
On Representing, Purging, and Utilizing
Change Logs in Process Management Systems

Stefanie Rinderle1, Manfred Reichert2, Martin Jurisch1, and Ulrich Kreher1

1 Dept. DBIS, University of Ulm, Germany
{stefanie.rinderle, martin.jurisch, ulrich.kreher}@uni-ulm.de
2 Informations Systems Group, University of Twente, The Netherlands

m.u.reichert@utwente.nl

Abstract. In recent years adaptive process management technolgy has
emerged in order to increase the flexibility of business process imple-
mentations and to support process changes at different levels. Usually,
respective systems log comprehensive information about changes, which
can then be used for different purposes including process traceability,
change reuse and process recovery. Therefore the adequate and efficient
representation of change logs is a crucial task for adaptive process man-
agement systems. In this paper we show which information has to be
(minimally) captured in process change logs and how it should be rep-
resented in a generic and efficient way. We discuss different design alter-
natives and show how to deal with noise in process change logs. Finally,
we present an elegant and efficient implementation approach, which we
applied in the ADEPT2 process management system. Altogether the pre-
sented concepts provide an important pillar for adaptive process man-
agement technology and emerging fields (e.g., process change mining).

1 Introduction

The management of log information is crucial in different areas of information
systems. One prominent example are transaction logs in database systems which
allow to restore a consistent database state after transaction abortions or system
crashes. Log information is also exploited for analysis in fields like data mining
[1], online analytical processing [2], and process mining [3]. Current process man-
agement systems (PMS) maintain comprehensive execution logs which capture
events related to the start and completion of process activities [4,5].

A key requirement for BPM technology becoming more and more important
in practice is (runtime) adaptivity; i.e., the ability of the PMS to support (dy-
namic) changes at the process type as well as the process instance level. Several
approaches have been discussed in literature (e.g. [6,4,5]), and a number of pro-
totypes demonstrating the high potential of adaptive PMS have emerged [7,8].
Obviously, with the introduction of adaptive PMS we obtain additional run-
time information about process executions not explicitly captured in current
execution logs. This information can be useful in different context and should
therefore be managed in respective change logs. Change log entries may contain

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 241–256, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

242 S. Rinderle et al.

information about the type of a change, the applied change operations and their
parameterizations, the time the change happened, etc. (cf. Fig. 1).

The kind of change information being logged and the way this information
is represented are crucial for the usefulness of change logs. To our best knowl-
edge there has been no profound work related to these fundamental issues so
far. Several use cases appear when dealing with change log management. First,
execution logs themselves are not sufficient to restore the logical structure of
a process instance to which ad-hoc changes have been applied (e.g., insertion
or deletion of activities). Instead, additional information from change logs is
needed. Second, change traceability is an important requirement for any adap-
tive information system. In the medical domain, for example, all deviations from
standard procedures have to be recorded for legal reasons. Third, the logged in-
formation can be utilized if similar situations re-occur and a previous process
change shall be reused. Fourth, conflicts between changes concurrently applied
to the same process (instance) can be detected based on change log information
[9]; i.e., conflict analyses can be based on the logged information.

Traceability and change reuse are requirements mainly related to the user level
since change information is then presented to and possibly used by human actors.
By contrast, restoring process structures after changes and analyzing concurrent
changes for the absence of conflicts concern the system level and usually do
not involve user interaction. Furthermore, comparable to the use of execution
logs in connection with process mining, we must be able to deal with noise in
change logs, i.e., information which is unnecessary, irrelevant, or even wrong.
Purging change logs from such noise is an important prerequisite, for example,
for comparing (conflicting) changes, for reasoning about change effects, and for
change mining. However, providing specific views on change logs, which hide
noisy information, is useful for better user assistance as well, e.g., by providing
a homogeneous view on process changes or facilitating their reuse. In summary,
the following challenges emerge with respect to change log management:

– How shall change log information be represented in order to meet the de-
scribed requirements? Which representation form is appropriate at the user
level and which one is needed at the system level?

– How can we create purged views on change logs at the user level (e.g., to
hide ’noise’ from users)?

– How can we efficiently store and manage change log information at the sys-
tem level?

In our previous work on adaptive process management (e.g., [10,5]) we have
introduced a theoretical framework for dealing with changes at both the process
type and the process instance level. In particular we have put emphasis on formal
correctness issues arising in connection with dynamic process changes at differ-
ent levels. In this paper we tackle the above mentioned challenges and introduce
a mature approach for representing change information in adaptive PMS. This
approach is based on a set of well-defined change operations (applicable at dif-
ferent levels), on change transactions, and on change logs. Further we describe
how to create special views on change logs which purge these logs from noisy

On Representing, Purging, and Utilizing Change Logs 243

Process Type Level:

Enter
order

Examine
patient

Deliver
report

Inform
Patient

Prepare
Patient

Process Type Schema S

patData

Process Instance Level:

Lab test

I1 on S:

Instance-specific change log cLI1(S):

