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Abstract
Companies increasingly adopt process-aware information systems (PAISs) to model, execute, monitor, and
evolve their business processes. Though the handling of temporal constraints (e.g., deadlines, or time lags
between activities) is crucial for the proper support of business processes, existing PAISs vary significantly
regarding the support of the temporal perspective. Both the formal specification and the operational support
of temporal constraints constitute fundamental challenges in this context. In previous work, we introduced
process time patterns, which facilitate the comparison and evaluation of PAISs in respect to their support of
the temporal perspective. Furthermore, we provided empirical evidence for these time patterns. To avoid
ambiguities and to ease the use as well as the implementation of the time patterns, this paper formally defines
their semantics. To additionally foster the use of the patterns for a wide range of process modeling languages
and to enable pattern integration with existing PAISs, the proposed semantics are expressed independently
of a particular process meta model. Altogether, the presented pattern formalization will be fundamental for
introducing the temporal perspective in PAISs.

Keywords: Process-aware Information System, Workflow Patterns, Process Time Patterns, Temporal
Perspective, Temporal Constraints, Formal Semantics

1. Introduction

Companies strive for comprehensive life cycle support of their business processes [1, 2]. In particular,
IT support for analyzing, modeling, executing, monitoring, and evolving business processes is becoming
increasingly important [3, 4]. In this context, process-aware information systems (PAISs) offer promising
perspectives by enabling companies to define their business processes in terms of explicit process schemas as
well as to create, execute and monitor related process instances in a controlled and efficient manner [1].

Both the formal specification and the operational support of temporal constraints constitute fundamental
challenges for PAISs [5, 6, 7, 8]. Although there exist many proposals for supporting the temporal process
perspective, no comprehensive criteria for systematically assessing its support by a PAIS exist. To foster
comparability and to facilitate the selection of PAIS-enabling technologies in a given application environment,
workflow patterns have been introduced [9, 10, 11, 12]. Respective patterns allow analyzing the expressiveness
of process modeling languages and tools in respect to different process perspectives, including control flow [9],
data flow [10], resources [11], activities [13], exceptions [14], and process changes [12, 15, 16]. Recently, we
extended the workflow patterns by a set of 10 process time patterns (time patterns for short) suitable for
evaluating the support of the temporal perspective in PAISs [17, 18]. Examples of time patterns include
Time Lags between Activities, Durations, and Fixed Date Elements. Empirical evidence, we gained in case
studies [18], has confirmed that the proposed time patterns are common in practice and are required for
properly modeling the temporal perspective of processes in many application domains [18]. Finally, we
evaluated different approaches and tools in respect to their time pattern support [18].
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Figure 1: Interdependencies between different temporal constraints

1.1. Problem Statement
Our evaluation of approaches and tools incorporating the temporal process perspective has revealed the

need for precise formal semantics of the time patterns. In particular, if such formal semantics are not present,
patterns may be interpreted differently and ambiguities regarding informal pattern descriptions will result. In
turn, this would hamper both pattern implementation and a pattern-based comparison of PAISs. Only when
providing these precise formal semantics, it can be ensured that different implementations of a particular
time pattern share the same semantics and, hence, have the same effects during process enactment. Precise
formal semantics further constitute a prerequisite for verifying the temporal perspective of a business process
at both build- and run-time [5, 6, 7, 19, 20], i.e., to check whether the temporal constraints of a process are
satisfiable. Moreover, formal semantics are needed to be able to detect temporal inconsistencies in a process
schema caused by interactions among different time pattern occurrences. Example 1 illustrates how such
interactions may result in hidden effects. In particular, note that the occurrence of a time pattern within a
process schema can never be treated in isolation. This significantly differentiates the time patterns from
related patterns (e.g., workflow or data patterns [9, 10]), making a formal specification of their semantics
indispensable. Only then a robust and error-free process execution becomes possible. Precise formal semantics
are further required to achieve a common understanding of process schemas using the time patterns.

