
Context-Aware Process Injection:

Enhancing Process Flexibility by
Late Extension of Process Instances

Nicolas Mundbrod, Gregor Grambow, Jens Kolb, and Manfred Reichert

Institute of Databases and Information Systems
Ulm University, Germany

{nicolas.mundbrod,gregor.grambow,jens.kolb,manfred.reichert}@uni-ulm.de

http://www.uni-ulm.de/dbis

Abstract. Companies must cope with high process variability and a
strong demand for process flexibility due to customer expectations, prod-
uct variability, and an abundance of regulations. Accordingly, numerous
business process variants need to be supported depending on a multiplic-
ity of influencing factors, e.g., customer requests, resource availability,
compliance rules, or process data. In particular, even running processes
should be adjustable to respond to contextual changes, new regulations,
or emerging customer requests. This paper introduces the approach of
context-aware process injection. It enables the sophisticated modeling
of a context-aware injection of process fragments into a base process at
design time, as well as the dynamic execution of the specified processes
at run time. Therefore, the context-aware injection even considers dy-
namic wiring of data flow. To demonstrate the feasibility and benefits of
the approach, a case study was conducted based on a proof-of-concept
prototype developed with the help of an existing adaptive process man-
agement technology. Overall, context-aware process injection facilitates
the specification of varying processes and provides high process flexibility
at run time as well.

Keywords: Process Injection, Process Flexibility, Process Variability,
Process Adaptation, Data Collection Processes

1 Introduction

In today’s globalized world, companies face various challenges like increased
customer expectations, complex products and services, demanding regulations
in different countries, or fulfillment of social responsibility. As a result, com-
panies need to cope with high process variability as well as a strong demand
for process flexibility. This means that in many of their business processes the
course of action is influenced by an abundance of process parameters like external
context factors, intermediate results, and process-related events (e.g., successful
termination of process steps). Consequently, ordinary process models comprise
complex decisions allowing for various alternative courses of actions as well as

http://www.uni-ulm.de/dbis

interdependencies among these decisions that are hardly comprehensible for pro-
cess modelers. In addition, an automated, controlled and sound adaptation of
(long-running) processes instances is required to address contextual changes, new
regulations, or emerging customer requests at run-time.

The complex development, production, or reporting processes in the auto-
motive and electronics industry may be regarded as valuable examples [12,18,8].
Typically, these processes rely on the companies’ sensitive supply chains. Hence,
business partners and diverse activities have to be incorporated dynamically on
demand. The following application scenario (cf. Fig. 1), we derived in the context
of a case study, illustrates the complexity and dynamics of such processes.

Application Scenario: Data Collection Processes
Due to regulations, an automotive manufacturer needs to provide sustain-
ability information. In particular, sustainability indicators relating to its
production are requested: one indicator deals with the REACHa compliance
of the entire company, another one addresses the greenhouse gas emissions
during the production of a certain product. To gather the data, process Data
Collection 1 is deployed to request a REACH compliance statement from
a supplier. Additionally, two other suppliers must be contacted to report
the greenhouse gas emissions (process Data Collection 2). While both data
collection processes have activities in common, many activities are specif-
ically selected for each process. A request regarding REACH compliance,
e.g., implies a legally binding statement and, thus, a designated represen-
tative must sign the data. However, if the CEO was not available, activity
Sign Data can be delayed or skipped.

a Regulation (EC) No 1907/2006: Registration, Evaluation, Authorisation and
Restriction of Chemicals

Dispatch Data
Request

External
Assessment

Requester
Preferences:
Completeness
Quality
Validity

Responder 1
Approval
Processes
Systems
Platforms
Formats

Available Data
Completeness
Quality
Validity period

Collect Data
Manually

Sign Data Assess Data

Gather Data
Automatically

Assess Data

Process Data
Request

Approve Data
Request #2

Approve Data
Request #1

Select Contact
Person

Request Data
Delivery

Dispatch Data
Request

Select Contact
Person

Approve Data
Request

Responder 2
Approval
Processes
Systems
Platforms
Formats

Responder 3
Approval
Processes
Systems
Platforms
FormatsProcess Parameters

Process: Data Collection 1

Process: Data Collection 2

Start End AND Gate XOR Gate Activity Subprocess Impact on Activity/Process

Request 1 Request 2

Validity date: 1
year

Reference: BoM
– 2 Positions

Standard: ISO
14064

Indicator: GHG
Emissions

Process Data
Request

Collect Data
Manually

Aggregate
Data

Due date: 2
months in future

Reference:
Company X

Verification:
Legal statement

Indicator: Reach
Compliant

Fig. 1: Application Scenario with two Data Collection Processes

To systematically support long-running and varying processes that require
(data-driven) run-time flexibility, we introduce the approach of context-aware
process injection (CaPI). Taking the current context of a process into account,

CaPI enables the controlled, but late injection (i.e., insertion) of process frag-
ments into a lean base process. Using so-called extension areas, the correctness
of the process’ control and data flow is ensured after injecting process fragments
at run time. The feasibility of CaPI is demonstrated by implementing a proof-of-
concept prototype based on existing adaptive process management technology.

Underpinning our research, we applied the design science research methodol-
ogy [15]. In particular, our work can be categorized as a design- and development-
centered approach accordingly. Based on an analysis of application scenarios (e.g.,
[11,17,8]) and process-related backgrounds (cf. Sect. 2) as well as the evaluation
of existing approaches (cf. Sect. 7), we iteratively elaborated the CaPI approach
(cf. Sect. 3). The latter comprises the specification of its components (cf. Sect.
4). Furthermore, we give insights into the process of context-aware process in-
jection (cf. Sect. 5). To validate the approach, a poof-of-concept prototype was
developed enabling the usage and evaluation in different application scenarios
(cf. Sect. 6). Finally, Section 8 concludes the paper giving a summary and an
outlook.

2 Backgrounds

To make CaPI applicable to existing activity-centric process modeling notations,
it relies on the process model definition given in Def. 1.

