
Ulm University| 89081 Ulm | Germany Faculty of Engineering,
Computer Science,

and Psychology
Institute of Databases

and Information Systems

Investigation of the deployment of Android
as a user interface for ovens
Master’s Thesis at Ulm University

Author:
Patryk Boczon
patryk.boczon@uni-ulm.de

Reviewers:
Professor Doctor Manfred Reichert
Professor Doctor Martin Theobald

Supervisors:
Marc Schickler
Michael Lamers

Year:
2015

Version October 20, 2015

c© 2015 Patryk Boczon

This work is licensed under the Creative Commons. Attribution-NonCommercial-ShareAlike 3.0
License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/3.0/de/ or send a letter to
Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.
Setting: PDF-LATEX 2ε

http://creativecommons.org/licenses/by-nc-sa/3.0/de/

Abstract

This theses is conducted in cooperation with BSH Hausgeräte GmbH. The target is the

investigation of the applicability of Android as an operating system for home appliances,

specifically for ovens. In order to draw conclusions in regard of applicability, three major

topics will be investigated.

For a start, the performance of Android running on moderate target hardware will be

analysed. The focus lies on graphics, since a high quality graphical user interface is most

likely to be the crucial point in terms of performance. Providing a smooth and responsive

graphical user interface is decisive for a satisfying user experience.

Furthermore, originating from the mobile domain, Android requires an array of modi-

fications prior to being embedded into an oven. The goal is to identify these potential

aspects that need modification and give appropriate solutions, thus also providing an

estimate of the required effort for the embedding process.

Finally, potential inter-process communication mechanisms will be investigated with

the objective to identify the most eligible method(s) for the communication between an

Android application and the underlying oven hardware.

iii

Gratitude

This thesis was conducted at Ulm University in cooperation with BSH Hausgeräte GmbH.

Acknowledgements go to both facilities for having made this thesis possible in the first

place. Special thanks go to Michael Lamers from BSH Hausgeräte GmbH and Marc

Schickler from Ulm University for having provided competent supervision alongside the

development of this thesis. Further acknowledgements go to Professor Doctor Manfred

Reichert and Professor Doctor Martin Theobald from Ulm University for reviewing this

thesis.

v

Contents

1 Introduction 1

1.1 Motivation for Android . 2

1.2 Subject Hardware . 3

1.3 Thesis Objective . 4

1.4 Thesis Structure . 5

2 Performance Analysis 7

2.1 Graphics in Android . 7

2.2 Implementation . 10

2.3 Measurement . 13

2.4 Results . 14

3 Embedding Android 19

3.1 Target Specification . 19

3.2 Kiosk Software . 20

3.3 Android Architecture . 21

3.4 Embedding Strategies . 24

3.4.1 Launcher Application . 24

3.4.2 Trimming Packages . 26

3.4.3 Button Handling . 28

3.4.4 Maintaining the Focus . 33

3.4.5 Power Management . 35

3.4.6 Corporate Design . 37

3.5 Implications . 38

4 Hardware Communication 41

4.1 Overview . 41

4.2 IPC Mechanisms . 44

4.2.1 System Call . 44

vii

Contents

4.2.2 ioctl . 48

4.2.3 sysfs . 50

4.2.4 Netlink Sockets . 52

4.2.5 Binder and HAL . 57

4.3 Summary . 66

5 Conclusion and Future Work 73

viii

1
Introduction

With a constant rise in functionality and intercompatibility, even everyday objects such

as home appliances will become more and more intricate. As the complexity of the

software of such home appliances raises, it is desirable to be able to code in a high

level programming language such as Java. Software modules should not only cover

one particular type of home appliances, such as ovens, but also hobs, hoods coffee

machines etc. The use of such generic software components proves more expandable

for prospective projects and increases intercompatibility. As a result, a more abstract

solution to common problems will probably be used in the future which in turn implies a

further raise in complexity.

With the increasing number of rich user interface projects, the outlook to reuse code

is a huge benefit. This is especially true for software developed for one particular

brand where, due to consistency, user interface components will probably feature similar

visuals and similar behavior. However, software for particular devices providing a rich

user interface had often been developed from scratch in the past.

A well-conceived graphical user interface (GUI) is essential in order to render the rich

functionality of upcoming devices easily accessible for the user. With the prevalence

of touch screens it seems reasonable to provide a touch based modality for objects

with rich functionality, not least due to consistency. A (touch screen based) GUI is

significantly more dynamic than a physical interface and thus is able to provide access

to diverse functionalities in an optimized manner. The question then arises as to why not

embed Android into home appliances. Besides the touch interface, the Android software

development kit (SDK) provides (means to build) generic software solutions for common

problems.

1

1 Introduction

This thesis investigates the applicability of Android to be embedded into an oven by

Bosch Hausgeräte GmbH (BSH). Subject of this thesis is an oven model from the series

8 by BSH (see figure 1.1) which offers a large variety of capabilities and options.

Figure 1.1: The user interface of a series 8 oven by BSH. All three display sections as well as
the ring in the center are touch sensitive [7].

1.1 Motivation for Android

Android as an operating system (OS) brings along several benefits.

For one thing, due to its popularity, Android will most likely sustain yet for a long time

on the market. This ensures constant updates. With its popularity, Android provides a

very well supported development environment and the chance to come across solutions

to problems in literature or the internet is fairly high. Plus, skilled developers are rather

easy to find.

Considering System on a Chip (SoC), there is strong vendor support for Android-

supported hardware.

For another thing, the Android SDK utilizes Java which is a high level programming

language and thus reduces development costs over low level programming languages

[4].

Additionally, when developing applications for smartphones/tablets which are designed

to communicate with specific home appliances, code can be reused (e.g. GUI code). In

doing so, effort can be saved while consistency is ensured.

2

1.2 Subject Hardware

Furthermore, Android is optimized for restricted hardware. This comprises for in-

stance the GUI framework and runtime which are optimized for speed and automatic

usage of the graphics processing unit (GPU) [14]. The fact that Java can be used for

development comes at the cost of a virtual machine, which implies losses in performance.

The DalvikVM was explicitly designed for Android with performance in mind [3].

Moreover, Android features intercommunicational abilities. The Android SDK entails

for instance application programming interfaces (APIs) for WLAN, Ethernet, Bluetooth

and USB which could notably simplify interconnections between different home appli-

ances and/or (mobile) devices.

Further on, Android supports over-the-air updates for both system and application

software. This feature is very likely to be used in the home appliances context, as well.

The Android app model could serve as a package management foundation. In the future,

a requirement for allowing functional packages to be installed optionally might come up.

The app installation and communication model in Android could be used to implement

this requirement.

Finally, besides the Android SDK, there is a vast number of open source libraries

which facilitate development for Android, e.g. in terms of intercommunication, GUIs, etc.

1.2 Subject Hardware

The Hardware used in this thesis is the AM335x Evaluation Module (TMDXEVM3358) by

Texas Instruments (see figure 1.2). As illustrated in table 1.1, the evaluation module has

rather limited resources. For that matter, the performance analysis conducted in chapter

2 is a crucial aspect for the determination of the suitability of Android as an operating

system in the first place. The latest Android version that is available on the evaluation

module is Android Jelly Bean 4.1.2.

3

1 Introduction

Figure 1.2: TMDXEVM3358 - AM335x Evaluation Module [20]

Hardware Software Connectivity
AM3358 ARM Processor Linux EZ SDK 10/100 Ethernet
1GB DDR3 Android UART
TPS65910 Powermanagement IC SD/MMC
7” touch screen LCD USB2.0 OTG/HOST

Audio in/out
JTAG
CAN

Table 1.1: An overview of specifications of the AM335x Evaluation Module [20].

1.3 Thesis Objective

The purpose of this thesis is to describe a conceptual approach on diverse topics that

are relevant for embedding Android as an OS into an oven by BSH. The results should

provide implications on the practicability and effort of such an embedding process.

As Android originates from the mobile domain [38], there are several aspects that

require modification prior to embedding Android into a stationary oven. Besides these

modifications concerning the behavior of Android, adding support for further hardware

is an essential task for such an embedding project. This thesis examines the feasibility

of such modifications and also provides approaches on how to achieve the required

4

1.4 Thesis Structure

objectives. Consequently, the effort for the required work of such an embedding process

can be assessed.

1.4 Thesis Structure

This thesis is composed of three main chapters.

The focus of chapter 2 is to determine the applicability of Android as on OS in regard of

performance. As the potential performance bottleneck is most likely to be graphical, a

performance analysis is conducted in this chapter. In order to be able to draw realistic

conclusions from the results, this performance analysis was executed on the given

evaluation module (see chapter 1.2) with realistic user interfaces.

Chapter 3 discusses the necessary modification of the behavior and diverse features

that are immanent in the Android OS in order to be applicable for an embedded scenario.

The purpose of this chapter is to draw the attention to potential features that require

modification, give solutions to these features and provide a general overview of the

required work that is necessary for this step of the embedding process.

Chapter 4 focuses on diverse, potentially eligible inter-process communication (IPC)

mechanisms to establish a communication between the Android application and an oven

hardware module/driver. The Android application is supposed to be the oven’s user

interface and thus should be able to control the oven hardware and reflect its status.

Finally, a conclusion is given in chapter 5 which recapitulates the most relevant topics

and results.

5

2
Performance Analysis

A smooth and responsive GUI is essential for a high quality user interface. This is

especially crucial for touch-based GUIs since users might compare the user experience

with what they already came to know from their smartphones. As a result, users will

immediately register losses in performance.

However, in the context of an oven, touch responsiveness might be hampered due to

specific requirements such as the usage of components that meet the heat criteria,

appliance design restrictions (e.g. a thick glass front) or simply cost reduction plans.

Further on, most home appliances, such as ovens, will not be replaced as frequently as

mobile devices. Consequently, home appliances will not feature cutting edge hardware

in the long run.

Despite these drawbacks, modern home appliances feature rich capabilities and their

GUIs have to render this functionality in an accessible manner and at the same time meet

the level of quality of the product. Besides the aesthetic aspect, images and animations

provide visual clues and feedback on actions.

2.1 Graphics in Android

Before starting with the actual implementation of the performance analysis, looking into

the drawing/rendering process of Android seems worthwhile [33].

In Android, in order to draw content on the screen, for instance in case an application

comes in focus, the WindowManager invokes the SurfaceFlinger. The SurfaceFlinger ac-

cepts and composites buffers of graphical data from multiple sources and forwards these

7

2 Performance Analysis

to the display. Since Android version 3.0 the SurfaceFlinger delegates the composition

of the buffers to the Hardware Composer. The Hardware Composer is device-specific

and determines the most efficient way that buffers of graphical data can be composited

on the given hardware.

In the terminology of the SurfaceFlinger, a layer is for instance the status bar at the top

of the screen (see figure 3.4), the navigation bar that holds the virtual buttons at the

bottom of the screen (see figure 3.3) and the UI of the application. While the status and

navigation bars are rendered by the system, the application renders its own content.

Furthermore, layers can be updated independently.

In order to prevent screen tearing, vertical synchronization (VSYNC) is considered. This

implies that the screen will only be updated during the period between the drawing of

two frames. When it is safe to update the screen (meaning VSYNC), the SurfaceFlinger

iterates through the layers and checks for new buffers. If there is no new buffer for a layer,

the previous buffer will be used. Figures 2.1 and 2.2 illustrate the flow of an application’s

buffer data.

Figure 2.1: A diagram of the flow of buffer data between an application, the SurfaceFlinger, the
Hardware Composer and the display [33].

The red buffer in figure 2.1 fills up and is transmitted to the BufferQueue. The blue buffer

within the BufferQueue represents at that time the previous frame of the application

8

2.1 Graphics in Android

and takes the place of the next potential frame within the app. This ensures that as

long as the application does not intend to display anything new, the previous content

will be rendered. Once the VSYNC signal is dispatched, the SurfaceFlinger receives

the red buffer from the BufferQueue and delegates the green buffer to the display. The

green buffer was created by the application prior to the red buffer. At the same time, the

BufferQueue receives the green buffer as a potential next buffer. Figure 2.2 illustrates

the next frame where the app is about to draw a purple screen.

Figure 2.2: The state of the diagram of figure 2.1 after one frame (according to [33]).

The SystemUI’s part is simplified in these diagrams. In reality the SystemUI would have

two BufferQueues, one for the status bar and one for the navigation bar, each with a

respective size.

In Android, the UI is composed of elements that are ultimately derived from Views. The

application’s UI thread is responsible for the layout and renders the content on a Surface

that was created by the SurfaceFlinger. Such a View based implementation will be the

first variant of the upcoming performance test.

When utilizing SurfaceView which is a specific implementation of View, the Surface-

Flinger creates a new distinct Surface for it. The SurfaceView itself is completely

transparent and its contents will not be composited by the application but rather by the

9

2 Performance Analysis

SurfaceFlinger directly. Consequently, this new Surface can be rendered in a separate

thread and can be updated via different mechanisms, e.g. using a video decoder, the

OpenGL API etc. This approach is more direct and will be implemented in the second

variant of the performance test by utilizing the LibGDX framework that makes use of a

(GL)SurfaceView implementation [33].

2.2 Implementation

In the following, a section of the user interface specification, provided by BSH, will be

implemented on Android and executed on the evaluation module (see 1.2). The selected

section will be implemented via Android Views. In the Android SDK, View represents the

base class for user interface components (widgets). The ViewGroup class is a subclass

of View and can contain other Views. Consequently, the ViewGroup is the base class

for layouts in Android [19]. Since this performance analysis is conducted on Android

Jelly Bean 4.1.2 (API level 16) and hardware acceleration for the Android 2D rendering

pipeline is enabled by default since API level 14, there is no need to activate it manually

[14].

Aside from that, an OpenGL ES 2.0 based variant of the same content will be imple-

mented using the open source framework LibGDX. In doing so, both variants can be

compared afterwards in terms of performance. Such an investigation will lead to conclu-

sions about deviations in performance between the two implementations. Furthermore,

assumptions about the applicability of the evaluation module (see chapter 1.2) in terms

of performance can be derived from the resulting data.

