Evolution of Process Choreographies in
DYCHOR

Stefanie Rinderle!, Andreas Wombacher?, and Manfred Reichert?

! Dept. DBIS, University of Ulm, Germany
stefanie.rinderle@uni-ulm.de
2 Informaton Systems Group, University of Twente, The Netherlands
{a.wombacher, m.u.reichert}@ewi.utwente.nl

Abstract. Process-aware information systems have to be frequently
adapted due to business process changes. One important challenge not
adequately addressed so far concerns the evolution of process choreogra-
phies, i.e., the change of interactions between partner processes in a
cross-organizational setting. If respective modifications are applied in an
uncontrolled manner, inconsistencies or errors might occur in the sequel.
In particular, modifications of private processes performed by a single
party may affect the implementation of the private processes of partners
as well. In this paper we present the DYCHOR, (DYnamic CHOReogra-
phies) framework which allows process engineers to detect how changes
of private processes may affect related public views and - if so - how they
can be propagated to the public and private processes of partners. In par-
ticular, DYCHOR exploits the semantics of the applied changes in order
to automatically determine the adaptations necessary for the partner
processes. Altogether our framework provides an important contribution
towards the realization of adaptive, cross-organizational processes.

1 Introduction

The economic success of an enterprise more and more depends on its ability to
flexibly and quickly react on changes at the market, the development, or the
manufacturing side. For this reason companies are developing a growing interest
in improving the efficiency and quality of their internal business processes and
in optimizing their interactions with business partners and customers. Recently,
we have seen an increasing adoption of business process automation technologies
by enterprises as well as emerging standards for business process orchestration
and choreography in order to meet these goals. Respective technologies enable
the definition, execution, and monitoring of the operational processes of an en-
terprise. In connection with Web service technology, in addition, the benefits of
business process automation and optimization from within a single enterprise
can be transferred to cross-organizational business processes (process choreogra-
phies) as well. The next step within this evolution will be the emergence of the
agile enterprise being able to rapidly set up new processes and to quickly adapt
existing ones to changes in its environment.

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 273-290} 2006.
© Springer-Verlag Berlin Heidelberg 2006

274 S. Rinderle, A. Wombacher, and M. Reichert

One important challenge not adequately addressed so far concerns the evo-
lution of process choreographies, i.e., the controlled change of the interactions
between partner processes in a cross-organizational setting. If one party changes
its process in an uncontrolled manner, inconsistencies or errors regarding these
interactions might occur. Generally, the partners involved in a process chore-
ography exchange messages via their public processes, which can be considered
as special views on their private processes (i.e., the process orchestrations). If
one of these partners has to change the implementation of his private process
(e.g., to adapt it to new laws or optimized processes) the challenging question
arises whether this change affects the interactions with partner processes and
their implementation as well. Obviously, as long as a modified business process
is not part of a process choreography, change effects can be kept local. The same
applies if changes of a private process have no impact on related public views.

In general, however, we cannot always assume this. The modification of a
private process may not only influence corresponding public processes, but also
the public and private processes of its partners. For this reason, it is indispens-
able for any IT infrastructure to provide adequate methods for (automatically)
propagating changes of a private process to the partner processes (if required).
This important issue has not been considered by current approaches so far. As a
consequence adaptations of process choreographies have turned out to be both
costly and error-prone. Note that the handling of respective changes is not trivial
since we must be able to precisely state which effects on partner processes result
after adaptating a (private) process. In any case we need precise and formal
statements about this in order to avoid implementation holes later on.

In this paper we deal with these challenges and present our DYCHOR ap-
proach which allows for the controlled evolution of process choreographies. We
show how changes of a private process may affect related public views and - if so
- how they can be propagated to the public/private processes of partners as well.
To be able to precisely state whether change propagations to partner processes
become necessary we introduce a formal model based on annotated Finite State
Automata. We further exploit the semantics of the applied change operations
in order to derive necessary adaptations automatically. Due to the autonomy of
partners, however, private partner processes cannot be adapted automatically
to changes of a process choreography. DYCHOR allows for the comprehensive
assistance of users in accomplishing this task in a correct and effective manner.
In this paper we restrict our considerations to structural changes (e.g., the inser-
tion or deletion of process activities). Other adaptations of process models (e.g.,
the change of transition conditions) require a similar approach, but are outside
the scope of this paper. We do also not address dynamic changes (i.e., the mi-
gration of running choreographies to respective changes at the type level) in this
paper. Dynamic adaptations of choreographies and process instances, however,
constitute an important part of our change framework [112].

Sect. Rlintroduces an application scenario which we use throughout the paper
in order to illustrate basic concepts of our framework. In Sect. Bl we discuss
basic issues related to process choreographies and interactions between partner

Evolution of Process Choreographies in DYCHOR 275

processes. In particular, we introduce our formal model and show how it can be
used to automatically generate public processes out of private ones. This provides
the basis for dealing with process changes. Sect. [presents a classification of
changes and Sect. [{ provides methods for propagating changes on behalf of
selected scenarios. Sect. [sketches implementation issues and Sect. [0 discusses
related work. We close with a summary and an outlook in Sect.