Definition 1. A process model PM is a tuple (N,E,NT,ET,EC) where:

– N is a set of process nodes and E ⊆ N ×N is a precedence relation (directed
edges) connecting process nodes,

– NT : N → {Start, End, Activity, ANDsplit, ANDjoin, ORsplit, ORjoin,
XORsplit, XORjoin, DataObj} assign to each n ∈ N a node type NT (n);
N is divided into disjoint sets of start/end nodes C (NT (n) ∈ {Start, End}),
activities A (NT (n) = Activity), gateways G (NT (n) ∈ {ANDsplit,
ANDjoin, ORsplit, ORjoin, XORsplit, XORjoin}), and data objects D
(NT (n) = DataObj),

– ET : E → {ControlEdge, LoopEdge, DataEdge} assigns a type ET (e) to
each edge e ∈ E,

– EC : E → Conds ∪ {True} assigns a transition condition or true to each
control edge e ∈ E,ET (e) ∈ {ControlEdge, LoopEdge}.

Note that we take sound process models for granted, i.e., a process model has
one start (no incoming edges) and one end node (no outgoing edges) [17]. Further,
the process model has to be connected, i.e., each activity can be reached from
the start node, and from each activity the end node is reachable. Data consumed
(delivered) as input (output) by the process model is written (read) by the start
(end) node. Finally, branches may be arbitrarily nested, but must be safe (e.g., a
branch following an XORsplit must not merge with an ANDjoin). Due to lack of
space, we refer to literature for a detailed look on process model soundness [19].
Def. 2 introduces the notion of a SESE (Single Entry Single Exit) fragment:

Definition 2. Let PM := (N,E,NT,ET,EC) be a process model and N ′ ⊆
N be a subset of activities. The subordinated process model PM ′ induced by
N ′ and their corresponding edges E′ ⊆ E is denoted as Single Entry Single
Exit (SESE) fragment iff PM ′ is connected and has exactly one incoming and
one outgoing edge connecting it with PM. If PM ′ has no preceding (succeeding)
nodes, PM ′ has only one outgoing (incoming) edge.

Based on a process model PM , a process instance PI may be created, de-
ployed and executed at run time. Def. 3 defines a process instance formally:

Definition 3. A process instance PI is defined as a tuple (PM,NS,Π) where:

– PM := (N,E,NT,ET,EC) denotes the process model PI is executed on,
– NS : N → {NotActivated, Activated, Running, Skipped, Completed}

describes the execution state of each node n ∈ N with NT (n) 6= DataObj,
– Π := 〈e1, . . . , en〉 denotes the current execution trace of PI where each entry
ek is related either to the start or completion of an activity.

3 Context-Aware Process Injection in a Nutshell

The key objective of CaPI is to ease the sophisticated modeling of process vari-
ants at design time and to enable the automated, controlled adaption of processes
at run time. Therefore, the central entity of CaPI is the context-aware process
family (CPF) (cf. Fig. 2). In detail, a CPF comprises a base process model
with extension areas (cf. Sect. 4.1), contextual situations (cf. Sect. 4.3) based
on process parameters (cf. Sect. 4.2), a set of process fragments injected at the
extension areas at run time, and a set of injection specifications (cf. Sect. 4.4).

Base Process

CF CF CF CF CF CF CF CF CF

Process Parameter 1 Process Parameter 2 Process Parameter 3 Process Parameter 4

Extension Area 1

Conduct
Laboratory Tests

Aggregate Tests

Contact Person
Responsible

Process Fragment 1 Process Fragment 2

Conduct
Laboratory Tests

If Contextual Situation 1 is present at Extension Area 1:
Inject Process Fragment 1 and Process Fragment 2 inline in parallel

Contextual Situation 1
Process Situation 3Process Situation 3Contextual Situation 2

Context Factors

Request

Aggregate Tests

Collect Data
Manually

Request TestResult

Result

Contact Person
Responsible

Collect Data
Manually

Assess Data
Process Data

Request

Fig. 2: Overview of a Context-Aware Process Family

Establishing the separation of concerns principle for modeling process vari-
ants, the base process model solely contains decisions and activities shared by all
variants of the process, known at build time, and not being changed at run time.
By contrast, extension areas represent the dynamic part of the process. Hence,
a process modeler may focus on modeling predictable activities first to add the
dynamic parts of the base process model subsequently. In particular, extension
areas are used to automatically inject process fragments into the base process at
run time based on the present contextual situation as well as on well-defined in-
jection specifications. An extension area allows for the dynamic injection of any
number of parallel process fragments. In turn, contextual situations are defined
through conditions expressed in first-order logic taking process parameters and
even data objects of the base process model into account. In this context, process
parameters are connected to dynamic, external factors influencing the process in-
jection’s decision making. While injecting process fragments, CaPI takes care of
correct data flow mappings as well: data objects of an injected process fragment
are automatically connected to existing ones of the base process.

By this means, CaPI enables controlled, but dynamic configurations and
changes of long-running and varying processes at run time. Through relying on
insertions of process fragments solely, CaPI allows process modelers to increas-
ingly focus on the particular variants instead of struggling with a highly complex
process model capturing all variants.1 Furthermore, process modelers may di-
rectly integrate contextual influences into the modeling of variants as complex
external context factors are abstracted by meaningful process parameters and
reusable contextual situations. In turn, CaPI is able to cope with contextual
run-time changes through the late evaluation of contextual situations at given
extension areas to finally inject the proper process fragments. Thereby, the au-
tomated and consistent construction of data flow between the injected process
fragments and the underlying base process mitigates the efforts of involved users.
Further, it empowers process activities to seamlessly read and write data.

Before presenting the key components of a CPF and CaPI, Def. 4 formally
specifies the concept of a context-aware process family (CPF). Note that a pro-
cess fragment may be the base process of another CPF and, thus, modularization
can be achieved as well (recursive nesting is disallowed).

