
Improving Exception Handling by
Discovering Change Dependencies in

Adaptive Process Management Systems

Barbara Weber1,�, Werner Wild2, Markus Lauer3, and Manfred Reichert4

1 Quality Engineering Research Group, University of Innsbruck, Austria
Barbara.Weber@uibk.ac.at

2 Evolution Consulting, Innsbruck, Austria
werner.wild@evolution.at

3 Dept. Databases and Information Systems, University of Ulm, Germany
markus.lauer@uni-ulm.de

4 Information Systems Group, University of Twente, The Netherlands
m.u.reichert@utwente.nl

Abstract. Process-aware information systems should enable the flexi-
ble alignment of business processes to new requirements by supporting
deviations from the predefined process model at runtime. To facilitate
such dynamic process changes we have adopted techniques from case-
based reasoning (CBR). In particular, our existing approach allows to
capture the semantics of ad-hoc changes, to support their memorization,
and to enable their reuse in upcoming exceptional situations. To further
improve change reuse this paper presents an approach for discovering
dependencies between ad-hoc modifications from change history. Based
on this information better user assistance can be provided when dynamic
process changes have to be made.

1 Introduction

Due to frequent changes in its business environment an enterprise must be able
to flexibly and continuously align its information systems (IS) and its business
processes. Enterprise IS therefore must provide for flexible process support while
still enforcing some degree of control [1]. In particular, there is an essential
requirement for maintaining a close ”fit” between real-world business processes
and the workflows as supported by the IS, their current generation is known as
Process-Aware Information Systems (PAIS) [2].

Recently, significant efforts have been undertaken to make PAIS more flexible
and several approaches for adaptive process management have emerged [1,3,4].
The underlying idea is to enable (dynamic) changes of different process aspects
(e.g., control flow, organizational, functional, and informational perspectives)
and at different process levels (e.g., instance and type level). In particular, au-
thorized users must be able to deviate from the pre-defined process model as
needed, i.e., ad-hoc changes (e.g., to add or shift activities) of individual process
� Part of this research was funded by a grant from the Tiroler Wissenschaftsfond.

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 93–104, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

94 B. Weber et al.

instances must be possible at runtime to deal with exceptional or changing sit-
uations. For example, during a medical treatment process the patient’s current
medication may have to be changed due to an allergic reaction, i.e., the process
instance representing this treatment procedure must be dynamically adapted.

To facilitate exception handling we have adopted techniques from case-based
resoning (CBR) [5,6,7]. This allows us to capture contextual knowledge about
ad-hoc changes and to assist actors in reusing it. For this we apply an interactive
variant of CBR (i.e., conversational CBR [8]), describe ad-hoc changes as cases
and memorize them in a case base CB. In its simplest form a case covers a
single change operation (e.g., insertion of a process activity). However, cases may
contain several (semantically) related change operations as well. For example, in
a medical treatment process a magnet resonance tomography (MRT) may have
to be skipped for a patient with cardiac pacemaker, instead, another imaging
procedure (e.g., computer tomography) might have to be applied. Our objective
is to support reuse of such complex changes in similar situations to enable actors
to operate at a higher semantical level and to relieve them from specifying the
change from scratch each time.

Since ad-hoc changes are often applied in exceptional situations, we cannot
expect that semantically related adaptations are always conducted at the same
time, i.e., they are not always added as a single case to the PAIS. This happens
when end users are rather inexperienced and do not think through all conse-
quences, when changes to the same instance are performed by different actors
or when these dependencies are not known when adding a case. Over time, the
PAIS may end up with several inter-related cases which are frequently applied in
combination with each other. By discovering such inter-case dependencies and
by considering this knowledge in the context of change reuse we provide for bet-
ter user assistance. When reusing a certain case the PAIS can suggest users to
apply dependent cases as well. To further improve this approach, cases which
always co-occur shall be merged and the CB should be refactored accordingly.

Section 2 summarizes background information needed for the understanding of
our approach. In Section 3 we introduce the notion of co-occuring cases. Based on
this, in Section 4 we sketch how actors can be assisted in reusing inter-dependent
changes and in refactoring a CB by merging cases. Section 5 discusses related
work and Section 6 concludes with a summary and outlook.