2 Practical Scenario

Further discussions are based on a simple procurement process within a virtual
enterprise (cf. Fig.). It comprises a buyer, an accounting department, and a
logistics department. The accounting department approves an order (order mes-
sage) sent by a buyer and forwards it to the logistics department (deliver mes-
sage) to deliver requested goods. The logistics department confirms the receipt
(deliver conf message) to the accounting department, which forwards this mes-
sage (extended by the expected delivery date and the parcel tracking number) to
the buyer (delivery message). The buyer can do parcel tracking (get status and
status messages) of the shipped goods. Corresponding messages are forwarded
by the accounting department to the logistics department.

" TR

logistic accounting b
department

g
<
]

department

order I

deliver gl || ..

____ delivery
-

get_status

status
status = n

terminate

Fig. 1. Example Overview

This scenario represents a process choreography, i.e., a conversation between
partner processes. More precisely, the participating partners exchange messages
via their public processes, which constitute special views on private processes
[3]. We describe the private process of the accounting department in more de-
tail denoting it according to the BPEL specification [4]. To keep the example
simple, we abstract from the structure of the exchanged messages and use sim-
plified message names. Concrete message structures could be, for example, taken
from the RosettaNet Partner Interface Processes (PIPs) 3A4 (Request Purchase
Order), 3AT (Notify of Purchase Order Update), and 3B2 (Notify of Advanced
Shipment) [5].

Regarding Web services, for example, messages are exchanged by invoking
operations at the respective partner sites. A Web service may comprise one or
more operations (grouped within porttypes) which can be specified using WSDL.

276 S. Rinderle, A. Wombacher, and M. Reichert

Each operation then represents a potential message exchange between partners.
If an operation contains only one single input message, it is considered to be
asynchronous, otherwise the operation is synchronous. Regarding our example
all operations are asynchronous except the synchronous getStatusOP operation
provided by the logistics service.

We base the description of private processes on such porttype definitions (i.e.,
Web service specifications) by directly referring to them. In the following, pri-
vate processes are denoted in BPEL [4] and are therefore specified in terms of
tasks (named activities in the BPEL terminology) representing basic pieces of
work to be performed by potentially nested services. The control flow of a BPEL
process constrains possible execution orders of its activities and is based on con-
structs for selective (switch and pick activities), sequential (sequence activity),
and parallel (flow activity) execution. In addition, a BPEL process defines the
data flow between activities (variable handling and assign activity for mapping
data between messages) regardless of their concrete implementation. Based on
this understanding, the process model of one partner includes activities realizing
its interaction with the other partners. These interactions are represented by
exchanging messages (receive, reply, invoke, and pick activities in BPEL).

m.
deliver
deliver_conf

accounting

laccBuyer
[z accBuyer
getStatusOp I
{erminateOp (mmmp

—

logistics
logistics __deliverOpl
getStatusLOp|

——p ferminateLOp|
-~

accLogistics
Lr‘ver, confOp|

parcel tracking O accLogistis

ndlllon ==
getStatus
9

buyer
deliveryOp | puyer
statusOp

O
getStatusL

—

) symehvonous
o 5 i e *; por

Fig. 2. Accounting BPEL Private Process

The BPEL specification of the accounting department private process is de-
picted in Fig. The partnerLink definition associates a partner name to a
bilateral interaction between two roles. The association of roles to concrete par-
ties and operations is done in the partnerLinkType definition contained in the
related WSDL file. The process starts by receiving an order message sent by
the buyer, which is forwarded to the logistics department via a deliver message.

Evolution of Process Choreographies in DYCHOR 277

The logistics department answers asynchronously with a deliver conf message.
The accounting department process receives this message and forwards it to the
buyer via a delivery message. Since the buyer is allowed to do parcel tracking
arbitrarily often, this step is embedded in a non-terminating loop within the
accounting process. More precisely, the accounting department may receive a
get status message sent by the buyer, which is followed by a synchronous invo-
cation of the logistics get statusL operation (representing two messages) and the
reporting of the respective status back to the buyer (via a status message). Alter-
natively, it must be possible to terminate accounting as well as logistics process
at some point in time. For this, a termination message can be initiated by the
buyer; this message is then send to the accounting department process, which
forwards it to the logistics process. After this both processes are terminated.

As a second example consider the private process of the buyer, which is de-
picted in Fig. Bl — We omit further details and focus on the bilateral interaction
between the accounting and buyer process in the following.

buyer
accBuyer

orderOp accBuyer
getStatusOp »
terminateOp «+———

buyer

deliveryOp buyer
statusOp

Blockstructure of buyer
private process:

BPELProcess,
Sequence: buyer process

parcel tracking

— condition = *1 = 1" 8 ¥y _
= cond cond
contie™~— achinate
o
etStatus) 6

Fig. 3. Buyer BPEL Private Process

3 Process Choreographies

We discuss basic issues related to the evolution of choreographies between part-
ner processes. We show how this can be supported in a (semi-)automated way.