Both GUI implementations feature similar principles in terms of hierarchy. While the

Android View based implementation utilizes ViewGroups, such as Layouts to hold further

Views, the LibGDX based variant is implemented in a similar manner, utilizing Groups,

such as Tables, to encapsulate other widgets.

Due to the implications from chapter 2.1, it is expected that the LibGDX based imple-

mentation will result in a smoother user interface, meaning more frames per second

(fps). In general a desirable outcome would comprise the plain Android View based

10

2.2 Implementation

implementation to reach “the magic number of 30 fps for smooth motion” [32]. This would

make the need for an additional framework, such as LibGDX, obsolete. Consequently,

regarding the model-view-controller paradigm, no additional interfaces would be required

for communications between the data model of the device (e.g. current oven data) and

the view/controller provided by the framework. Lastly, no further learning sessions for

Android developers would be necessary.

In order to measure performance, three screens and various animations were imple-

mented. Utilized animations comprise fading, rotating, scaling, translating and color

transitions.

The following screens, alongside with their animations, were implemented with Android

Views. Afterwards, another application with the same content was developed using the

LibGDX framework.

The first screen is the splash screen with the Bosch logo and includes up to four

animations in parallel (see figure 2.3).

Figure 2.3: A screenshot of the Android View based (left) and LibGDX based (right) animated
splash screen. This screen is assumed to generate the least workload within this
performance analysis.

The second screen features two lists of clickable entries/buttons which can be scrolled

simultaneously (see figure 2.4).

The third screen comprises a toggle animation between two options which entails up to

18 simultaneous animations (see figure 2.5).

11

2 Performance Analysis

Figure 2.4: A screenshot of the Android View based (left) and LibGDX based (right) selection
screen. The CW (clockwise) and CCW (counterclockwise) buttons simulate the
respective swipe interaction along the ring of the oven’s user interface (see figure
1.1). Such an interaction will cause a scroll animation of each of the two lists within
this screen.

Figure 2.5: Screens of the Android View based (left) and LibGDX based (right) Heizart settings.
The toggle between the Temperatur (upper) and Dauer (lower) setting entails a total
of 26 animations, 18 of which run in parallel. This screen is assumed to generate
the most workload (in terms of animations) among the three screen which are under
examination.

12

2.3 Measurement

These screens with their respective animations were chosen as a test GUI in order to

conduct the performance analysis in the scope of a realistic setting. The test GUI was

implemented in regard of the user interface specification provided by BSH. Furthermore,

an increasing workload in terms of animations was implemented by the three screens in

order to provide potential correlations between workload and framerate.

2.3 Measurement

For each of the screens, the respective set of animations was tracked by recording the

timestamp when the onDraw method (regarding Android View) or the render method

(regarding LibGDX) was called. In doing so, the interval between two frames as well as

the fps can be calculated as follows:

∆t = t2 − t1 (1)

fps = 1000ms

∆t
(2)

Considering Android Views, drawing is performed in regard of the View hierarchy, walk-

ing the tree breadth first in order. This default drawing order can be overridden, for

instance when applying a Z value to a View (via setZ(float)). In order to override the

onDraw function of the Android View based implementation, a custom layout class

was implemented and applied to the top node of the layout.xml file of each of the three

screens.

The FrameInspector class was introduced in both implementations with close to identical

code. As a consequence, rendering will be equally influenced by the performance

tracking process and a valid comparison can still be performed since both variants suffer

from equal drawbacks in performance caused by the FrameInspector.

When an animation starts, the FrameInspector will be triggered, storing a timestamp in

13

2 Performance Analysis

the heap space each time the onDraw or render function is called. Code 2.1 shows the

FrameInspector usage within the render function of the LibGDX implementation.

Code 2.1: The FrameInspector implementation within the LibGDX render function

@Override

public void render(float delta) {

...

if(frameInspector.doCount()){

frameInspector.increment();

}

}

The increment function of the FrameInspector class is shown in code 2.2.

Code 2.2: The increment function of the FrameInspector

public void increment(){

frame_count++;

timeStamps.add(System.currentTimeMillis());

}

When the animation is finished, the FrameInspector will be notified and the intervals

between the timestamps will be calculated and logged into a text file. The expensive

procedure of writing the log file is executed after the animation has finished, therefore

performance tracking, while the animation is running, is reduced to a minimum by merely

gathering timestamps. The calculated intervals between the timestamps can be con-

verted into fps as mentioned earlier.

2.4 Results

The following results were calculated as an average of 10 iterations of each animation.

The results meet the previous expectations and clarify that the LibGDX based application

exceeds the Android View based implementation in fps. The following diagrams (2.6,

14

2.4 Results

2.7 and 2.8) depict the total amount of frames, as well as the derived fps as calculated

via timestamps gathered in the onDraw /render functions.

Figure 2.6: The results of the logo animation show significantly more fps of the LibGDX variant
compared to the Android View based implementation. This also becomes apparent
when comparing the amount of rendered frames throughout the animation.

Figure 2.7: Throughout the scroll animation, the Android View based variant keeps up a con-
stantly high framerate above 30fps.

15

2 Performance Analysis

Figure 2.8: The measured data of the Temperatur -Dauer -toggle animation shows an even
greater gap between the two implementations when compared to the results of the
logo animation 2.6. The Android View based variant suffers from significant drops in
framerate as the workload increases.

A notable implication can be drawn from the three diagrams: While the Android View

based variant features an explicit drop in fps as the animation workload increases, the

LibGDX based implementation appears to render even more complex animations (see

diagram 2.8) as smoothly as rather simple scenarios (see diagram 2.6), with close to 60

fps. The Android View based implementation seems to suffer from a considerable loss

in framerate as the amount of simultaneous animations increases. As a consequence,

when further increasing the workload, the framerate would probably drop even more

often below 30 fps as it already did while rendering the Temperatur -Dauer -toggle anima-

tion (see diagram 2.8).

Nonetheless, the Android View implementation only dropped to a minimum of 28 or

29 fps and thus still reached an average target framerate of well above 30 fps in each

animation on the evaluation module (see chapter 1.2).

16

2.4 Results

In conclusion, Android is clearly capable of rendering the tested scenarios smoothly on

hardware with limited resources, such as the evaluation module introduced in chapter 1.2.

Furthermore, the results clearly show that the LibGDX based implementation delivers a

considerably higher framerate as opposed to an Android View based implementation.

17

3
Embedding Android

The goal of this chapter is to describe how to embed an application similar to a kiosk-

mode on Android but to an even more thorough extent. In other words, the application

should imitate a native system. Consequently, the application in focus should be the

only accessible application to the user and should be running in foreground permanently.

Redundant functionalities, enabled through both hardware and software modules, should

be disabled.

Due to the active nature of the Android Open Source Project (AOSP), different versions

may vary in terms of conventions, structure, modules etc. The main objective of this

chapter is to collect all potential aspects that are relevant in the process of embedding an

application alongside with the Android OS. These aspects will be described, a specific

implementation to achieve the desired behavior will be given and potential alternatives

will be compared.

3.1 Target Specification

Since Android comes from the mobile domain [35], it requires certain modifications to

be suitable for being embedded into an oven. Before beginning with the modifications, it

is necessary to specify the desired behavior.

For a start, the application in focus should act as the launcher application on the

Android OS. The application should start immediately after booting the device (see

chapter 3.4.1).

Trimming redundant packages will not only improve performance of the device but

19

3 Embedding Android

also contribute to the stability of the embedded system (see chapter 3.4.2).

Furthermore, the button functionality on Android (such as the home button, volume

buttons, menu/recent apps button and back button) should be disabled (see chapter

3.4.3). Navigation through the GUI should solely be conducted via itself, meaning the

functionality of for instance the back button will be delegated to the respective widget

within the GUI.

Besides, maintaining the focus of the application is crucial for such an embedded

scenario (see chapter 3.4.4). Neither should the application go into background nor

should any other application obtain focus. Uncaught exceptions for instance pose a

threat to the continuity of the application in focus and have to be handled.

Additionally, a power management plan should be developed by looking into the standby

mode as well as the regulation for the display brightness. Screen dimming for instance is

usually engaged in case the user interface remains in an idle state for a specific duration

(see chapter 3.4.5).

Finally, alterations of the Android OS should be conducted to meet the corporate de-

sign of BSH (see chapter 3.4.6). This comprises for instance customizations of the boot

animation (and respective sound) when powering up the device.

3.2 Kiosk Software

In order to consider all potential aspects relevant to the embedding process, it seems

worth considering (commercial) kiosk software. Such software is often used for exhi-

bitions, studies, etc. where the access of a device is restricted to a certain website or

application. In contrast to the embedding process that is in focus of this thesis, such

kiosk software is often applied only temporarily to a device and primarily blocks several

features for a certain period of time rather than making persistent changes to the system.

However, the aspects that are considered in such software (rather than their implementa-

tion) should be taken into account to provide an embedding process that is as complete

as possible.

20

3.3 Android Architecture

Among the regarded kiosk software was KioWare [25] and SureLock [29]. These prod-

ucts enable restrictions to certain applications so that only specified applications are

accessible. SureLock for instance features a custom home screen which provides the

exhibited applications. Furthermore, SureLock enables the designation of a launcher

application that executes on startup. A permanent setting of these features is illustrated

in chapters 3.4.1 and 3.4.2.

Furthermore, SureLock can hide the virtual buttons on Android 3.x and higher. Chapter

3.4.3 covers button handling of an Android device. This includes virtual buttons as well

as physical buttons.

The examined kiosk software is also able to block the system settings and lock spe-

cific features, for instance sound, bluetooth etc. Such restrictions can be achieved

permanently by removing the respective applications/packages such as the status bar,

bluetooth and the settings application (see chapter 3.4.2).

The fact that such kiosk software is able to achieve these objectives proofs that a

potential oven application could implement these features, as well.

3.3 Android Architecture

Android is an open-source project that was released in October 2008 [11]. It is an

operating system, initially designed as a mobile software platform [6], that features a

Linux kernel-based architecture. The Android architecture, as depicted in Figure 3.1,

consists of four main layers and five sections [13]:

Applications

The top layer is composed of the default/initial applications such as the home launcher

application or the contacts application that come with a smartphone. Consequently, any

application that will be installed goes to this layer.

Application Framework

The second layer is the Application Framework which provides APIs to be used by

the Application layer. This comprises for instance the View System, which provides a

framework to create GUIs.

21

3 Embedding Android

Libraries

The Libraries layer enables applications to access core features, e.g. a custom system

C library (libc) for embedded Linux-based devices, a SQLite database or the OpenGL

ES library.

Android Runtime

The Android Runtime features an adaption of a Java virtual machine (VM) named Dalvik

which is specifically designed for memory- and CPU-constrained devices. The core

libraries are designed to interact directly with an instance of the DalvikVM.

Linux Kernel

The Linux Kernel is the base layer of the Android architecture. It contains all hardware

drivers, handles power and memory management as well as resource access.

Figure 3.1: The Android architecture is composed of four main layers and five sections [40].

22

3.3 Android Architecture

A more system oriented view with regards to the AOSP is given in the depiction of the

Android architecture in figure 3.2.

Figure 3.2: The Android architecture with respect to the AOSP. The directories indicate the
location of the respective component within the AOSP [44].

In order to meet the target specification as defined in chapter 3.1, the init compo-

nent (see figure 3.2) will be modified to customize the boot process and set various

properties to disable/enable certain features. Another important component for the

embedding process is the hardware abstraction layer (HAL). It defines APIs for hardware

components, such as Bluetooth, NFC, WLAN, camera, audio etc. By modifying the

HAL modules, the functionality of certain hardware components can be disabled. Addi-

tionally, the respective drivers and services can be removed for a lightweight Android OS.

23

3 Embedding Android

3.4 Embedding Strategies

This chapter describes a conceptual approach on how to embed an application alongside

with the Android OS into an oven by BSH. Necessary steps, as well as alternatives, will

be explained and accompanied by supplementary code snippets where applicable.

Most adaptations will be undertaken either in the application itself (application layer) or

directly within components of the AOSP. Regarding the latter, modifications can often

be made by editing the /system/build.prop file. The build.prop file is a system file that

contains properties such as flags and values which are requested by various modules

during the device’s boot process [44]. Adjustments to the build.prop file require root

privileges. Besides, due to the open source nature of the Android OS, a custom AOSP

can be compiled.

Several required modifications can be done by editing properties within the build.prop

or the init.rc file. This will result in global changes throughout all devices. Such prop-

erties can be overridden by a specific device by editing its device.mk file within the

/devices/<vendor>/<product-name>/ folder. This principle of global changes as opposed

to device specific modifications of the AOSP can be applied to various aspects, such as

the default set of pre-installed applications or support for specific hardware.

3.4.1 Launcher Application

The application at hand, meaning the application to control the oven, is supposed to be

the default application running on the Android OS. Adjustments withing the application

itself are suffice in order for the Activity to start immediately after booting the device. For

this purpose, the AndroidManifest.xml file can be augmented as illustrated in code 3.1.

The RECEIVE_BOOT_COMPLETED permission enables the application to listen for the

BOOT_COMPLETED action that will be received by the BroadcastReceiver implementa-

tion as shown in code 3.2.

24

3.4 Embedding Strategies

Code 3.1: Necessary modifications within the AndroidManifest.xml to launch an application

directly after the boot process

<manifest ...>

<uses-permission

android:name="android.permission.RECEIVE_BOOT_COMPLETED" />

<application ...>

<receiver android:name=".BootReceiver">

<intent-filter>

<action android:name="android.intent.action.BOOT_COMPLETED"/>

</intent-filter>

</receiver>

</application>

</manifest>

Code 3.2: Once the BOOT_COMPLETED action was invoked this onReceive function starts the

desired Activity

public class BootReceiver extends BroadcastReceiver {

@Override

public void onReceive(Context context, Intent intent) {

Intent bsh_start_activity_intent = new Intent(context,

BSH_Start_Activity.class);

context.startActivity(bsh_start_activity_intent);

}

}

Once the onReceive function received the BOOT_COMPLETED action, the initial Activity

of the application will be started, in this case named BSH_Start_Activity.

