high process model understanding
is achieved by process models having a high separability. Process metric McCabe, in turn, de-
scribes control flow complexity and is calculated by the weighted sum of all gateways (and their
outgoing edges) in a process model [354, 355].

12.1.1 Case Study: Credit Approval

The first scenario to which we apply view creation and view update operations deals with the
processing of credit applications in a Brazilian bank [139]. The process is initiated by a credit
application of a customer in a branch office of the bank and terminates with the preparation of
the credit contract.

In general, the process may be grouped into four phases (cf. Figure 12.2): Preprocessing, Request
Handling, Decision, and Contract Preparation. Phase Preprocessing fetches customer data from
the database, checks completeness of this data, and validates the credit application. After this
phase, the credit application might be cancelled. Otherwise, phase Request Handling sets up
a customer file, acquires customer financial reports, and prepares everything for the Decision
phase. During the latter, all documents are revised and a final decision is made. If the decision
is positive, a contract is prepared, customer records are updated, and the customer is informed
in the Contract Preparation phase. The process comprises three user roles: Analyst, Clerk, and
Manager. Additionally, automatic activities of the Database and the PAIS are documented in
the respective process model of the credit approval process (i.e., CPM).

The bank has used five different process models to capture the process. One process model shows
the (top-level) phases (i.e., it gives an overview) as described above (cf. Figure 12.2). Further-
more, each phase is detailed by a separate process model (i.e., sub-process). Before applying
them to the proof-of-concept prototype, the process models are translated from Portuguese to
English. Furthermore, the individual process models are combined into one process model. Since
the process models are unstructured ones, techniques described in [117] are applied to get a well-
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Figure 12.2: Credit Approval - Overview

structured process model matching with our definition of a process model (cf. Definition 6.1).
The resulting process model (i.e., CPM) is shown in Figure 12.3.
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Figure 12.3: CPM Credit Approval

Taking the CPM of the credit approval process, we create process views for each user role. Fol-
lowing this, another process view is created that provides an abstract overview of the credit
approval process, which corresponds to the high-level model of the bank (cf. Figure 12.2). Re-
spective process views can be found in Appendix C. Table 12.1 shows the calculated process
metrics for the CPM as well as for each created process view.

In comparison to the CPM, creating and using personalized process views for each user role
decreases complexity to 7%—41% regarding the number of activities and 17%-46% regarding
control flow complexity (i.e, McCabe metric). Furthermore, users can now look at their parts
of the process at once instead of searching the respective activities in six different (sub-)process
models. In particular, the diameter of process views is about 10%-45% of the diameter of the
CPM. Separability is improved as well; however, values are rather small for process views. This
can be explained through the high number of XOR gateways with empty branches (cf. Fig-
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Process Model | # Activities Totalfunj:;ﬁ)()f C}%{a(i;t;;vayioop McCabe | Diameter | Separability
CPM 29 30 0 30 0 35 20 0.016
V1: Analyst 12 12 0 12 0 16 9 0.077
V2: Clerk 2 12 0 4 0 8 2 0.333
V3: Database 3 6 0 6 0 6 3 0.364
V4: Manager 7 4 0 4 0 9 2 0.231
V5: System 4 10 0 10 0 10 4 0.125
V6: Overview 5 6 0 6 0 6 5 0.231

Table 12.1: Process Metrics for Credit Approval CPM and Views

ure 12.2). In this context, it might be useful to provide refactoring rules removing empty XOR
branches as well. Note that such refactorings violate control flow correctness.

Next, we apply a view update operation, which moves activity “Send Finance Reports to Bank
Branch” of user Analyst from phase Decision to the start of phase Contract Preparation. When
performing this update in the original process models provided by the bank, the respective activ-
ity has to be deleted in the process model of sub-process Decision and then a new one is inserted
in sub-process Contract Preparation. Performing the same update using view update operations,
the activity has to be moved in the view of the Analyst to its new position (cf. Figure 12.4). The
other process views need not be updated. Note that this can be automatically decided utilizing
the fact that all process views have been created by applying high-level view creation operation
ViewByPredicate(CPM,Role = userrole). In particular, the respective activity is only relevant
for the Analyst.

O

Figure 12.4: Credit Approval - Process View V1: Analyst

12.1.2 Case Study: Order-to-Delivery

The order-to-delivery process we consider origins from an accounting department of a medium-
sized company, which produces machines customized to the specific needs of the customer. In
particular, the process covers project management activities to be performed between the or-
dering of a machine and its delivery to the customer. Thereby, production related activities are
excluded from the process model. In total, the resulting process model contains 56 activities and
involves six user roles, i.e., Accountant, Project Manager, (Mechanical) Engineer, Management,
Clerk, and EE Engineer.

The order-to-delivery process starts with setting up a log file, which documents the progress
of the order. Then, the ordered machine is constructed and a corresponding bill of material is

214



12.1 Case Studies

prepared. Under certain conditions, the customer is contacted to request additional information
about his requirements. Afterwards, the order is confirmed and the production of the machine is
planned and prepared. In parallel to this, electronic/electrical components are designed and the
wiring of the machine is planned. Following this, all components of the machine are produced,
assembled, and packaged for delivery. Finally, a delivery note as well as the invoice are created.

Initially, the process model provided by the company is translated from German to English. As
opposed to the previous case study (cf. Section 12.1.1), the complete process is already docu-
mented by a single process model. Based on this process model (i.e., CPM), we create a process
view for each user (role) based on high-level view creation operation ViewByPredicate(CPM,Role
= userrole). An overview of these process views as well as the CPM is provided by Figure 12.5.
Table 12.2 shows the process metrics calculated for the process views.

Process Model # Activities TOtal;IumAb;r]-Dof ();(%eRway;oop McCabe | Diameter | Separability
CPM 56 14 12 2 0 8 25 0.042
V1: Accountant 2 0 0 0 0 0 3 0.500
V2: Project Manager 9 2 2 0 0 1 5 0.231
V3: Engineer 11 0 0 0 0 0 11 0.846
V4: Management 10 2 2 0 0 1 8 0.143
V5: Clerk 17 2 2 0 0 1 15 0.143
V6: EE Engineer 17 2 0 2 0 2 14 0.238

Table 12.2: Process Metrics for Order-to-Delivery CPM and Views

Compared to the CPM, complexity can be decreased to 4%-30% regarding to the number of
activities and to 0%—25% regarding control flow complexity (i.e., McCabe metric). Although the
order-to-delivery process has a higher number of activities than the credit approval process, the
McCabe metric for the order-to-delivery process is considerably smaller (i.e., credit approval:
35, order-to-deliver: 8). This results in the small number of XOR gateways. Furthermore, since
empty AND branches and AND branchings are refactored when creating a process view (as
opposed to XOR branches and XOR branchings), the complexity of process views in respect to
the McCabe metric is considerably smaller. Compared to the CPM, process metric diameter is
decreased to 12%-60%, i.e., for process view V1 the longest path is 12% of the longest path in
the CPM. Separability is increased about 3.4-20.1 times compared to the CPM.