Example 1 (Interactions between temporal constraints). Fig. 1 depicts process schema S1 consisting
of three activities and two control gateways. Each activity is associated with a minimum and maximum
duration (Pattern: Duration). Furthermore, time lags exist between the end of activity A1 and the start of
activity A3, between the end of A1 and the start of A4, and between the end of A3 and the end of A4 (Pattern:
Time Lags between Activities). At first glance, the process schema seems to be sound. However, when taking
a closer look at it, one realizes that S1 can never be executed without violating at least one of its temporal
constraints. In particular, A3 may be started the earliest 20 time units after completing A1 and takes at least
30 time units to complete, i.e., it completes at least 50 time units after completing A1. In turn, A4 must
start the latest 25 time units after completing A1 and takes at most 10 time units to complete. Thus, A4
completes at most 35 times units after completing A1. However, this violates the time lag between A3 and
A4. Particularly, it is not possible to complete A3 within 10 time units after completing A4.

In order to tackle the issues and limitations outlined above, formal semantics need to specify how the
various time patterns interact with the elements of the control flow perspective, i.e., control flow patterns
like loop, XOR-split, or AND-join. Moreover, in the context of loops and concurrent data access, for time
patterns referring to process instance data (e.g., appointments made during run-time), it must be precisely
defined which version of the data value shall be used for a specific pattern instance. For example, if a data
object may be modified more than once during run-time, it must always be clear which version of the data
value shall be used when evaluating a particular temporal constraint referring to the data object.

Since a pattern is defined as a reusable solution to a commonly occurring problem, the time patterns
should be applicable to a wide range of application scenarios. A particular challenge is to provide a formal
description of the time patterns, which is independent of a specific process modeling language or paradigm.
Only then time patterns as well as their formal semantics will be widely accepted. Finally, this is required to
enable PAIS engineers to integrate the time patterns without need to cope with language-specific issues.
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1.2. Contribution
This paper complements our previous work on time patterns [17, 18] by providing precise formal semantics

for them. These semantics are defined independent of a specific process modeling language or paradigm.
Furthermore, we illustrate the pattern semantics through realistic examples and detailed explanations.

To define the pattern semantics independent of any process modeling language, while still closely
intertwined with process execution semantics, we use execution traces as the basis for the formalization [21].
An execution trace may be considered as logical representation of the execution history of a process instance,
i.e., it reflects what happened during the execution of a particular process instance. We formally describe time
pattern semantics by characterizing which traces are producible on a process schema that contains a particular
time pattern, i.e., we formally describe which traces are temporally compliant with the pattern semantics.
This enables the implementation of techniques for checking the conformance of a process instance [22] with
respect to a given process schema and its temporal constraints (i.e., occurrences of the time patterns). For
pattern occurrences depending on run-time data of the process instance (i.e., on process instance data), we
define which version of a data value shall be valid for a specific pattern instance. Finally, based on the
presented formal semantics, we provide a reference implementation of selected time pattern variants.

As will be shown, the provided formal semantics contribute to overcome the problems discussed in
Sect. 1.1. In particular, they will foster the integration of the temporal perspective into PAISs broadening
their application scope significantly.

Sect. 2 provides background information and summarizes the time patterns. Sect. 3 discusses the research
method we applied for defining and evaluating the proposed formal semantics. Sect. 4 then provides a formal
semantics for each of the 10 time patterns. Sect. 5 elaborates on our reference implementation of the time
patterns. In Sect. 6, we discuss the expected impact of the proposed formal pattern semantics as well as
their usefulness for implementing time support in PAISs. Sect. 7 deals with potential threats regarding the
validity of our work. Sect. 8 discusses related work and Sect. 9 concludes with a summary.

2. Backgrounds

This section provides basic notions needed for understanding this paper. Further, it summarizes the time
patterns we informally introduced in [17, 18].