2 Supporting Change Reuse Through CBR

This section covers backgrounds needed for the understanding of this paper.
First, we introduce basic notions related to process management. Second, we
discuss how CBR is used in our approach for capturing the semantics of ad-hoc
changes, for memorizing these changes, and for reusing them in similar situations.

2.1 Basic Notions

For each supported business process a corresponding process type T exists. It
can be related with one or more process schemes representing different versions

Improving Exception Handling by Discovering Change Dependencies 95

of the process. Each process schema S is described in a graph-like fashion, and
comprises a set of activities and control connectors between them. Based on a
schema S new process instances can be created and executed accordingly. For
example, in instance I1 in Fig. 1 activities A and C are completed whereas activity
B is activated (i.e., its work items are offered to users in their worklists).

completed

activated

Process Type Level

A

C

B
AND-Split

AND-Join

OR-Split

OR-Join

Process Instance I1
(unbiased):

Process Instance Level

A

C

B

d=‘yes’

d=‘no’

Process Schema S: Process Schema S‘:

Process Instance I2
(biased):

completed

activated

Process Instance I3
(biased):

Process Type
Change

Fig. 1. Process Type and Process Instance

To deal with exceptional situations at the instance level, users must deviate
from the pre-modeled schema (e.g., by deleting activities) [1,5,9]. Ad-hoc changes
are instance-specific and do not affect the execution schema of any other running
process instances. In Fig. 1, instance I2 has undergone an individual modification
(i.e., the dynamic deletion of activity B). Thus the execution schema of I2 devi-
ates from its original process schema S. Individually modified process instances
are called biased, unchanged ones are denoted as unbiased.

2.2 Capturing Semantics of Ad-Hoc Changes with CBR

Our approach uses case-based reasoning (CBR) techniques to capture the se-
mantics of an ad-hoc change, to memorize it and to support its reuse in similar
situations (for details see [6,7]). Case-based reasoning (CBR) is a contemporary
approach to problem solving and learning [10]. New problems are dealt with by
drawing on past experiences – described in cases and stored in case bases – and
by adapting their solutions to the new problem situation. For representing a
concrete ad-hoc change we use the concept of a case, which captures the context
of, and the reasons for the respective deviation (cf. Fig. 2). More precisely, a case
contains a textual problem description pd which briefly summarizes the excep-
tional situation that led to the ad-hoc deviation. The reasons for the change are
described in question-answer (QA) pairs {q1a1, . . . , qnan} each of which denotes
one particular condition (for details see below). The solution part sol (i.e., the
action list) of a case contains the concrete change operations applied.

96 B. Weber et al.

The ad-hoc changes covered by a particular case c can be reused, i.e., they can
be re-applied to other instances. QA pairs are used to retrieve cases handling
similar problems. If an adequate case is found its solution part can be applied
to the given process instance. All instances to which case c has been applied to
are kept in its instance set instanceSetc. If no similar cases can be found the
user adds a new case with the respective change information to the system.

Definition 1 (Case). A case c is a tuple (pdc, qaSetc, solc, instanceSetc)
where

– pdc is a textual problem description
– qaSetc = {q1a1, . . . , qnan} denotes a set of question-answer pairs
– solc = { opj | opj = (opTypej, sj , paramListj), j = 1, ..., k} is the solution

part of the case denoting a list of change operations (i.e., the changes that
have been applied to one or more process instances) 1

– instanceSetc is the set of process instances to which case c has been applied

The question of a QA pair is usually entered as free text, however, to reduce
duplicates it can alternatively be selected from a list of already existing questions.
The answer can either be free text or a structured answer expression (cf. Fig 2
(a)). Answer expressions allow us to use contextual knowledge already kept in
the PAIS (e.g., due to legal requirements), thus avoiding redundant data entry.
Questions with answer expressions can be evaluated automatically by retrieving
values for their context attributes from existing data in the system (e.g., the
medical problems of a patient as stored in his electronic patient record), i.e.,
they do not have to be answered by users, thus preventing errors and saving
time. Free text answers are used when no suitable context attributes are defined
within the system or the user is not trained to write answer expressions. For
example, the second QA pair in Fig. 2 (a) contains an answer expression using
the context attribute Patient.age. It can therefore be evaluated automatically.
By contrast, the answer in the first QA pair is free text provided by the user.