Definition 4. A context-aware process family is defined as a tuple CPF =
(BP,EA,PP,CS, PF, IS) where:

– BP is the base process model,
– EA is a set of extension areas in the BP ,
– PP is a set of process parameters,
– CS is a set of contextual situations,
– PF is a set of process fragments; each process fragment is a process model,
– IS is a set of injection specifications.

1 Note that other kind of dynamic changes, like deleting or moving activities, may be
also introduced by authorized users based on the features of the adaptive process
management technology [6] used.

4 Components of Context-Aware Process Families

4.1 Extension Areas

In order to enable the controlled extension of processes at run time, extension
areas are introduced representing the dynamic part of a CPF. Based on the
current contextual situation, process fragments may be dynamically injected
into extension areas at run time. More precisely, an extension area is defined by
two extension points—each referring to a node (i.e. start/end nodes, activities,
gateways) of the base process model (cf. Fig. 3). If the nodes referenced by the
extension points directly precede each other, a process fragment can be easily
injected into the base process. If some nodes exist in between, a process fragment
may be injected among these nodes (cf. Sect. 4.4) or, alternatively, gateways may
be employed to insert the process fragment in parallel. The different possibilities
of injecting process fragments are discussed in Section 5. Def. 5 formally describes
extension areas and posits constraints to ensure that the injection of process
fragments into a base process BP always leads to a modified, but still sound
process BP ′. In this context, overlaps of extension areas may result in problems
regarding the concurrent injection of process fragments (cf. Sect. 5.2).

Definition 5. Let CPF = (BP,EA,PP,CS, PF, IS) be a context-aware pro-
cess family and BP = (N,E,NT,ET,EC) be the base process. Every exten-
sion area ea ∈ EA is described by a set of two extension points {EPs, EPe} ⊆
N × {Pre, Post} where:

– Every extension point EPx = (nx, scope), x ∈ {s, e} refers to corresponding
nodes nx ∈ N,NT (nx) 6= DataObj in BP and additionally exposes a scope;
the latter determines whether ea starts (ends) just before (scope = Pre) or
directly after (scope = Post) the referenced node nx,

– EPs (EPe) may only refer to the scope Post (Pre) of the start (end) node
of BP ; EPs (EPe) must not refer to the end (start) node of BP ,

– The referenced nodes ns, ne ∈ N embrace a subordinated process model PM ′

induced by a subset of activities N ′ ⊆ N and respective edges E′ ⊆ E;
PM ′ always corresponds a SESE fragment and must not contain any other
extension areas starting (ending), but not ending (starting) in PM ′ (nesting
of extension areas is allowed, but no overlaps).

Base Process

Extension Area 2

Process Data
Request

Provide Data
Extension Area 1

EPs = (Process Data Request, Post)

EPe = (Provide Data, Pre)

EPs = (Start, Post)

EPe = (Provide Data, Post)

Monitor Data
Collection

Fig. 3: Examples of Extension Areas in a Base Process

4.2 Process Parameters

Typically, long-running and varying processes are influenced by context factors,
e.g., the number of involved parties or the availability of data. To include such
context factors into the decision making regarding the injection of process frag-
ments and hence the concrete course of action of the overall process, we utilize a
predefined set of process parameters (cf. Def. 6). The set of process parameters
additionally enables the exchange of entire CPFs between application scenarios
as it abstracts from a concrete set of context factors (i.e., only a mapping between
the context factors and process parameters need to be conducted again).

Definition 6. Let CPF = (BP,EA,PP,CS, PF, IS) be a context-aware pro-
cess family. A process parameter pp ∈ PP is a tuple (ppDefault, ppV alue,
ppDom) where:

– ppDefault ∈ PPDom is an optional default value of the process parameter,
– ppV alue ∈ PPDom is the current value of the process parameter,
– ppDom ⊆ Dom is the domain of pp with Dom denoting the set of all atomic

domains (e.g., String, Integer)

Note that value ppV alue of process parameter pp is set by a context map-
ping (component) at run time (cf. Sect. 5.2). To focus on the controlled process
adaption, we rely on simple rule-based mapping for context factors (cf. Fig. 4).

CF 1

CF 2

CF 3

Context Mapping
Data Quality = (Medium , Low , String)

Context Factors

Process Parameters

Mapping Rules

IF (CF1 AND CF2) OR (CF1 AND CF3) THEN DataQuality = Low IF (CF1 AND CF2) OR (CF1 AND CF3) THEN DataQuality = Low IF (CF1 AND CF2) OR (CF1 AND CF3) THEN Data Quality.ppValue = Low

Fig. 4: Illustrative Mapping of Context Factors on Process Parameters

Consequently, process parameters may be also leveraged to provide meta
information regarding the current execution trace (cf. Def. 3) or the process
fragments injected at run time. Such process parameters can then be used to
model interdependencies among contextual situations and process fragments,
respectively. Finally, a process parameter may have compound values (e.g., sets,
lists) as well—however, we omit a formal definition of complex parameters here.

4.3 Contextual Situations

A specific process variant may rely on several occurring contextual situations,
which are based on the combination of various process parameters and, espe-
cially, their current values. For example, a company may insist on a four-eyes-
principle approval process in case data is intended for a specific customer group
or relates to a specific regulation. Hence, the same contextual situations may be
leveraged at different extension areas to inject process fragments. Based on this

observation, contextual situations (cf. Fig. 5) are defined by conditions expressed
in a first-order logic relying on the set of process parameters (cf. Sect. 4.2) and
data objects of the base process (cf. Def. 7). As opposed to traditional modeling
of business processes, we enable the integration of external context factors as
well as reutilization of contextual situations across the process model. As de-
fault process parameters may provide meta information regarding the current
execution trace or the process fragments injected at run time, interdependencies
can be modeled in contextual situations correspondingly.