2.1. Basic Notions
A process-aware information system (PAIS) is a specific type of information system, providing process

support functions and separating process logic from application code. At build-time, the process logic is
explicitly defined based on the elements provided by a process meta model (cf. Fig. 2). For each business
process to be supported by the PAIS, a process type represented by a process schema is defined. The latter
corresponds to a directed graph that comprises a set of nodes, representing activities and gateways (e.g.,
Start-/End-Nodes and AND-joins), as well as a set of control edges specifying precedence relations between
nodes (cf. Fig. 2). Furthermore, the notion of activity set refers to any subset of the activities of a process
schema, whereby the elements of an activity set do not have to meet any structural requirements (e.g.,
connected component). When referring to specific regions of a process schema, in turn, we use the notion of
process fragment. The latter refers to a sub-graph of a process schema with a single entry and a single exit
node. In addition to the described control flow elements, a process schema may contain process-relevant data
objects as well as data edges linking activities with data objects (cf. Fig. 2). More precisely, a data edge
either represents a read or a write access of the respective activity to the referred data object.

At run-time, process instances may be created and executed according to the predefined process schema.
An activity instance, in turn, represents the execution of a single activity in the context of a particular
process instance. During run-time, a specific data element may be written several times, resulting in different
versions of a data value. Finally, a process instance set refers to a collection of process instances executed
by the PAIS. When executing a process instance, events may be triggered either by the process instance
itself (e.g., start of the process instance), a process node (e.g., start of an activity instance, cf. Fig. 3), or
an external source (e.g., receipt of a message). We use the notion of event as a general term for something
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Category I: Durations and Time Lags
TP1 Time Lags between Activities
TP2 Durations
TP3 Time Lags between Events

Category II: Restricting Execution Times
TP4 Fixed Date Elements
TP5 Schedule Restricted Elements
TP6 Time-based Restrictions
TP7 Validity Period

Category III: Variability
TP8 Time-dependent Variability

Category II: Recurrent Process Elements
TP9 Cyclic Elements
TP10 Periodicity

Table 1: Process time pattern catalogue [18]

happening during process execution. We assume that activity instances are executed according to the activity
life cycle depicted in Fig. 3.When starting a process instance, its activities are in state Not Activated. As soon
as a particular activity becomes enabled, it enters state Activated. When a user starts an activated activity
instance it enters state Started and a corresponding start event is created. As soon as the user completes
the activity instance, its state switches to Completed and an end event is generated. Finally, non-executed
activities (e.g., activities in a non-selected path of an XOR-split) enter state Skipped.

2.2. Process Time Patterns
Process Time Patterns (TP) represent temporal constraints commonly occurring in PAISs (cf. Fig. 1)

[17, 18]. The 10 time patterns can be divided into 4 distinct categories, based on their implications (cf.
Fig. 1). Pattern Category I (Durations and Time Lags) provides support for expressing durations of process
elements at different levels of granularity, i.e., activities, activity sets, processes, or sets of process instances.
Furthermore, this category covers time lags between activities or—more generally—between process events
(e.g., milestones). Pattern Category II (Restricting Execution Times) allows specifying constraints regarding
possible execution times of single activities or an entire process (e.g., deadlines). Category III (Variability)
provides support for expressing time-based variability during process execution (e.g., varying control-flow
depending on temporal aspects). Finally, Category IV (Recurrent Process Elements) comprises patterns for
expressing temporal constraints in connection with recurrent activities or process fragments (e.g., cyclic flows
and periodicity). Example 2 introduces a simple process along which we will illustrate selected time patterns.
A basic understanding of these patterns is required to understand the formalization provided in Sect. 4.

Example 2 (Patient Treatment Process). Consider the simplified patient treatment process depicted in
Fig. 4.1 First, a doctor orders a medical procedure for a patient. Then, the responsible nurse makes an
appointment with the medical department the treatment will take place in. Before that, the patient needs to be
informed about the procedure and be prepared for it. Just before the treatment starts, a specific preparation is
required. In turn, after completing the treatment, the doctor creates a short report (if requested). Finally,
aftercare is provided and the doctor creates a final medical report, which is then added to the patient record.