((sInsert(S, Lab test, Prepare Patient, Examine Patient), primary),

(sMove(S, Inform Patient, Prepare Patient, Examine Patient), primary))

Inform Patient

Lab test

I2 on S:

Instance-specific change log cLI2(S):

((sInsert(S, xRay, Inform Patient, Prepare Patient), primary),

(delAct(S, xRay), primary),

(delAct(S, Inform Patient), primary),

(sInsert(S, Inform Patient, Examine Patient, Deliver Report), primary),

(sMove(S, Inform Patient, Prepare Patient, Examine Patient), primary),

(sInsert(S, Lab Test, Examine Patient, Deliver Report), primary))

Inform Patient

completedactivated TrueSignaled

Primitive Representation of change log cLI1:
cLprim

I1(S)= (addNode(S, Lab test),
removeEdge(S, Examine patient, Deliver Report, Ctrl),
addEdge(S, Examine Patient, Lab test, Ctrl),
addEdge(S, Lab test, Deliver report, Ctrl),
removeEdge(S, Enter order, Inform patient, Ctrl),
removeEdge(S, Inform patient, Prepare Patient, Ctrl),
removeEdge(S, Prepare patient, Examine patient, Ctrl),
addEdge(S, Enter order, Prepare patient, Ctrl),
addEdge(S, Prepare Patient, Inform patient, Ctrl),
addEdge(S, Inform patient, Examine Patient, Ctrl))

Primitive Representation of change log cLI2:
cLprim

I2(S)= (addNode(S, xRay),
removeEdge(S, Inform Patient, Prepare Patient, Ctrl),
addEdge(Inform Patient, xRay, Ctrl),
addEdge(xRay, Prepare Patient, Ctrl),
removeEdge(Inform Patient, xRay, Ctrl),
removeEdge(xRay, Prepare Patient, Ctrl),
delNode(S, xRay),
addEdge(S, Inform Patient, Prepare Patient, Ctrl),
removeEdge(S, Enter Order, Inform Patient, Ctrl),
removeEdge(S, Inform Patient, Prepare Patient, Ctrl),
delNode(S, Inform Patient),
addEdge(S, Enter Order, Prepare Patient, Ctrl),
removeEdge(S, Examine Patient, Deliver Report, Ctrl),
addNode(S, Inform Patient),
addEdge(S, Examine Patient, Inform Patient, Ctrl),
addEdge(S, Inform Patient, Deliver Report, Ctrl),
removeEdge(S, Examine patient, Inform patient, Ctrl),
removeEdge(S, Inform patient, Deliver REport, Ctrl),
removeEdge(S, Prepare patient, Examine patient, Ctrl),
addEdge(S, Examine Patient, Deliver Report, Ctrl),
addEdge(S, Prepare Patient, Inform patient, Ctrl),
addEdge(S, Inform patient, Examine Patient, Ctrl))
addNode(S, Lab test),
removeEdge(S, Examine patient, Deliver Report, Ctrl),
addEdge(S, Examine Patient, Lab test, Ctrl),
addEdge(S, Lab test, Deliver report, Ctrl))

Fig. 1. Change Logs for Modified Process Instances

information (at the user level). Finally, we show how noise-free change logs can
be efficiently implemented at the system level.

Sect. 2 deals with basic issues related to change log representation. In Sect.
3 we present an approach for (logically) purging change logs from noise. Sect.
4 shows how change information can be efficiently handled at the system level.
Sect. 5 gives an illustrating example. In Sect. 6 we discuss related work and in
Sect. 7 we conclude with a summary and an outlook on future work.

2 On Representing Change Logs

We assume a graph–based meta model for defining process templates and repre-
senting changes on them. For the sake of simplicity, we restrict our considerations
to Activity Nets as, for example, used in MQSeries Workflow [11]. However, our
approach can be easily adapted to other process meta models as well.

Logically, a process change is accomplished by applying a sequence of change
primitives or operations to the respective process graph (i.e., process template).
In principle, the change information to be logged can be represented in differ-
ent ways, which more or less affect the use cases described in Sect. 1. To meet
the requirements of these use cases we must find an adequate representation for
change log information and appropriate methods for processing it. Independent
from the applied (high–level) change operations, for example, we could trans-
late the change into a set of basic change primitives (i.e., graph primitives like

244 S. Rinderle et al.

addNode or deleteEdge). This would still allow us to restore process structures,
but also result in a loss of information about change semantics. Consequently,
change traceability and conflict analyses would be limited. As an alternative we
can explicitly store the applied high–level change operations (incl. their parame-
terization). We will illustrate both approaches (see also Fig. 1) and discuss their
strengths and drawbacks.

We first define the notion of process template. For each business process to
be supported a process type T is defined. It is represented by a process template
of which different versions may exist.