To be able to reason about the changes applied to a particular process instance
I we introduce caseListI as the list of all cases which have been applied to I,
in their application order. If an instance I is biased its caseListI is not empty.
All cases applied to process instances created from schema version S are stored
in a case base CBS associated with S.

Definition 2 (Case Base). A case base CBS is a tuple (S, {c1, . . . , cm}) where

– S denotes the schema version to which the case base is related
– {c1, . . . , cm} denotes a set of cases (cf. Def. 1)

When deviations from the pre-defined process schema become necessary the user
initiates a case retrieval dialogue (cf. Fig 2 (b)). The system then assists her in
finding already stored similar cases (i.e., change scenarios in our context) by pre-
senting a set of questions to be answered in any number and any order. Questions
1 An operation opj := (opTypej, sj , paramListj) (j = 1, ..., k) consists of operation

type opTypej , subject sj of the change, and parameter list paramListj .

Improving Exception Handling by Discovering Change Dependencies 97

Additional lab test requiredTitle

Description An additonal lab test has to be performed as

the patient has diabetes and is older than 40

Question-Answer Pairs

Question Answer

Patient has diabetes? Yes

Is the patient’s age greater than 40? Patient.age > 40

Actions

Insert LabTest

Operation Type Subject Parameters

Select Operation Type Insert

Select Activity/Edge Lab Test

Please Answer the Questions

Question Answer

Patient has diabetes? Yes

Is the patient’s age greater than 40? Yes

Lab Test required

Title

125

Case ID

100%

Similarity

25

Reputation Score

Display List of Cases

Into S Between Preparation and Examination

(a) (b)

Fig. 2. CCBR Dialogs - Adding a New Case (a) and Retrieving Similar Cases (b)

with an answer expression are automatically evaluated by retrieving the values of
the respective context attributes from the PAIS without user intervention. Based
on this the system then searches for similar cases by calculating the similarity
for each case in the case base CBS . Similarity is calculated by dividing the num-
ber of correctly answered questions minus the number of incorrectly answered
questions by the total number of questions in the case. It then displays the top
n ranked cases (ordered by decreasing similarity) as well as related information
(e.g., reputation scores). The user then has several options:

1. The user can directly answer any of the remaining unanswered questions (in
arbitrary order), similarity is then recalculated and the n most similar cases
are displayed to the user.

2. The user can apply a filter to the case base (e.g., by only considering cases
whose solution part contains a particular change operation). All cases not
matching the filter criteria are removed from the displayed list of cases.

3. The user can decide to review displayed cases in detail.
4. The user can select one of the displayed cases for reuse. The actions specified

in the case’s solution part are then forwarded to and executed by the PAIS.
The instance set of the selected case is adjusted accordingly.

3 Inter-case Dependencies

This section first gives a typical example for inter-case dependencies and then
introduces the formal notation to be used in this paper.

3.1 Motivating Example

Fig. 3 shows the cruciate rupture treatment process for a particular patient.
This treatment process had to be modified due to an unanticipated situation.
To confirm the suspicion of a cruciate rupture usually an x-ray as well as a
magnet resonance tomography (MRT) are performed. However, as this patient
has a cardiac pacemaker the radiologist decided to skip the MRT. To still get a

98 B. Weber et al.

reliable diagnosis, the attending physician ordered a computer tomography (CT)
instead. Though these two changes are related to each other they were added
to the system by different actors at different times. Case c1 was added by the
radiologist and resulted in the deletion of the MRT activity. Some time later the
attending physician added case c17 to insert the CT activity.

Ad-hoc Changed
Process Instance I:

…

Patient
Admission

Anamnesis &
Clinical
Examination

Suspicion of Cruciate
Rupture =“Yes”

Suspicion of Cruciate
Rupture =“No”

X-Ray

MRT

CT

Non Operative
Therapy

…

Problem

MRT cannot be performed

Question-Answer Pairs

Solution

Delete MRT

Cardiac Pacemaker Yes?

Problem

Additionl CT required

Question-Answer Pairs

Solution

Insert CT

Cardiac Pacemaker Yes?