When considering the temporal perspective of this business process, a number of temporal constraints
can be observed. Example 3 relates these temporal constraints to the time patterns of Fig. 1.

1Note that we use an extension of BPMN to visualize time patterns in process schemas (see [18] for details).
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Figure 4: Simplified treatment process with temporal constraints

Example 3 (Temporal Constraints). Reconsider Fig. 4. The appointment of the treatment, made in
the context of activity make appointment, must be met during process execution. This constitutes a Fixed
Date Element (TP4), restricting the earliest start date of activity perform treatment. In particular,
the respective date will be set during run-time by activity make appointment and be stored in data object
date. Moreover, this constraint affects the scheduling of preceding activities as well; e.g., the patient needs
to be prepared exactly 1 day before the treatment takes place. This represents a Time Lag between two
Activities (TP1) between the start of prepare patient and that of perform treatment. Hence, prepare
patient needs to be scheduled in accordance with the appointment of the treatment. Additionally, the
preparation of the patient may only be performed during opening hours of the anesthetics department, i.e.,
from Monday till Friday between 8am and 4pm. In turn, this represents a Schedule Restricted Element
(TP5). It further restricts possible execution times of prepare patient and hence those of the treatment
itself. Next, due to a high utilization of the treatment room, the preparation of the treatment should not
take more than 1 hour; otherwise, the treatment might be delayed. This represents a maximum Duration
(TP2) for activity prepare treatment. In turn, the treatment itself may take between 1 and 4 hours,
which represents a minimum as well as a maximum Duration (TP2), i.e., an interval. Finally, during the
execution of activity perform aftercare, different drugs are given to the patient, according to a treatment
plan defined by activity perform treatment. Such a treatment plan may state, for example, that drug A
must be administered every day at 8 am, 1 pm, and 6 pm, and drug B every two hours, except when drug A is
administered within the same hour. This plan represents a Periodicity (TP10); more precisely, it constitutes
the underlying periodicity rule of the Periodicity represented by activity perform aftercare.

Example 3 demonstrates the diversity and complexity of the temporal perspective of business processes. It
further emphasizes the need for precise and formal semantics of the different time patterns. For example,
consider the Fixed Date Element of activity perform treatment in combination with the Time Lag be-
tween activities prepare patient and perform treatment and the Schedule Restricted Element of activity
prepare patient. When combining these three temporal constraints, one may deduce that the treatment
itself may only be performed from Tuesday to Saturday. In turn, this restriction needs to be considered
when arranging the appointment for the treatment during activity make appointment. As a prerequisite for
determining such implicit restrictions, a precise formal semantics needs to be defined for each time pattern.
Only then, algorithms for automatically detecting such complex interdependencies can be developed. As
another example, assume that in certain cases it becomes necessary to reschedule the appointment of activity
perform treatment when informing the patient (e.g., due to an overbooking of the treatment room).
For this case, a write access of activity inform patient to data object date must be added, which allows
this activity to modify the appointment for the Fixed Date Element of activity perform treatment. However,
when changing this appointment, it is not fully clear how to treat activity prepare patient. In particular,
the latter must be executed exactly one day prior to activity perform treatment. As a result, if inform
patient is executed after activity prepare patient, it must be decided whether or not the process instance
may be continued as is. Particularly, it must be determined whether the treatment shall be rescheduled
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within the same day (i.e., the Time Lag between prepare patient and perform treatment is still satisfied)
or the preparation of the patient must be redone in accordance with the new appointment for the treatment.
Again, such questions can be only be addressed by the PAIS based on precise and formal semantics of the
time patterns.