3.1 Overview

For several reasons business processes steadily evolve. Thus process-oriented in-
formation systems have to be continuously adapted as well. As long as the mod-
ified processes are not part of a process choreography, change effects can be kept
local. The same applies if changes of a private process have no impact on related
public processes. In general, however, we cannot always assume this. Regard-
ing process choreographies the modification of a private process may not only
influence related public processes, but also the public and private processes of
partners. As an example take an activity inserted into a private process and
invoking an external operation of a partner process (by sending a corresponding

278 S. Rinderle, A. Wombacher, and M. Reichert

message to it). If the partner process is not adapted accordingly (e.g., by insert-
ing a receive activity processing the message sent) the execution of the modified
process choreography could fail. Thus it is crucial to provide adequate methods
to (automatically) propagate changes of a private process to partner processes.

Private Public Process1 Protocol Public Process2 [private

Process1

Initiator of change

Finite Finite Finite BpgL process
State State State

Changing Producing Propgate é-‘l::r:agzx;
private BPEL — public aFSA no-» Changes to — nvategBPEL
process .from scratch* public aFSA p

process

BPEL process

yes

No
propagation
necessar

Fig. 4. DYCHOR Approach

Fig. @ depicts our DYCHOR approach for the evolution of choreographies.
Assume that private process 1 (left side) is modified and therefore is regarded as
initiator of the following choreography change (if necessary). Then, at first, the
public view on this process is recreated in order to reflect changes that might
affect the interactions with partner processes. If this results in a modification of
public process 1 (and only then) we further check whether adaptations of public
process 2 (right side of figure) become necessary as well. This is accomplished
by calculating the consistency of the two public processes, i.e., the guarantee of
a deadlock free execution of the interaction. In case of inconsistency the change
of public process 1 has to be propagated to public process ; otherwise the
execution of the process choreography will fail. DYCHOR exploits semantics of
the applied changes in order to automatically adapt public process 2 in such a
case. After having performed respective modifications the adaptation of private
process 2 also becomes necessary. However, due to the autonomy of the partners
and due to the privacy of the mission critical business decisions (represented in
the private process), an automatic adaptation of private processes is generally
not desired. Nevertheless, the system should assist process engineers in accom-
plishing this task by suggesting respective adaptations of private process 2.

3.2 Formal Model

The sketched approach (i.e., the correct propagation of private process changes)
requires a formal model for representing public processes. Different approaches
have been proposed in literature, which can be classified according to their un-
derlying communication model: The models suggested in [6] and [7], for example,

L A general correctness criterion for this is provided in Section

Evolution of Process Choreographies in DYCHOR 279

support asynchronous communication. By contrast synchronous communication
is supported by [8]. Since Web services often use synchronous communication
based on the HTTP protocol, in the following we apply the annotated Finite
State Automata model as introduced in [§].

DYCHOR uses annotated Finite State Automata (aF'SA) to represent mes-
sage sequences that can be handled by a public process. Transitions of such
an aFSA are labeled, whereas a label A#B#msg indicates that party A sends
message msg to party B (see, for example, the left aFSA in Fig. [). Further-
more, aFSAs can differentiate between mandatory and optional messages. This is
achieved by annotating states with logical expressions. In the right aFSA from
Fig. Bl for example, the depicted conjunctive annotation expresses that both
messages B#A#msgl and B#A#msg2, which may be sent by party B, have to
be supported by a trading partner. Thus the messages are mandatory. Obviously,
the aF'SAs of two interacting public processes must meet certain constraints in
order to ensure correct execution of the respective process choreography. We
formalize this and summarize basic aFSA characteristics necessary for the fur-
ther understanding. Hence, we introduce the definition of formulajé used in the
annotations, before introducing the aFSA.

Definition 1 (Definition of Formulas)

The syntax of the supported logical formulas is given as follows: (i) the constants
true and false are formulas, (i) the variables v € X are formulas, where Sigma
is a finite set of messages, (iii) if ¢ is a formula, so is —¢, (iv) if ¢ and ¢ are
formulas, so is @ N and ¢ V p. — The set of all formulas is defined as E.

Based on the set of formulas E the standard Finite State Automaton (FSA) [10]
is extended as follows:

Definition 2 (annotated Finite State Automaton (aFSA))

An annotated Finite State Automaton A is represented as a tuple A =
(@, 2,4, q0, F,QA) where Q is a finite set of states, X is a finite set of mes-
sages, A : @Q x X x Q represents labeled transitions, qo € Q is a start state,
F C Q constitutes a set of final states, and QA : Q x E is a finite relation of
states and logical terms within the set E of formulas.

The graphical representation of an annotated Finite State Automaton (aFSA) is
based on the usual representation of FSA. States are represented as circles and
transitions as arcs (annotated with labels). Final states are depicted as states
with thick line. In addition to FSA, an aF'SA can have state annotations (denoted
as squares connected to the respective states). Fig. [}l shows two aFSA examples:
Transitions are labeled whereas a label represents a message exchanged between
party A and party B.