Figure 12.5 shows the application of view update operation InsertSerial to process view V4.
Activity Send Confirmation is added between activity Send Order Incoming Mail and aggre-
gated activity Preprocessing € Pricing. The newly inserted activity is then propagated to the
CPM and, afterwards, process views V4 and V5 are migrated to the resulting new CPM version
to reflect this change as well as to apply the new activity Send Confirmation. Note that other
process views will not show the inserted activity since they refer to different regions of the CPM.

12.1.3 Case Study: Planning a Chemotherapy

The process of planning a chemotherapy at a hospital in Germany comprises the preparatory ac-
tivities required before the chemotherapy may be started [352]. The process involves three user
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Figure 12.5: Order-to-Delivery - Applying View Update Operations
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(roles), i.e., Doctor, Nurse, and Secretary. It starts with an activity that determines the current
stage of the cancer. In parallel, the patient record is checked, the chemotherapy is organized,
and a report is created. Then, an appointment for the chemotherapy is scheduled. In parallel
to the latter, a record describing the procedure of the chemotherapy is created.

Initially, the original process models are merged into one process model (i.e., CPM) and well-
structuredness is created [117]. Then, all activity labels are translated to English. Based on the
resulting CPM, process views for each user role are created by applying the respective high-level
view creation operation. Furthermore, a process view for the Nurse is manually created (i.e.,
by applying elementary view creation operations). The latter shows activities performed by the
Doctor, in which the Nurse is involved in. Then, two elementary view update operations are
applied to process view V1, and the process metrics are re-calculated. Results are shown in
Table 12.3. To be more precise, the Doctor first inserts activity Get Chemo Approval by apply-
ing elementary view update operation InsertSerial(V1, AN Djoini, Create Chemo Request, Get
Chemo Approval). After propagating this update to the CPM, process views V1 and V2 are
migrated to the new CPM version. User role Secretary is not involved in this update (i.e., pro-
cess view V3). Afterwards, activity Fzplain Risks to Patient is inserted in parallel to activities
Get Chemo Approval and Create Chemo Request. V1 and V2 are affected by this update again,
whereas V'3 is not. Figure 12.6 shows the updates and their effects on respective process views.

*
ﬁggeelss #Activities* Totzumztle\?DOf G;:)efv{vays[‘oop McCabe* | Diameter* Separability*
CPM 10/11/12 6/6/8 | 4/4/6 | 0/0/0 | 2/2/2 17475 7/8/8 0.278/0.316/0.227
V1: Doctor 7/8/9 4/4/6 | 2/2/4 | 0/0/0 | 2/2/2 3/3/4 5/6/6 0.308/0.357/0.294
V2: Nurse 4/5/6 2/2/4 | 2/2/4 | 0/0/0 | 0/0/0 1/1/2 3/4/4 0.500,/0.556,/0.417
V3: Secretary 3/3/3 a/4/4 | 2/2/2 | 0/0/0 | 2/2/2 3/3/3 2/2/2 0.444/0.444/0.444

*values x/y/z refer to process model before/after 1st/after 2nd view update operation

Table 12.3: Process Metrics for Order-to-Delivery CPM and Views

The process metrics in Table 12.3 show similar results as already experienced in the other case
studies when abstracting the CPM for individual users. However, it is noteworthy that process
metric separability increases when applying the first view update operation (i.e., sequential in-
sertion). However, after applying the second view update operation (i.e., parallel insertion) the
latter decreases again and is worse than before applying the first update.

12.1.4 Lessons Learned

View creation and update operations of the proView framework are applied to process models
from different domains. In all scenarios, the initial process models are created and updated
using the presented proof-of-concept prototype. Based on these process models, in turn, process
views are created for each user role involved. Thereby, the degree of abstraction is measured
with well-established process metrics. This measurement has proven that process views show a
decreased complexity compared to the initial process models (i.e., CPMs). In particular, this
contributes to more comprehensible process models for each user. Furthermore, we have iden-
tified the need for additional refactorings dealing with empty XOR branches as well. This is
particularly helpful if process models contain a high number of XOR branchings. Note that
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such a refactoring might violate control flow correctness. Finally, the case studies show that the
same process models for individual user roles can be created utilizing view creation operations
as manually created ones by the process designers in the case studies.

Applying view update operations show that less modeling steps are required to perform the
respective update compared to changes directly applied to the original process models. Fur-
thermore, it can be seen that the propagation and migration behaviour of the framework meets
real-world requirements. Depending on the type of view update operation, process model com-
plexity can be strongly increased. This is particularly important when automatically migrating
process views since in this case the update is not triggered by that particular user. This may be
confusing for end-users.

12.2 Evaluation of Process Representations

The goal of this section is to show that process models visualized in terms of the introduced
process representations (cf. Chapter 9) are easier to understand, create, and update than state-
of-the-art process representations. In this context, experimental research is indispensable. In
particular, each presented process representation has to be evaluated against BPMN since the
latter is the de-facto standard for process modeling. Furthermore, process representations have
to be compared with each other in order to get insights, which fits best for users. In the context
of verbalized process descriptions, [231] has already shown promising results that understand-
ing verbalized process descriptions performs better than using BPMN. However, comparing the
presented process representations with each other requires numerous experiments and a large
set of subjects to get significant results.

In this thesis, an experiment (i.e., Experiment 3) is introduced that evaluates whether process
models visualized through the hierarchical representation (cf. Section 9.2) are easier to under-
stand, create, and update than process models visualized using BPMN. However, the experiment
setting is designed in a generic way to be applicable to the other process representations as well.
To be more precise, the following research question is investigated in Experiment 3 of this thesis:

Is the process model represented in terms of the hierarchical representation easier
to understand, create, and update in comparison to BPMN?

In the following, Section 12.2.1 introduces the experiment setting applied in Experiment 3. Sec-
tion 12.2.2 provides experiment analysis and results, which are further discussed in Section 12.2.3.