An alternative to configure a launcher application is to simply augment the intent-filters

of the BSH_Start_Activity in the AndroidManifest.xml as illustrated in code 3.3.

25

3 Embedding Android

Code 3.3: Defining intent-filters for a launcher application

<intent-filter>

<category android:name="android.intent.category.LAUNCHER" />

<category android:name="android.intent.category.HOME" />

</intent-filter>

In doing so, the BSH_Start_Activity will launch directly after booting the device and

will be handled as a home application, meaning it can be started when triggering the

home button [17]. Note that the LAUNCHER category does not set this Activity to be

started after the booting process but to be the initial Activity that is launched when the

application is started. Category HOME designates this Activity to be started after the

booting process as well as in the event of the home button.

The first method might seem more cumbersome, simply due to the amount of code

that is required when compared to the second implementation. However, utilizing a

BroadcastReceiver which determines the Activity that should be started is more flex-

ible. For instance in the event of an abrupt reboot or the like, the BootReceiver can

resume the system’s state by invoking the last Activity that was active prior to the reboot.

Nonetheless, this variant also results in a higher delay between the finished boot process

and the application to start.

These adaptations are undertaken within the application itself and thus, in the context of

the Android architecture (chapter 3.3), can be considered as part of the applications layer.

3.4.2 Trimming Packages

Removing redundant packages from the custom AOSP will boost performance and

stabilize the isolation of the application in focus. Packages that are designated to

be installed initially are specified in several make files located in the /target/prod-

uct folder. As described by Karim Yaghmour [44], alterations within the base.mk

will have crucial impacts on the system and are more likely to generate a broken

26

3.4 Embedding Strategies

AOSP since there are no dependency checks considering packages. The core.mk and

generic.mk /generic_no_telephony.mk files hold more self-contained packages and thus

are safer to edit. The generic_no_telephony.mk holds, among others, the entries that

are mentioned in code 3.4.

Code 3.4: An excerpt of the stock packages of a generic_no_telephony.mk file

PRODUCT_PACKAGES := \

DeskClock \

Bluetooth \

Calculator \

Calendar \

Email \

Exchange2 \

Gallery2 \

Launcher2 \

Music \

MusicFX \

Phone \

Settings \

When removing for instance the Launcher2 entry, the device will be missing the default

home screen application.

By merely removing an entry, the respective application will still be part of the AOSP,

located in /packages/apps. When not needed, it can be deleted from that location.

Consequently, adding an application to the default packages list is the reversed process.

Either the core.mk or the generic.mk /generic_no_telephony.mk file needs to add the

desired application to PRODUCT_PACKAGES and the application has to be placed

into the /packages/apps folder. In doing so, the application will be installed as a stock

application on all potential devices which the custom Android version will be mounted

on.

Besides this global approach, the application can be installed in respect to a particular

device. For this example, the application will be labeled Oven-App. The device specific

27

3 Embedding Android

configuration is located in the /devices/<vendor>/<product-name>/ folder. In order to limit

the installation of the application as a stock package to specific devices, the application

has to be placed inside this folder. Further on, an Android.mk file has to be created

within the application folder with the content in code 3.5.

Code 3.5: Settings for the Android.mk file for building the Oven-App application

LOCAL_PATH:= $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE_TAGS := optional

LOCAL_SRC_FILES := $(call all-java-files-under, src)

LOCAL_PACKAGE_NAME := Oven-App

include $(BUILD_PACKAGE)

Finally, the application has to be added to PRODUCT_PACKAGES within the

full_product-name.mk file [44].

3.4.3 Button Handling

Since navigation on the device should solely be conducted via the application’s user

interface and there is no need for other features such as the home application or a recent

apps list, the regular Android buttons (home button, volume buttons, menu/recent apps

button and back button) will be disabled. Ideally, both the buttons’ default functionality

and/or the firing of the button event in the first place should be prevented.

Preventing button firing

Firstly, the navigation bar (containing the back button, home button and menu/recent

apps button in the form of virtual buttons) can be hidden through application code when

using Android version 4.0 and higher [15]. This is achieved with an implementation

as indicated in code 3.6. It is notable that this method will not hide the navigation bar

throughout the entire system but merely within the scope of an Activity that implements

code 3.6.

28

3.4 Embedding Strategies

Code 3.6: Placing this code in the onCreate function of an Activity hides the navigation bar

within the Activity

View decorView = getWindow().getDecorView();

int uiOptions = View.SYSTEM_UI_FLAG_HIDE_NAVIGATION

| View.SYSTEM_UI_FLAG_FULLSCREEN;

decorView.setSystemUiVisibility(uiOptions);

Figure 3.3: The navigation bar with virtual buttons of an Android device [15].

A more thorough approach requires root privileges or a custom built of the AOSP. Rooting

an Android device is another term for the process of gaining super user privileges [3].

The line of code 3.7 has to be added into the /system/build.prop file to disable the

navigation bar throughout the entire system [41]:

Code 3.7: Setting this property in the build.prop file hides the navigation bar

qemu.hw.mainkeys=1

This will hide the navigation bar on all devices. To target a specific device, the navi-

gation bar can be hidden by overriding the value in the /devices/<vendor>/<product-

name>/device.mk file as shown in code 3.8.

Code 3.8: Hiding the navigation bar for specific devices

PRODUCT_PROPERTY_OVERRIDES += \

qemu.hw.mainkeys=1

29

3 Embedding Android

Furthermore, key layout files (.kl files), which map Linux key codes to Android key codes

[18], can be edited within the /devices/<vendor>/<product-name>/ folder. Code 3.9

shows the entries for the virtual buttons (home button, menu button and back button)

and the physical buttons (volume control and power).

Code 3.9: Key code mapping that assigns keys of Android devices to key codes

key 102 HOME VIRTUAL

key 114 VOLUME_DOWN WAKE

key 115 VOLUME_UP WAKE

key 116 POWER WAKE

key 139 MENU VIRTUAL

key 158 BACK VIRTUAL

The WAKE keyword implies that the device will wake up if it is asleep in case the re-

spective button was invoked. By commenting out these mappings, the buttons will be

detached from any functionality.

Disabling button functionality

The following describes strategies on how to consume button events in case they have

been fired. Although the possibility to trigger respective buttons is intended to be disabled

in the first place, these approaches present a further level of immunity against unwanted

behavior.

Handling the back button is common practice in Android development. It can be easily

disabled by overriding the respective function in each Activity as shown in code 3.10.

Code 3.10: Overriding the back button behavior within an Activity

@Override

public void onBackPressed() {

//do nothing

}

The menu button and volume buttons can be deactivated in a similar manner as the

back button, by overriding the functionality in each Activity as illustrated in code 3.11.

30

3.4 Embedding Strategies

Code 3.11: Overriding the menu and volume buttons within an Activity

@Override

public boolean dispatchKeyEvent(KeyEvent event) {

if(event.getKeyCode()==KeyEvent.KEYCODE_VOLUME_DOWN ||

event.getKeyCode()==KeyEvent.KEYCODE_VOLUME_UP){

return true;

}else if(event==KeyEvent.KEYCODE_MENU){

return true;

}else{

return super.dispatchKeyEvent(event);

}

}

Long pressing the power button prompts a system dialog which provides options such

as to restart the device or to turn it off. A simple way to prevent this dialog to be displayed

is to immediately close it when it is about to show up [39]. Such behavior can be achieved

by augmenting an Activity with code 3.12.

Code 3.12: Immediately closes any system dialog that is about to show up from within an Activity

@Override

public void onWindowFocusChanged(boolean hasFocus) {

super.onWindowFocusChanged(hasFocus);

if(!hasFocus) {

Intent closeSystemDialog = new

Intent(Intent.ACTION_CLOSE_SYSTEM_DIALOGS);

sendBroadcast(closeSystemDialog);

}

}

Overriding the onWindowFocusChanged function also directly addresses the recent

apps dialog since this dialog also qualifies as a system dialog. Depending on the Android

version and the device, the recent apps dialog can be opened via a long press on the

home button or a dedicated recent apps button. Consequently, by listening to a focus

31

3 Embedding Android

change, the recent apps dialog will be closed no matter if it was opened via a long press

on the home button or a recent apps button.

Further long press button events, such as long pressing the back button, can be handled

by overriding the onKeyLongPress(int keyCode, KeyEvent event) function.

When configuring the application as a home application, as described in chapter 3.4.1,

the launcher Activity (previously labeled BSH_Start_Activity) would be launched when

the home button is pressed. However, when the user has navigated to another Activity

and the home button is triggered, the launcher Activity will be invoked. One feasible

approach to keep the current state (consisting of displayed Activity, selected values etc.)

in case the home button was pressed, is to persist the state (e.g. via SharedPreferences)

and load it when the start Activity is called.

Overriding the home button in Android is considered bad practice due to security and user

experience reasons. However, these arguments do not apply in an embedded scenario

and there are several workarounds on the application layer to consume the home

button event. Some of these approaches, though, have been rendered impracticable

as the Android versions advanced. This simple consumption of the home button event

(see code 3.13), applied to each Activity in which to prevent the default home button

functionality, has been disabled with Android version 4.0.

Code 3.13: Overriding the home button within an Activity below Android version 4.0

@Override

public void onAttachedToWindow(){

this.getWindow().setType(WindowManager.LayoutParams.TYPE_KEYGUARD);

super.onAttachedToWindow();

}

@Override

public boolean onKeyDown(int keyCode, KeyEvent event) {

if (keyCode == KeyEvent.KEYCODE_HOME) {

return true;

}

return super.onKeyDown(keyCode, event);

}

32

3.4 Embedding Strategies

Due to the fact that the home button handling has been changed with the different

Android versions in the past, this might also be the case with future Android versions as

well. Since there is no clean way of handling the home button event in Android versions

4.0 and above (at least within the application layer), modification of the key layout files

will have to be sufficient.

3.4.4 Maintaining the Focus

Status Bar

In order to keep the application in the foreground, the status bar has to be disabled or

rendered inaccessible. The status bar is an entry point for the settings and potentially

any other application.

Figure 3.4: The status bar of an Android device [16].

Hiding the status bar can be achieved by creating a custom theme in the themes.xml file

(see code 3.14) and applying it as the theme to the application in the AndroidManifest.xml

file. This approach, however, might not be a definitive solution since a hidden status bar,

depending on the Android version, can be fetched (or not) by swiping down from the top

edge of the screen. Pulling down the status bar can be prevented by covering the status

bar with a view that consumes touch events.

33

3 Embedding Android

Code 3.14: A custom theme that hides the Android status bar

<resources>

<style name="customTheme"

parent="@android:style/android:Theme.Holo.Light">

<item name="android:windowFullscreen">true</item>

<item name="android:windowContentOverlay">@null</item>

</style>

</resources>

The most exhaustive approach, however, would be to remove the status bar application

completely (see chapter 3.4.2).

Uncaught Exceptions

A further potential way for the application to be left/closed is through an uncaught excep-

tion. To catch such exceptions, each Activity should set an UncaughtExceptionHandler

as shown in code 3.15.

Code 3.15: (Re)Starting the BSH_Start_Activity by catching uncaught exceptions

Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

final Context ctx = this.getApplicationContext();

Thread.setDefaultUncaughtExceptionHandler(new

Thread.UncaughtExceptionHandler(){

@Override

public void uncaughtException(Thread thread, Throwable ex) {

Intent bsh_start_activity_intent = new Intent(context,

BSH_Start_Activity.class);

ctx.startActivity(bsh_start_activity_intent);

System.exit(2);

}

});

}

34

3.4 Embedding Strategies

In this case, the BSH_Start_Activity is invoked after the exception was caught. However,

it is also possible for each Activity to restart a specific Activity, for instance itself, in case

they crash. Further on, the Intent to start the new Activity can be augmented with extra

information about the error and currently set values. In doing so, a message about the

error can be displayed and previously set values can be restored on restart.

3.4.5 Power Management

Conserving power might not be as crucial to (stationary) home appliances as to mobile

devices that run on battery, but an optimized power consumption plan, with respect to

responsiveness, is still very desirable since an oven is potentially turned on permanently.

Due to the portability of conventional Android powered devices, the AOSP alongside with

a respective Linux kernel implementation already feature certain power conservation

strategies. For example the Linux kernel adaptations which Android is built upon utilize

wake locks as a more thorough approach on power management compared to a non-

Android targeted Linux built [13]. There are different types of wake locks that can

maintain for instance CPU or screen occupation.

Aside from the power management that already comes with the Android OS, a specific

scenario as embedding Android into an oven might leave room for unique power man-

agement strategies. One way to conserve power is to manage screen dimming. The

screen might be dimmed when the device is in an idle state or during a phase when it

is unlikely for the user to interact with the display. There are several parameters that

can be edited for custom screen dimming management. For one thing, the minimum

and default brightness level can be set by editing properties, for instance within the

/system/build.prop file as shown in code 3.16.

Code 3.16: The screen brightness settings within the build.prop file

ro.lcd_min_brightness=5

ro.lcd_brightness=160

The brightness values are in the range between 0 and 255.

35

3 Embedding Android

In the Application layer, the actual dimming value can be set for each Activity individually

as illustrated in code 3.17.

Code 3.17: Controlling the screen brightness within an Activity

WindowManager.LayoutParams layoutParams =

getWindow().getAttributes();

layoutParams.screenBrightness = 0.2; //Value between 0.0 and 1.0

getWindow().setAttributes(LayoutParams);

Besides screen dimming the device can go into standby mode after a certain period

of time, thus turning off the display. This can be prevented programmatically within an

Activity via code 3.18.