In our DYCHOR framework, a public process (in terms of aFSA models) can
be automatically derived from the specification of a private one. In [I1], for a
subset of BPEL, we have provided respective mapping rules. Based on the given

2 The logical formulas are specified adapting the definition in [9].

280 S. Rinderle, A. Wombacher, and M. Reichert

B#A#mSsg1
AND
B#A#msg2

(B#A#msg1 AND B#A#msg2)
AND B#A#msg2

B#A#msg0 Bi#tA#msg1

B#A#mMSg0

Bi#A#msg2 B#A#msg1 B#A#msg2 B#A#msg2

party A party B intersection of A and B

Fig. 5. aFSA Representation

aFSA definition, intersection and emptiness operations can be defined (cf. [§]),
which are quite similar to the ones of standard FSA.

Definition 3 (Intersection of two aFSAs)

Let Ay = (Q1, X1, A1, quo, F1, QA1) and Az = (Q2, X2, Az, g20, F2, QA2) be two
aFSA. The intersection A := A1 N Ay of these automata is given by

A=(Q, %, A,q, F,QA), with: Q = Q1 x Q2, ¥ = X1 N Y, g0 = (q10,920), F' =
Py x By, A= {((q11,921), @ (@12, 22))|8 € {a, e}, (qu1, B, q12) € A, (g1, B, q22)
€ Az}’ and QA = U(Ql’el)eQAlx(QZ’EZ)EQAZ{((q17q2)’ er /A 62)}

In particular, the intersection of two aFSAs is based on the usual cross product
construction of automata intersection, where state annotations are combined by
conjunction. Fig. [l illustrates the intersection applied on party A and B. Note
that the resulting aFSA only contains those transitions that can be processed by
both automata. The annotation in the intersection automaton is the conjunction
of the annotation contained in party B and the default annotation of party A,
that is, B#A#msg2, resulting in (B#A#msgl A B#A#msg2) N B#A#msg2.

Based on the intersection automaton, it can be checked whether the accepted
language is empty. Emptiness means that the a set of message exchanges exists,
where all associated mandatory transitions are supported by a trading partner’s
aFSA. Again this emptiness test is based on standard automaton emptiness
test, where it is checked whether the automaton contains a single path to a final
state. Regarding aF'SAs this emptiness test has to be extended by requiring that
all transitions of a conjunction associated to a single state are available in the
automaton and a final state can be reached following each of these transitions. As
a consequence, two automata are consistent, if their intersection is non-empty;
i.e., there is at least one path from the start to a final state, where each formula
annotated to a state on this path evaluates to true. A variable becomes true,
if there is a transition labeled equally to the variable from the current state to
another state where the annotation evaluates to true. Finally the automaton is
non-empty, if the annotation of the start state is true.

For the above example the intersection automaton for parties A and B is
depicted in Fig. Bl This aF'SA is empty since it does not contain the mandatory
transition labeled B#A#msgl: The variable B#A#msg2 of the annotation
evaluates to true since there is a path to a final state. By contrast the variable
B#A#msgl is evaluated to false because there is no such transition available
at that state providing a path to a final state.

Evolution of Process Choreographies in DYCHOR 281

The non-emptiness of the intersection of two automata guarantees for the ab-
sence of deadlock with respect to the execution of these two automata. This
property can be derived due to the differentiation between mandatory and
optional messages in an automaton. Deadlock freeness is also called consis-
tency. If consistency is defined between two parties then we call it bilateral
consistency.

3.3 Public Process Generation

We assume the private process being specified with BPEL. We sketch how BPEL
"blocks” from a private process have to be mapped to states of the related public
process (represented by an aFSA). As we will see later, this mapping is useful
when changing process choreographies. In this context it is not worth applying
the mapping on the originator side of a change. However, when propagating
changes of a public process to its underlying private process the mapping can be
used to determine the blocks in the private process to be modified.

The mapping is illustrated on behalf of the buyer process. It is based on
a depth first traversal of the BPEL structure where each block represents a
part of the automaton. As a consequence of the strict nesting of a BPEL doc-
ument, the names of the blocks are associated with a particular state of the
resulting automaton model. Regarding the private and public part of the buyer
process (cf. Fig. B 4+ [a) we obtain the mapping shown in Table [l It repre-
sents the relation between the state numbers (aFSA of the public process) and
the BPEL block names (BPEL specification of private process) of the private
and the public process. Note that a single state in the public process may be
assigned to several BPEL elements since, in general, not all elements have an
effect on the public process. As a consequence, the required modifications can be
limited to the first block mentioned due to the depth first traversal of the private
process.

Table 1. Buyer Mapping Table

State Number BPEL Block Name

1 BPELProcess, Sequence:buyer process

2 Sequence:buyer process

3 Sequence:buyer process,
While:tracking, Switch:termination?,
Sequence:cond continue, Se-
quence:cond terminate

4 Sequence:cond continue

5 Sequence:cond terminate

3.4 View Generation

As a basis for bilateral consistency checking, it has to be ensured that the pro-
cesses to be compared are representing the bilateral message exchanges only.