Data Quality Data Completeness

Labratory Tests Required
Condition: Data Quality = Low AND Data Completeness = false AND Request.Indicator = Reach

Data Validity Persons Available

Process Parameters

Contextual Situations

Request

Base Process

Process Data
Request

Assess Data

Extension Area 1

Conduct
Laboratory Tests

Aggregate Tests

Contact Person
Responsible

Request

Collect Data
Manually

Results

Fig. 5: Contextual Situation based on Process Parameters and Data Objects

Definition 7. Let CPF = (BP,EA,PP,CS, PF, IS) be a context-aware pro-
cess family and BP = (N,E,NT,ET,EC) be the corresponding base process. A
contextual situation cs ∈ CS is defined by a condition expressed in first-order
logic. For every predicate park θ valk, θ ∈ {“=“, “ ≤ “, . . .}, valk ∈ Dom(park)
of the condition, park either corresponds to a process parameter (park ∈ PP) or
a data object (park ∈ N,NT (park) = DataObj).

4.4 Injection Specifications

Finally, injection specifications determine the injection of a process fragment to
an extension area in a given contextual situation (cf. Def. 5). To ensure data
flow correctness after the injection, in addition, the mapping of data elements
is considered in the injection specifications. Especially, this includes a mapping
of required input and output data objects of the process fragment (or, to be
more precise, of their activities) to the existing data objects of the base process.
This mapping may be even extended to data objects of other process fragments,
which are supposed to be injected in the base process as well (cf. Sect. 5).

Definition 8. Let CPF = (BP,EA,PP,CS, PF, IS) be a context-aware pro-
cess family and BP = (N,E,NT,ET,EC) be the corresponding base process.
An injection specification is ∈ IS corresponds to a tuple (EAIS , CSIS , PFIS ,
InjType, InjPattern, InjRate, InjTrigger, InjRank,DR,DW) where:

– EAIS ∈ EA is a specific extension area, CSIS ∈ CS a specific contextual
situation, and PFIS ∈ PF a specific process fragment,

– InjType := {Inline, Sub-process} is the injection type denoting whether
PFIS is injected inline or as a sub-process,

– InjPattern := {Parallel, Sequential} is the injection pattern denoting
whether PFIS is injected in parallel to the existing control flow between the
extension points of EAIS or sequentially into the existing control flow,

– InjRate := {Single, (Multiple, fre)} is the injection rate denoting whether
PFIS is injected once or multiple times at EAIS; the latter requires attribute
fre ∈ N determining how often PFIS shall be injected at EAIS in parallel,

– InjTrigger determines the point in time an injection is triggered. It is
defined by a conditional predicate par θ val with par ∈ N

⋃
PP ; further

par ∈ N ⇒ NT (par) = DataObj, θ ∈ {“=“, “ ≤ “, . . .}, val ∈ Dom(par),
– InjRank ∈ N is a number to create a ranking among injections specifications

as they may match concurrently; all injection specifications for one particular
extension area must expose different values,

– DR : InputDataPFIS
→ DO is a set of mappings of input data objects

InputDataPFIS
of PFIS to data objects DO ∈ NBP

⋃
(NPF \NPFIS

) of the
base process BP or of other process fragments PF \ PFIS,

– DW : OutputDataPFIS
→ DO is a set of mappings of output data objects

OutputDataPFIS
of PFIR to data objects DO ∈ NBP

⋃
(NPF \ NPFIS

) of
the base process BP or of other process fragments PF \ PFIS.

The injection trigger (InjTriger) enables the injection of a process fragment
at an extension area as soon as a given process parameter or data object exposes
a certain value (see Sect. 5.2 for details). Furthermore, the number of process
fragments to be injected may be dynamically set based on the current contex-
tual situation. Both concepts increase the flexibility provided to long-running
and varying processes. The ranking (InjRank) of injection specifications be-
comes necessary as several contextual situations may occur concurrently and,
hence, several injections (cf. Sect. 4.4) may be concurrently triggered. Through
the ranking, especially, sequential injections of process fragments can be accom-
plished in a well-defined order. Sect. 5 presents details on context-aware process
injection based on injection specifications.

5 The Process of Context-aware Process Injection

This section discusses the process of context-aware process injection to reveal the
interplay and benefits of the introduced components and concepts. In particular,
we show how to employ CaPI entities to properly inject process fragments at
extension areas in given contextual situations. Thereby, we both discuss alter-
natives to specify CPFs at design time as well as the process of context-aware
process injection at run time.

5.1 The Modeling of Context-aware Process Families

As a prerequisite, the base process of a context-aware process family must be
defined first. Therefore, either a new process model needs to be created or an

existing one is modified accordingly. Note that the resulting base process model
solely contains the set of activities shared by all process variants, known at build
time, and usually not being changed at run time. Drawing upon, the extension
areas are then defined by selecting corresponding nodes in the base process.

Subsequently, the set of process parameters must be specified as the latter
provides the basis for defining contextual situations and, finally, the injection
specifications. In this context, a process modeler may demand a set of pre-defined
process parameters that allow modeling interdependencies among process frag-
ments. For example, the list of process fragments injected in the base process
at run time may be made available through such a pre-defined process param-
eter. Note that this approach also allows for the incorporation of data objects,
which belong to other process fragments, into the data mapping declared in an
injection specification.

Based on the given process parameters and data objects, the set of contex-
tual situations can be defined appropriately. The latter then enables a process
modeler to finally define injection specifications. Altogether, three alternative
modeling perspectives can be provided to a process modeler (cf. Fig. 6):

– Situation-based perspective: for every contextual situation, one may deter-
mine the process fragments to be injected at given extension areas.

– Location-based perspective: for each extension area, one may define the pro-
cess fragments to be injected in a given contextual situation.

– Artifact-based perspective: one may stepwise take process fragments to define
in which contextual situation they shall be injected at given extension areas.