12.2.1 Experiment Setting

The goal of the experiment is described by the Goal Definition Template as presented in [310]
and shown in Table 12.4. Taking this goal definition, the experiment evaluates both BPMN
and hierarchical representation in respect to their ability to visualize and evolve (i.e., create and
update) process models, i.e., the model representing CPMs or process views. The experiment
is designed as a randomized balanced single factor experiment [310]. It is randomized since sub-
jects are assigned to factor levels randomly. Furthermore, only one single factor varies, i.e., the
process representation.
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12 Case Studies and Experiments

Based on the experiment goal, three hypotheses may be derived. Hypothesis H; refers to the
creation of a process model based on the given process representation. In turn, hypothesis Ho
addresses differences when updating a process model in either one of the two process represen-
tations. Finally, hypothesis H3 emphasises the comprehensibility of a process model depending

Analyze BPMN and hierarchical representation
for the purpose of evaluating

with respect to their effort to understand, create, and update
from the point of view of the researchers and developers

in the context of students and research assistants.

Table 12.4: Goal Definition Template

on the given process representation. Table 12.5 summarizes the three hypotheses.

Reflecting hypotheses H;, Hjy, and Hs, the experiment is divided into Parts A-C (cf. Fig-
ure 12.7). Each of them addresses one of the three hypotheses. In the following, subjects, object,
factor levels, and response variables of the experiment as well as its instrumentation and data

Does the process representation have an effect on creating process models
H1,0: There is no significant difference in creating process models either based on the hierarchical
representation or BPMN.

Hiy1: There is a significant difference in creating process models either based on the hierarchical
representation or BPMN.

Does the process representation have an effect on updating process models?
Hs o: There is no significant difference in updating process models either based the hierarchical
representation or BPMN.

Hs 1: There is a significant difference in updating process models either based the hierarchical
representation or BPMN.

Does the process representation have an effect on understanding process models?
H3 0: There is no significant difference in understanding process models either based the hierarchical
representation or BPMN.

Hs 1: There is a significant difference in understanding process models either based the hierarchical
representation or BPMN.

Table 12.5: Experiment 3: Hypotheses Formulation

collection procedure are described.

Group 1

Group 2
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12.2 Evaluation of Process Representations

Subjects. Usually, domain experts in companies only have limited process modeling knowledge
[356]. Hence, from the subjects we demand that they are at least moderately familiar with
process modeling, but we do not require expert level.

Objects. As objects to be evaluated by each subject, we consider three process models. Each of
them is related to one hypothesis (cf. Table 12.5). In Part A, a process model for a simplified
credit application shall be created taken the process description from Table 12.6.

The credit application starts with the creation of a written credit application by the customer. After
submitting the application, customer data is recorded by the clerk in three steps. Therefore, the customer
residence, financial situation, and his marital status is entered in a user form. When capturing the
financial situation, the customer has to state his income and expenses.

If the customer is married, it must be checked whether he has children. In this case their names must
be recorded as well. Finally, the credit institute checks the creditworthiness of the customer, which has
two possible results: the creditworthiness is positive or negative. In the former case, the bank may create
a credit agreement, which is signed by the customer afterwards. In the latter case, the credit institute
rejects the application or offers a different credit application.

Table 12.6: Textual Description of the Credit Application Process

In Part B of the experiment, subjects must perform six updates on a given process model (cf.
Figure E.1). Table 12.7 summarizes the task descriptions to perform respective updates. Each
update is applied separately on the same process model, i.e., the updates do not rely on each
other and can be applied independently from each other.

Task | Task Description

B-1 Insert activity X parallel to activity H.

B-2 Insert activity X as alternative to activities B and M.

B-3 Insert activity X parallel to activity B.

B-4 Delete activity L.

B-5 Move the XOR branching containing activities K, L, and M after activity C.
B-6 Parallelize activities I and J.

Table 12.7: Task Descriptions for Part B

Part C of the experiment addresses the understanding of a process model. Subjects are asked
ten questions related to a given process model (cf. Figure E.1). More precisely, five questions
deal with the understanding of precedence relations. In turn, the other five questions refer to
the validity of execution traces! (cf. Table 12.8).

Factor and Factor Levels. The factor considered in our experiment is the process representation
with levels BPMN and hierarchical representation. Accordingly, process models of Part A-C are
provided utilizing the process representation of the respective factor level.

Response Variables. As response variables for all parts of the experiment, we consider the dura-
tion (in minutes) a subject needs to fulfill the task as well as the cognitive effort perceived by
the subjects. The latter is rated by each subject on a 7-point Likert scale (i.e., 1=extremely low
mental effort, 7=extremely high mental effort).

! An introduction of execution traces is given in Section 6.4.
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Task | Question

C-1 Which activities are executed after activity C?7

C-2 Which activities may be executed in parallel to activity F?
C-3 Which activities may be executed alternatively to activity L?
C-4 Which activities are executed after activity J?7

C-5 Which activities are executed before activity G?

C-6 Is <A,L,M,N> a valid execution trace of the process model?

C-7 Is <A,D,E,F H,G,N> a valid execution trace of the process model?
C-8 Is <AE,B,F,C,N> a valid execution trace of the process model?

C-9 Is <A,K,L,N> a valid execution trace of the process model?

C-10 Is <A,B,H,G,E,C,F,N> a valid execution trace of the process model?

Table 12.8: Task Descriptions of Part C

Additionally, in Part A semantic quality is measured. The latter is measured in respect to a
reference process model and is rated by two modeling experts in a consensus building process
based on a 4-point scale (cf. Table 12.9). Finally, in Part A the number of modeling steps (i.e.,
number of process elements inserted, deleted, and moved) required to solve the task is measured.
In Parts B and C, a response variable measures whether or not a task is completed correctly.

Value | Name Description
3 optimal | Activities and control flow are both correct.
2 good All required activities are present; control flow not entirely correct.
1 fair Multiple activities are combined to one compared to the reference model.
0 low Multiple activities are combined to one and control flow is not entirely correct.

Table 12.9: Values for Semantic Quality

Instrumentation. To precisely measure the response variables in a non-intrusive manner, we use
the Cheetah Experimental Platform (CEP) [357]. The latter provides a process modeling tool
designed to perform user experiments. In particular, CEP already provides a BPMN-based mod-
eling environment that records all modeling steps together with their attributes like timestamp
and type of modeling action. In the context of this thesis, CEP is extended with a modeling
environment that also supports the hierarchical representation [358]. All resulting process mod-
els as well as all logged data are stored in a database. This not only allows replaying modeling
sessions, but also calculating the response variables. Finally, CEP provides questionnaires to
request demographic data and qualitative feedback from the subjects.