282 S. Rinderle, A. Wombacher, and M. Reichert

AdLterminateLOp

BaAMerminateOp

Lear
B#AtorderOp ASLAGeIVErOp deliver_confOp A#BHdeliveryOp

-0

(b)

@) A#BistatusOp

Fig. 6. (a) Buyer Public Process (b)Accounting Public Process

Deriving the bilateral view of a public process is illustrated next on behalf of
the accounting process. The accounting private process (cf. Fig.[2) can be trans-
formed in a public process (cf. Fig. [b).

The view 7p(wf) of party P on the public process wf is generated by rela-
beling all transitions not related to P. E.g., in the buyer view Tgyyer (Acc) of the
accounting process, messages exchanged with Logistics are relabeled with the
empty word e. Effected messages are A#L#deliverOp, L#A#deliver confOp,
A#L#terminateLOp, A#L#qget statusOp, and L#A#qget statusOp. The mini-
mized Buyer view of the Accounting public process is shown in Fig. [fh. Applying
the same method for Logistics results in the automaton depicted in Fig. [7b.

B#At#orderOp AdtL#tdeliverOp

L#tA#

A#BideliveryOp L#A# deliver_confOp

A#B#statusO get_statusLOp
A#L#terminatel Op

Fig. 7. Accounting Public Process: (a) Buyer View (b) Logistics View

4 Process Choreography Evolution

DYCHOR classifies process changes in two dimensions: The first one (change
framework) specifies whether the change adds message sequences to an automa-
ton (additive change) or removes messages from it (subtractive change). The
second dimension (change propagation) indicates whether a process change has
effects on trading partners or not, i.e., whether the protocol the trading partners
agreed has to be modified (variant change) or not (invariant change).

4.1 Change Framework

We give a definition for the difference between two aFSAs, which is used to
characterize two basic kinds of change operations on public processes.

Definition 4 (Difference of two aFSA)
Let Ay = (Q1, 21, A1, quo, F1, QA1) and Az = (Q2, X2, Az, q20, F2, QAz) be two

Evolution of Process Choreographies in DYCHOR 283

aFSA. The difference A := Ay \ Ay of these two aFSA is given by

A= (Q, X, A, q0, F,QA1) with: Q = Q1 X Q2, ¥ = X1 N Ys, g0 = (q10,920)5
F=F x(Q\F), A={((q11,q21), @, (q12, ¢22))|B € {e, €},

(q11,8,q12) € A1, (ga1, B, g22) € Aa}

This definition requires that the automata are complete; i.e, for every state there
exists an outgoing transition for each element of the alphabet Y. In this paper
we focus on additive and subtractive changes and their application to aFSAs.
Based on such basic change operations more complex changes can be defined.
Our framework considers other operations (e.g., to shift process activities) as well
as complex changes (defined by applying a set of basic changes operations). Their
treatment, however, is outside the scope of the paper. Based on the difference
operator we can give a formal definition for additive/subtractive changes:

Definition 5 (Additive / Subtractive Change Operations)
Let A be the aFSA of a public process and let § be a change operation which
transforms A into another aFSA A’. Then:

— & is an additive change operation <= A’\ A # ()
— & is a subtractive change operation <= A\ A’ # 0

Based on this definition additive (subtractive) changes of an aFSA correspond to
the addition (deletion) of potential message sequences to (from) this aFSA. Note
that this does not relate to the structural complexity of the respective private
or public processes.

4.2 Propagation Criterion and Invariant Changes

Let A and B be the aFSAs of two public partner processes and let A N B # () be
the protocol (choreography) between them. If A is changed to A’ (by applying
change operation 6) the challenging question is whether § has to be propagated
to B or not. Intuitively, no propagation is needed if the protocols before and
after applying 6 are equivalent. Formally:
ANB=ANB<+= (A\A)NB=0A(A'\A)NB=10

This constraint, however, is too restrictive since we can also ignore options
that are completely under the control (i.e., are to be decided) by the party having
performed the change. More precisely, no propagation is needed if A’ N B # ()
(assuming that A and B have been bilaterally consistent before the change).

Definition 6 (Variant and Invariant Changes)

Let A and B be the aFSAs of two public processes which are consistent, i.e.,
AN B# 0. Let § be a change operation which transforms A into another
aFSA A’. Then:

— & is an invariant change ;<= A’ N B # {
— § is a variant change <= A’N B =)

284 S. Rinderle, A. Wombacher, and M. Reichert

The aFSA B expresses all options it considers as being mandatory for the respec-
tive public process. Thus if public process A’ has been changed in a way such
that these options are no longer met, change propagation becomes necessary.
Accordingly we can state that changes are invariant (i.e., no change propagation
is needed) if the intersection between A’ and B does not become empty. Note
that this can apply for both additive and subtractive changes.

In summary, if the changed public process A’ is still consistent with the public
process B of a partner it is considered as being invariant and no further actions
are needed. By contrast if A’ and B turn out to be inconsistent, additional actions
become necessary in order to guarantee the successful execution of the processes.
How corresponding actions look like is discussed in the following section.