Definition 1 (Process Template). A tuple S with S = (N, D, CtrlEdges,
DataEdges, EC) is called a process template, if the following holds:

– N is a set of process activities and D a set of process data elements
– CtrlEdges ⊂ N × N is a precedence relation

(notation: nsrc → ndst ≡ (nsrc, ndst) ∈ CtrlEdges)
– DataEdges ⊆ N × D × {read, write} is a set of read/write data links between

process activities and process data elements
– EC: CtrlEdges �→ Conds(D) ∪ {TRUE} where Conds(D) denotes the set of

all valid transition conditions on data elements from D.

For a process template several correctness constraints exist, e.g., (N, Ctrl-
Edges) must be an acyclic graph to ensure the absence of deadlocks (for de-
tails see [10,9]).

For definining changes on a process template two basic approaches (cf. Fig.
2) exist. One approach is to define changes by applying a sequence of basic
graph primitives (e.g., inserting or deleting nodes and edges) to the process
graph (template). Whether the resulting graph is correct (e.g., does not contain
deadlock-causing cycles) or not can be checked, for example, by analyzing the
resulting process graph. Tab. 1 summarizes selected change primitives.

Table 1. Examples for Change Primitives on Process Templates

Change Primitive Applied to S Effects on S
addNode(S,X) adds node X to template S
delNode(S,X) deletes node X from template S
addEdge(S,A,B,Ctrl) adds control edge (A, B) between activities A and B to S
removeEdge(S,A,B,Ctrl) removes edge (A, B) from S

The other possibility is to use high-level change operations each of which
combining change primitives in a certain way (cf. Fig. 2a), e.g., to insert an
activity and embed it into the process context. High-level operations comprise
more semantics and are characterized by formal pre- and post-conditions. The
latter can be used, for example, to ensure correctness when applying a set of
operations to a process template. Table 2 presents selected high-level change
operations. These operations can be applied at the process type as well as the
process instance level in order to create or modify process templates. For the

On Representing, Purging, and Utilizing Change Logs 245

Enter
order

Examine
patient

Deliver
reportInform

Patient
Prepare
Patient

b) Primary and Concommitant Changes:

patData
Change Logs

Change Transactions

High-Level Change Operations

sInsert (…), delAct(…), …

Change Primitives

addNode (…), deleteNode(…), …

a) Change Framework

Primary
Change

Concommitant
Changes

Fig. 2. (a) Overview Change Framework (b) Primary and concomitant Changes

Table 2. Examples for High-Level Change Operations on Process Templates

Change Operation opType subject paramList Effects on S
op Applied to S

Additive Change Operations
sInsert(S,X,A,B) Insert X S, A, B adds activity X between two directly

succeeding activities A and B
cInsert(S,X,A,B,c) Insert X S, A, B, sc adds activity X between two directly

succeeding activities A and B as a con-
ditional branch with transition condi-
tion c.

Subtractive Change Operations
delAct(S,X) Delete X S deletes activity X from template S and

relinks context activities
Order-Changing Operations

sMove(S,X,A,B) Move X S, A, B moves activity X from its current po-
sition to the position between directly
succeeding activities A and B

two operations serial move and serial insert Fig. 3 gives more details (incl. pre-
and post-conditions and used change primitives).

In order to express more complex changes, high-level change operations can
be combined within change transactions (cf. Fig. 2a). This might be needed,
for example, if the application of a single change operation would lead to an
incorrect process template, but this problem can be overcome by applying a set
of concomitant change operations. As example consider the scenario from Fig.
2b). Assume that activity Enter order shall be deleted. Due to the existence of
data-dependent activities either this change has to be rejected or the two data-
dependent activities have to be concomitantly removed to preserve data flow
correctness [10]. These concomitant changes must then be carried out within
the same change transaction. For change analysis it makes sense to distinguish
between such primary changes (i.e., changes which initiate the change trans-
actions) and secondary (i.e., concomitant) changes (i.e., operations preserving
process template correctness afterwards).

As mentioned, process changes may be conducted at the type as well as
the instance level. In both cases, several change transactions may be applied
during the lifecycle of the process instance or process type respectively. These

246 S. Rinderle et al.

Fig. 3. Serial Move/ Serial Insert Operation with Pre- and Post-Conditions (when
applying it to a process instance; NS: activity state)

transactions are logically grouped in the change log of the instance or type.1

In Def. 2 we formally define change transaction and change log. We base this
definition on the notion of a process template independent from whether this
template is related to a process type or process instance.

Definition 2 (Change Transaction, Change Log). Let S = (N, D, ...) be
a process template. A sequence of change transactions cL = < Δ1, ..., Δk > ap-
plied to S is denoted as process change log. Thereby each change transaction Δj :=
< (opj

1, cK
j
1), ..., (op

j
nj

, cKj
nj

) > (j = 1, ... , k) consists of a sequence of high-level
change operations opj

1, . . . , op
j
nj

where either all operations were successfully ap-
plied or none of them (atomicity). Flag cKj

k ∈ {primary, concomitant} indicates
whether opj

k is a primary change operation or a concomitant one2.