The experiment further utilizes the think aloud method, i.e., subjects are motivated to talk
about what they are doing [312]. Additionally, the user screen is recorded with a video camera.
These video recordings are then used to obtain an understanding on emerging problems as well
as modeling progress. Note that this setting is the same as the one described in Figure 10.1.

12.2.2 Experiment Operation and Analysis

Students and research assistants familiar with process modeling are invited to join the experi-
ment. Subjects are not informed about the aspects to be investigated and are randomly assigned
to one of the groups representing the respective factor levels. For all subjects, anonymity is guar-
anteed. Before conducting the experiment, a pilot study is performed. Its results are then used
to eliminate ambiguities and misunderstandings as well as to improve task descriptions.
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The experiment is executed in a seminar room at Ulm University. All in all eight subjects
participate in the experiment. According to the experiment setting (i.e., think aloud method)
only one subject participates in the experiment at a particular point in time. Each session takes
about 50 minutes and runs as follows:

First of all, the procedure of the experiment is explained to the subject. Then, the subject is
randomly assigned to one of the two factor levels (cf. Section 12.2.1). For subjects assigned to
the hierarchical representation a tutorial is given introducing its elements and syntax. Further-
more, an overview sheet is handed out to the subject summarizing the elements of the process
representation. Following this, the subject fills out a questionnaire capturing data about the
actual modeling experience as well as demographic information. Afterwards, the experiment is
started and the subject works on the tasks of Parts A, B, and C (cf. Section 12.2.1). After the
completion of each task, the subject is asked about the perceived mental effort.

After completing the experiment, the collected data is validated. All collected data is valid, i.e.,
no data of any subject has to be discarded. In particular, all subjects are familiar with process
modeling, which is a requirement for the subjects (cf. Table 12.10). Subjects S1-S4 apply the
hierarchical representation and subjects S5-S8 apply BPMN.

Subject Since how many years How many process models How many months ago
have you been modeling did you create or edit did you start using
processes? during the last 12 hierarchical

months? representation/BPMN?
% S1 7 15 0
= S2 4 100 0
8 S3 3 50 0
a= S4 12 100 0
> S5 1 100 12
s S6 1 50 10
% S7 4 25 36
S8 6 100 2

Table 12.10: Experience of Subjects

Results of Part A are summarized in Table 12.11. The semantic quality of all created process
models is between good and fair (i.e., median is 1.5). In particular, the median of semantic qual-
ity of the process models created using the hierarchical representation is 2. Hence, it is slightly
better when using the BPMN representation (i.e., median is 1). Furthermore, subjects using the
hierarchical representation need more modeling steps to create a process model, which results in
an average of 183.5 movements of process elements on the drawing screen. Hence, the average
modeling duration to create BPMN process models is shorter (average of 13 minutes) than using
hierarchical representation (average of 14.75 minutes). Finally, the median of perceived mental
effort is 4 using hierarchical representation, which corresponds to neither high nor low mental
effort. The median for BPMN is 3.5. Despite all subjects use the hierarchical representation
the first time (cf. Table 12.10), they perform similarly to the subjects already familiar with
BPMN. One subject applying the hierarchical representation states “It was not too complicated,
but requires a certain [mental] effort when applying it the first time”.

Updating existing process models in Part B of the experiment shows ambivalent results (cf.
Table 12.12). Updates of process models based on the hierarchical representation are performed
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. Semantic # Modeling Steps . Mental
Subject Quality Total | Created | Moved | Deleted Duration Effort

_5' S1 2 250 24 232 2 15min 4
3 S2 0 213 23 184 6 19min 4
8 S3 2 230 23 205 2 13min 4
e S4 3 126 13 113 0 12min 4
> S5 1 28 24 4 0 10min 4
= S6 1 " 21 54 2 17min 3
% ST 2 70 31 35 4 16min 6

S8 1 47 21 26 0 9min 3

Table 12.11: Experiment Results for Part A

on average faster compared to BPMN. In the video recordings, for example, one subject who
uses the hierarchical representation stated after reading the task description: “Ok, this is a more
complex update. .. hm, first, I have to insert task ’X’°, then, a choice relation, and it seems to
be done”. As can be seen, after reading the task description the subject thinks it requires a lot
of modeling effort to perform the update and then realizes that only two model changes (i.e.,
insert task "X’ and insert choice relation) are required. Another subject states: “I just have to
insert an edge and the update is done”. However, some subjects do not like the way how CEP
realizes the hierarchical representation. For example, “Placement of unconnected edges [on the
modeling canvas] would make modeling easier” or “It is difficult to change the type of a task”. In
turn, deleting an activity (cf. Task B-4, Table 12.12) is faster when using BPMN. Furthermore,
both subject groups provide solely correct solutions. Finally, perceived mental effort tends to
be lower for hierarchical representation.

Task | Average Duration [min] # Correct Solutions Median of Mental Effort
Hierarch. BPMN Hierarch. BPMN Hierarch. BPMN
B-1 61.5 77.5 4 4 2.5 2.5
B-2 85.3 116.5 4 4 3.5 4
B-3 42.8 53.8 4 4 2 3
B-4 44.0 22.3 4 4 3 2
B-5 58.5 116.8 4 4 3 4
B-6 16.0 46.0 4 4 1.5 2
C-1 59.8 78.8 3 3 3 3.5
C-2 67.3 47.3 4 4 3.5 3
C-3 71.0 51.3 3 1 4 3
C-4 32.3 23.8 4 4 2 2
C-5 50.3 36.5 4 3 4 2.5
C-6 38.0 29.3 3 4 2.5 3
C-7 47.3 39.0 4 4 3 4
C-8 51.8 53.5 3 4 3 4
C-9 28.0 21.3 4 4 2.5 4
C-10 54.3 40.8 4 4 3 4

Table 12.12: Experiment Results for Part B and Part C

Understanding process models in Part C takes more time for most of the tasks when using the
hierarchical representation. Analyzing the number of correct answers does not result in a clear
tendency. Video recordings indicate for the hierarchical representation that the tree structure
is used by subjects to analyze the process model: “The complete sub-tree over there is not ex-
ecuted”, “This sub-tree is executed in parallel to that sub-tree” or “Before task G this sub-tree is
executed”. Hence, the tree structure is utilized to create chunks in subject’s mind [204].
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In particular, Task C-3—finding activities executed alternatively to activity L—seems to be very
difficult when using BPMN (i.e., only one correct answer). In case of BPMN, perceived mental
effort is lower when analyzing control flow dependencies (i.e., Tasks C-1 to C-5) and higher when
checking execution traces (i.e., Tasks C-6 to C-10) compared to the hierarchical appearance.