5 Selected Evolution Scenarios

In the following, we provide methods for the propagation of additive changes to
partner processes. Due to lack of space we omit a discussion of further changes
here (for details on, for example, subtractive changes see [12]).

5.1 Invariant Additive Change

At first we consider invariant additive changes. For example, assume that the
accounting process wants to provide an additional order message format to buy-
ers. This change can be realized by adding an alternative activity (order 2) to
the accounting process which then receives and processes respective messages
B#A#order 20p (cf. Fig. B).

Since the added message B#A #order 20p is received by the accounting work-
flow, the buyer view on the respective public process changes (cf. Fig. Oh). How-
ever, from the viewpoint of the buyer this change does not require an immediate
treatment and propagation to its public and private process. The reason is that
the intersection automaton (cf. Fig.[@b) of the modified public view of the buyer
on the accounting process and the buyer’s current public process (cf Fig. []) is
non-empty. Thus, no change propagation is required.

Invariant subtractive changes can be handled accordingly and are therefore
not further treated in this paper. Generally, when adding received messages to
a process or removing sent messages from it we can obtain invariant changes.

5.2 Variant Additive Changes

The formal basis for variant additive changes is provided by Def. [f] and Def.
Let A and B be the aFSAs of two public processes and let A N B # 0 be the
protocol between them. Let further § be a change operation transforming A into
A’. Then: § is called variant additive change if the following constraint holds:
ANA# O AN A N B= .

According to Def. [l change propagation to B and the related private process
become necessary now. We illustrate this scenario by an example. Assume that

Evolution of Process Choreographies in DYCHOR 285

accounting

—<>—
—L’order} i —L’order
<>

accBuyer
orderOp accBuyer
order_20p 4

etStatusSOp commmly-
terminateOp =

buyer

deliveryOp buyer
statusOp

logistics
it deliverOp)|
logistics
Y getStatusLOp|
- terminatel Op)|
<+

accLogistics
leliver_confOp|

accLogistis

o
—
getStatus’ ;

Fig. 8. Invariant Change of Accounting Private BPEL Process

the accounting private process shall be extended with the option to cancel orders
(e.g., due to a product being out of stock). This change can be accomplished by
adding a respective decision node and an activity to send the cancel message to
the buyer (A#B#cancelOp) — the result is depicted in Fig. [0l

Next we derive the new version of the accounting public process and apply
the buyer view on it (cf. Fig. [Ih). Then we calculate the intersection of this
automaton with the one of the buyer public process (cf. Fig.) which results
in the automaton shown in Fig.[ITb). Note that this automaton is empty since
there exists no transition labeled A#B#cancelOp on any path to a final state.
This makes the annotation containing this message invalid and therefore results
in an empty automaton. As a consequence, the variant change of the accounting
process has to be propagated to the buyer process.

We now sketch the steps necessary for propagating addiditve changes to the
opponent’s private/public process:

1. Recalculate the opponent’s public view on the new public process of the
change originator and determine the newly inserted sequence (i.e., the mes-
sages potentially exchanged with the opponent’s public process).

2. Calculate the union of the opponent’s current public process and the newly
introduced message sequence (cf. Step [[I) The resulting aFSA provides the
basis for potential adaptations of the opponent’s public process.

3. Based on the outcome of Step 2lwe can derive those regions of the opponent’s
private process where adaptations may have to be performed.

286 S. Rinderle, A. Wombacher, and M. Reichert

terminateOp Bi#A#orderOp
AND

get_statusOp

BitAttorder_20p B#A#forderOp

Ai#BitdeliveryOp
A#BitstatusOj

Fig.9. (a) Public Buyer View on Accounting Process After Invariant Change (b) In-
tersection of a) with Buyer Public Process

4. Perform the necessary changes of the opponent’s private process.

5. Recalculate the opponent’s public process. If it is consistent with the public
process of the change originator we are finished. Otherwise, go back to the
previous step and repeat it with a modified set of changes.

We explain the different steps along our example:

ad [I) We determine the changes of the buyer view on the accounting public
process A’. Based on this we calculate potential adaptations of the buyer public
process B. More precisely we determine A” := 7yyer(A') \ B (cf. Fig. [Ik). In
general, we have to consider the difference 7pyyer (A")\ (TBuyer (A)NB). However,
since only those message sequences must be added to B which have not been
contained before, derivation of Tpyyer(A’) \ B is sufficient.

ad [2) We calculate the union of the described difference (cf. Step [) with
the original buyer public process. Based on this we can derive potential changes
of the buyer public process. — The union of two aFSAs can be created using
the complement and intersection operator in accordance to the deMorgan law:
AUB = AN B; thus, B’ := A” U B (cf. Fig. [[I4).

adB)) We apply the potential changes to the buyer public process. The regions
to be adapted in the corresponding private process can then be derived from the
states that have been modified for the buyer public process. For this we use
the mapping that was created when generating the buyer public process out of
the corresponding private one. Note that observable states can be mapped to
a particular process region and that non-present transitions provide a hint on
what is missing exactly.