C1

C17

Fig. 3. Application Example

Cases applied to the same instance may be independent of, or dependent on
each other. In our example the deletion of the MRT activity caused the insertion of
the CT activity, i.e., the additional CT compensates the missing MRT. When such
inter-case dependencies exist, the reuse of a particular case might necessitate
further changes. In our example, reusing case c1 may require the application of
case c17 as well since an alternative imaging procedure is needed. Discovering
such inter-case dependencies is crucial to better assist users when they need to
make complex changes to the system.

3.2 Co-occuring Cases

Let CBS be a case base and let c1 and c2 be two cases in CBS . A metrics about
inter-case dependencies is the conditional co-occurence rate CoRate(c2|c1). For
a set of process instances this metrics denotes the relative frequency of the
application of case c2 on condition that case c1 has been applied too.

Definition 3 (Conditional Co-Occurrence Rate). Let S be a process
schema with case base CBS and let c1, c2 ∈ CBS be two cases. The condi-
tional co-occurence rate CoRate(c2|c1) denotes the relative frequency of case c2
on condition that case c1 has already been applied. Formally:

CoRate(c2|c1) = |instanceSetc2 ∩ instanceSetc1 |
|instanceSetc1 |

When a user wants to reuse a case c ∈ CBS we present her all other cases
ck ∈ CBS with CoRate(ck|c) exceeding threshold thres ≤ 1. Section 4 describes
how we assist actors in reusing inter-dependent changes. In this context cases
with strong co-occurence are of particular interest.

Improving Exception Handling by Discovering Change Dependencies 99

Definition 4 (Strong Co-Occurence of Cases). Let S be a process schema
with case base CBS. Let further c1, c2 ∈ CBS. Then:

1. If CoRate(c2|c1) = 1 holds we denote case c2 as strongly co-occurrent with
case c1 (i.e., c2 must only have been applied when c1 has been applied too).

2. If CoRate(c2|c1) = CoRate(c1|c2) = 1 holds we denote cases c2 and c1 as
being strongly co-occurent with each other (i.e., c2 always occurs when c1 has
been applied and vice versa).

If c2 is strongly co-occurrent with c1 (cf. Def. 4.1), obviously, instanceSetc1

⊆ instanceSetc2 must hold. Consequently, we obtain CoRate(c2|c1) = 1 and
CoRate(c1|c2) = |instanceSetc1 |

|instanceSetc2 | . As a special scenario consider two cases c1 and
c2 which are strongly co-occurent with each other (cf. Def. 4.2). Trivially, we
then obtain |instanceSetc1| = |instanceSetc2|. If cases c1 and c2 are strongly
co-occurent with each other and the total number of co-occurrences exceeds
threshold minOccur ∈ N, the process engineer is notified about the option to
merge these inter-dependent cases (cf. Section 4.2).

4 Discovering and Utilizing Knowledge About Inter-case
Dependencies

To discover co-occurent changes we analyze a process schema’s CB. We utilize
the obtained knowledge to assist actors in reusing complex changes (cf. Section
4.1) and to support process engineers in refactoring CBs (cf. Section 4.2).

4.1 Assisting Actors in Reusing Dependent Cases

When a case c ∈ CBS is reused (i.e., c is applied to a process instance I) the
system displays all cases cse ∈ CBS for optional reuse2 which co-occur with c and
for which the co-occurence rate CoRate(cse|c) exceeds a given threshold. This is
accomplished by Algorithm 1. First, Algorithm 1 adds case c to the list of cases
(caseListI) which have already been applied to instance I (line 3). For each case
cse (except for already applied cases to instance I), Algorithm 1 then determines
the conditional co-occurence rate CoRate(cse|c). This is done by determining
the total number of co-occurences between cse and c over all instances of process
schema S and by dividing it by the total number of occurences for case c (line 6).
Finally, only those cases ck are displayed (for potential reuse) whose co-occurence
rate CoRate(cse|c) exceeds the given threshold thres.