As illustrated by Example 3, there exist numerous variants of the time patterns. To cope with this
variability and to keep the number of patterns manageable, design choices (DC) allow for their parametriza-
tion [17, 18]. For example, whether a time lag represents a minimum value, maximum value or both (i.e., an
interval) constitutes a design choice of the Time Lags between Activities pattern (TP1). We denote a specific
combination of design choices of a time pattern as a pattern variant. Usually, PAISs only support a subset
of the design choices (i.e., variants) of a particular pattern. However, note that each pattern variant has
a slightly different semantics. For example, to be able to exactly define the semantics of pattern Duration
(TP2), we must specify whether the duration corresponds to a minimum value, a maximum value or both,
i.e., the semantics of TP2 depends on the actual pattern variant.

Finally, when applying a specific pattern variant to a process schema, the restriction represented by the
pattern occurrences needs to be determined. In particular, a pattern variant only represents the type of
restriction, whereas the restriction itself is configured when applying the pattern to a process schema. When
applying pattern Duration (TP2) to an activity, for example, the duration restriction needs to be specified,
e.g., “maximum duration: 1 hour” for activity prepare treatment in Example 3. Likewise, it needs to be
defined how the particular appointment required in the context of pattern Fixed Date Element for activity
perform treatment shall be determined at run-time (cf. Example 3). For this purpose, parameter values
allow determining the specific temporal constraint represented by a pattern occurrence. Respective parameter
values may either be set at build-time (i.e., all process instances share the same value) or at run-time when
creating or executing process instances. In the latter case, the parameter value is stored in a data object of
the process instance, which will be written either when creating the process instance or executing one of its
activities (e.g., data object date in Fig. 4). The stored data value is then evaluated by the corresponding
pattern instance at run-time. For this purpose, a pattern occurrence may be linked to a data object. In
Fig. 4, for example, the Fixed Date Element (cf. activity perform treatment) is linked to data object date.

3. Research Method

This section describes the research method we applied to develop the formal semantics for the time
patterns. This includes the initial identification of the time patterns [18] as well as the definition of their
semantics (cf. Fig. 5). We further describe essential requirements for defining a pattern semantics and present
the procedure applied for their elicitation.

3.1. Initial Pattern Identification & Validation
Selected time patterns were first introduced in [17]. In turn, [18] provided an informal description of all

time patterns as well as empirical evidence for them. Selection criteria were “patterns covering temporal
aspects relevant for the modeling and control of business processes and activities, respectively” [18]. Other
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Healthcare Domain (Women’s Hospital) [25, 26] 88 processes
Healthcare Domain (Internal Medicine) [27, 28, 29] 93 processes
Automotive Domain [30, 31] 55 processes
On-demand Air Service [32, 33] 2 processes
Airline Catering Services [34] 1 process
Transportation [35] 9 processes
Software Engineering [36] 10 processes
Event Marketinga 1 process
Financial Servicea 10 processes
Municipality Processes [37] 4 processes
Student Administrationa 73 processes
Software Asset Managementa [38] 56 processes
Build-to-Order Machine Manufacturera 37 processes

Total: 439 processes

a Due to copyright & secrecy
restrictions some of these pro-
cesses cannot be made publicly
available.

Table 2: Data sources [18]

process aspects (e.g., data flow) or time support features (e.g., escalation management, verification) were not
considered and are thus outside the scope of this paper.

To create a solid basis for the time patterns, first of all, a candidate pattern list was created based on
the knowledge and experiences of the authors in the field. Furthermore, design choices were introduced for
parameterizing the patterns to keep their number manageable. Then, large sets of industrial cases, process
schemas, and process documentation were analyzed (cf. Table 2) to provide empirical evidence for each time
pattern and to refine the pattern list. Finally, this resulted in a set of 10 time patterns [18]. To validate them
and to assess their relevance and completeness, additionally, we conducted a systematic literature review [18].
Finally, existing approaches and tools were evaluated regarding the support of the time patterns.