Code 3.18: Preventing the screen from dimming within an Activity

getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);

Alternatively, the attribute in code 3.19 can be added to the root layout in the layout .xml

file of the respective Activity.

Code 3.19: Preventing the screen from dimming via a layout attribute

android:keepScreenOn="true"

Considering timing, the default screen dimming timeout is managed by the OS but

can be altered for each application. However, changing the timeout throughout the

entire oven application might not be the desired solution. The desired timeout might

change depending on the current state of the application, for instance setting a shorter

timeout when the oven is preheating. Screen dimming can be regulated manually via the

WindowManager with full control over brightness and timing when using custom timers

and brightness values in regard of specific Activities and application states.

In terms of Android ’s sleep/stand-by mode, the actual power consumption highly depends

on the specific services and applications which might run in background. For instance a

service might or might not be operating while the system appears to be sleeping.

36

3.4 Embedding Strategies

3.4.6 Corporate Design

Since the application directly starts after booting the device, the only runtime at which

the application is not in focus is during boot time and shutdown.

During the boot process, the screen will potentially display three different stages [44].

The kernel boot screen is the first stage during the visible boot process in which the

kernel might display a static image. However, an Android device will usually not display

this screen. Afterwards, a static init boot logo (either text string or image) will be

displayed on the screen. Naturally, to ignore this init boot logo phase, an empty string

can be assigned to it. The string can be edited within the console_init_action() function

within the system/core/init/init.c file. For an image to show during this stage, the screen

dimensions in pixels must be known and a proper sized image has to be converted into

the .rle type, titled initlogo and placed into the root directory of the boot.img image [44].

Finally, the AOSP has to be rebuilt.

After the init boot logo, the boot animation will be invoked. The boot and shutdown ani-

mations can be placed in uncompressed bootanimation.zip and shutdownanimation.zip

files within the system/media or data/local folder [44]. Code 3.20 is a configuration that

decreases the booting duration and removes the respective animations (and sounds). It

has to be set in the system/build.prop file.

Code 3.20: Setting within the build.prop file that disables the boot animation and thus increases

the boot process speed

debug.sf.nobootanimation=1

To customize the boot animation, the content of the bootanimation.zip archive needs to

be edited. The content of the bootanimation.zip depends on the Android version and

includes a description file, for example a desc.txt or boot_animation.xml file. The desc.txt

for instance describes the boot animation as illustrated in code 3.21 [44]. The actual

images are located in part0, part1, etc. folders within the bootanimation.zip archive and

contain incrementally named .png images.

37

3 Embedding Android

Code 3.21: The schematic for a boot animation as described in desc.txt

<width> <height> <framerate>

p <loop> <pause> <folder0>

p <loop> <pause> <folder1>

...

An actual implementation of the desc.txt is shown in code 3.22.

Code 3.22: A sample boot animation description

480 800 30

p 2 10 part0

p 0 0 part1

The p stands for part and introduces a new sub-animation. The loop number defines

the amount of iterations the sub-animation will play. When set to 0, the sub-animation

will play indefinitely (until boot is completed). The pause field sets the pause duration in

number of frames to be skipped until the next sub-animation will start [34].

Additionally, the bootanimation.zip includes a boot.mp3 or boot.ogg audio file to be

played during the boot process.

The shutdownanimation.zip can be edited in a similar manner.

3.5 Implications

This chapter identified several aspects of Android that require modification to be eligible

for being embedded into an oven. However, it is likely that not all potentially relevant

aspects were covered since particular behavior is usually identified through a precise

requirement analysis that is conducted with regard to particular hardware (providing a

specific set of capabilities) and a desired interaction model. The purpose of this theses,

however, is to generally assess the applicability of Android for such an embedding

project. Consequently, this chapter handled the fundamental aspects that are relevant to

the embedding process with an oven in mind.

38

3.5 Implications

Some of the introduced embedding implementations in this chapter might seem redun-

dant, such as overriding button handlers when their linkage to the respective key code

is already detached. The purpose of these duplicate approaches is to provide multiple

ways of achieving certain objectives.

Implementing an alternative solution might be useful due to a couple of reasons. One

solution might be simply more straightforward and thus easier and faster to achieve than

another. Furthermore, rather than removing a low-level module which might be useful in

a later version of the software, a high-level alternative implementation might be just as

effective.

A reason for redundant handling of a certain aspect might be thoroughness. Removing

the status bar package from the AOSP when the status bar is already hidden (e.g. via a

high-level modification) seems unnecessary but reduces the size of the AOSP and thus

increases performance and stability.

As demonstrated in this chapter, it is a feasible task to tailor the Android OS into an

appropriate system to be embedded into an oven. This is due to the open source nature

of the AOSP. Further on, even application layer modifications can have a rather extensive

working range and be of considerable value. The provided code snippets in this chapter

illustrate that it is a manageable amount of implementation work to achieve the desired

behavior.

A potential solution was found for each particular aspect which was introduced in this

chapter that requires modification. Although the general features of Android that are

relevant for embedding were handled, the future might bring new challenges, either from

within the AOSP or by augmenting the requirements of the oven system. Nonetheless, it

is very likely that such potential upcoming challenges can be handled when working with

the AOSP.

39

4
Hardware Communication

This chapter will focus on the conceptual approach of adding support for custom hard-

ware to the AOSP. The goal is to investigate potential inter-process communication (IPC)

mechanisms that are eligible for establishing a communication channel between the user

interface application of the oven and the oven hardware module/driver.

4.1 Overview

Adding support for new hardware in Android requires respective implementations

throughout various layers.

There are several ways to create an IPC channel between the application framework

and the Linux kernel module/driver responsible for the hardware in focus. In the case

of Android, kernel space describes the Linux kernel while user space represents all

libraries, processes etc. that are built on top of the kernel.

This chapter will examine the following IPC methods that are available on Linux :

System call (see chapter 4.2.1) is the standard way to make kernel space services

available to user space processes.

Input/output control (ioctl) (see chapter 4.2.2) is a specialized system call to facilitate

communication with specific device drivers.

sysfs (see chapter 4.2.3) is a virtual file system mechanism for exporting and accessing

kernel objects, such as device files, which represent actual devices in Linux.

41

4 Hardware Communication

Furthermore, netlink sockets (see chapter 4.2.4) provide a full duplex communication

link between kernel space and user space with a socket-type API.

The way that hardware is usually integrated into the AOSP is the use of Binder, system

services, and HAL (as described in chapter 4.2.5) and comprises the following layers in

order to access hardware functionality via the application framework API:

The Linux kernel must feature the desired hardware driver or hardware module that

interfaces with the hardware.

Within the AOSP, the hardware abstraction layer (HAL) is a standard interface that

exposes hardware functions to the Android system. There are no restrictions considering

the interface and interactions between the hardware driver and the HAL implementation.

System services are modules that run in background and access the HAL interface.

System Server is the main component in the system services and is responsible for

starting other services.

Finally, the Binder IPC mechanism allows crossing process boundaries and thus enables

the application framework to reach into system services.

Figure 4.1 depicts a high level view of the Android architecture in the scope of hardware

functionality.

Following the examination of each IPC method, a summary (chapter 4.3) is given that pro-

vides a comparison between these diverse mechanisms by considering several aspects

that are potentially relevant for the communication with an oven hardware module/driver.

42

4.1 Overview

Figure 4.1: A high level view of the Android system architecture in respect of hardware support
[13].

43

4 Hardware Communication

4.2 IPC Mechanisms

The oven in focus of this thesis utilizes DBus2 as a proprietary serial data transmitter.

DBus2 features several similarities to a controller area network (CAN) bus. For the

purpose of this thesis a DBus2 (or similar) driver/module is assumed as given. The

principal focus of this chapter is the examination of potential IPC mechanisms between

the application layer and the kernel driver.

Each introduced IPC mechanism in this chapter is accompanied with code snippets that

are intended to give a basic overview of their usage. Illustrating IPC mechanisms with

the aid of particular code examples improves the understanding of their inner workings,

such as dependencies and relevant components, and gives a rough estimate of the

required implementation effort.

4.2.1 System Call

System call is the standard mechanism to enable communication between user space

and kernel space (see figure 4.2). Practically any other IPC mechanism in Linux, such

as ioctl (see chapter 4.2.2), sysfs (see chapter 4.2.3) or netlink sockets (see chapter

4.2.4) is ultimately based on system call.

System calls can be utilized to manage processes, files and devices via operations

such as read, write etc. For identification purposes, each system call has a unique

number [27]. There are about 300 system calls in Linux [28]. Acting as a layer between

user space and hardware, system calls feature three principal aspects: For one thing,

system calls provide abstraction in a way that when for instance interacting with files

from another device, the actual low-level communication with the medium that stores the

files (e.g. CD-ROM, USB flash drive etc.) is hidden from the user. Furthermore, system

calls incorporate a mechanism to manage access permissions of system resources, thus

ensuring security and stability. Finally, system calls as a common layer between user

space and kernel space enable stable multitasking and virtual memory management [27].

44

4.2 IPC Mechanisms

Figure 4.2: A schematic overview of the relationships between applications in user space, system
calls and the Linux kernel [27].

Considering Linux, a system call is not called directly from user space. It is invoked

indirectly by writing the respective system call number and desired arguments into desig-

nated registers of the CPU and causing an interrupt. An exception handler (a function

within the kernel) will handle this interrupt by reading the registers, checking for a valid

system call number within the system call table and invokes the appropriate kernel

function with the passed arguments. The system call number should be registered in the

system call table (see table 4.1) with a file and entry point of the target implementation

[27].

Name eax ebx ecx edx esi edi Implementation
sys_restart_syscall 0x00 - - - - - kernel/signal.c
sys_exit 0x01 int error_code - - - - kernel/exit.c
sys_fork 0x02 struct pt_regs * - - - - arch/alpha/kernel/entry.S
sys_read 0x03 unsigned int fd char __user *buf size_t count - - fs/read_write.c
sys_write 0x04 unsigned int fd const char__user *buf size_t count - - fs/read_write.c
sys_open 0x05 const char__user*filename int flags int mode - - fs/open.c
sys_close 0x06 unsigned int fd - - - - fs/open.c
...

Table 4.1: The top of a system call table [8]. The ebx to edi registers hold the first five arguments
of a system call. The eax register holds the system call number.

45

4 Hardware Communication

Adding a System Call

The Linux Kernel Archives [26] were utilized as a base for the following conceptual

integration description.

In general, it is discouraged to create a multi-purpose system call by multiplexing system

calls in Linux. A system call should serve exactly one purpose [27]. This does not mean

a system call should be exclusive to certain modules but its dedicated purpose should

be fixed.

In order to add a custom system call, the arch/arm/include/asm/unistd.h file has to be

edited by including the new system call number (in this example with a new system call

named test_call), as shown in code 4.1.

Code 4.1: Adding a new system call stub

...

#define __NR_SYSCALL_BASE 0

...

#define __NR_restart_syscall (__NR_SYSCALL_BASE+ 0)

#define __NR_exit (__NR_SYSCALL_BASE+ 1)

#define __NR_fork (__NR_SYSCALL_BASE+ 2)

...

#define __NR_rt_tgsigqueueinfo (__NR_SYSCALL_BASE+363)

#define __NR_perf_event_open (__NR_SYSCALL_BASE+364)

#define __NR_test_call (__NR_SYSCALL_BASE+365) /* added */

Further on, the /arch/i386/kernel/entry.S adds test_call to the system call table as

illustrated in code 4.2.

Code 4.2: Adding a new system call table entry

ENTRY(sys_call_table)

...

.long SYMBOL_NAME(sys_rt_tgsigqueueinfo) /* 363 */

.long SYMBOL_NAME(sys_perf_event_open) /* 364 */

.long SYMBOL_NAME(sys_test_call) /* 365 */

46

4.2 IPC Mechanisms

The next step is the system call implementation with proper linkage which has to be

added to the Linux kernel. A test_call.h file should be added either to the /include/linux

folder for an architecture agnostic system call or into the /include/asm for an architecture

dependent implementation.

The test_call.c file should be placed in the relevant folder to maintain consistency: /fs for

a file system relevant system call, /ipc for a process synchronization relevant system

call, /sound for an audio relevant implementation etc. Finally the makefile of the chosen

folder needs to include the added file.

The actual implementation should feature a function that matches the pattern in code

4.3.

Code 4.3: Adding a new system call stub in the test_call.c file

asmlinkage int sys_test_callN(int arg1, char* arg2) {}

Lastly, code 4.4 within the header file creates the binding to the system call with its

respective function.

Code 4.4: Adding a new system call stub in the test_call.h file

_syscall2(int, test_call, int, arg1, char*, arg2);

The number of arguments are determined by N in _syscallN. The first parameter is the

return type, followed by the function name. The next parameters are the arguments in

the form of argument type and argument name.

According to Robert Love [27], there are several reasons not to implement a new system

call but to fall back on alternatives such as ioctl (see chapter 4.2.2) or sysfs (see chapter

4.2.3). For one thing, a system call requires a unique number for identification purposes

which should be an official attribution. Once a system call is implemented and part of

the kernel tree, it cannot be changed without (immense) repercussions. Furthermore,

each architecture potentially requires an independent registration of the new system call.

Finally, a system call might be overkill for a simple information exchange channel.

For the scope of the oven-based Android embedding process, the validity of a few of

47

4 Hardware Communication

these arguments might be diminished. A newly built Linux kernel with a custom system

call, specifically designed for an embedded scenario with a manageable count of target

hardware, is not intended for refining the Linux kernel itself but to serve a specific

purpose. Consequently the diversity of hardware would probably be slim and so would

the effort for integration of the new system call. Besides, the new kernel would be a

rather independent built for a distinct purpose and therefore more lightweight and flexible

towards changes. Nonetheless, compatibility to the latest Android-friendly Linux kernel

is always desirable, not least due the benefits that come with an improved and enhanced

kernel built. By implication, this trade-off between compatibility and independence has

to be considered before deciding whether a new system call should be added or not.