Analyzing recorded videos in detail underlines the results reflected by the response variables,
i.e., both representations perform similarly. However, some of the subjects state that a larger
screen resolution or smaller icons for the hierarchical representation might be good since “it is
annoying to search the correct task on the screen [by scrolling around)”.

12.2.3 Discussion

The experiment compares BPMN and the hierarchical representation. In particular, subjects
have to create, update, and understand process models using the two process representations. A
comparison of the two process representations has shown that both perform similarly regarding
creating, updating, and understanding. It is noteworthy that subjects having no background
with the hierarchical representation achieve similar results compared to the subjects that have
been familiar with BPMN for a long time. In the video recording one subject states “Modeling
performs pretty good”. In particular, it seems that certain updates can be performed easier in
the hierarchical representation, e.g., parallelizing activities.

However, we must not generalize these results for several reasons: Students and research assis-
tants participate in the experiment and results cannot be simply transferred to domain experts
in companies. Furthermore, the instrumentation (i.e., CEP) may have an effect on the outcome.
As already stated some subjects claim for improvements in the modeling environment. Due to
the small number of subjects participating in the experiment we are not able to prove hypotheses
H1, H2, and H3. However, based on the experiment results, for all hypotheses we cannot see
any tendency that there is a significant difference between both process representations, i.e., null
hypotheses might be confirmed.

12.3 Evaluation of Multi-Touch Gestures

Experiment 4 evaluates whether the developed multi-touch gestures (cf. Chapter 10) are suitable
for users. Therefore, users shall apply the developed gesture set to interact and update process
models. To be more precise, the following research question is investigated:

Is the multi-touch gesture set appropriate to update process models and to interact with them?

In order to answer this research question, we conduct a user experiment. Section 12.3.1 intro-
duces the experiment setting. Section 12.3.2 provides experiment analysis and results, which are
further discussed in Section 12.3.3.

12.3.1 Experiment Setting

The goal of the experiment is described by the Goal Definition Template as presented in [310]
and is shown in Table 12.13.
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Analyze multi-touch gesture set

for the purpose of evaluating

with respect to their appropriateness to update and interact with
process models

from the point of view of the researchers and developers

in the context of students and research assistants.

Table 12.13: Goal Definition Template

Taking this goal definition, the experiment is designed as a single object study [310, 359]. This
means that all subjects evaluate the same object (i.e., the same gesture set). Based on the goal
of the experiment, we derive the following hypothesis (cf. Table 12.14).

Is the selected multi-touch gesture set intuitive to update process models?

H1,0: The multi-touch gesture set is not intuitively used by users to update process models.
Hy 1: The multi-touch gesture set is intuitively used by users to update process models.

Table 12.14: Experiment 4: Hypothesis Formulation

In the following, we introduce subjects, object, factor levels, response variables, and instrumen-
tation of the experiment.

Subjects. Usually, domain experts in companies only have limited knowledge in process model-
ing [356]. Hence, from the subjects we demand that they are at least moderately familiar with
process modeling, but we do not require expert level. Moreover, we do not require from subjects
to be aware of multi-touch devices or to have used a (multi-touch) process modeling tool before.

Object. As object, a BPMN-based process model is used, which not only comprises control flow
elements, but data elements as well. Subjects must apply 14 updates on the process model. Fach
update may be accomplished with one gesture from the multi-touch gesture set. Table 12.15
shows the task descriptions applied. The initial process model is shown in Figure E.2.

Task | Task Description

T1 Insert a synchronization edge between Calculate Risk and Check Credit Protection Agency.
T2 Aggregate the AND branching block.

T3 Insert a branch in the first XOR branching block.

T4 Insert an XOR branching block comprising activities 1st Review and 2nd Review.

T5 Open the help dialog.

T6 Insert an activity between activities 1st Review and 2nd Review.

T7 Rename the inserted activity. Choose any activity label.

T8 Delete the renamed activity.

T9 Select activity Load Customer Data.

T10 Reduce activity Fill Out Credit Request.

T11 Undo the last performed action.

T12 Insert a new data object to the process model.

T13 Insert a data edge from data object CustomerPhone to activity Load Customer Data.
T14 Create a process view including the first XOR branching block.

Table 12.15: Task Descriptions
Response Variables. Two response variables are measured during Experiment 4. First, the du-

ration a subject needs to solve a task is measured. Second, it is measured whether a subject
s the task correctly. If a subject cannot remember a multi-touch gesture and needs to ask the
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investigator, the task is not considered as being correctly solved. If a subject remembers the
respective gesture, however, it constitutes a correctly solved task.

Instrumentation. Initially, a paper-based questionnaire is used to document demographic data.
Afterwards, subjects participate in a tutorial to practice all multi-touch gestures required. For
this purpose, a special tutorial application is implemented (cf. Figure 12.8): on the left side
it shows the respective gesture and on the right side subjects are able to apply the displayed
multi-touch gesture on a process model. If the gesture is correct, respective feedback is given to
the subject. If the subject believes that it remembers the gesture well, he or she clicks “Next”
in the tutorial application and the next multi-touch gesture is presented.

Task 1: Insert Synchronization Edge
Insert a synchronization edge between the activities as shown on the left side Next 222

Figure 12.8: Tutorial Application

After completing the tutorial, the proViewClient (cf. Section 11.4) is loaded and the initial pro-
cess model (cf. Figure E.2) is presented to the user. Task descriptions are displayed below the
process model. Both, the tutorial application and the proViewClient are provided on a Google
Nexus 7 tablet to subjects.

The display of the tablet as well as spoken comments are recorded by a video camera. This
think aloud experiment setting helps us to analyze results in detail [312]. Note that the same
experiment setup as shown in Figure 10.1 is used.

12.3.2 Experiment Operation and Analysis

In total, 11 students and research assistants familiar with process modeling are invited to join the
experiment. Subjects are not informed about the aspects we want to investigate. Furthermore,
anonymity is guaranteed to them. Additionally, three test runs are conducted, which results in
minor improvements of the instrumentation as well as in task descriptions.