3.2. Pattern Semantics: Requirements, Procedure & Verification
This section describes essential requirements for defining formal time pattern semantics, the procedure

we applied for identifying pattern semantics, and the overall evaluation process chosen. In this context, we
follow a design science approach as proposed by Hevner et al. [23, 24] which is outlined in Fig. 6.

Requirements. To be useful for engineers as well as researchers, formal pattern semantics should be as generic
as possible, while at the same time being as specific as necessary to avoid ambiguities (R1). In particular, if
formal pattern semantics are too restrictive, they will not be applicable in many practically relevant cases.
Conversely, if it is too permissive, it may allow for too many ambiguities and hence be of limited benefit
(especially when trying to detect inconsistencies). Furthermore, formal pattern semantics must consider
all pattern variants that may be configured based on different combinations of design choices (R2). To
ensure that different implementations of a particular pattern share the same underlying semantics, its formal
semantics needs to precisely define the effects, the respective pattern shall have on process enactment, as
well as its interactions with different elements of the control flow perspective (R3). For the same reason, the
impact, process instance data has on pattern semantics, needs to be specified (R4). Finally, as emphasized,
any pattern semantics will only be useful for PAIS engineers if it is independent of a particular process
modeling language (e.g., BPMN vs. EPC) or process modeling paradigm (e.g., imperative vs. declarative)
(R5).

Identification. To identify the semantics of each time pattern, we first analyze the data sources used for
pattern identification as well as three additional sources (cf. Table 2). Note that most data sources were
gathered by us over the last decade. Moreover, in most cases we were involved in the elicitation of the
processes (e.g., interviews with domain experts). In all these cases, we paid attention to thoroughly and
completely record respective processes. We not only described the control flow, data flow, and organizational
perspectives, but also documented additional requirements and business rules like exceptional cases, exception
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handling rules, compliance rules, and temporal constraints along with the processes. Moreover, we ensured
that these additional requirements are accurately described including their intended purpose and effects
as declared by domain experts. This enables us to use the data sources to analyze the intended semantics
of each pattern occurrence. Next, for each time pattern, we combine the collected semantics of all its
occurrences–considering the respective pattern variant–to derive the overall semantics of the pattern. Finally,
if appropriate, we remove unnecessary restrictions from the overall pattern semantics.

Formalization. Workflow patterns have been defined based on languages with an inherent formal semantics
(e.g., pi-calculus [39]). However, such formalisms cannot be used to define the semantics of time patterns
without significant extensions since they do not consider the temporal perspective. Beyond that, different
techniques, commonly used for describing the temporal properties of a system, exist. Examples include
temporal logics [40], timed Petri nets [41], timed automata [42], and execution traces [21]. Basically, all these
techniques can be used for describing the formal semantics of time patterns.

On one hand, the definitions of the formal semantics should be independent of a particular process
modeling language or paradigm. On the other, they should be closely related to the execution semantics
of processes. To cope with this trade-off, this paper uses execution traces as basis for formalizing pattern
semantics. An execution trace represents a possible execution of a process schema in terms of all events
that occurred during the execution of the respective process instance together with their time stamps (cf.
Sect. 4.1). Based on this, we can specify which execution traces (i.e., process instances) are valid according to
the time patterns found in the respective process schema. Thus, we obtain an approach that is independent
of the particular process modeling language and paradigm; yet, we are still able to precisely define pattern
semantics. By associating the defined pattern semantics with a process meta model, the effects a particular
pattern has on process enactment, as well as its interactions with different elements of the meta model, can
be derived in a precise and formal way.