Utilizing System Calls

For plain read/write operations, e.g. reading/writing data from/to devices, the system

calls sys_read /sys_write (see the system call table 4.1) can be utilized. In Linux,

device files make devices accessible as if they were files [42]. The first parameter of

sys_read /sys_write is the file descriptor that identifies the file, and thus the respective

device. The second parameter is a pointer to data which is relevant for reading or writing.

In the case of sys_read, kernel space writes data to this buffer. Considering sys_write,

the buffer holds the data that is about to be written to the device. The third argument

represents the number of bytes that are about to be read/written from/to.

When it comes to diverse devices, drivers can provide a distinct interface that might not

be (easily) accessible with generic sys_read /sys_write system calls. As most devices

are only directly accessible from within the kernel, another mechanism is desired which

is specifically designed to communicate with device drivers.

4.2.2 ioctl

This exactly was the motivation behind input/output control (ioctl). As its name sug-

gests, ioctl is usually considered when it comes to controlling a device. ioctl was explicitly

48

4.2 IPC Mechanisms

designed as a system call that handles device-specific input and output [2]. The prototype

ioctl call is shown in code 4.5.

Code 4.5: The ioctl prototype in user space in sys/ioctl.h

int ioctl(int fd, unsigned long request, ...);

The first parameter of a ioctl call is the file descriptor which specifies the device to talk to.

The second parameter is the request code which tells the device to perform the action

that is specified by the request code. The third optional argument is untyped (usually

char *argp) and might also be a plain integer that adds additional information to the

request code [2]. Besides, the third argument is often a pointer to relevant memory such

as necessary data for the execution of an intended action or a pointer to data that is

about to be written to by the driver when data from the driver is requested.

On the device driver side, the kernel space pendant to the ioctl function is illustrated in

code 4.6 [2].

Code 4.6: The ioctl kernel space function of the receiver

int (*ioctl) (struct inode *inode, struct file *filp,

unsigned int request, unsigned long arg);

Both structs inode and file correspond to the file descriptor (fd) parameter of the user

space function. The third argument is the same request code that is passed by the user

space function.

In order to prevent ambiguity of ioctl calls, there is an official list of ioctl calls (see the

ioctl-number.txt in the Linux documentation). Similar to the official assignment of a

system call number, an official ioctl entry might not be of high priority in the scenario of

an isolated embedded Android OS project. Nonetheless, in regard of future necessities,

such as growing capabilities alongside with increasing hardware performance, compati-

bility might turn out to be of significant importance.

49

4 Hardware Communication

4.2.3 sysfs

Sysfs was introduced with the Linux 2.6 kernel [30] and enables user space processes to

access kernel space data through a virtual file system [30]. Similar to ioctl (see chapter

4.2.1), sysfs originates from the need for communication between user space and a

device driver. Usually, the virtual file system is mounted on in the /sys directory and

includes for instance a devices folder which contains a global hierarchy of the physical

devices. In general, sysfs features two interfaces: the interface to export data from the

kernel and the interface for accessing that data from user space. Due to a mapping

between the files exposed in the virtual file system within user space and the actual

kernel data, modifications to the former will cause respective changes of the latter.

Internally, this mapping is implemented with the help of netlink sockets (see chapter

4.2.4) [31]. Table 4.2 depicts the representation of the data structure in the kernel and

its equivalent in the virtual file system:

Internal External
Kernel Objects Directories
Object Attributes Regular Files
Object Relationships Symbolic Links

Table 4.2: The mapping of the internal data structures and the external virtual file system [30].

An exported kernel object is usually called kobject. Directories and subdirectories reflect

the hierarchical status of kobjects. Attributes of kobjects are usually represented by

ASCII files with each file holding either a single attribute (for clarity) or several attributes

(for the sake of efficiency). The kobject attribute is defined in code 4.7 [30].

Code 4.7: The definition of a kobject attribute

struct attribute {

char *name;

struct module *owner;

umode_t mode;

};

50

4.2 IPC Mechanisms

The owner struct points to the module where the attribute code is located. The mode

value sets the file mode which manages permissions such as for instance read-only.

The following illustrates the API functions to edit kobjects (see code 4.8) as well as their

attributes (see code 4.9) from user space [30].

Code 4.8: API functions to modify sysfs directories/kobjects

int sysfs_create_dir(struct kobject *k);

void sysfs_remove_dir(struct kobject *k);

int sysfs_rename_dir(struct kobject *, const char *new_name);

Code 4.9: API functions to modify sysfs files/kobjects’ attributes

int sysfs_create_file(struct kobject *, const struct attribute *);

void sysfs_remove_file(struct kobject *, const struct attribute *);

int sysfs_update_file(struct kobject *, const struct attribute *);

The return values of type int comply with the Linux error code convention and return

a 0 on success and a negative number (specifying the error code) on error. The API

functions are relatively straightforward and feature the basic CRUD (create, read, update,

delete) functions. Reading attributes will invoke the show function, which copies the

attribute into the buffer that has page size. In Linux, page size usually starts from 4096

Bytes. That is why a single attribute file should not be too large in size.

Relationships between kobjects are defined via symbolic links [30]. Symbolic links hold

a reference to another file or directory. These links can be edited using the functions of

code 4.10.

Code 4.10: API functions to modify relationships between kobjects

int sysfs_create_link(struct kobject *kobj, struct kobject *target,

char *name);

void sysfs_remove_link(struct kobject *, char *name);

When creating a link, the first kobject is the source of the link and the second parameter

is the destination.

51

4 Hardware Communication

4.2.4 Netlink Sockets

Netlink sockets were added with Linux 1.3 [31] and represent an IPC mechanism for

full-duplex connectionless communication between user space and kernel space. Netlink

sockets are defined by the address family AF_NETLINK, as opposed to TCP/IP where

the address family is AF_INET. In comparison to other potential IPC mechanisms,

netlink sockets are far easier to integrate than system calls or ioctl [10]. These other

options require a rather effortful integration at the risk of polluting the kernel, thus

causing instabilities. Netlink sockets merely require the protocol type to be added to the

include/linux/netlink.h file of the Linux kernel and a proper client/server implementation

for both the user and kernel space to communicate in a socket style manner [10].

Due to the socket API that manages message bursts, netlink sockets are restricted to

asynchronous communication. When sending a message via netlink, the message is

placed in the receiver’s queue whereupon the receiver’s reception handler will be invoked

[10].

As opposed to system call or ioctl, netlink sockets support multicasting via group ad-

dresses. A multicast group is defined by a bitmask with a single bit within 4 Bytes,

hence 32 multicast groups can be distinguished. Furthermore, netlink sockets feature

full-duplex communication between user space and kernel space, while system calls

and ioctl merely provide simplex communication, meaning the communication link can

only be initiated unidirectionally from user space to kernel space. Consequently, when

utilizing system calls or ioctl, information from the kernel needs to be polled by user

space processes either on demand or periodically when listening for kernel space events

[10].

Netlink sockets feature an API that is similar to the TCP/IP variant: socket(), sendmsg(),

recvmsg(), close(). Although user space and kernel space netlink sockets feature similar

capabilities, the netlink socket API for each side differs.

In order for an Android application to communicate via netlink sockets, the JNI needs to

be utilized to set up a communication between the application (given it is written in Java)

and its netlink socket implementation.

52

4.2 IPC Mechanisms

Socket Creation

In user space

A socket in user space can be created as shown in code 4.11 [1].

Code 4.11: Creating a socket in user space

int socket(int domain, int type, int protocol_type)

The domain needs to be set to AF_NETLINK to make it a netlink socket. The type sets

the socket type and can be either set to SOCK_RAW to be of raw type or SOCK_DGRAM

when making use of datagrams. Finally, the protocol_type determines the type of

the netlink protocol and can be assigned to the following types: NETLINK_ROUTE,

NETLINK_FIREWALL, NETLINK_ARPD, NETLINK_ROUTE6 NETLINK_IP6_FW. Be-

sides the given types, a custom protocol type can be added [22].

This socket creation will return the socket’s file descriptor. The socket now exists in the

name space but is still missing its address [21].

The sockaddr_nl struct (see code 4.12) describes a netlink client in either kernel space

or user space [22].

Code 4.12: Structure that specifies a socket’s address

struct sockaddr_nl

{

sa_family_t nl_family; // AF_NETLINK

unsigned short nl_pad; // zero

__u32 nl_pid; // process pid

__u32 nl_groups; // multicast bitmask

} nladdr;

Addressing the local netlink socket via unicast is done via nl_pid. Similar to the multicast

bitmask, the nl_pid is also an 8 Byte integer. The obvious choice for nl_pid is the

PID of the given process. However, it is also possible to define multiple sockets within

distinct threads in one single process. Consequently, assigning the PID to these sockets

53

4 Hardware Communication

would render them indiscernible. In order to handle such scenarios, there are different

Formulas (see code 4.13) to generate an appropriate nl_pid [10].

Code 4.13: Formulas to generate a nl_pid

Formula 1: nl_pid = getpid();

Formula 2: pthread_self() << 16 | getpid();

Within kernel space, the nl_pid should always be 0.

Finally, the socket’s name space needs to be connected with its address. The bind()

function “is assigning a name to a socket” [21], as indicated in code 4.14.

Code 4.14: Binding a socket client to a socket name space

int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

In kernel space

The kernel space API for creating a netlink socket differs from the user space implemen-

tation. In kernel space, a netlink socket is created as shown in code 4.15.

Code 4.15: Creating a socket in kernel space

struct sock *netlink_kernel_create(int unit,

void (*callback_func)(struct sock *sk, int len));

The unit parameter is the protocol type and the second parameter points to a designated

callback function (callback_func) that is invoked on the event of a received message

through this socket [10].

Sending and Receiving Messages

In user space

Sending a message from user space requires the message to carry information about

the destination address. This is supplied via another sockaddr_nl struct as the one

above, but instead of providing information about the sender, it holds information about

54

4.2 IPC Mechanisms

the receiver(s). A message that is intended for the kernel should set 0 as the nl_pid. In

case the message is destined for a user space process, the target’s nl_pid should be

set as destination nl_pid, which is the same as the targets PID, given that Formula 1

was used to generate the target socket’s nl_pid. In order to send a multicast, all desired

groups’ bitmasks should be ORed together to determine the final nl_groups integer. In

case a unicast is intended, a 0 should be assigned to nl_groups [10].

Furthermore, the message requires a header (see code 4.16) that is common among all

netlink protocol types [22].

Code 4.16: The header of a netlink message

struct nlmsghdr

{

__u32 nlmsg_len; // message length

__u16 nlmsg_type; // message type

__u16 nlmsg_flags; // additional flags

__u32 nlmsg_seq; // sequence number

__u32 nlmsg_pid; // PID of sending process

};

The message length includes the message header and the payload. The sequence

number needs to be managed by the application itself to track acknowledgements [10].

Messages are sent in datagrams, similar to UDP. Consequently, there is no guarantee

for a successful transmission. However, as with any other UDP communication channel,

mechanisms that ensure delivery can be built upon the netlink socket infrastructure.

Such mechanisms will utilize attributes such as the sequence number of the message

header.

A netlink message is sent using this standard socket API function (see code 4.17) [23].

Code 4.17: The standard socket API function to send a (netlink) message

ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags);

The first argument sets the file descriptor of the sending socket. The second argument

points to the header of the message. The msghdr struct requires several properties

55

4 Hardware Communication

having set prior to sending, such as the target socket struct pointed to by msg.msg_name.

The third parameter enables advanced features for the sending process [23].

It is worth noting that this sendmsg function is a system call [1].

In order to receive a netlink message in user space, an application must first allocate

a buffer that is suffice in size to store the message headers and payloads. A message

is received via the standard recvmsg function (see code 4.18) that is used to receive

messages through sockets [24].

Code 4.18: The standard socket API function to receive a message via (netlink) sockets

ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);

The parameters of the recvmsg function are analogue to the arguments of sendmsg

[24].

Similar to the sendmsg function, the recvmsg function is also a system call [1].

In kernel space

In kernel space, the API for sending a message requires the information about the

sender and receiver to be added to the socket buffer (skbuffer) as illustrated in code

4.19 [10].

Code 4.19: Socket buffer attributes for sending a message from kernel space

NETLINK_CB(skbuffer).groups = loc_groups;

NETLINK_CB(skbuffer).pid = 0; //kernel pid is always 0

NETLINK_CB(skbuffer).dst_groups = dst_groups;

NETLINK_CB(skbuffer).dst_pid = dst_pid;

Having set this sender/receiver information, the actual message can be transmitted as

shown in code 4.20 for a unicast or code 4.21 for a multicast [10].

Code 4.20: Sending a unicast from kernel space

int netlink_unicast(struct sock *ssk, struct sk_buff *skbuffer,

u32 pid, int nonblock);

56

4.2 IPC Mechanisms

Code 4.21: Sending a multicast from kernel space

void netlink_broadcast(struct sock *ssk, struct sk_buff *skbuffer,

u32 pid, u32 group, int allocation);

The ssk struct in code 4.20 and code 4.21 is the kernel space netlink socket as returned

on creation when called netlink_kernel_create(). The message is held in skbuffer->data

and the pid is the receiver’s pid. In the case of a multicast (via netlink_broadcast)

receivers are defined by their group bitmask [10].

To receive a netlink message in kernel space, the respective callback function should be

defined on socket creation via the netlink_kernel_create function, as described in socket

creation.

4.2.5 Binder and HAL

Binder is an inter-process communication (IPC) framework used in Android. As other

operating systems, Android runs applications and services on separate processes

due to memory management, stability, security etc. In order for these processes to

communicate, Binder was introduced. Processes can be identified for instance via

process identifier (PID), parent PID (PPID), group identifier (GID) or user identifier (UID).