In our implementation we maintain additional attributes for change log entries
(e.g., time stamps). However this is outside the scope of this paper.

1 For the sake of readability we use single process instances or process types as granule
for a change log.

2 A change transactions Δ may also consist of exactly one change operation op. In
this case we write op instead of Δ for short and set cK to primary.

On Representing, Purging, and Utilizing Change Logs 247

Since all transactions Δj preserve correctness, the intermediate process tem-
plates Sj resulting after the application of change Δj are correct. Formally: S +
Δ1:= S1, S1 + Δ2 := S2, ... , Sk−1 + Δk := Sk are correct process templates.
In addition state-related correctness is checked when applying instance changes
[5]. However these checks are not based on change logs but on execution logs.

For several reasons it makes sense to maintain both of the aforementioned
representation forms for changes in respective logs; i.e., representation of the
change as a set of high-level operations and as a set of low-level change primitives.
On the one hand, high-level operations are user-friendly and capture more change
semantics, on the other hand low-level change primitives enable efficient conflict
checks (as we will discuss later on). Therefore, in addition to change log cL
(cf. Def. 2) we introduce cLprim which comprises the primitive represenation of
cL, i.e., in cLprim the high-level operations from cL are replaced by the change
primitives of the respective high-level operations (cf. Fig. 3). As example take
the change scenario from Fig. 1 where both representation forms are depicted.

At runtime new process instances can be created and executed based on a
process template S. Logically, each instance I is associated with an instance-
specific process template SI := S+cLI

3. S = S(T,V) denotes the original process
template from which I was derived, whereby T denotes the process type and V
the version of the process type template; cLI constitutes the instance-specific
change log which contains all changes applied to I so far.

The current execution state of I is represented by a marking (NSSI , ESSI). It
assigns to each activity n and to each control edge e its current status NS(n) or
ES(e) respectively. Further, execution history HI captures events related to the
start and completion of activities. Based on S, HI and cLI the current structure
and state of instance I can be restored at any point in time.

Definition 3 (Process Instance). A process instance I is defined by a tuple
(T, V, cLI , MSI , HI , ValSI) where

– T denotes the process type and V the version of the process template S :=
S(T,V) = (N, D, CtrlEdges, ...) instance I was derived from. We call S the
original template of I.

– Change log cLI captures the instance-specific change transactions ΔI
i (i =

1, ..., n) applied to I so far. We also denote cLI as bias of I. SI := S + cLI

(with SI = (NI , DI , . . .)) resulting from the application of cLI to S is called
instance–specific template of I.

– MSI = (NSSI , ESSI) describes node and edge markings of I:
NSSI : NI �→ {NotActivated, Activated, Running, Completed, Skipped}
ESSI : (CtrlEdgesI) �→ {NotSignaled, TrueSignaled, FalseSignaled}

– HI denotes the execution history of I which captures events related to the
start and completion of activities

– ValSI is a function on DI. It reflects for each data element d ∈ DI either
its current value or the value UNDEFINED (if d has not been written yet).

3 For unchanged instances cLI = ∅ and consequently SI = S holds.

248 S. Rinderle et al.

3 The Logical View – On Purging Change Logs

After having defined the notion of change log we now have a closer look at
the information captured by such logs. This makes sense since changes with
same effects can be expressed in different ways and therefore be represented
by different sets of change operations. As example consider Fig. 1 (left side).
Though the changes captured by cLI2 and cLI2 comprise different operations,
at the end they have resulted in equal schemes for instances I1 and I2. When
analyzing cLI2 we can observe that this change log contains operations which
do not have any effect (e.g., insertion and immediate deletion of activity xRay).
Reason for the presence of such changes can be that users either do not act in a
goal-oriented way (i.e., they ”try out” the change) or, e.g. in the medical domain,
certain possible steps (treatments) are first considered and discarded later.

For the mentioned use cases (e.g., change mining, conflict checking) logs should
only provide relevant information (about those changes which actually have had
effects). By contrast, irrelevant or noisy information make checks or the compar-
ison of changes (as necessary when propagating a process type change to biased
process instances) difficult. For traceability reasons, by contrast, the logs should
exactly reflect the change transactions as applied (independent from their actual
effects). Consequently, change log management should provide different views on
the stored information depending on the respective use case. In this paper we
consider two views, the original change log view (containing all change transac-
tions) and the purged change log which only reflects change transactions which
actually had an effect on the affected process template.

1. Let S be a process template which is transformed into template S′ by apply-
ing the operations from change log cL. The first group of changes without
any effect on S′ are compensating changes, i.e., changes mutually compen-
sating their effects. Consider the change log as depicted in Fig. 4: activ-
ity xRay is first inserted (between Inform Patient and Prepare Patient)
and afterwards deleted by the user. Therefore the associated operations
sInsert(S, xRay, Inform Patient, Prepare Patient) and delete(S,
xRay) have no visible effects on S′.