Si
tu

a
ti

o
n

-s
p

ec
if

ic
 (

A
)

Lo
ca

ti
o

n
-s

p
e

ci
fi

c
(B

)
A

rt
if

ac
t-

sp
e

ci
fi

c
(C

)

Inspected Contextual Situation:

Laboratory Tests Required

Condition: Data Quality = Low AND
Data Completeness = false AND Request.Indicator = Reach

Base Process (BP) Extension Area 1

Request Result

Process Fragment 1 (PF1)

Conduct
Laboratory Tests

Aggregate Tests

Request

TestResult

Inject Process Fragment 1 (PF1) at Extension Area 1 in Base Process (BP)

InjType = Inline
InjPattern = Parallel
InjRate = Single
InjTime = true (immediately)

Input Data Mapping :
- PF1.Request = BP.Request
Output Data Mapping:

- PF1.TestResult = BP.Result

Inject Process Fragment 1 (PF1) at Extension Area 1 in Base Process (BP)

InjType = Inline
InjPattern = Parallel
InjRate = Single
InjTime = true (immediately)

Input Data Mapping :
- PF1.Request = BP.Request
Output Data Mapping:

- PF1.TestResult = BP.Result

Inject Process Fragment 1 (PF1) at Extension Area 1

InjType = Inline
InjPattern = Parallel
InjRate = Single
InjTrigger = true (immediately)

Input Data Mapping :
- PF1.Request = BP.Request
Output Data Mapping:

- PF1.TestResult = BP.Result

Inject Process Fragment 1 (PF1) at Extension Area 1 in Base Process (BP)

InjType = Inline
InjPattern = Parallel
InjRate = Single
InjTime = true (immediately)

Input Data Mapping :
- PF1.Request = BP.Request
Output Data Mapping:

- PF1.TestResult = BP.Result

Inject Process Fragment 1 (PF1) at Extension Area 1 in Base Process (BP)

InjType = Inline
InjPattern = Parallel
InjRate = Single
InjTime = true (immediately)

Input Data Mapping :
- PF1.Request = BP.Request
Output Data Mapping:

- PF1.TestResult = BP.Result

Inject Process Fragment 1 (PF1) on Laboratory Tests Required

InjType = Inline
InjPattern = Parallel
InjRate = Single
InjTrigger = true (immediately)

Input Data Mapping :
- PF1.Request = BP.Request
Output Data Mapping:

- PF1.TestResult = BP.Result

Inject Process Fragment 1 (PF1) at Extension Area 1 in Base Process (BP)

InjType = Inline
InjPattern = Parallel
InjRate = Single
InjTime = true (immediately)

Input Data Mapping :
- PF1.Request = BP.Request
Output Data Mapping:

- PF1.TestResult = BP.Result

Inject Process Fragment 1 (PF1) at Extension Area 1 in Base Process (BP)

InjType = Inline
InjPattern = Parallel
InjRate = Single
InjTime = true (immediately)

Input Data Mapping :
- PF1.Request = BP.Request
Output Data Mapping:

- PF1.TestResult = BP.Result

Inject at Extension Area 1 on Laboratory Tests Required

InjType = Inline
InjPattern = Parallel
InjRate = Single
InjTrigger = true (immediately)

Input Data Mapping :
- PF1.Request = BP.Request
Output Data Mapping:

- PF1.TestResult = BP.Result

Process Data
Request

Assess Data

Fig. 6: Three Approaches for Modeling Injection Specification

As illustrated in Fig. 6, from each perspective the modeling still leads to
the creation of injection specifications for the given CPF. However, a process
modeler may use her favorite approach or even mix the approaches in relation
to her personal preferences.

Since many activities and decisions in the control flow of the base process may
be data-driven, the mapping of the injected data objects must be accomplished
to successfully conduct CaPI. This very essential part for supporting process
variants is consistently and easily achieved by selecting the data objects in both
the base process model and the process fragments to create the required mapping
(cf. Sect. 4.4). Note that this is a clear advantage of CaPI in comparison to many
existing approaches (cf. Sec. 7) as the latter do not allow for (automatic) data
mapping and, hence, process users are burdened with this issue at run time. As
process fragments may be injected at different extension areas, one may want to
link a data object to another data object of a process fragment injected earlier in
the base process. Hence, a interdependency between such two process fragments
must be created accordingly: process parameters providing meta information
regarding the current execution trace (cf. Sect. 4.2) are leveraged to enhance the
contextual situation for a process fragment. The latter can be easily automated as
soon as one adds corresponding references to data objects of process fragments to
be injected earlier. Finally, in case a process fragments is injected multiple times
at an extension area, CaPI allows for referencing data objects of the injected
fragments by adequate identification mechanisms.

5.2 The Execution of Context-aware Process Families

As opposed to configuration approaches (cf. Sec. 7), CaPI enables the late con-
figuration of processes at run time. The latter allows evaluating the contextual
situations just in the moment a process adaptation is required. Therefore, a
CPF = (BP,EA,PP,CS, PF, IS) is deployed and executed in a process-aware
information system (PaIS). After successful deployment, the base process in-
stance BPI = (BP,NS,Π) is continuously monitored by a dedicated CaPI
application (cf. Sect. 6.1) continuously monitoring the BPI regarding reached
extension areas and current contextual situations.

If an extension area ea ∈ EA is reached and, especially, its first exten-
sion point refers to a node with scope Pre (EPs = (nx, Pre), nx ∈ N,BP =
(N,E,NT,ET,EC)), the determination of the contextual situations will be
started as soon as the previous node will have been completed (nx−1 ∈ N,
NS(nx−1) = Completed). In turn, if the first extension point refers to a node
with scope Post (EPs = (nx, Post)), the determination will be started as soon as
nx will have been completed (NS(nx) = Completed). In case the extension area
is surrounded by a loop in the BPI, the injection specification can be evaluated
in the first iteration or in every iteration of the loop structure (depends on pref-
erences and the support by th underlying PaIS). After successfully determining
the set of contextual situations CSea, it becomes possible to derive the set of
utilizable injection specifications ISea for finally adapt the BPI adequately.