Binder is essential for substantial functions on Android, be it the application component

management (such as the Activity life-cycle), utilizing the display, audio in- and output

and any other hardware usage [5]. According to Dianne Hackborn, one of the developers

of Binder, “In the Android platform, the binder is used for nearly everything that happens

across processes in the core platform” [9]. Binder is not a single method for IPC but a

set of mechanisms that are used by Android for IPC.

This chapter will look into two Android IPC mechanisms which utilize Binder, meaning

Intent and Messenger. Afterwards, the components of the Binder framework will be

examined followed by a conceptual approach on how to integrate and use a new HAL

module.

57

4 Hardware Communication

Intent and Messenger

Intent and Messenger are IPC mechanisms on Android which are not components of

the Binder framework but mechanisms that are based on Binder. Both variants can

pass data between processes by eventually utilizing Binder’s faculties. However, these

implementations feature a certain latency due to their immanent overhead [5].

Intent utilizes IntentResolver which identifies the desired receiver among a list of reg-

istered receivers. Hence the potential delay correlates with the amount of registered

receivers.

Messenger places a remote Handler in another process and pushes messages to the

message queue. Consequently the delay depends on the current amount of pending

messages.

In general, the Intent variant tends to feature a higher latency since the lookup of the

desired receiver often exceeds the time of a message pending in the message queue

[5]. However, in the scenario of this thesis where the AOSP is significantly trimmed by

excluding several redundant components (see chapter 3.4.2), the amount of receivers

will drop considerably. As a result, the delay of both variants, Intent and Messenger,

might approximate.

A more efficient way for IPC on Android is making use of a custom Binder implementation

with interfaces that are defined via AIDL.

AIDL

Android Interface Definition Language (AIDL) is used to describe the business operations

of a service that can be accessed remotely by a client. The service is described in a .aidl

file with a syntax similar to Java and may look as illustrated in code 4.22 [5]. Such an

AIDL definition as shown in code 4.22 generates the respective Java code. In fact, code

for two different purposes will be created. For one thing, a Proxy class for accessing

the service by a remote client is generated. Additionally, a Stub class is created which

is used by the service and holds the implementations of the remote methods. Proxies

58

4.2 IPC Mechanisms

and stubs are used by clients and services to abstract from the intricacies of the Binder

protocol (see figure 4.3).

Code 4.22: A simple interface of a service described via AIDL

package com.name.appname;

import com.name.appname.Test;

interface ITestService {

Test getTestById(int id);

void save(inout Test test);

void delete(in Test test);

}

The tags in, out and inout specify the direction of the marshalling process: caller to callee

(in), callee to caller out and bidirectional inout. Marshalling is the process of transforming

higher level data structures for storage or transmission purposes into Parcels. The

reverse process is called unmarshalling and restores the high level data structures such

as data objects. A Parcel is a message container that can be transmitted through the

IBinder interface as defined via AIDL [12].

Figure 4.3: Clients and Services abstract from the Binder protocol via Proxies and Stubs [5].

59

4 Hardware Communication

Binder Driver

All Binder driven communication is enabled and conducted through the Binder Driver,

a kernel-level driver that primarily utilizes ioctl (see code 4.23) for communicating (see

chapter 4.2.2).

Code 4.23: The ioctl call is usually invoked by the Binder Driver

ioctl(binderFd, BINDER_WRITE_READ, &bwd);

BINDER_WRITE_READ is the most important command and enables data transmission.

The third argument is a reference to the data buffer and is defined as shown in code

4.24 [5].

Code 4.24: The definition of the binder_write_read struct

struct binder_write_read {

signed long write_size; /* bytes to write */

signed long write_consumed; /* bytes consumed by driver */

unsigned long write_buffer;

signed long read_size; /* bytes to read */

signed long read_consumed; /* bytes consumed by driver */

unsigned long read_buffer;

};

write_buffer holds commands that should be performed by the driver, such as increment-

ing/decrementing object references. Analogue to the write_buffer in kernel space, upon

return, the read_buffer contains commands for the user space thread to perform.

As described in chapter 4.2.2, ioctl is usually utilized when it comes to controlling a driver.

This is also the case with the Binder Driver. Other commands that can be sent to the

Binder Driver via the ioctl system call are for instance BINDER_SET_MAX_THREADS,

which sets the number of threads for each process when handling requests or for exam-

ple BINDER_SET_CONTEXT_MGR, which sets the Binder Driver’s ContextManager

via first come first serve (see figure 4.4) [5].

60

4.2 IPC Mechanisms

Service

A service in Android is a component of an application that runs in background, either to

perform certain tasks or to offer functionality to other applications.

In order to locate a service to communicate with, a ServiceManager is required. The

ServiceManager (also known as Context Manager) is a service itself and registers with

the Binder Driver in the early stages of Android ’s init process [5]. Subsequently, other

services register with the Context Manager through the Binder Driver. Then, a client can

query the Context Manager to get a handle on the desired service (see figure 4.4).

Figure 4.4: A service is registered with the Context Manager via the Binder Driver. When a
service is requested by a client, the Binder Driver fetches the handle of the inquired
service from the Context Manager and returns it [5].

Similar to Proxies, Managers provide a further level of abstraction towards the Client and

trim the exposed functions to a subset which is relevant for the Client.

A service can either be added to an arbitrary application or directly to the Android

framework as a system service by placing a service implementation (.java file) in the

frameworks/base/services/java/com/android/server/ folder. Such a system service is

necessary when adding support for new hardware.

In Android, hardware types such as cameras or sensors are accessed through their

respective system services which in turn have access to the devices’ functions that are

exposed by the HAL definition. There is for instance a camera system service and a

camera HAL definition.

61

4 Hardware Communication

HAL

Figure 4.5 image depicts the individual components and affiliations relevant for a custom

hardware integration.

Figure 4.5: The implementation-specific components for extending Android ’s HAL [43].

In the following, the individual components are described in the order as they appear in

figure 4.5 from top to bottom (starting with the service).

In order for a system service to communicate with the HAL’s C implementation, the C++

portion of the system service has to be added to frameworks/base/services/jni/ (see

figure 4.5). For the C++ implementation of the system service to be loaded in the first

place, the Android.mk and onload.cpp within the frameworks/base/services/jni/ folder

need to include the respective file.

The constructor of the Java service should invoke a native initialization call of the C++

portion of the system service in order to load the HAL module. Via hw_get_module (see

code 4.25) the dlopen() function will be invoked which will result in a shared library to be

loaded into the address space of the system service and thus, the device functions will

be available to the system service [44].

62

4.2 IPC Mechanisms

Code 4.25: The native initialization of the system service that loads a custom HAL module

static jint init_native(JNIEnv *env, jobject clazz)

{

int err;

hw_module_t* module;

customhw_device_t* dev = NULL;

err = hw_get_module(CUSTOMHW_HARDWARE_MODULE_ID, (hw_module_t

const**)&module);

if (err == 0) {

if (module->methods->open(module, "", ((hw_device_t**) &dev)) !=

0){

return 0;

}

}

return (jint)dev;

}

The common definition for a new hardware type is defined in a header file located in

hardware/libhardware/include/hardware/ (see figure 4.5) and is agnostic to the subtleties

of particular hardware. Code 4.26 defines a new hardware type (a customhw device)

with three prototype function definitions [44].

Code 4.26: Definition of a new hardware type with prototype function definitions

__BEGIN_DECLS

#define CUSTOMHW_HARDWARE_MODULE_ID "customhw"

struct customhw_device_t {

struct hw_device_t common;

int (*read)(char* buffer, int length);

int (*write)(char* buffer, int length);

};

__END_DECLS

63

4 Hardware Communication

For the actual hardware module implementation (the shared library), different vendors,

distributing varying hardware, usually provide custom HAL modules. Therefore the

respective HAL modules are located in device specific path of the AOSP (see figure 4.5).

Consequently, when building for the emulator, the target location is sdk/emulator.

Code 4.27 indicates the contents of a HAL module [44].

Code 4.27: A basic implementation of a HAL module

int fd = 0;

int customhw_read(char* buffer, int length)

{

//implementation of the read function

}

int customhw_write(char* buffer, int length)

{

//implementation of the write function

}

static int open_customhw(const struct hw_module_t* module,

char const* name, struct hw_device_t** device)

{

struct customhw_device_t *device = malloc(sizeof(struct

customhw_device_t));

memset(device, 0, sizeof(*device));

device->read = customhw_read;

device->write = customhw_write;

//further initialization steps were omitted

fd = open("/<driver-path>", O_RDWR);

return 0

}

64

4.2 IPC Mechanisms

The open_customhw function initializes the device struct of type customhw_device_t.

This is the same type as previously defined in the hardware agnostic header file (see

code 4.26) [44]. The prototype device functions (read and write) are mapped to the

implementation of the specific HAL module functions. Additionally, the open function

connects the device driver to the HAL and returns a file descriptor as already seen

in system calls (chapter 4.2.1), ioctl (chapter 4.2.2) and sysfs (chapter 4.2.3). For

clarification, the driver in figure 4.5 is located in the /dev/foo folder.

Additionally, the two structs of code 4.28 have to be added to the HAL module in order to

be registered as such [44].

Code 4.28: Structs required for a HAL module to be registered as such

static struct hw_module_methods_t customhw_module_methods = {

.open = open_customhw

};

const struct hw_module_t HAL_MODULE_INFO_SYM = {

.tag = HARDWARE_MODULE_TAG,

.version_major = 1,

.version_minor = 0,

.id = CUSTOMHW_HARDWARE_MODULE_ID,

.name = "Custom HW Module",

.author = "Example inc.",

.methods = &customhw_module_methods,

};

The two structs of code 4.28 render this HAL module accessible for opening via the sys-

tem service. The open function of customhw_module_methods is the same function that

is called by the system service’s init_native function which invokes module->methods-

>open(...) as described earlier . Additionally, further information of the HAL module is

set such as its id and other meta data, e.g. the name of the module and its author [44].

Finally, after the integration is complete, in order to utilize these device functions, the sys-

tem service can call functions of the HAL definition via JNI, for instance device->read(...).

65

4 Hardware Communication

An application can access these device functions through the respective system service.

The applciation can obtain a handle on the system service through the ContextManager

as described in figure 4.4.

It becomes clear that the purpose of the HAL is, as its name suggests, abstraction

of (manufacturer specific) hardware. To be more precise, the header file located in

hardware/libhardware/include/hardware/ holds the common ground API functions of

a device, while their implementation is manufacturer specific and thus, located in the

device specific folder of the manufacturer within the AOSP (see figure 4.5).

Device functions (e.g. to control or read from a device) are defined from the system

service all the way down to the device driver (see figure 4.5). The communication

between the HAL module (the shared library) in user space and the hardware modules

in kernel space is usually not uniform. Potential mechanisms for such communication

are for instance sockets (see chapter 4.2.4) or sysfs (see chapter 4.2.3). This freedom is

possible because the Android OS does not specify the interaction between the shared

library and the driver [44].

Besides this user space to kernel space communication, the application that intends to

interact with the hardware needs to communicate with the respective system service,

hence a further IPC channel from user space to user space is necessary. This can be

achieved with the Binder framework as described in this chapter.

4.3 Summary

This chapter covered several IPC mechanisms that are potentially eligible for utilizing

when interacting with oven hardware from an Android OS. The application implementing

the user interface should be able to interact with the oven hardware.

In order to make a valid choice of which IPC mechanism is applicable, several aspects

of the kernel module/driver and the system as a whole have to be considered.

66

4.3 Summary

For one thing, the uniqueness of provided hardware functions is of relevance. The IPC

mechanism should not only be able to handle all the existing capabilities of the driver,

but should also be rather easily expandable.

Furthermore, latency of an IPC mechanism is generally a point of interest. However,

oven hardware might not be prone to suffer from delays in the range of milliseconds.

Nonetheless, a mechanism that enables kernel space to initiate messaging, as well, or

that provides event based signaling would be preferred.

Finally, the type of data that will be interchanged between the application and the driver

has to be considered. Linux supports different driver types [2]. Character devices

are usually accessed through the file system with a stream of bytes, such as devices

featuring a serial/parallel port interface. Similar to character devices, block devices are

also accessed via the file system. A block device (for instance a hard disk drive) usually

hosts its own file system and can be accessed by reading/writing data of block size

(usually 512 bytes or more). Lastly, network interfaces are devices (or software modules)

that can exchange data with other hosts by receiving as well as sending data packets.

Consequently, some IPC mechanisms might not be as well suited for specific driver

types as others.

The oven hardware will most likely resemble a character device.

In chapter 4.2, four Linux-based IPC mechanisms were examined. These four IPC

mechanisms are generally provided by Linux and thus also work on Android.

System Call

As a conceptual fact, it is worth noting that every introduced mechanism in chapter 4.2

ultimately utilizes a system call implementation of some sort underneath.

Utilizing existing system calls to interact with the oven hardware is technically possible

but its practicability depends on the implementation of the device driver. In general, a

minimal character device driver usually implements system calls such as read, write,

open and close. Even though system calls might be practicable for communication

between the application and the device driver, this might change in the future when the

hardware is enhanced and the driver is developed further. However, system calls are

67

4 Hardware Communication

indeed a potential choice for interacting with a simple driver.

For supporting a more complex driver, integrating a new system call is generally discour-

aged [27] (e.g. a system call that is specifically designed for interacting with a certain

hardware module/driver) and is entailed by rather effortful implementation work within

the kernel. Besides, due to the rather straightforward nature of an oven hardware driver,

such an undertaking does not seem appropriate.

ioctl

For controlling the oven hardware, the ioctl system call (see chapter 4.2.2) seems to

be a valid IPC mechanism. As ioctl is specifically designed for interacting with device

drivers via the file system, utilizing ioctl confirms the separation of responsibilities

within the Linux kernel. The ioctl system call takes a command as well as a pointer

to memory for executing operations. This way, simple operations (specified by the

command parameter) can be performed, such as turning hardware components on/off.