2. The second category of noise in change logs comprises changes which only
have hidden effects on S’. Such hidden changes always arise when deleting
an activity which is then re-inserted at another position. This actually has
the effect of a move operation. Consider again Fig. 4 where activity Inform
Patient is first deleted and then inserted again between Examine Patient
and Deliver Report. The effect behind this is the same as of the move oper-
ation sMove(S, Inform Patient, Examine Patient, Deliver Report).

3. There are changes overriding effects of preceding ones (note that a change
transaction is an ordered set of operations). Fig. 4 depicts a change log
where the effect of the hidden move operation sMove(S, Inform Patient,
Examine Patient, Deliver Report)) is overwritten by operation sMove
(S, Inform Patient, Prepare Patient, Examine Patient), i.e., in S′

Inform Patient is finally placed between Prepare Patient and Examine
Patient.

On Representing, Purging, and Utilizing Change Logs 249

cLI2(S)= (

Δ1 = (sInsert(S, xRay, Inform Patient, Prepare Patient), primary),

Δ2 = (delAct(S, xRay), primary),

Δ3 = (delAct(S, Inform Patient), primary),

Δ4 = (sInsert(S, Inform Patient, Examine Patient, Deliver Report), primary),

Δ5 = (sMove(S, Inform Patient, Prepare Patient, Examine Patients), primary),

Δ6 = (sInsert(S, Lab Test, Examine Patient, Deliver Report), primary))

Compensating ChangesCompensating Changes

Hidden ChangesHidden Changes

Overriding ChangesOverriding Changes

sMove(S, Inform Patient, Examine Patient, Deliver Report)

Fig. 4. Different Types of Noise within Change Log

In order to purge a change log from such noise we provide an algorithm for
detecting and removing irrelevant or noisy information from change logs. Let
cL =< Δ1, ..., Δn > be a change log whose application to template S = (N, D, ..)
has resulted in template S′ = (N ′, D′, ...). We call Nadd

cL := N’ \ N the set of all
added activities in S’ and Ndel

cL := N \ N’ the set of all deleted activities.
For the sake of readability and without loss of generality we assume that all

change transactions Δj (j = 1, ..., n) consist of exactly one (primary) change
operation opj (formally: ∀Δj : Δj =< (opj , primary) >); i.e., we abstain from
change transactions comprising multiple operations. However, the algorithm pre-
sented in the following can be applied to most complex change transactions as
well. Exceptional are only very special cases as the following example shows.
Assume that an activity is deleted (primary change) followed by the concomi-
tant deletion of data-dependent steps (e.g., deletion of Enter order as depicted
in Fig. 2b). Assume further that this activity is re-inserted afterwards, but not
all of the other deleted steps. Taking the scenario from Fig. 2b), for example,
activities Enter order and Examine might be re-inserted, but activity Deliver
report not. Though the primary changes override each other (deletion and in-
sertion of Enter order) there is a remaining effect. Consequently the associated
change transactions cannot be completely purged from the change log.

Informally the algorithm for purging change logs works as follows: First of
all, sets Nadd

cL and Ndel
cL are determined. Taking this information change log cL

can be purged. This is accomplished by scanning cL in reverse direction and by
determining whether change transaction (operation) Δj = opj (j = 1, . . . , n)
actually has any effect on S. If so we incorporate Δj = opj into another –
intially empty – change log cLpurged. Finally, in order to reduce the number
of necessary change log scans to one we use auxiliary sets to memorize which
activities, control edges, data elements and data edges have been already treated.
The following informal description focuses on the insertion, deletion, and moving
of activities in order to get the idea behind the respective algorithm. However,
the used methods can be also applied to purge logs capturing information about
insertion and deletion of, for example, data elements.

– Assume that we find a log entry Δj = opj for an operation inserting activity
X between activities src and dest into S and that X is not yet present in
A (let A be an auxiliary set for which A = ∅ holds at the beginning), i.e.,
Δj = opj is the last change operation within cL which manipulates X . If

250 S. Rinderle et al.

X has been already present in S (X �∈ Nadd
cL) a hidden change is found.

Consequently, a respective log entry for an operation moving X between src
and dest is created and written into cLpurged.

– If log entry Δj = opj denotes an operation deleting X from S, X �∈ A, and
X is still present in S′ (X �∈ Ndel

cL) we have found a compensating change.
Therefore Δj = opj (and the respective insert op.) are left outside cLpurged.

– If log entry Δj = opj denotes an operation moving X to a position between
activities src and dest and Δj = opj is the last operation within cL having
effects regarding X (X �∈ A) we have to distinguish two cases: If X has been
inserted before Δj = opj (X ∈ Nadd

cL) we write a new log entry in cLpurged

denoting an operation inserting X between src and dest. If X has been also
present in S (X �∈ Nadd

cL) we write Δj = opj unalteredly into cLpurged.

A formalization of the method described above is given in Alg. 1. Due to lack
of space we restrict this description to serial insert operations. However adopting
parallel and branch insertions runs analogously and has been considered in our
approach (see [9] for details).