Taking the definition of the formal semantics we reconsider each pattern occurrence observed in any
data source (cf. Table 2), and compare the described semantics with the formal definitions; i.e., we revisit
the Identification step (cf. Fig. 6). If the semantics of one of the pattern occurrences in the data sources
is not precise enough, we discuss it with the co-authors not involved in the identification of this particular
occurrence. Whenever necessary, we discuss a pattern occurrence with the respective stakeholder involved
in the initial elicitation of the data source to ensure that the pattern semantics meets the one the domain
experts had in mind. If the formal semantics of a particular time pattern needs to be modified, we implement
the required change (i.e., we repeat steps Identification and Formalization). We repeat these steps until all
occurrences of every pattern observed in any data source are covered by the formal pattern semantics. This
ensures that the formal semantics indeed cover all pattern occurrences in the data sources.

Implementation and Testing. In a final step, we use the formal semantics of the time patterns as foundation
for implementing selected time pattern variants in the ATAPIS Toolset [43]. With this toolset we aim to
provide a comprehensive framework enabling the specification, enactment and monitoring of processes with
temporal constraints in PAISs. Moreover, we are currently expanding this implementation such that it may
serve as a reference implementation for the time patterns. We further use it to once more test that the formal
descriptions accurately describe the semantics of the time patterns. For the latter purpose, we model several
processes from the data sources using the ATAPIS Toolset. For each of the resulting process schemas, we
then use ATAPIS to simulate the execution of multiple process instances. Finally, for each pattern occurrence
and for each of the simulated process instances we compare the resulting execution log with the expected
results and the formal semantics of the time patterns. This shows that both the formal semantics of the time
patterns and their implementation work as intended.

4. On the Formal Semantics of Time Patterns

Sect. 4.1 first defines basic notions (e.g., event and trace) used throughout this paper. Sect. 4.2 then
provides the formal semantics of each time pattern.
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4.1. Temporal Execution Traces
We use the notion of event as a general term for something that happens during the execution of a process

instance, e.g., the start and end of an activity, executed in the context of a particular process instance,
constitute such events (cf. Fig. 7). External events (e.g., reaching a milestone or receiving a message) may
exist as well. Finally, intermediate events may be triggered inside a long-running activity (cf. Fig. 7).

Definition 1 (Event, Event occurrence). Let PS be the set of all process schemas and E be the set of
all events. Then: The set of all events that may occur during the execution of an instance I of process schema
S ∈ PS is denoted as ES ⊆ E. (Note that, without loss of generality, we assume unique labeling of events.)
Let further C be the total set of absolute time points. Then:

ϕ = (e, t) ∈ E × C

denotes the occurrence of event e ∈ E at time point t ∈ C, i.e., t defines the exact point in time at which event
e occurred. Moreover, ΦS ⊆ ES × C denotes the set of all possible event occurrences during the execution of
process schema S. Finally, for the sake of brevity, we use notions ϕe and ϕt when referring to event e or
time stamp t of an event occurrence ϕ = (e, t). ♦

Based on events and event occurrences, we define the notion of temporal execution trace (trace for short)
which is inspired by [21]. We assume that all events related to the execution of a process instance are recorded
in a temporal execution trace together with a time stamp designating their time of occurrence.Formally:

Definition 2 (Temporal Execution Trace). Let PS be the set of all process schemas. Then: For schema
S ∈ PS, QS denotes the set of all temporal execution traces producible on S. Let ΦS be the set of all event
occurrences that may occur during the execution of S and ϕ = (e, t) ∈ ΦS denote the occurrence of event e at
time point t. A temporal execution trace σS ∈ QS is defined as ordered set of event occurrences ϕi:

σS = 〈ϕ1, . . . , ϕn〉 , ϕi ∈ ΦS , i = 1, . . . , n, n ∈ N

Without loss of generality, we assume that events in σS do not occur at exactly the same point in time. ♦

Note that we consider events to be instantaneous. Thus—with sufficient clock precision—one may assume
that there are no events of a trace occurring at exactly the same time. We make this assumption to foster
comprehensibility of the pattern semantics and to reduce ambiguities. However, it does not constitute a
restriction of the presented semantics, and may be dropped without having to change pattern semantics.
In the latter case, however, it might not always be clear which event exactly violates a particular pattern
occurrence (i.e., there might be multiple equivalent reasons for the violation of a pattern occurrence).