For every process specification is ∈ ISea with is = (ea, csis, pfis, InjTypeis,
InjPatternis, InjRateis, InjTriggeris, InjRankis, DRis, DWis), the point of time
the process injection shall be accomplished, must be regarded based on condition
InjTriggeris. If the latter is already met when reaching ea, pfis will be immedi-
ately injected according to the below-mentioned steps. Otherwise, the injection

of pfis will be postponed until InjTriggeris is fulfilled. In case the condition is
never satisfied, pfis could be injected at the very end of the control embraced by
an extension area or not be injected at all (depends on preferences set initially). If
pfis shall be lately injected, the current states of the nodes embraced by ea must
be taken into account: if there is only one running node nx ∈ N(i.e.NS(nx) =
Running), pfis will be injected directly after nx. However, if there are several
concurrently running nodes nk ∈ N, k = 1, . . . , n(i.e.NS(nk) = Running), pfis
will be injected directly after the gateway finally merging the branches on which
the nodes n1, . . . , nn are situated on. Finally, if several injection specifications are
sharing the same contextual situations and injection trigger, the injection rank
InjRankis is considered (cf. Sect. 4.4). After the consideration of InjTriggeris
and InjRankis, the following procedures are applied in general (cf. Fig. 7):

1. InjPatternis = Parallel ∧ InjRateis = Single, ⇒ pfis will be injected
inline (or as a sub-process depending on InjTypeis) and in parallel to the
existing control flow,

2. InjPatternis = Parallel ∧ InjRateis = (Multiple, fre), ⇒ pfis will be
injected inline (or as a sub-process) fre times with surrounding ANDsplit /
ANDjoin gateways in parallel to existing control flow,

3. InjPatternis = Sequential∧ InjRateis = Single ⇒, pfis will be injected
inline (or as a sub-process) into the existing control flow,

4. InjPatternis = Sequential ∧ InjRateis = (Multiple, fre), ⇒ pfis will be
injected inline (or as a sub-process) fre times with surrounding ANDsplit /
ANDjoin gateways into the existing control flow.

InjPattern = Parallel
InjRate = Single
InjTrigger = released (immediately)

InjPattern = Sequential
InjRate = Single
InjTrigger = released after NS(B) = Completed

InjPattern = Sequential
InjRate = Multiple
InjTrigger = released after
 NS(B) = Completed

InjPattern = Parallel
InjRate = Multiple
InjTrigger = released
(immediately)

A CB

B D CB

D E

A E

A CB

D E

D E

...

D E

D E

...

C

Injection of at Extension Area 1

Base Process Extension Area 1

A B C

Process Fragment 1

D E

A

Fig. 7: Realization of Process Injection based on Injection Specifications

The detailed procedures to inject a process fragment pfis are exemplar-
ily discussed for the case InjPatternis = Parallel ∧ InjTypeis = Inline,
assuming InjTriggeris has already been satisfied: first, start and end nodes
nspfsi , n

e
pfis
∈ Npfis of pfis are removed. Then all remaining nodes nkpfis ∈ Npfis

as well as one ANDsplit nANDsplit and one ANDjoin gateway nANDjoin are
added to the nodes of the base process NBP . Subsequently, six control edges
are created: one edge connects np preceding the extension area with nANDsplit,

two edges link nANDsplit to ns+1
pfis

, which succeeds the (removed) start node of
pfis, and np+1, which is the first node in the control flow embraced by ea. Sub-
sequently, ne−1pfis

(i.e, the last node of pfis) and ea (i.e, last node of the control
flow embraced by ea) are connected with nANDjoin. Finally, nANDjoin is linked
to ns, which is the first node succeeding ea.

Finally, the correct data flow between injected nodes and existing nodes of
the base process must be established. As this is automatically performed at
run time, process participants are not burdened with this challenging task. We
exemplarily present the data input mapping for the inline injection of a single
fragment PFIS (cf. Fig. 8): for every node npfis of pfis with data edge edi =
(dipfis , nPFIS

) ∈ E,ET (e) = DataEdge from a input data object dipfis , dipfis ∈
InputDatapfis , a new edge edi-new := (doBP , npfis) is created based on mapping
dr = (dipfis , doBP), dr ∈ DR. edi is deleted afterwards and if there are no further
edges connecting dipfis to nodes, dipfis will be deleted as well.

Injection of

InjType: Inline
InjPattern:
Sequential
InjRate: Single

at Extension Area 1

Data Input Mapping:
s2 = s1
Data Output Mapping:
t2 = t1

Base Process Extension Area 1

A B

Process Fragment 1

C D

s2 t2u s1 t1

A B

s1 t1

C D

s2 t2u

A B

s1 t1

C D

u

Step 1: Removing the start + end nodes; injection into control flow Step 2: Establishing data flow by using input and output mapping

Fig. 8: Data Mapping Example for an Injected Process Fragment

6 Validation

As the CaPI approach explicitly addresses long-running processes showing high
variability, which often take place in rather sensitive businesses, a mature and
powerful implementation is required to conduct valuable empirical studies to
successfully validate the concepts presented in this work. To prepare such stud-
ies, we developed a sophisticated proof-of-concept prototype whose details are
presented in the following. Further, we conducted a first case study in the au-
tomotive and electronics industry to receive important feedback regarding both
the approach in total as well as the proof-of-concept prototype in particular.

6.1 Proof-of-Concept Prototype

To establish a powerful implementation as a solid basis for future empirical stud-
ies, the CaPI proof-of-concept prototype is based on the conceptual architecture
shown in Fig. 9. In particular, we realized the prototype using Aristaflow adap-
tive process management technology [6]. The latter allows modeling, deploying,
and executing well-structured business processes. Further, it provides sophisti-
cated and sound change operations to adapt running process instances at run

time [16]. Hence, AristaFlow provides the basic execution platform required to
conduct the sound injection of process fragments as well as the proper assign-
ment of data objects for the injected activities at run time.