Definition 4 (Purged Change Log). Let S = (N, D, . . .) be a (correct) pro-
cess template. Let further cL be a change log whose application transforms S into
another (correct) process template S’ = (N ′, S′, . . .). Let (Nadd

cL := N’ \ N and
Ndel

cL := N \ N’. Algorithm 1 determines the purged change log cLpurged.

Algorithm 1. PurgeConsolidate(S, N, N’, cL=(Δ1 =op1, . . . , Δn = opn))
−→ cLpurged

A:=∅; cLpurged = ∅;
Nadd

cL := N ′ \ N; Ndel
cL := N \ N ′;

for i = n to 1 do {
if (Δj = opj = serialInsert(S, X, src, dest)) {
if (X �∈ A) {
A := A ∪ {X}; //X not considered so far
if(X �∈ Nadd

Δ){ //X actually not inserted −→ hidden move
if (src �= c pred(S, X) ∧ dest �= c succ(S, X)4){ //X moved to another position?
cLpurged.addFirst(serialMove(S, X, src, dest))//adds entry at beginning of cLpurged;

}} else {
cLpurged.addFirst(serialInsert(S, X, src, dest));}} continue};

if (Δj = opj = serialMove(S, X, src, dest)) {
if (X �∈ A) {
A := A ∪ {X};
if (X ∈ Nadd

cL) {
cLpurged.addFirst(serialInsert(S, X, src, dest)); } else {
if (src �= c pred(S, X) ∧ dest �= c succ(S, X)) {
cLpurged.addFirst(serialMove(S, X, src, dest));}} continue;}

if (Δj = opj = delete(S, X)) {
if (X �∈ A) {
A := A ∪ {X};
if(X ∈ Ndel

cL){
cLpurged.addFirst(delete(S, X));}}}

cLpurged.addFirst(opi);
}
return cLpurged;

4 c pred(S, X) (c succ(S, X)) denotes all direct predecessors (successors) of X in S.

On Representing, Purging, and Utilizing Change Logs 251

Fig. 5. Purging the Change Log of Instance I2 (cf. Fig. 4)

Figure 5 depicts how change log cLI2 from Fig. 4 is purged resulting in purged
change log cLpurged. This view just contains those change transactions (opera-
tions) which actually have had an effect on the instance-specific template.

Altogether purging change logs in the described way results in a specific, logi-
cal view on the conducted changes. This view may, for example, be presented to
users if an overview on the actual change effects on the original process template
is required. As we will discuss in the next section, at the system level a more
efficient approach becomes necessary.

4 The Implementation View – The Delta Layer Concept

In this section we present concepts for representing changes at the system level
which have been implemented within the ADEPT prototype. Before present-
ing the delta layer concept in more detail, some background information on the
general representation of process type and process instance templates is needed.
Fig. 6a illustrates an approach which has been implemented by several adaptive
PMS [8,12]. The process logic (e.g., control and data flow) is encapsulated within
object process template which represents the process type. Instance objects rep-
resenting process instances solely contain runtime information (like activity ex-
ecution states or – logically – the content of data elements). The associated
process type is expressed by a reference to the respective process template ob-
ject. Following this approach, all instances of a given process type reference the
same template object. We chose this representation since the necessary storage
space is significantly reduced – especially for a large number of running instances
– compared to storing a process description for each instance in a redundant way.

In order to reflect the difference between template and instance objects (e.g.,
after instance changes) we introduced the delta layer concept (cf. Fig. 6b). The
delta layer is represented by an object which has the same interfaces as the
process template object and therefore offers the same operations. As difference
between the delta layer object and the template object the delta layer object

252 S. Rinderle et al.

does not reflect the whole process graph but only those parts of the process
template which have been changed by instance-specific modifications. There-
fore, together with the template object the delta layer object allows to restore
the instance-specific template of biased instances. The instance object which
represents a biased instance does no longer reference the associated template
object but the delta layer object. The delta layer object itself references the
original template object and therefore preserves the assocation between instance
and process type. Unchanged instances directly reference the original process
template object further on.

Fig. 6. On Representing Process Template and Process Instance Objects

Fig. 7 depicts how the delta layer concept is realized. As discussed in Sect.
2, at the system level, the (high-level) change operations are translated into
change primitives which directly operate on node and edge sets. We represent
change information by change log cL and its primitive representation cLprim.
The change primitives captured by cLpurged are directly stored within the delta
layer (e.g., information about added and deleted nodes and edges). For change
log cLI1, for example, the set of added nodes and edges as well as the set of
deleted edges exactly reflect the ”difference” between templates SI1 and S′

I1.
The ”self-purging” effect of storing changes within a delta layer is illustrated

by Fig. 8. Change log cLI2 contains noise, i.e., information which has to be purged
fromthe change log in order to obtain a ”minimal” viewon the change effects.Using
the delta layer this purging effect is automatically achieved since the change prim-
itives overwrite unnecessary information automatically. For compensating change
operations sInsert(S, xRay, Inform Patient, Prepare Patient) and delAct
(S, xRay), for example, first control edge (Inform Patient, Prepare Patient)
is removed and re-inserted afterwards such that this change has no effect within
the delta layer.