For example, consider the scenario depicted in Fig. 4. Assume that the changes
represented by case c5 shall be applied to process instance I132. According to Al-
gorithm 1 the system adds case c5 to CaseListI132 and then determines the con-
ditional co-occurence rate CoRate(cse|c5) for each case cse ∈ CBs\CaseListI132
(i.e., {c3, c19}) related to any instance from InstanceSetc5 = {I44, I143, I147}. We

2 Cases which have already been applied to process instance I are not shown.

100 B. Weber et al.

Algorithm 1. Display CoOccurent Cases
1: Input: Case c; ProcessInstance I ; float thres;
2:
3: add case c to CaseListI ;
4: Integer TotalOccurenceOfC := |InstanceSetc|;
5: for all cse ∈ CBS \ CaseListI do
6: CoOccurenceRatecse := |instanceSetc ∩ instanceSetcse|

TotalOccurenceOfC
;

7: if CoOccurenceRatecse ≥ thres then
8: DISPLAY(cse)
9: end if

10: end for

..

2006-01-17 09:15: case c1 applied to process instance I1

2006-01-17 10:25: case c17 applied to process instance I1

2006-01-17 14:00: case c3 applied to process instance I8

2006-01-17 18:21: case c3 applied to process instance I11

2006-01-18 12:27: case c1 applied to process instance I27

2006-01-18 12:31: case c19 applied to process instance I29

2006-01-18 13:01: case c17 applied to process instance I27

2006-01-18 16:12: case c3 applied to process instance I44

2006-01-18 17:57: case c5 applied to process instance I44

2006-01-19 17:55: case c1 applied to process instance I132

2006-01-21 06:01: case c5 applied to process instance I143

2006-01-21 07:35: case c3 applied to process instance I147

2006-01-22 15:34: case c3 applied to process instance I209

2006-01-22 18:01: case c5 applied to process instance I147

..

I29c19

I1, I132c17

I44, I143, I147c5

I8, I11, I44, I147, I209c3

I1, I27, I132c1

InstanceSetCCase c

c5I143

c3, c5I44

c3I209

c3, c5I147

c1, c17I132

c19I29

c1I27

c3I11

c3I8

c1 ,c17I1

CaseListIInstance I

Fig. 4. Log File

obtain CoRate(c3|c5) = 2
3 and CoRate(c19|c5) = 0

3 . For example, if we have cho-
sen thres = 0.6 case c3 will be displayed to the users (for optional reuse) when
applying c5 to instance I132.

When reusing a case a wizard opens and all dependent cases are displayed to
the user (cf. Fig. 5). For each dependent case its identifier, title and co-occurrance
rate are shown. The co-occurance rate reflects the confidence of the system that
the dependent case should be applied too in this particular situation. The user
can then optionally reuse any of the displayed cases.

At first glance the described approach seems to be easy to implement. How-
ever, when reusing a case and applying its changes it must be guaranteed that
the respective process instance still meets certain correctness and consistency
constraints. In particular, the pre-conditions for applying the change operations
captured by a case must be met when reusing it. As an illustrative example
consider the medical treatment process depicted in Fig. 6. Assume that the re-
spective patient complains about pains in his knee. The attending physician
therefore orders an additional examination. This change is represented by case
c22 which captures the insertion of activity Follow-up examination between ac-
tivities Non Operative Therapy and Documentation and Discharge. Assume
further that during the follow-up examination it is found that the patient suf-
fers from a contusion and the physician therefore decides that a puncture has

Improving Exception Handling by Discovering Change Dependencies 101

Fig. 5. Presenting Dependent Cases to the User

to be performed as well. This change is captured by case c35 (subsequent in-
sertion of activity Puncture between activities Follow-up examination and
Documentation and Discharge). Note that the definition of the latter change
depends on the presence of activity Follow-up examination which was intro-
duced by case c22. Such dependencies, in turn, could result in parameterization
problems or inconcistencies when a user solely wants to reuse case c35. Generally,
the change framework we use allows us to efficiently detect such undesired situ-
ations [11]. In our example, a user who wants to reuse case c35 has two options.
Either she can apply case c22 as well or she may adapt the case by modifying
the parameterization of the respective change (e.g., by replacing the position
parameter Follow-up examination with Non Operative Therapy).