The experiment is conducted in a seminar room at Ulm University. Each session runs about
30 minutes. After all subjects participated in the experiment, the collected data is validated.
All collected data is valid and can be further analyzed. In particular, subjects are familiar with
process modeling and have per average 3.11 years experience in process modeling. Nine subjects
own a smartphone and six a tablet.
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As a result, in average 8.6 of 11 subjects remember the trained multi-touch gestures and, hence,
solve the respective tasks correctly (cf. Table 12.16). Six gestures are remembered by all sub-
jects (i.e., Tasks T1, T2, T5, T6, T13, and T14). In the video recordings, for example, subjects
state for these gestures: “I simply need to draw a question mark to open the help dialog”or “. .. to
insert a new branch, I need to draw an edge”. Afterwards, they directly started performing the

gesture without any break.

However, only one subjects applies the gesture for reducing an activity (i.e., Task T10) correctly.
In the video recordings, subjects state that the gesture is hard to remember. For example, “I
cannot remember the gesture anymore”. After the investigator explained the gesture to that
subject, the subject says: “Well, it is actually a good gesture, but I should have remembered
it”. Other subjects apply the gesture for deleting process elements instead: “I have to draw a
rectangle with an "X’ to reduce that element”.

Task # Correctly Solved | Average Duration [sec]
T1 11 37.5
T2 11 39.0
T3 9 32.6
T4 6 60.9
T5 11 48.6
T6 11 29.6
T7 7 25.5
T8 8 28.7
T9 10 16.6
T10 1 40.9
T11 8 22.1
T12 5 28.1
T13 11 28.6
T14 11 56.7
All Tasks 8.6 35.6

Table 12.16: Results of Experiment 4

The average duration required to perform a task is 35.6 seconds. Note that this duration includes
reading the task, remembering the gesture, and applying the latter. Applying the gestures for
inserting a branching block and creating a process view take the longest time (i.e., 60.9 and 56.7
seconds respectively). In the video recordings, it can be seen that subjects first identified the pro-
cess elements to be enclosed by the branching block or process view before starting the gesture.
For example, one subject states “OK, this area [pointing with his finger] is meant...then...I
have to select these elements”. Furthermore, subjects perform these gestures very carefully (and
slow respectively) in order to include the correct elements.

By contrast, the gesture to undo the last action (i.e., Task T11) only requires 22.1 seconds.
One subject states “Undo is symbolized by a line like this...” and draws a gesture on the desk
to recall it. Furthermore, drawing a data edge requires 28.1 seconds and seems to be easy for
subjects to perform. For example, “Read data edges. .. is a line from this to that element”.

Some subjects struggle when drawing the question mark to open the help dialog or when drawing
the "X’ to delete an element: “OK, this way the detection works”or “when I start here, it works”.

These subjects remember the gesture, but the detection algorithm performs not as expected.
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12.3.3 Discussion

Experiment 4 evaluates the presented multi-touch gesture set for interacting with process mod-
els. We first introduce the gesture set to subjects. Then, we ask them to apply the gestures to
a process model. Most of the gestures are well remembered by subjects. Some subjects enjoyed
updating process models using multi-touch gestures: “I am absolutely ecstatic” or “pretty cool”.
However, the gesture to reduce activities should be revised since only one subject applied it
correctly. Furthermore, creating a process view and inserting a branching block requires much
time to apply. Hence, the respective gestures should also be revised since gestures should not
take too much time. Furthermore, the detection algorithm and gesture templates should be
improved to increase the detection accuracy.

In order to obtain generalizable results, the experiment needs to be repeated with domain ex-
perts from practice. Furthermore, a higher number of subjects are required to obtain statistical
evidence, i.e., the hypothesis can neither be rejected nor confirmed. However, this experiment
indicates that the presented multi-touch gesture set is appropriate for users and can be intu-
itively applied by them.

12.4 Summary

This chapter evaluates the concepts and algorithms developed in this thesis. This evaluation
is based on the proof-of-concept prototype described in Chapter 11. To be more precise, we
first perform case studies based on process models from practice to evaluate view creation and
view updates concepts. In order to measure the abstraction of view creation and effects of view
updates, well-known process metrics are applied. As a result, we identify the need for further
refactoring rules. Furthermore, process model understandability may be decreased when apply-
ing certain view update operations. Finally, for some updates less modeling effort is required
compared to original process models of the case studies.

An experiment evaluating process representations is presented as well. For this purpose, the
hierarchical representation and BPMN are compared regarding their appropriateness to create,
update, and understand process models. Although subjects apply the hierarchical representation
the first time, they perform similar to the ones using BPMN. However, further experiments are
required to compare process representations among each other and with BPMN in more detail.

Finally, another experiment is conducted to evaluate introduced multi-touch gestures. In par-
ticular, users are trained in using the presented multi-touch gesture set on a tablet. In a second
phase, they have to recall the respective gestures and apply them on a process model. As a
result, we identify a few gestures, which have to be replaced since they are too hard to perform
and remember. However, most of the defined gestures seem to be suitable for users.

Altogether, we show that the concepts and algorithms are working well and also are suitable to
practical application scenarios.
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13

Summary and Outlook

This thesis contributes the proView framework enabling domain experts to create and evolve
large and complex process models based on process views, alternative process representations,
and process interaction concepts. Process views provide personalized abstractions on process
models and allow domain experts for process updates. Then, a set of process representations are
introduced to assist domain experts in comprehending and evolving process models. Finally, a
set of multi-touch gestures is presented to provide an intuitive way for interacting with process
models. The concepts and algorithms are designed in a modular way, i.e., process views, pro-
cess representations, and multi-touch gestures are orthogonal. In the following, we discuss the
contribution in more detail:

Creating Process Views. View creation operations allow hiding (i.e., reducing) process elements
of the original process model. In addition, process elements may be aggregated to provide an
abstracted view on them. In particular, respective operations consider the control flow per-
spective as well as the data flow and process attributes. Introduced view creation operations
guarantee control flow correctness, i.e., after applying respective operations, a correct process
model results. This is crucial to enable domain experts to perform updates, while not distort-
ing the “meaning” of a process model. Introduced view creation operations may be combined
to high-level view creation operations providing a semantically enriched way to create process
views. Utilizing these operations, a more convenient way for domain experts is provided to
create process views. Finally, the proView framework enables to create flexible process hierar-
chies based on introduced view creation operations. This enables us to define a set of process
hierarchies based on the same underlying process model.