5 Illustrating Example

We illustrate the different concepts presented in this paper by means of an ex-
ample – a process template evolution with related instance migrations. Consider

On Representing, Purging, and Utilizing Change Logs 253

Enter
order

Examine
patient

Deliver
report

Inform
Patient

Prepare
Patient

Instance Schema SI1 of I1 (before change)

Enter
order Lab testInform

patient
Prepare
Patient

Examine
Patient

cLI1 = (sInsert(S, Lab test, Prepare Patient, Examine Patient, sc1),
sMove(S, Inform Patient, Prepare Patient, Examine Patient)):

cLprim
I1=

(addNode(S, Lab test),
removeEdge(S, Examine patient, Deliver Report, Ctrl),
addEdge(S, Examine Patient, Lab test, Ctrl),
addEdge(S, Lab test, Deliver report, Ctrl),
removeEdge(S, Enter order, Inform patient, Ctrl),
removeEdge(S, Inform patient, Prepare Patient, Ctrl),
removeEdge(S, Prepare patient, Examine patient, Ctrl),
addEdge(S, Enter order, Prepare patient, Ctrl),
addEdge(S, Prepare Patient, Inform patient, Ctrl),
addEdge(S, Inform patient, Examine Patient, Ctrl))

Lab test

Deliver
report

Instance Schema SI1‘ of I1 (after change)

…Ctrl(Examine patient, Deliver report)Examine
Patient

…Ctrl(Prepare Patient, Examine patient)Prepare Patient

Deliver report

…Ctrl(Inform Patient, Prepare Patient)Inform Patient

…Ctrl(Enter order, Inform Patient)Enter order

DataETypeEdgesNode

Copy of Internal Representation of SI1

…Ctrl(Lab test, Deliver report)Lab test

…Ctrl(Examine patient, Lab test)Examine Patient

…Ctrl(Inform Patient, Examine patient)Prepare Patient

Deliver report

…Ctrl(Prepare Patient, Inform Patient)Inform Patient

…Ctrl(Enter order, Prepare Patient)Enter order

DataETypeEdgesNode

Copy of Internal Representation of SI1‘

(Prepare Patient, Examine patient)(Prepare Patient, Inform patient)

Ctrl(Enter order, Inform Patient)Ctrl(Lab test, Deliver report)

(Inform Patient, Prepare Patient)(Enter order, Prepare patient)

(Inform patient, Examine patient)

Ctrl(Examine Patient, Deliver report)Ctrl(Examine Patient, Lab test)Lab test

TypedelEdgesType newEdgesinNodes

Delta Layer for SI1‘:

Fig. 7. Process Instance Changes Stored within Delta Layer

the scenario depicted in Fig. 8: Instances I1, I2 and I3 were derived from process
type template S and have been individually modified. For I1 and I2 activity
Lab test was inserted between Examine patient and Deliver report, and
activity Inform patient was moved to the position between Prepare patient
and Examine patient. For I3 activity Inform patient was moved to the same
position as for I1 and I2 but, by contrast, activity Deliver report was deleted.
The instance changes are captured by the logs cLI1 , cLI2 , and cLI3 where cLI2

contains noisy information. The purged view on cLI2 as well as the primitive
representations of all change logs are depicted in Fig. 8 as well.

Taking this scenario assume that the process type template S is modified by
inserting activity Lab test between activities Examine patient and Deliver
report and by moving activity Inform patient to the position between
Prepare patient and Examine patient. The associated change log cLT1 and
the delta layer for the new template version S′ capture these changes. When
migrating I1, I2, and I3 to S′ (after performing required correctness checks [5])
the delta layers of I1, I2, and I3 are purged by the delta layer of S′. This be-
comes necessary since the instance delta layers must not capture information
about changes which are already reflected by the delta layer of the new template
version after their migration. For I1 and I2, for example, all instance-specific
changes are already captured by the delta layer of S′. Thus the delta layer and
the resulting change log based on S′ become empty. For I3 the already captured
move operation of Inform patient is purged from the delta layer of I3 on S′,
but the change primitives reflecting the deletion of activity Deliver report are
still kept. With this the delta layer of I3 on S′ exactly represents the difference
between the instance-specific template of I3 and S′.

254 S. Rinderle et al.

Fig. 8. Process Template Evolution (Example)

On Representing, Purging, and Utilizing Change Logs 255

Altogether, the change log management illustrated by this example meets all
imposed requirements. The applied changes are still traceable at type and in-
stance level due to the full change logs being kept (e.g., change log for I2). The
purged view on, for example, change log cLI2 may be helpful for reusing the
change operation. At the system level, the delta layers provide the information
necessary for restoring instance-specific templates at any point in time. Fur-
thermore, they constitue the basis for checks (e.g., regarding possible overlaps
between changes) and for correctly determining the resulting delta layers and
instance-specific changes after instance migration.