Ad-hoc Changed
Process Instance I:

…

Patient
Admission

Anamnesis &
Clinical
Examination

Suspicion of Cruciate
Rupture =“Yes”

Suspicion of Cruciate
Rupture =“No”

X-Ray

MRT

CT

Non Operative
Therapy

Follow-up
examination

Puncture

Discharge and
Documentation

C22: (…{Insert Follow-up
Examination in schema S between
„Non Operative Therapy“ and
„Discharge and Documentation“})

C35: (…{Insert Puncture in schema
S between „Follow-up
Examination“ and „Discharge and
Documentation“})

Fig. 6. System Supported Conflict Resolution

102 B. Weber et al.

4.2 Refactoring Case Bases by Merging Cases

In order to increase problem solving efficiency we can compress the case base
by merging strongly co-occurent cases. For this scenario, consider the reuse of
a case c and its application to a particular process instance. Whenever such
an event occurs, it triggers an analysis of the case base. More precisely, it is
checked whether the reused case is strongly co-occurent with other cases. If so,
the knowledge engineer is notified accordingly and may then decide to merge
respective cases. Note that in this scenario we can restrict the analysis (i.e.,
the comparison of case c with other cases) to those cases belonging to the case
list caseListI, as only cases within that list can be strongly co-occurent with
case c. Algorithm 2 is applied to detect cases which strongly co-occur with each
other (cf. Def. 4). For the sake of readability we treat this algorithm separately
from Algorithm 1, however, for a practical implementation they can easily be
merged.

Algorithm 2. Notify About Strongly CoOccurent Cases
1: Input: Case c; ProcessInstance I ; int minOccur;
2:
3: Add I to instanceSetc;
4: for all cse ∈ CaseListI do
5: if instanceSetcse = instanceSetc then
6: if |instanceSetc| ≥ minOccur then
7: NOTIFY(c, cse)
8: end if
9: end if

10: end for

Again consider the example from from Fig. 4. Assume that case c17 is applied
to instance I27. Instance I27 is then added to the instance set of case c17. Further,
Algorithm 2 (with, e.g., minOccur = 3) identifies case c1 as being strongly
co-occurent with case c17. Consequently, the process engineer is notified that
c1 and c17 are strongly co-occurent which each other and thus could merge
these two cases. In this situation a new case c′ can be created in CBS and the
original cases are deactivated3, i.e., a refactoring of the case base takes place. The
problem descriptions and QA pairs related to the two cases have to be manually
merged by the process engineer; the corresponding solution parts, in turn, can
be automatically merged by unifying the change operations of the original cases
in the correct order. Different optimizations for purging the resulting operation
sets can be applied in this context. However, this is beyond the scope of this
paper. In addition, the schema-specific case base CBS can be regularly searched
for any strongly co-occurent cases by applying Algorithm 3.

3 For traceability reasons respective cases are not deleted, but only deactivated.

Improving Exception Handling by Discovering Change Dependencies 103

Algorithm 3. Scan For Strongly CoOccurent Cases
1: Input: Case Base CBS; int minOccur;
2:
3: CB = CBS

4: while CB �= ∅ do
5: take arbitrary case cse from CB
6: CB = CB \ {cse}
7: for all case ∈ CB do
8: if instanceSetcase = instanceSetcse then
9: if |instanceSetcase| ≥ minOccur then

10: NOTIFY(case, cse)
11: end if
12: end if
13: end for
14: end while

5 Related Work

Similar to our approach process mining aims at extracting process knowledge
from log data. So far, focus of mining techniques has been on the extraction of
process models from execution logs [12,13,14]. For example, the alpha algorithm
can be used to construct a Petri net model describing the behavior observed in
the log. Similarly, the Multi-Phase Mining approach can be used to construct
event-driven process chains from logs. Recent approaches also use event-based
data for mining model perspectives other than control flow (e.g., process perfor-
mance [15]). Mature tools like the ProM framework allow constructing different
types of models from real process executions. However, process mining research
has not yet addressed applying minig techniques to change logs.

The necessity to support the user in exceptional situations has been addressed
by adaptive process management technology [1,9,16]. ADEPT [1], for instance,
supports the user in defining (syntactically) correct process changes during run-
time. For example, when an activity is deleted at the process instance level, the
system might suggest the deletion of data dependent activities as well. However,
ADEPT does not consider semantical dependencies between changes yet.