Updating Process Views. View update operations are introduced to allow domain experts to
evolve complex process models based on process views. Consequently, domain experts need not
to understand complex process models, but may directly perform updates on related process
views. Furthermore, view updates are automatically propagated to the corresponding process
model. Then, all associated process views are migrated to the new process model version.
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View-based process updates consider the control flow perspective as well as data flow and pro-
cess attributes. Furthermore, elementary view update operations may be combined to advanced
view update operations to enable high-level changes.

Visualizing Process Models. Process representations are presented to visualize and update pro-
cess models. Further, domain experts are able to dynamically switch between the process rep-
resentations on the fly. In total, three process representations are introduced: hierarchical,
form-based, and verbalized.

The hierarchical representation visualizes a process model in terms of a tree and allows for a
top-down exploration of process models. Furthermore, in certain cases less modeling steps are
required to perform updates based on the hierarchical representation than for BPMN.

The form-based representation visualizes a process model in terms of nested rectangles. Partic-
ularly, the number of different symbols required to visualize a process model can be decreased.
Furthermore, due to its structure updates preserve the control flow correctness.

Finally, the verbalized process description represents process models as textual documents. Par-
ticularly, domain experts must not be aware of any process modeling language. Furthermore,
changes in the textual description are interpreted as updates on the corresponding process model.

Interacting with Process Models. Process interaction is supported by a set of multi-touch ges-
tures, which allow domain experts to interact with process models utilizing touch-enabled de-
vices. In particular, this gesture set results from empirical research. The presented multi-touch
gestures enable domain experts to perform updates on process models as well as to create pro-
cess views. Further gestures allow, for example, to undo modeling actions or select process nodes.

This thesis has unveiled aspects that may be addressed by further research:

e View-based process updates require proper concepts to handle concurrent updates. Thereby,
concurrency control concepts known from database management systems may be applied.
Particularly, as opposed to most database applications updates on process models are
rather rare and it may be appropriate to lock a process model or parts of it during such
an update.

e Process views may be applied in the context of process variants [26]. A process variant,
for example, describes a business process of a specific country or product. All variants
of a business process may be documented in one process model (i.e., CPM) and process
views may be used to visualize individual process variants. Therefore, specific operations
to create process views are required. The specific semantic of a process view might have
an impact on update propagation and migration.

e Run-time data (e.g., progress of process execution) must be visualized in process views as
well as process representations when executing underlying process models. In this context,
it has to be considered that a lack of execution states (e.g., through reduced activities)
in process views might exist. Furthermore, applying view update operations to process
instances (i.e., executed process models) arise new challenges. For example, it has to be
checked whether or not an update is allowed. Finally, in order to support domain experts
to perform ad-hoc adaptions [104], process views may be applied to reduce complexity of
such adaptation tasks.
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e Navigation approaches provide interaction support for domain experts to determine re-
quired information in process model collections and process models respectively [248].
Process views may complement such approaches to provide personalized abstractions on
process model collections and allow for process updates. Furthermore, process-oriented
information logistics may be applied to automatically create such personalized process
model collections by utilizing context-specific information of domain experts [360].

e An initial set of gestures for process interaction is introduced. However, further gestures
must be evaluated and defined, for example, in order to pan process models. Further
process interaction concepts are required to support collaborative process modeling.

e Further user studies are required to evaluate the presented concepts with practitioners.
In particular, domain experts with limited or no process modeling knowledge should be
encouraged to apply the presented view creation and update operations. Feedback gained
from this should be used to evolve the concepts. Moreover, user studies comparing process
representations may help for a deeper understanding of their strengths and weaknesses.
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ADEPT
Ajax
BPM
BPMN
CPM
CPR
CTT
CTTE
DBMS
DSynT
EPC
ERP
EUD
GWT
IS

ISO

IT
PAIS
PST
REST
RPST
RPC

List of Acronyms

Application DEvelopment Based on Pre-Modeled Process Templates

Asynchronous JavaScript and XML
Business Process Management

Business Process Model and Notation
Central Process Model

Central Process Repository

Concurrent Task Trees

Concurrent Task Tree Environment
Database Management Systems
Deep-Syntactic Tree

Event-driven Process Chains

Enterprise Resource Planning

End-User Development

Google Web Toolkit

Information System

International Organization for Standardization
Information Technology

Process-aware Information System
Process Structure Tree

Representational State Transfer

Refined Process Structure Tree (See PST)

Remote Procedure Call
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SaaS Software as a Service

S-BPM  Subject-oriented Business Process Management
SESE Single Entry Single Exit

UML Unified Modeling Language

UUID Universally Unique Identifier

VCD Value-Added Chain Diagram

WS-BPEL Web Service Business Process Execution Language
XML Extensible Markup Language

YAWL  Yet Another Workflow Language

WPF Windows Presentation Framework
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Additional Functions

Algorithm A.1: InitializeView(CPM)

Input: Process model CPM = (N,D,NT,CE,EC,ET,DE, DET)
Output: Process view V = (N', D', NT',CE', EC',ET', DE', DET")
1 begin

2 N’ := N;

3 D' := D;

4 CE :=CFE;
5 | DE':=DE;
6

7

8

9

NT': N' — NodeType,¥n € N : NT'(n) = NT(n);

ET' : CE' — EdgeType,Ve € CE : ET'(e) = ET(e);

DET': DE' — DEdgeType,Vde € DE : DET'(de) = DET (de);
return V;

10 end

Let CPM = (N,D,NT,CE,EC,ET, DE, DET) be a process model. Then:
Function
updateControl FlowEdges(CE, Ng, npew) (A.1)

removes control edges connected to nodes in N, and adds new control edges connecting node
Nnew With its new predecessor and successor. If applicable, synchronization edges are recon-
nected to node 1.