6 Related Work

As discussed the management of log information plays an important role in dif-
ferent areas. Examples are recovery in DBMS or data analyses in the context
of data mining [1], online analytical processing [2], and process mining [3]. For
process mining a meta model representation for execution logs based on MXML
format has been developed [13]. In particular, for OLAP and process mining
views on logs are built as well (e.g., by clustering [1] or filtering [14]). However,
none of these approaches has dealt with change logs so far. Therefore the frame-
work for change log management presented in this paper can be used as basis for
an optimized mining of advanced aspects in adaptive PMS (e.g., change mining).

In general, adaptivity in PMS has been a hot topic in literature for many years.
Most approaches have focussed on process instance or process type changes and
related correctness issues [6,4]. Some approaches have also dealt with both kinds
of changes in one system [7,5,8]. However, the representation and organization of
the changes themselves has been left pretty vague so far. The approach presented
in this paper is complementary to this work.

There are only few approaches dealing with an efficient implementation of
advanced process management functionality, [15,7]. So far, they have neglected
issues related to change log management. The functionality of existing proto-
types are mostly restricted to buildtime and runtime simulations. Using such
simulations it can be shown that the particular functionality is realized in prin-
ciple, but not how it can be implemented in a performant way in practice. Our
ADEPT system is one of the very few available research prototypes for adaptive,
high-performance process management [12].

7 Summary and Outlook

We have presented an approach for the management of change logs in PMS
facing requirements of different uses cases. In order to meet these requirements
we have distinguished between the representation of change information at the
user and the system level (high-level operations vs. primitives). Based on this we
have defined change primitives and operations as well as change transactions. A
special view on change logs, the so called purged change logs, has been introduced
in order to present the actual change effects to users (e.g., for reuse purposes). For

256 S. Rinderle et al.

the system level, we have presented the counterpart based on change primitives
stored within a delta layer. An example on correctness checks in the context
of process template evolution and individually modified process instances has
illustrated the presented concepts.

In future we want to use our change management approach for advanced
application scenarios. One example is the mining of change logs in order to, for
example, derive process type changes from process instance logs. Furthermore,
the presented results are to be transferred to other types of change logs (e.g.,
logs capturing information on changes of organizational models [16]) as well.
Finally we intend to formalize our approach to derive change logs from delta layer
information which can be used, for example, to calculate differences between
changes. This is necessary, for example, to store correct instance-specific changes
after migration to a changed process type template.

References

1. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Academic Press
(2001)

2. Bauer, A., Günzel, H.: Data Warehouse Systems. dpunkt (2004)
3. v.d. Aalst, W., van Dongen, B., Herbst, J., Maruster, L., Schimm, G., Weijters,

A.: Workflow mining: A survey of issues and approaches. DKE 27 (2003) 237–267
4. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. DKE 24 (1998)

211–238
5. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by

adaptive workflow systems. Distributed and Parallel Databases 16 (2004) 91–116
6. v.d. Aalst, W., Basten, T.: Inheritance of workflows: An approach to tackling

problems related to change. Theoret. Comp. Science 270 (2002) 125–203
7. Kochut, K., Arnold, J., Sheth, A., Miller, J., Kraemer, E., Arpinar, B., Cardoso,

J.: IntelliGEN: A distributed workflow system for discovering protein-protein in-
teractions. DPD 13 (2003) 43–72

8. Weske, M.: Formal foundation and conceptual design of dynamic adaptations in a
workflow management system. In: HICSS-34. (2001)

9. Rinderle, S.: Schema Evolution in Process Management Systems. PhD thesis,
University of Ulm (2004)

10. Reichert, M., Dadam, P.: ADEPTflex - supporting dynamic changes of workflows
without losing control. JIIS 10 (1998) 93–129

11. Leymann, F., Altenhuber, W.: Managing business processes as an information
ressource. IBM Systems Journal 33 (1994) 326–348

12. Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive process management
with ADEPT2. In: ICDE’05. (2005) 1113–1114

13. van Dongen, B., van der Aalst, W.: A meta model for process mining data. In:
CAiSE’05 Workshops. (2005) 309–320

14. van Dongen, B., de Medeiros, A., Verbeek, H., Weijters, A., van der Aalst, W.:
The ProM framework: A new era in process mining tool support. In: ICATPN’05.
(2005) 444–454

15. Weske, M.: Object-oriented design of a flexible workflow management system. In:
ADBIS98. (1998) 119–131

16. Rinderle, S., Reichert, M.: On the controlled evolution of access rules in cooperative
information systems. In: CoopIS’05. (2005) 238–255

	Introduction
	On Representing Change Logs
	The Logical View -- On Purging Change Logs
	The Implementation View -- The Delta Layer Concept
	Illustrating Example
	Related Work
	Summary and Outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