Complementary to this paper [17] covers quality aspects relevant when ap-
plying CBR for the memorization and the reuse of ad-hoc modifications and the
deriviation of process type changes. While [17] broadly deals with quality issues
and aims at increasing the performance of the CBR system by increasing prob-
lem solving efficiency, CB competence and solution quality, this paper addresses
how user assistance can be improved through mining inter-case dependencies.

6 Summary and Outlook

We have proposed an approach to improve exception handling in adaptive pro-
cess management systems through discovering and utilizing knowledge about

104 B. Weber et al.

dependencies between ad-hoc modifications. Actors are assisted in reusing pre-
viously applied ad-hoc changes by presenting related modifications to them as
well. In addition, knowledge about inter-case dependencies is used to improve the
quality of the CB (i.e., the collection of retrievable and reusable ad-hoc changes)
and to increase problem solving efficiency. Ongoing work includes the evaluation
of our prototype in a real world scenario. Future work will investigate how the
reuse of ad-hoc modifications can be further improved. For example, a particular
case representing an ad-hoc modification might not directly be applicable, but
may require some adaptation (e.g., the parameterization of change operations
may have to be adapted). Finally, we aim to use more of the semantics captured
in our approach, e.g., to be able to reason about ”similarity” of changes.

References

1. Reichert, M., Dadam, P.: ADEPTflex – supporting dynamic changes of workflows
without losing control. JIIS 10 (1998) 93–129

2. Dumas, M., ter Hofstede, A., van der Aalst, W., eds. In: Process Aware Information
Systems. Wiley Publishing (2005)

3. Jørgensen, H.D.: Interactive Process Models. PhD thesis, Norwegian University of
Science and Technology, Trondheim, Norway (2004)

4. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems – a survey. Data and Knowledge Engineering 50 (2004) 9–34

5. Weber, B., Wild, W., Breu, R.: CBRFlow: Enabling adaptive workflow manage-
ment through conversational case-based reasoning. In: ECCBR’04, Madrid (2004)
434–448

6. Weber, B., Rinderle, S., Wild, W., Reichert, M.: CCBR–driven business process
evolution. In: ICCBR’05, Chicago (2005) 610–624

7. Rinderle, S., Weber, B., Reichert, M., Wild, W.: Integrating process learning and
process evolution - a semantics based approach. In: BPM 2005. (2005) 252–267

8. Aha, D.W., Muñoz-Avila, H.: Introduction: Interactive case-based reasoning. Ap-
plied Intelligence 14 (2001) 7–8

9. Luo, Z., Sheth, A., Kochut, K., Miller, J.: Exception handling in workflow systems.
Applied Intelligence 13 (2000) 125–147

10. Kolodner, J.L.: Case-Based Reasoning. Morgan Kaufmann (1993)
11. Rinderle, S.: Schema Evolution in Process Management Systems. PhD thesis,

University of Ulm (2004)
12. v.d. Aalst, W., van Dongen, B., Herbst, J., Maruster, L., Schimm, G., Weijters,

A.: Workflow mining: A survey of issues and approaches. Data and Knowledge
Engineering 27 (2003) 237–267

13. Golani, M., Pinter, S.S.: Generating a process model from a process audit log. In:
Proc. BPM’03, Eindhoven (2003) 136–151

14. van Dongen, B., van der Aalst, W.: Multi-phase process mining: Building instance
graphs. In: Conceptual Modeling - ER 2004. LNCS 3288, Berlin (2004) 362–376

15. van der Aalst, W., Song, M.: Mining social networks. uncovering interaction pat-
terns in business processes. In: Proc. BPM’04, Potsdam, Germany (2004) 244–260

16. Weske, M.: Workflow management systems: Formal foundation, conceptual design,
implementation aspects. University of Münster, Germany (2000) Habil Thesis.

17. Weber, B., Reichert, M., Wild, W.: Case-base maintenance for ccbr-based process
evolution. In: ECCBR’06. (2006)

	Introduction
	Supporting Change Reuse Through CBR
	Basic Notions
	Capturing Semantics of Ad-Hoc Changes with CBR

	Inter-case Dependencies
	Motivating Example
	Co-occuring Cases

	Discovering and Utilizing Knowledge About Inter-case Dependencies
	Assisting Actors in Reusing Dependent Cases
	Refactoring Case Bases by Merging Cases

	Related Work
	Summary and Outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