CaPI Application

CaPI Modeler REST API

CaPI Control

Adaptive Process Management System (AristaFlow)

End Users

Domain
Experts

CPF Repository

+

Context IntegratorCaPI Monitor

BPMS Desktop ClientDesktop ClientBPMS Web ClientWeb Client

Modeling
Layer

CaPI Logic
Layer

Process
Layer

Interaction
Layer

Fig. 9: Overview on the CaPI Architecture

Realized with Java Enterprise Edition 7, the CaPI application comprises a
web-based sub-module enabling domain experts to conveniently model CPFs
(CaPI Modeler) as well as sub-modules CPF Repository, CaPI Monitor, CaPI
Control, and Context Integrator representing the CaPI core functions required
at run time.

Through appropriate web-based user interfaces, a domain expert may first
specify the mappings of the available context factors to process parameters and
the one of the process parameters to contextual situations accordingly. Based on
these preparations, she may create injection specifications by putting together
the CaPI core components extension areas, contextual situations and process
fragments via drag and drop. As proposed in Sect. 5.1, for this purpose, we
implemented the different perspectives a domain expert may use to create an in-
jection specification. Consequently, Fig. 10 exemplarily illustrates the situation-
based perspectives showing a base process with two extension areas (see Marking
(a)) for a data collection process regarding Reach Compliance of several suppli-
ers (cf. Sect. 1). Both extension areas are needed to prepare and perform data
collection activities for every involved supplier according to their capabilities
(i.e. context factors). In particular, if a supplier hosts a well-reachable in-house
system providing required data, the process fragment “Perform Data Collection
IHS” is injected for every involved supplier at the second extension area.

Overall, the CPFs modeled by domain experts are managed in the CPF
Repository. At run time, CaPI Control interprets the CPF specifications to de-
tect the deployment of a CPF base process in AristaFlow and to continuously
monitor the execution of the base process accordingly. Therefore, CaPI Control
is registered as a dedicated service in AristaFlow to receive any status updates
of activities as well as to actively acknowledge the start of every activity in the

base process. Based on this approach, CaPI control detects when achieving an
extension area, subsequently evaluates the valid contextual situations, and fi-
nally injects the specified process fragments on demand. For the example of Fig.
10, either “Perform Data Collection IHS” or “Web-based Data Collection” are
injected at the second extension area according to the given contextual situations
at run time (see Marking (b)).

Fig. 10: Screenshots of the CaPI Situation-based Modeling Perspective

6.2 Case Study

After demonstrating the technical feasibility, we also conducted a case study
based on data collection processes in the automotive and electronics industry
(cf. Sect. 1) in the scope of the SustainHub2 project. More precisely, we therefore
modeled several data collection processes of an automotive manufacturer with
its dynamic, data-driven injections of process fragments. Ensuing, we conducted
qualitative interviews with project partners to receive their feedback. For the
interviews, we presented both the approach and the existing functionality based
on the modeled data collection process. Altogether, we received valuable, but
of course limited feedback regarding better modularity, increased confidentiality,
and comprehensible monitoring.

Regarding modularity, CaPI may reduce the complexity of long-running,
varying process models to create more comprehensible and appropriate process
models according to given contextual situations. The partners stated that the
size and complexity of process models typically determine the rate of model-
ing errors. CaPI may provide a different way of modeling such complex and

2 SustainHub (Project No.283130) is a collaborative project within the 7th Framework
Programme of the European Commission (Topic ENV.2011.3.1.9-1, Eco-innovation).

varying processes without these errors. However, the possibilities and ease-of-
use regarding the modeling of contextual situations and injection specifications
will mainly determine the effectiveness and efficiency of CaPI in comparison to
the traditional approach of maintaining one large-sized process model. At design
time, the systematic management of large process models also raises the problem
of confidentiality. All possible decisions and activities including the linkage to
roles, data, and other resources are accessible in total. According to the part-
ners, modeling a process based on CaPI may provide possibilities to separate
common activities and control flow from specific, confidential process fragments
injected in contextual situations. Regarding confidentiality at run time, CaPI
may provide only activities and control flow elements executed for monitoring
purposes. Thereby, monitoring may be more comprehensible and descriptive in
comparison to showing execution traces in large and complex process models.

7 Related Work

Classifying CaPI, we propose an implemented approach for the automated,
context-aware extension of process instances at run time to cope with process
variability and to increase process flexibility. Related work addresses the config-
uration of process models before deployment, the adaptation of process instances
at run time, the late selection of sub-process, the late composition of services
[17,3], and, in broader sense, aspect-oriented programming. In the following we
discuss the commonalities and differences of related work in comparison to CaPI.

Approaches for process configuration, e.g., [9] or [7], aim at the modification
of a reference process model to configure process model variants before pro-
cess run time. Therefore, these approaches employ various transformations like
adding process fragments, deleting activities, or changing control flow as well
as properties of activities. However, these powerful transformations can be only
applied, based on current information, before the process has been deployed. In-
stead, CaPI enables the injection of process fragments at run time. Further, CaPI
considers context- and process-specific data at run time to support both process
variability and process flexibility for long-running processes. Regarding auto-
mated adaptation of process instances at run time, rule-, case, and goal-based
approaches may be taken into account [17]. Based on ECA (Event-Condition-
Action), the rule-based approaches automatically detect exceptional situations
and determine process instance adaptations required to handle these exceptions.
Especially, AgentWork [13] is based on a temporal ECA rule model and enables
automated structural adaptations of a running process instance (e.g., to add
process fragments or to delete them) to cope with unplanned situations.
However, CaPI entities allow for the specification of process variants instead of
coping with unexpected failure events. Concretizing loosely specified processes,
approaches for late selection typically rely on placeholder activities to integrate
sub-processes in a base process at run time. While [1] suggests that the selec-
tion of the process fragment is primarily done by the process participants, [14]
proposes an automatic, multi-staged approach to select sub-process at run time.