Furthermore, the additional parameter can point to relevant memory for the execution

of the respective command, either by providing additional information or by pointing

to memory that is designated to be written to by the hardware module/driver, such as

inquired values.

However, adding a ioctl system call seems to result in more modifications within the

kernel as opposed other IPC mechanisms such as sysfs or netlink sockets. Further on,

ioctl is intended to be initiated from user space and thus, information of interest that

might potentially change needs to be polled periodically.

sysfs

Aside from ioctl, sysfs (see chapter 4.2.3) might also seem to be a valid choice for

controlling the oven hardware. In their capabilities, ioctl and sysfs are rather similar.

In general, utilizing sysfs seems to result in a more assessable interface by providing

a straightforward framework of CRUD functions to modify devices and their attributes.

Furthermore, sysfs enables establishing symbolic links, such as binding a driver to a

device. A rather complex hardware driver might benefit from sysfs as an IPC mechanism

as it seems to feature better scalability. This is also an advantage in terms of potential

expansion of the hardware’s capabilities in the future which will result in a more complex

driver. Since ioctl utilizes the command parameter, this is usually handled by a switch-

68

4.3 Summary

case statement which can grow large as the capabilities of the hardware increase.

Considering events initiated from kernel space, the virtual file system in user space

is updated by the kernel via netlink sockets. However, this only affects the virtual file

system and not the application itself. By implication, the application still needs to poll

data from the file system in order to determine changes in the hardware. Additionally,

sysfs provides a text based interface which turns out to be impracticable. The application

needs to parse data on input and compose it respectively on output to comply with the

file system.

Netlink Sockets

The next IPC mechanism that was examined utilizes netlink sockets (chapter 4.2.4)

to establish a communication channel between user space and kernel space. Initially,

netlink sockets were introduced as character driver interfaces that enable bidirectional

communication between user space and kernel space. Netlink sockets provide a socket

API to send and receive messages from both user space and kernel space. In com-

parison to IPC methods such as system call, ioctl and sysfs, which usually require

messaging to be invoked from user space, netlink sockets enable the kernel space

to initiate messaging as well. It seems natural that netlink sockets are the preferred

IPC mechanism when it comes network applications which intend to communicate with

kernel space [1]. Considering an oven hardware driver to utilize netlink sockets as an

IPC mechanism might turn out to be a flexible choice due to the generic socket inter-

face. Additionally, the full-duplex communication provided by netlink sockets increases

responsiveness over most other IPC mechanisms. Furthermore, the implementation of

a netlink socket interface will result in a very thin implementation within the kernel system.

The fact that system call, ioctl and sysfs usually don’t provide a way to initiate interactions

from the kernel requires these IPC mechanisms to periodically poll for potential new data

that is of interest. The user space application needs to invoke periodical read operation

to retrieve the current hardware status, even if no changes occurred. This implies that at

the time a value of interest actually changes, the application will receive this information

at the time of the next read operation, causing a certain delay.

A simple example for such interesting data of the oven hardware would be its current

69

4 Hardware Communication

temperature. The user might want to see the actual temperature of the oven (as

ascertained by the hardware) and possibly a (visual) clue in case for instance the

preheating process is finished. Due to periodic polling, such information will be displayed

in a delayed manner through the Android application in user space. A tolerable delay

obviously varies from a case to case basis so the polling frequency should depend on its

potential result. However, as mentioned earlier, the scenario of interacting with an oven

might not suffer severely from such delays.

The open source nature of Linux, accompanied with continuous development, results in

a wide and still increasing variety of components of the Linux kernel. As a consequence,

when a mechanism is lacking specific desired capabilities, it is likely that another mecha-

nism was already merged into the Linux kernel tree that provides that missing feature.

It so happens that there are indeed mechanisms that enable notifications when changes

in the virtual file system occur. libudev is a library for sysfs that is intended to provide

rich capabilities for device management [30] and incorporates a monitoring interface.

This interface tracks changes within the virtual file system and returns a handle to the

object that changed. The object contains a string of the action that occurred, for instance

add, remove, change or move. There is a filtering mechanism within the monitoring

interface of libudev which filters the directories and files that will be monitored.

Binder and HAL

Finally, chapter 4.2.5 described the conventional process of integrating and commu-

nicating with hardware within the Android OS. Both the integration as well as the

communication appear to require significantly more overhead than the previously exam-

ined IPC mechanisms.

One reason for this extra effort is the HAL. As Android is intended to be a portable OS,

the HAL defines a device type interface that is agnostic to the particular hardware. This

HAL definition is exposed to the Android framework via system services.

The second reason for the overhead that results from this standard Android process for

hardware integration and communication is the system service. The interface for the

system service needs to be defined (via AIDL) and the interaction between the system

service and the application is established with the help of the Binder framework.

70

4.3 Summary

All these mechanisms are usually built on top of the previously described IPC methods.

When utilizing Binder, system services and the HAL, a common ground is accomplished

that is conform to the Android framework. Having to decide which IPC mechanism to

choose, once more this circumstance requires a decision between compatibility, caus-

ing overhead, and individuality, implying less effort but also losses in compatibility. In

comparison to similar challenges with the previously discussed IPC mechanisms, this

Android particular method implies a considerable amount of extra effort, rendering this

particular decision significantly more crucial.

In conclusion, Linux provides a wide variety of possibilities to achieve the desired task.

The utilized mechanism should be chosen by considering the requirements and potential

future development. Furthermore, economic factors have to be factored in, such as the

development effort and component licensing.

Considering the Linux-based IPC mechanisms and estimating a rather rich set of

oven hardware capabilities, either sysfs or netlink sockets appear to be the preferred

mechanism for the user space oven application to communicate with the respective kernel

space oven hardware module/driver. Thinking about a long-term Android deployment,

the standard Android method seems, despite the extra effort, the preferred choice, thus

ensuring a high level of compatibility towards future Android versions to come.

71

5
Conclusion and Future Work

This thesis was conducted in cooperation with BSH with the purpose to investigate the

applicability of Android to be embedded in an oven to provide a user interface. This

investigation consisted of three main topics.

Starting with chapter 2, the graphical performance of Android was examined by utilizing

two different implementations. One implementation was achieved with a layout of Views

while the second variant was conducted with the LibGDX library. For testing data, three

actual oven interfaces were recreated (see chapter 2.2) with the help of documentation

that was provided by BSH. Such realistic data is necessary for the conclusions that

were drawn from this analysis to be valid. The three implemented interfaces featured

varying workload, meaning a different amount of simultaneously rendered elements and

animations.

In order to measure performance (see chapter 2.3), a FrameInspector class was in-

troduced in both implementation variants. The FrameInspector gathered a timestamp

after each rendering of a frame. Consequently, the frames per second can be derived

from the intervals between these timestamps. Both implementation variants included a

nearly identical FrameInspector class. Therefore the relation between the results of both

variants can be considered valid.

The results made clear that both variants are able to render rather simple graphics

with up to 60 fps (see chapter 2.4). When increasing the workload, the View based

implementation drops to 30-40 fps while the LibGDX implementation is still able to

maintain close to 60 fps.

Consequently, it becomes clear that Android is capable to deliver the desired graphi-

73

5 Conclusion and Future Work

cal performance. Even though the View based implementation may suffer when the

workload gets rather high, it still handled rendering with a solid 30 fps which is generally

sufficient. The LibGDX variant illustrated that there is still room for even more complex

graphics.

Chapter 3 investigated the required modifications of an Android application as well as

of the Android OS itself to be eligible for being embedded into an oven. As Android

is designed for mobile devices [37], some aspects require modification to achieve an

appropriate behavior for a stationary oven.

Such aspects comprise for instance disabling physical as well as virtual Android-specific

buttons (see chapter 3.4.3). Since only one application should be accessible on the

oven and this oven application is supposed to be controlled solely via its user interface,

Android-specific buttons (such as the back button or home button) are rendered obsolete.

Further on, the oven application should immediately start after the device has finished its

booting process and never lose focus (see chapter 3.4.1). To ensure this application to

permanently run in foreground, any potential entry point to other system components or

applications should be blocked, this comprises the handling of any uncaught exceptions

that might occur (see chapter 3.4.4). Additionally, components/applications that are not

relevant to the oven scenario, such as the default Android home application, should

be removed from the AOSP to further ensure stability and improve performance (see

chapter 3.4.2).

Besides the identification of such aspects, respective solutions for these modifications

were proposed in this chapter. In some cases, alternative solutions were given which

accomplish the same objective but in a different way. The alternative to for instance

disabling a component would be the removal of the such. The decision between the

former and the latter solution could be influenced by potential future requirements which

imply the usage of these components in future versions. A component that could be

of use in future versions to come might be kept in the system. Consequently simply

disabling said component would be a valid approach in this case. On the other hand,

components that are most likely of no relevance to the current system as well as in

regard of future versions could be disabled and removed entirely.

74

Since all identified aspects that require modification seem manageable with reasonable

amount of work, the implication can be drawn that Android is an appropriate base for an

embedding project.

Chapter 4 examined several potential IPC mechanisms that are potentially eligible to

provide a communication channel between an Android application in user space and a

hardware module/driver in kernel space that is responsible for the oven hardware. The

Android application is supposed to provide the oven’s user interface. Consequently, the

application should be capable to read and control the underlying oven hardware.

Since Android is built on top of a Linux kernel, Linux specific IPC mechanisms were

examined. The basic IPC method for calling the kernel space from user space in Linux

is system call (see chapter 4.2.1). In fact all investigated IPC mechanisms in this chapter

make use of system calls. However, it is discouraged to add a new custom system call

into the Linux kernel and the usage of existing system calls might turn out to be too

generic for the interface of a specific device module/driver.

Consequently, the ioctl system call was specifically introduced to control devices from

user space (see chapter 4.2.2). This makes ioctl generally a valid IPC method for an

Android-driven oven.

Besides ioctl, sysfs is another potentially eligible IPC mechanism for the oven scenario

(see chapter 4.2.3). Since devices are usually represented via device files in Linux,

which mirror the properties of devices, sysfs enables the export of these files into user

space and provides methods to access said files. Using sysfs to modify device files

usually results in a simple and clear interface.

A further potential method for IPC is provided via netlink sockets (see chapter 4.2.4).

Netlink sockets can be used for the communication between user space and kernel

space with a socket-like API. As opposed to the previously mentioned IPC methods,

when using netlink sockets, messaging can be initiated from kernel space, as well. This

way, the user space process does not need to periodically poll for potential data of

interest but the kernel can send a message to the user space process in case a value of

interest has changed.

However, there are other mechanisms available on Linux that serve the purpose to

75

5 Conclusion and Future Work

invoke such events when kernel space data changes. The libudev library for instance

can be used when working with sysfs and is able to monitor changes in the virtual file

system, which holds a mapping of the device properties.

In Android, new hardware is usually integrated with the HAL, which abstracts from the

actual hardware and defines a generic interface of a hardware type. In order to access

the functions of a HAL definition, a system service has to be defined which interfaces with

the HAL. An Android application can communicate with the respective system service

by making use of the Binder framework. In Android hardware is usually accessed in this

manner. Therefore, complying with this infrastructure seems to be a valid approach when

considering long term deployment of Android. Nonetheless, other IPC mechanisms such

as ioctl or sysfs should also be considered as they require less effort. The decision

between potential IPC mechanisms should consider this trade-off between compatibility

to the Android system, effort and actual applicability of the particular IPC mechanism

that is in focus.

Chapters 3 and 4 illustrated the necessary work when embedding Android into home

appliances, such as ovens. There are usually multiple solutions for specific objectives,

which implies that Android is generally applicable as an embedded OS for diverse

devices. This is not least due to the open source nature of the Linux kernel as well as

the AOSP, which renders both systems highly customizable.

The implementation work to make Android suitable for embedding seems manageable

and there is a lot of support for both the Linux kernel as well as for Android.

Furthermore, as Android is already optimized for restricted hardware, it seems to provide

a very efficient base which enables developers to work with a high level programming

language.

Additional work that was not discussed in this thesis is the implementation and/or in-

tegration of a specific device driver for the oven hardware. Such work was not in the

focus of this thesis since it is a matter of the Linux kernel and not specifically concerning

the AOSP. Additionally, the hardware module/driver itself is not of much relevance to

the assessment of Android as an embedded OS for home appliances, specifically for

76

ovens. In order to identify potential other tasks, a thorough requirement analysis has to

be conducted, which is out the scope of this thesis.

In regard of future work in the long term, an estimation of future requirements can provide

conclusions about the applicability of Android. Considering the prevalence of Android

in diverse sub-categories of the mobile domain [36], such as smartphones, tables or

smartwatches, it seems reasonable to consider Android as an embedded OS for diverse

devices, such as home appliances. Although Android might cause a certain overhead

when deployed in rather simple devices, their capabilities tend to increase in the future

and the wide range of Android ’s features might turn out to be a considerable advantage.

The user interface of an oven, such as the oven model introduced in figure 1.1, already

provides a rich set of capabilities that are well suited for being handled with Android.

As opposed to personal computing, where one person is usually interacting with one

computer, the first implications of ubiquitous computing are already apparent. People are

surrounded by a growing number of computers in their everyday lives. These computers

tend to become more intricate as their capabilities grow. Everyday objects, such as

home appliances, might feature integrated sensors for a more autonomous behavior

and/or come with network interfaces to participate in the internet of things. There are

already such devices available on the market. They might not be abundant and as rich

in their features yet, but their expansion parallels the technological progress.

As new features bring new challenges, it is very likely that the AOSP will be extended to

meet future requirements.