In order to derive the states which have been changed when transforming
aFSA B to aFSA B’ the difference automaton is traversed parallel to the original
public process (comparable to bisimulation). In particular, the first state where
the difference automaton contains a transition which is not contained in the
original public process, indicates the state where a new transition has been
added. The missing transition indicates which message has to be additionally
considered by the private process. With regard to the Buyer public process,
this is the case for state no. 2 in the original public process as depicted in
Fig. 6l

Evolution of Process Choreographies in DYCHOR 287

accounting

accBuyer
orderOp accBuyer
getStatusOp
terminateOp femmpy- cancel

‘—
buyer ‘ logistics|
deliveryOy logistics __ defiverOp
;a;igp P buyer getStatusLOp|

terminateL Op

cancelOp — o

— -~

getStatus ; etStatusL terminatel’ terminate
accLogistics
de

leliver_confOp|
@ o accLogistis
m
<

—

Fig.10. Additive Change of Accounting Private BPEL Process

From the mapping table we can derive that the change in the Buyer pri-
vate process is related to the block specified by the sequence activity labeled
"buyer process”. The receive delivery activity contained in the sequence has
to be changed to a pick activity allowing to receive either the delivery or the
cancel message. Information to be added can be derived from the difference
automaton depicted in Fig. [[Ik). Fig. [[2 shows the resulting Buyer private pro-
cess.

ad @ and []) Finally, we perform the change of the private process accordingly
and recalculate the public process on it. After this we check whether intersection
of the changed buyer public process and the buyer view of the accounting public
process is non-empty, i.e. whether related aFSAs are bilaterally consistent.

cancelOp
AND
seliveryOp | (™)

B#A#orderOp

cancelOp
AND
deliveryOp

terminateOp
AND

AgBttcancelop_y(O)
B#A#orderOp

BitA#orderOp

B#A#orderOp Bi#tAfiterminateOp (~

(X BH#A#

. get_statusOp

AftB#statusOp

get_statusOp

AfBitdeliveryOp A#BiideliveryOp

A#tBitcancelOp

(@ (b) (© (A

Fig. 11. Accounting Process: (a) Public (Buyer) View (b) Intersection of a) with Buyer
Public View (c) Difference at Buyer View of Accounting Public Process (minimized)
(d) New Buyer Public Workflow (minimized)

288 S. Rinderle, A. Wombacher, and M. Reichert

buyer order
—
order

creditStatus + "ok” otherwise

L]
]
Tue..vew T

I

parcel tracking

condition = “1 = 1"

continue otherwise

LgelSlatus terminate
— —£>
etStatu

! !
=

Fig. 12. Buyer Process after Propagation of Additive Changes

6 Implementation Issues

We have implemented the core of the presented approach in a proof-of-concept
prototype [§]. Further, a partial mapping from BPEL (private processes) to
annotated Finite State Automata (public processes) has been realized [I1] and
been used for implementing service discovery [13]. The extension of classical
UDDI proposed in this context uses BPEL specifications of public processes and
bilateral consistency to improve the precision of service discovery results. Finally,
we have proposed a protocol to derive a potential cross-organizational process
(i.e., a potential service composition in Web Service notation) in a decentralized
way resulting in a set of services as a basis for consistency checking [14].

These building blocks can be used for setting up the concrete change frame-
work of DYCHOR. As indicated the only information which has to be exchanged
between partners is about the changes applied to public processes. The difference
calculation as well as the necessary adaptations of the own public and private
processes can be accomplished locally. Finally, decentralized consistency check-
ing can be applied to guarantee the successful introduction of the changes and
the consistency of the changed choreography.

7 Related Work

Handling of changes is known in software engineering as refactoring like e.g.
[15], where the aim is to propagate changes without altering the behavior of the
application. These approaches propagate changes on a centrally available source
base and do not know different abstractions layers comparable to choreographies
and orchestrations as discussed in this paper.

Checking consistency of a cross-organizational process can be based on the set
of potential execution sequences. A straightforward approach is to check consis-
tency on a centralized process representation, which has to be split into several

Evolution of Process Choreographies in DYCHOR 289

public processes afterwards. This principle was applied to different process de-
scription formalism in the past, like Workflow Nets (WF Nets) [3], guarded
Finite State Automata [I6], Colored Place/Transition Nets [I7], and Statecharts
[18]. However, these top-down approaches are based on centralized consistency
checking, which is different to the DYCHOR approach described in this paper.
By contrast, the bottom-up approach of constructing the cross-organizational
process out of several public processes has not been investigated in sufficient
detail so far. Respective proposals have been made, for example, in [GUI6!7].
However, they require centralized decision making and are also not construc-
tive; i.e., they only specify criteria for various notions of consistency but do not
provide an approach to adapt public processes in a way making the overall cross-
organizational process consistent. In addition, these approaches neither address
synchronous communication nor allow for decentralized consistency checking.
Issues related to dynamic workflow change have been investigated in detail
(e.g., [T9200T]). Respective approaches address ad-hoc changes of single process
instances as well as process schema evolution (i.e., controlled change of pro-
cess types and propagation of these modifications to already running process
instances [20/1]). However, these approaches focus on the adaptation of process
orchestrations, i.e., process instances controlled by a single endpoint. By con-
trast, issues related to changes of process choreographies have been neglected
so far. What can be learned from approaches dealing with dynamic changes of
process orchestrations is the idea of controlled change propagation. These ap-
proaches aim at propagating process type changes to running process instances
without causing inconsistencies or errors. Similarly, we have provided an ap-
proach for the controlled propagation of the changes of private processes within
a choreography to the choreography itself and the respective partner processes.