Further, CaPI may be compared to process-based composition methods allowing
for the late selection of service implementations [5,2,4]. These approaches share
the abstract definition of a business process at design time. Each activity in
the business process corresponds to a service specification and provides a place-
holder for services matching the specification. Either upon invocation time or at
run time, service implementations matching the specification are automatically
selected from a registry based on QoS attributes or selection rules. By contrast,
CaPI’s extension areas in combination with injection specifications enable both
the inline insertion of process fragments as well as the integration of process
fragments as sub-processes. While placeholder activities are limited regarding
the assignment of input and output data, the declaration of data mappings in
the injection specifications enables the direct access to of activities in the process
fragments to data objects in the base process.

Regarding related work in a broader sense, CaPI can be also well compared
to aspect-oriented programming (AOP) [10]. AOP represents a programming
paradigm for object-oriented programming and it targets high modularity by
allowing and realizing the separation of system-level cross-cutting concerns from
the actual key functionality. While AOP is also relying on injections at so-called
join points, CaPI, by contrast, targets at the increased modularity of varying
processes by separating activities, which are always performed, from activities
and sub-processes performed in certain, pre-defined contextual situations.

8 Conclusion

In a nutshell, this work presents an approach for supporting long-running pro-
cesses being subject to high variability by the context-aware and automated in-
jection of process fragments at run time. Especially for long-running processes,
the important configuration addressing process variety can hardly be performed
solely at build time. However, existing approaches either focus on build-time
configurations or allow for the late selection of process fragments based on place-
holder activities. Consequently, the CaPI approach addresses this gap through
providing context-aware configuration support at run-time based on the injection
of process fragments. Finally, we further addressed the important data mapping
for injected process fragments as well as we implemented a proof-of-concept
prototype demonstrating the mentioned CaPI benefits.

In future research, we will conduct comprehensive experiments using the
prototype to further examine the process of context-aware process injection.
We further intend to enhance the CaPI modeler and to strengthen the context
mapping by employing complex event processing.

Acknowledgement

This research was partially conducted within the SustainHub research project
(Project No.283130) funded by 7th Framework Programme of the European
Commission (Topic ENV.2011.3.1.9-1, Eco-innovation).

References

1. Adams, M., ter Hofstede, A. H. M., Edmond, D., van der Aalst, W. M. P.: Worklets:
A service-oriented implementation of dynamic flexibility in workflows. In: Proc.
OTM’06. pp. 291–308 (2006)

2. Aggarwal, R., Verma, K., Miller, J., Milnor, W.: Constraint driven web service
composition in METEOR-S. In: Proc. SCC 2004. pp. 23–30 (2004)

3. Ayora, C., Torres, V., Weber, B., Reichert, M., Pelechano, V.: VIVACE: A
framework for the systematic evaluation of variability support in process-aware
information systems. Information and Software Technology 57, 248–276 (2015)

4. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: A framework for QoS-aware
binding and re-binding of composite web services. J Systems and Software 81(10),
1754–1769 (2008)

5. Casati, F., Shan, M.C.: Dynamic and adaptive composition of e-services.
Information systems 26(3), 143–163 (2001)

6. Dadam, P., Reichert, M.: The ADEPT Project: A Decade of Research and
Development for Robust and Flexible Process Support - Challenges and
Achievements. Computer Science - Research and Development 23(2), 81–97 (2009)

7. Gottschalk, F., van der Aalst, W. M. P, Jansen-Vullers, M.H., La Rosa, M.:
Configurable workflow models. Int J Coop Inf Sys 17(02), 177–221 (2008)

8. Grambow, G., Mundbrod, N., Steller, V., Reichert, M.: Challenges of Applying
Adaptive Processes to Enable Variability in Sustainability Data Collection. In:
SIMPDA’13. pp. 74–88. CEUR Workshop Proceedings (2013)

9. Hallerbach, A., Bauer, T., Reichert, M.: Context-based Configuration of Process
Variants. In: Proc. TCoB 2008. pp. 31–40 (2008)

10. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-Oriented Programming. In: Proc. ECOOP’97. pp. 220–242 (1997)

11. Lanz, A., Kreher, U., Reichert, M., Dadam, P.: Enabling Process Support for
Advanced Applications with the AristaFlow BPM Suite. In: Proc. Business Process
Management 2010 Demo Track. CEUR Workshop Proceedings (2010)

12. Müller, D., Reichert, M., Herbst, J.: A new paradigm for the enactment and
dynamic adaptation of data-driven process structures. In: Proc. CAiSE’08. pp.
48–63 (2008)

13. Müller, R., Greiner, U., Rahm, E.: AgentWork: a workflow system supporting rule-
based workflow adaptation. Data & Knowledge Engineering 51(2), 223–256 (2004)

14. Murguzur, A., Carlos, X.d., Trujillo, S., Sagardui, G.: Context-Aware Staged
Configuration of Process Variants@Runtime. In: Proc. CAiSE’14. pp. 241–255
(2014)

15. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A Design
Science Research Methodology for Information Systems Research. J Management
Information Systems 24(3), 45–77 (2007)

16. Reichert, M., Dadam, P.: ADEPTflex - Supporting Dynamic Changes of Workflows
Without Losing Control. J Intelligent Information Systems 10(2), 93–129 (1998)

17. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information
Systems: Challenges, methods, technologies. Springer, Heidelberg (2012)

18. Tiedeken, J., Reichert, M., Herbst, J.: On the Integration of Electrical/Electronic
Product Data in the Automotive Domain. Datenbank Spektrum 13(3), 189–199
(2013)

19. van der Aalst, W. M. P., ter Hofstede, A. H. M.: Verification of Workflow Task
Structures: A Petri-net-based Approach. Inf Sys 25(1), 43–69 (2000)

	Context-Aware Process Injection:
	Introduction
	Backgrounds
	Context-Aware Process Injection in a Nutshell
	Components of Context-Aware Process Families
	Extension Areas
	Process Parameters
	Contextual Situations
	Injection Specifications

	The Process of Context-aware Process Injection
	The Modeling of Context-aware Process Families
	The Execution of Context-aware Process Families

	Validation
	Proof-of-Concept Prototype
	Case Study

	Related Work
	Conclusion