77

List of Figures
1.1 The user interface of a series 8 oven by BSH. All three display sections

as well as the ring in the center are touch sensitive [7]. 2

1.2 TMDXEVM3358 - AM335x Evaluation Module [20] 4

2.1 A diagram of the flow of buffer data between an application, the Surface-

Flinger, the Hardware Composer and the display [33]. 8

2.2 The state of the diagram of figure 2.1 after one frame (according to [33]). 9

2.3 A screenshot of the Android View based (left) and LibGDX based (right)

animated splash screen. This screen is assumed to generate the least

workload within this performance analysis. 11

2.4 A screenshot of the Android View based (left) and LibGDX based (right)

selection screen. The CW (clockwise) and CCW (counterclockwise)

buttons simulate the respective swipe interaction along the ring of the

oven’s user interface (see figure 1.1). Such an interaction will cause a

scroll animation of each of the two lists within this screen. 12

2.5 Screens of the Android View based (left) and LibGDX based (right)

Heizart settings. The toggle between the Temperatur (upper) and Dauer

(lower) setting entails a total of 26 animations, 18 of which run in parallel.

This screen is assumed to generate the most workload (in terms of

animations) among the three screen which are under examination. 12

2.6 The results of the logo animation show significantly more fps of the

LibGDX variant compared to the Android View based implementation.

This also becomes apparent when comparing the amount of rendered

frames throughout the animation. 15

2.7 Throughout the scroll animation, the Android View based variant keeps

up a constantly high framerate above 30fps. 15

79

List of Figures

2.8 The measured data of the Temperatur -Dauer -toggle animation shows an

even greater gap between the two implementations when compared to

the results of the logo animation 2.6. The Android View based variant

suffers from significant drops in framerate as the workload increases. . . 16

3.1 The Android architecture is composed of four main layers and five sections

[40]. 22

3.2 The Android architecture with respect to the AOSP. The directories indi-

cate the location of the respective component within the AOSP [44]. . . . 23

3.3 The navigation bar with virtual buttons of an Android device [15]. 29

3.4 The status bar of an Android device [16]. 33

4.1 A high level view of the Android system architecture in respect of hardware

support [13]. 43

4.2 A schematic overview of the relationships between applications in user

space, system calls and the Linux kernel [27]. 45

4.3 Clients and Services abstract from the Binder protocol via Proxies and

Stubs [5]. 59

4.4 A service is registered with the Context Manager via the Binder Driver.

When a service is requested by a client, the Binder Driver fetches the

handle of the inquired service from the Context Manager and returns it [5]. 61

4.5 The implementation-specific components for extending Android ’s HAL [43]. 62

80

List of Tables
1.1 An overview of specifications of the AM335x Evaluation Module [20]. . . . 4

4.1 The top of a system call table [8]. The ebx to edi registers hold the first

five arguments of a system call. The eax register holds the system call

number. 45

4.2 The mapping of the internal data structures and the external virtual file

system [30]. 50

81

Bibliography
[1] Christian Benvenuti. Understanding Linux network internals. O’Reilly, Sebastapol, Calif,

2006.

[2] Jonathan Corbet. Linux device drivers. O’Reilly, Beijing Sebastopol, CA, 2005.

[3] Joshua Drake. Android hacker’s handbook. Wiley, Indianapolis, IN, 2014.

[4] Daniel Frampton, Stephen M. Blackburn, Perry Cheng, Robin J. Garner, David Grove,

J. Eliot B. Moss, and Sergey I. Salishev. Demystifying magic:

high-level low-level programming. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS

International Conference on Virtual Execution Environments, VEE ’09, pages 81–90, New

York, NY, USA, 2009. ACM.

[5] Aleksandar (Saša) Gargenta. Deep dive into android ipc/binder framework at android

builders summit 2013. http://events.linuxfoundation.org/images/stories/

slides/abs2013_gargentas.pdf, 2013.

[6] Philip Geiger, Marc Schickler, Rüdiger Pryss, Johannes Schobel, and Manfred Reichert.

Location-based mobile augmented reality applications: Challenges, examples, lessons

learned. In 10th Int’l Conference on Web Information Systems and Technologies (WEBIST

2014), Special Session on Business Apps, pages 383–394, April 2014.

[7] BSH Hausgeräte GmbH. Bosch online presse-center. http://presse.bosch-home.

at/News_Detail.aspx?id=24539&menueid=2016, 2015. access: 2015-05-17.

[8] gregose. Linux syscall reference. http://syscalls.kernelgrok.com/, 2013. access:

2015-09-01.

[9] Dianne Hackborn. Lkml: Dianne hackborn: Re: [patch 1/6] staging: android: binder:

Remove some funny & usage.

[10] Kevin Kaichuan He. Kernel korner: Why and how to use netlink socket. Linux J.,

2005(130):11–, 2005.

[11] Andrew Hoog. Android Forensics: Investigation, Analysis and Mobile Security for Google

Android. Syngress, 2011.

[12] Google Inc. Android interface definition language (aidl) | android developers.

83

http://events.linuxfoundation.org/images/stories/slides/abs2013_gargentas.pdf
http://events.linuxfoundation.org/images/stories/slides/abs2013_gargentas.pdf
http://presse.bosch-home.at/News_Detail.aspx?id=24539&menueid=2016
http://presse.bosch-home.at/News_Detail.aspx?id=24539&menueid=2016
http://syscalls.kernelgrok.com/

Bibliography

[13] Google Inc. Android interfaces and architecture | android open source project. https:

//source.android.com/devices/. access: 2015-06-25.

[14] Google Inc. Hardware acceleration | android developers. http://developer.android.

com/guide/topics/graphics/hardware-accel.html. access: 2015-06-18.

[15] Google Inc. Hiding the navigation bar | android developers. https://developer.

android.com/training/system-ui/navigation.html. access: 2015-07-11.

[16] Google Inc. Hiding the status bar | android developers. https://developer.android.

com/training/system-ui/status.html. access: 2015-07-13.

[17] Google Inc. Intent | android developers. http://developer.android.com/

reference/android/content/Intent.html, 2015. access: 2015-07-03.

[18] Google Inc. Key layout files | android developers. https://source.android.com/

devices/input/key-layout-files.html, 2015. access: 2015-07-23.

[19] Google Inc. Viewgroup | android developers. http://developer.android.com/

reference/android/view/ViewGroup.html, 2015. access: 2015-06-18.

[20] Texas Instruments Incorporated. Am335x evaluation module - tmdxevm3358 - ti tool folder.

http://www.ti.com/tool/tmdxevm3358, 2012. access: 2015-06-02.

[21] Michael Kerrisk. bind(2) - linux manual page. http://man7.org/linux/man-pages/

man2/bind.2.html, 2015. access: 2015-09-25.

[22] Michael Kerrisk. netlink(7) - linux manual page. http://man7.org/linux/man-pages/

man7/netlink.7.html, 2015. access: 2015-09-25.

[23] Michael Kerrisk. recvmsg(3): receive message from socket - linux man page. http:

//man7.org/linux/man-pages/man2/sendmsg.2.html, 2015. access: 2015-09-

25.

[24] Michael Kerrisk. recvmsg(3): receive message from socket - linux man page. http:

//man7.org/linux/man-pages/man2/recvmsg.2.html, 2015. access: 2015-09-

25.

[25] KioWare R©. Kiosk software from kioware - lockdown kiosk mode and secure kiosk browser.

http://www.kioware.com/, 2015. access: 2015-09-17.

[26] Inc. Linux Kernel Organization. The linux kernel archives. https://www.kernel.org/,

2015. access: 2015-09-01.

84

https://source.android.com/devices/
https://source.android.com/devices/
http://developer.android.com/guide/topics/graphics/hardware-accel.html
http://developer.android.com/guide/topics/graphics/hardware-accel.html
https://developer.android.com/training/system-ui/navigation.html
https://developer.android.com/training/system-ui/navigation.html
https://developer.android.com/training/system-ui/status.html
https://developer.android.com/training/system-ui/status.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Intent.html
https://source.android.com/devices/input/key-layout-files.html
https://source.android.com/devices/input/key-layout-files.html
http://developer.android.com/reference/android/view/ViewGroup.html
http://developer.android.com/reference/android/view/ViewGroup.html
http://www.ti.com/tool/tmdxevm3358
http://man7.org/linux/man-pages/man2/bind.2.html
http://man7.org/linux/man-pages/man2/bind.2.html
http://man7.org/linux/man-pages/man7/netlink.7.html
http://man7.org/linux/man-pages/man7/netlink.7.html
http://man7.org/linux/man-pages/man2/sendmsg.2.html
http://man7.org/linux/man-pages/man2/sendmsg.2.html
http://man7.org/linux/man-pages/man2/recvmsg.2.html
http://man7.org/linux/man-pages/man2/recvmsg.2.html
http://www.kioware.com/
https://www.kernel.org/

Bibliography

[27] Robert Love. Linux kernel development. Addison-Wesley, Upper Saddle River, NJ, 2010.

[28] Robert Love. Linux system programming. O’Reilly Media, Inc, Sebastopol, CA, 2013.

[29] 42Gears Mobility Systems Pvt Ltd. Surelock | mobile device lockdown | supports android,

ios, windows 7/8 and windows mobile/ce. https://www.42gears.com/products/

surelock/, 2015. access: 2015-09-17.

[30] Patrick Mochel. The sysfs filesystem. In Linux Symposium, pages 313–326, 2005.

[31] Pablo Neira-Ayuso, Rafael M Gasca, and Laurent Lefevre. Communicating between the

kernel and user-space in linux using netlink sockets. Software: Practice and Experience,

40(9):797–810, 2010.

[32] Dan R. Olsen. Developing User Interfaces (Interactive Technologies). Morgan Kaufmann,

1998.

[33] Android Open Source Project. Graphics architecture | android open source project. https:

//source.android.com/devices/graphics/architecture.html, 2015. access:

2015-06-10.

[34] Haroon Q Raja. How to change, customize & create android boot animation

[guide]. http://www.addictivetips.com/mobile/how-to-change-customize-

create-android-boot-animation-guide/, 2011. access: 2015-07-25.

[35] Marc Schickler, Rüdiger Pryss, Johannes Schobel, and Manfred Reichert. An engine

enabling location-based mobile augmented reality applications. In Web Information Systems

and Technologies - 10th International Conference, WEBIST 2014, Barcelona, Spain, April

3-5, 2014, Revised Selected Papers, LNBIP. Springer, 2015.

[36] Johannes Schobel, Marc Schickler, Rüdiger Pryss, Fabian Maier, and Manfred Reichert.

Towards process-driven mobile data collection applications: Requirements, challenges,

lessons learned. In 10th Int’l Conference on Web Information Systems and Technologies

(WEBIST 2014), Special Session on Business Apps, pages 371–382, April 2014.

[37] Johannes Schobel, Marc Schickler, Rüdiger Pryss, Hans Nienhaus, and Manfred Reichert.

Using vital sensors in mobile healthcare business applications: Challenges, examples,

lessons learned. In 9th Int’l Conference on Web Information Systems and Technologies

(WEBIST 2013), Special Session on Business Apps, pages 509–518, May 2013.

[38] Johannes Schobel, Marc Schickler, Rüdiger Pryss, and Manfred Reichert. Process-driven

data collection with smart mobile devices. In Web Information Systems and Technologies -

85

https://www.42gears.com/products/surelock/
https://www.42gears.com/products/surelock/
https://source.android.com/devices/graphics/architecture.html
https://source.android.com/devices/graphics/architecture.html
http://www.addictivetips.com/mobile/how-to-change-customize-create-android-boot-animation-guide/
http://www.addictivetips.com/mobile/how-to-change-customize-create-android-boot-animation-guide/

Bibliography

10th International Conference, WEBIST 2014, Barcelona, Spain, Revised Selected Papers,

LNBIP. Springer, 2015.

[39] Andreas Schrade. How-to create a working kiosk mode in android. http:

//www.andreas-schrade.de/2015/02/16/android-tutorial-how-to-

create-a-kiosk-mode-in-android/, 2015. access: 2015-07-17.

[40] Smieh. Android-system-architecture. https://commons.wikimedia.org/wiki/

File:Android-System-Architecture.svg, 2012. access: 2015-06-25.

[41] VT. How-to create kiosk mode on the nexus 7. https://thebitplague.wordpress.

com/2013/04/05/kiosk-mode-on-the-nexus-7/, 2013. access: 2015-07-18.

[42] Brian Ward. How Linux works : what every superuser should know. No Starch Press, San

Francisco, CA, 2015.

[43] Karim Yaghmour. Embedded android workshop with lollipop.

[44] Karim Yaghmour. Embedded Android: Porting, Extending, and Customizing. O’Reilly Media,

2013.

86

http://www.andreas-schrade.de/2015/02/16/android-tutorial-how-to-create-a-kiosk-mode-in-android/
http://www.andreas-schrade.de/2015/02/16/android-tutorial-how-to-create-a-kiosk-mode-in-android/
http://www.andreas-schrade.de/2015/02/16/android-tutorial-how-to-create-a-kiosk-mode-in-android/
https://commons.wikimedia.org/wiki/File:Android-System-Architecture.svg
https://commons.wikimedia.org/wiki/File:Android-System-Architecture.svg
https://thebitplague.wordpress.com/2013/04/05/kiosk-mode-on-the-nexus-7/
https://thebitplague.wordpress.com/2013/04/05/kiosk-mode-on-the-nexus-7/

Name: Patryk Boczon Matrikelnummer: 721828

Erklärung

Ich erkläre, dass ich die Arbeit selbstständig verfasst und keine anderen als die angegebe-

nen Quellen und Hilfsmittel verwendet habe.

Ulm, den .

Patryk Boczon

	Introduction
	Motivation for Android
	Subject Hardware
	Thesis Objective
	Thesis Structure

	Performance Analysis
	Graphics in Android
	Implementation
	Measurement
	Results

	Embedding Android
	Target Specification
	Kiosk Software
	Android Architecture
	Embedding Strategies
	Launcher Application
	Trimming Packages
	Button Handling
	Maintaining the Focus
	Power Management
	Corporate Design

	Implications

	Hardware Communication
	Overview
	IPC Mechanisms
	System Call
	ioctl
	sysfs
	Netlink Sockets
	Binder and HAL

	Summary

	Conclusion and Future Work