For N, € N and d € D, we define:

false 3Fde € DE :de = (d,n)Vde = (n,d) An & N,

1sOnlyAccessedInSet(d, DE, N,) :=
true  else

(A.2)
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A Additional Functions

t 3(d DE: N,
isReadAccess(d, DE, N,) := e (d;n) € "e (A.3)
false else
t d(n,d) € DE : Ng
isWriteAccess(d, DE, N,) := e (n,d) € "e (A4)
false else
Function
accessed ByAllTraces(d, DE, Ny) (A.5)

checks whether data element d € D is accessed by all branches in the SESE block induced by
node set N, C N
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Optimization Rules

Optimization Rule OR4 (Data Element Aggregation on Aggregation)
Let CPM be a process model. Further, let Opy = (op1,0p2) be an operation sequence
to create process view V on CPM, ie., CPM = Py 225 P, 2% P, = V with P, =
(N;, D;, NT;,CE;, EC;, ET;, DE;, DET;).
Precondition:
op1 = AggrDataElement(Py, D) N\ ops = AggrDataElement(Py, D") A
D'NCPMNode(Py,D"Y#0 N D'C Dy N D" C Dy

Postcondition:
OPnew ‘= AggrDataElement(Py, D' U CPM Node(Py, D"))
Opv = Opy © (op1,0p2) ® (0Pnew)

Optimization Rule OR5 (Data Element Reduction on Aggregation)
Let CPM be a process model. Further, let Opy = (op1,0p2) be an operation sequence
to create process view V on CPM, ie., CPM = Py 2y p P py =V with P, =
(N;, D;, NT;,CE;, EC;, ET;, DE;, DET;).
Precondition:
op1 = AggrDataElement(Py, D) A opy = RedDataElement(Py,d) A
D' =CPMNode(Py,d) N D'C Dy A de Dy

Postcondition:

Opp := (opd, ;- - -, 0pq, ) with
opg, := RedDataFElement(Py,d;),d; € D',\Vi€1,....k

Opy = Opy & (op1, 0p2) & Opp
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B Optimization Rules

Optimization Rule OR6 (Process Attribute Aggregation on Aggregation)
Let CPM be a process model. Further, let Opy = (op1,0p2) be an operation sequence
to create process view V on CPM, ie., CPM = Py 2% P, 25 P, = V with P, =
(Ni, D;, NT;, CE;, EC;, ET;, DE;, DET}).
Precondition:
op1 = AggrAttr(Py, elem, AS’, attr Funcy) A
ope = AggrAttr(Py, elem, AS”  attr Funcy) A
attr Funcy = attr Funcy N
AS' N CPM Attr(Py, elem, AS") # 0 A
AS’, AS" subset of attributes of process element elem € Ny U Dy U CEy U DEy

Postcondition:
OPnew := AggrAttr(Py, elem, AS" U CPM Attr(Py, elem, AS"), attr Func)
Opv = Opy © (op1,0p2) D (0Pnew)

Accordingly to function CPM Node(V,N), CPM Attr(V,n, AS) returns the corresponding set

of attributes for all process attributes in AS of process node n in process view V.

Optimization Rule OR7 (Process Attribute Reduction on Aggregation)
Let CPM be a process model. Further, let Opy = (op1,0p2) be an operation sequence
to create process view V on CPM, ie., CPM = Py 2% P, 2 P, = V with P, =
(N;, D;, NT;,CE;, EC;, ET;, DE;, DET;).
Precondition:
op1 = AggrAttr(Py, elem, AS’, attr Funcy) A ops = RedAttr(Py,elem,attr) A
AS' = CPM Attr(Py,elem,a) A elem € Ng U Dy U CFEy U DEy A
AS' subset of attributes of process element elem € Nog U Dy U CEy U DE

Postcondition:

Opa := (0pays - - -, OPay) With opg, := RedAttr(Py,d;),a; € AS', Vie 1,...k
Opv = Opy © (op1,0p2) ® Opa
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Process Models of Case Study

Is Application App..

Return Documents

LRC or LRP Credit?

Check Validity in DB

Verfiy Risk in SINC Database

Figure C.2: Credit Approval - View V3 Database
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C Process Models of Case Study

O— Inform Customer .

Request LRC Credit

Request ACJ
Request POA
Which Lredit?
Active Customer? Request PRD
Request LRP Credit
Request New Calculations

Figure C.3: Credit Approval - View V4 Manager

Dependlency?
Decisign?

Inform Bank Branch by Mail

Figure C.4: Credit Approval - View V5 System
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Results of Multi-Touch Experiment

Send E-Mail

upPs
Shipping
<® &

Shipping

Figure D.1: Initial Process Model of Experiment 1

Cust.ID  Cust.History Cust.Address Cust.Name Cust.EMail CreditDur. CreditAmount Cust.Rating CreditRisk FinalDecision
Send
Rejection

Send

Rejection

Fill Out Credit
Request

Decide About
Credit

<%

Call Custome

Figure D.2: Initial Process Model of Experiment 2

Results of individiual subjects are provided at:
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.030 /downloads/experiments_1_2.zip
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D Results of Multi-Touch Experiment

Subject T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 Profession Experience

1M GG GG G G G ST yes
2P G P PP P G P ST yes
3P G P PP P G P ST no
4M G GGG M G G ST yes
566G GGG M G G ST yes
6P G P P P P G G RA no
7G PP PP P P G RA no
8M G G G G M G G RA no
9G MG GG G P G RA no
iOMP GGP P M G ST no
MM GGG M M G G RA yes
2MP MMM M M G RA yes
BMMGMM M M G RA yes
4M P G G G G M G ST no
5P G P PP P G G ST no
6P P P P P P G G RA no
176 G G G G G M G ST yes
18P G P PP P M P ST no
9MP MMM M M M RA no
20P G P PP P M G ST yes
216 G G G G P G G ST yes
26 GGMM M M M ST yes
23MP MMM M M M ST yes
24P P GM M M M G ST yes
25M G GG M M G M ST yes
26P GGG M M G G ST no
2Z7ZMGMMM M MM PG P G M M ST yes
8P GMGM P GP PG M G P P ST yes
296G G PGP G PP GG P G P P sT yes
sIOMMMMM G GG PM M G M G RA yes
31GGP MP P PG GG P G P P RA yes
2MMP GG G PG GG P G G M sT yes
3¢ PMM G GG PM P G P P sT yes
346 GG MM G GG PG P G G G gsT yes
35666 G M G GG MG M G G P ST yes
6P GMP M G PP PG P G P M ST yes
37T M GMMG G GG GM G G G G st yes
Legend
P Picture-based Interaction T1 Insert Activity
G Gesture-based Interaction T2 Rename Activity
M Menu-based Interaction T3 Insert Branching
T4 Insert Branch
ST Student T5 Insert Data Element
RA Research Assistant T6 Insert Data Edge

T7 Delete Activity

T8 Insert Sync Edge

T9 Aggregate Activities
T10 Reduce Activity

T11 Create Process View
T12 Select Element

Figure D.3: Raw Data of Multi-Touch Experiment
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Experiment Results

(a) BPMN Representation (b) Hierarchical Representation

Figure E.1: Experiment 3: Process Models of Part B
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Figure E.2: Experiment 4: Process
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