8 Conclusion and Future Work

In this paper we have presented the DYCHOR framework for introducing changes
to private processes, for recalculating related public views automatically, and for
propagating resulting modifications to partner processes if required. We have pro-
vided a formal model and precise criteria allowing us to automatically decide
which adaptations become necessary due to changes of private partner processes.
The treatment of different change scenarios adds to the completeness of our ap-
proach. Finally, we have implemented the basic mechanisms presented in this
paper in a proof-of-concept prototype. We will analyze how to adopt the imple-
mented approach within a real application scenario.

Another challenging issue is the treatment of running process instances (par-
ticipating in a choreography) when changing private and public process models.
In particular, for long-running choreographies, the propagation of choreography
changes to already running instances is highly desirable. In future work we will
address this issue by elaborating different strategies. These strategies range from
managing change propagation by a central coordinator to completely decentral-
ized solutions (e.g., optimistic vs. pessimistic instance migrations). The ultimate

290 S. Rinderle, A. Wombacher, and M. Reichert

challenge will be to address the problem of concurrent process choreography and
process instance changes, i.e., how to propagate process choreography changes to
process instances which have already been subject to ad-hoc changes themselves.
Meeting these challenges will be key for future service-oriented infrastructures,
ultimately resulting in highly adaptive process choreographies.

References

1. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems — a survey. DKE 50 (2004) 9-34

2. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by
adaptive workflow systems. Distributed and Parallel Databases 16 (2004) 91-116

3. Aalst, W., Weske, M.: The P2P approach to interorganizational workflows. In:
Proc. CAiSE’06, Interlaken, Switzerland (2001)

4. Andrews et al., T.: Bpeldws v 1.1 (2003)

5. RosettaNet: RosettaNet home page. http://www.rosettanet.org (2004)

6. Aalst, W.: Interorganizational workflows: An approach based on message sequence
charts and petri nets. Systems Analysis - Modelling - Simulation 34 (1999) 335-367

7. Kindler, E., Martens, A., Reisig, W.: Inter-operability of workflow applications:
Local criteria for global soundness. In: Business Process Management, Models,
Techniques, and Empirical Studies, Springer-Verlag (2000) 235-253

8. Wombacher, A., Fankhauser, P., Mahleko, B., Neuhold:, E.: Matchmaking for
business processes based on choreographies. IJWS 1 (2004) 14-32

9. Chomicki, J., Saake, G., eds.: Logics for Database and Information Systems. Kluwer
(1998)

10. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation. Addison Wesley (2001)

11. Wombacher, A., Fankhauser, P., Neuhold, E.: Transforming BPEL into annotated
deterministic finite state automata enabling process annotated service discovery.
In: Proc. of Intl. Conf. on Web Services (ICWS). (2004) 316-323

12. Rinderle, S., Wombacher, A., Reichert, M.: On the controlled evolution of process
choreographies. Technical Report TR-CTIT-05-47, University of Twente (2005)

13. Wombacher, A., Mahleko, B., Neuhold, E.: TPSI-PF: A business process match-
making engine. In: Proc. of Conf. on Electronic Commerce (CEC). (2004) 137-145

14. Wombacher, A.: Decentralized decision making protocol for service composition.
In: Proc IEEE Int Conf on Web Services (ICWS). (2005) (accepted for publication).

15. Mens, T., Tourwe, T.: A survey of software refactoring. IEEE Transactions on
Software Engineering 30 (2004) 126-139

16. Fu, X., Bultan, T., Su, J.: Realizability of conversation protocols with message
contents. In: Proc. IEEE Intl. Conf. on Web Services (ICWS). (2004) 96-103

17. Yi, X., Kochut, K.J.: Process composition of web services with complex conversa-
tion protocols. In: Proc. Conf. on Design, Analysis, and Simulation of Distributed
Systems Symposium at Adavanced Simulation Technology. (2004) 141-148

18. Wodtke, D., Weikum, G.: A formal foundation for distributed workflow execution
based on state charts. In: Proc. ICDT’06. (1997) 230-246

19. v.d. Aalst, W., Basten, T.: Inheritance of workflows: An approach to tackling
problems related to change. Theoret. Comp. Science 270 (2002) 125-203

20. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. DKE 24 (1998)
211238

	Introduction
	Practical Scenario
	Process Choreographies
	Overview
	Formal Model
	Public Process Generation
	View Generation

	Process Choreography Evolution
	Change Framework
	Propagation Criterion and Invariant Changes

	Selected Evolution Scenarios
	Invariant Additive Change
	Variant Additive Changes

	Implementation Issues
	Related Work
	Conclusion and Future Work