Since the pattern semantics are defined based on events and event occurrences, we define nodes, activities,
and gateways based on events. Remember that nodes may represent both activities and gateways (cf.
Sect. 2.1). Respective definitions are based on the events that may occur during the execution of the
particular node. Since gateways (e.g., XOR-splits, AND-joins) merely serve structuring purposes, without
loss of generality, we may assume that the processing of a gateway does not take any time during process
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execution. If a gateway consumes time during its execution (e.g., evaluating an XOR decision), this may
simply be represented by an activity directly preceding the gateway. Note that, this is no particular restriction
of the presented pattern semantics, but only serves the purpose of simplifying some of the formulas.

Definition 3 (Node, Activity, and Gateway). Let PS be the set of all process schemas and NS ⊂ 2ES

be the set of all nodes process schema S ∈ PS refers to.
A node n ∈ NS is defined as unique, non-empty set of events n ⊂ ES (i.e., ∀n ∈ NS : n 6= ∅). Thereby,

the sets of events of all nodes belonging to S are disjoint: ∀n,m ∈ NS , n 6= m : n ∩m = ∅. An occurrence of
a node n in a temporal execution trace σS is marked by the occurrence of at least one of the respective events,
i.e., ∃e ∈ n, ∃t ∈ C : ϕe = (e, t) ∈ σS. In turn, an activity is a special kind of node with a single start and
single end event (cf. Sect. 2.1). Let AS ⊆ NS be the total set of activities S refers to. An activity a ∈ AS
contains (at least) a unique start event eaS

and a unique end event eaE
, i.e.,

∀a ∈ AS : ∃eaS
, eaE

∈ ES : {eaS
, eaE
} ⊆ a

An occurrence of an activity a is marked by the occurrence of at least both the start event eaS
and the end

event eaE
in trace σS, i.e., ∃t1, t2 ∈ C : ϕaS

= (eaS
, t1) ∈ σS ∧ ϕaE

= (eaE
, t2) ∈ σS.

Finally, a gateway is a special kind of node represented by single event e denoting the time the gateway is
processed by the system, i.e., for a gateway c ∈ NS it holds |c| = 1. ♦

Example 4 illustrates these definitions.

Example 4 (Temporal Execution Trace). Consider Fig. 7. An example of a temporal execution trace
on process schema S2 may be as follows:2

σ = 〈(e0, 2), (eA1S , 5), (eA1E , 10), (e2, 11), (eA5S , 15), (eA5E , 18),
(e10, 19), (eA6S , 30), (eA6I , 32), (eA6E , 37), (e7, 38), (e8, 39)〉

This trace indicates that the corresponding process instance was started (i.e., e0) at time 2. At time 5, activity
A1 was started (eA1S). In turn, A1 was completed at time 10 (eA1E); i.e., A1 had duration 10− 5 = 5. Next,
event e2 occurred at time 11 and the lower path was chosen, which is indicated by the occurrence of start
event eA5S related to activity A5. Remember that none of the events of the upper path occurs within the trace
as the respective path had been skipped. Further note that the occurrence of XOR-split e2 is indicated by a
single event, i.e., processing of the gateway does not take any time. After completing activity A5 (eA5E),
milestone event e10 was triggered. Next, A6 was started at time 30. Furthermore, during the execution of A6,
the intermediate activity event eA6I was triggered. Finally, after completion of A6, events e7 and e8 were
triggered completing the process instance.

When defining the semantics of the time patterns, for some of them the iteration of a loop structure
needs to be taken into account.

Example 5 (Cyclic Elements). Consider process schema S3 in the upper part of Fig. 8. It comprises two
nested loops. Thereby, the inner loop L2 contains two alternative branches either executing activity A6 or
A7. As indicated in Fig. 8, the time lag between A6 and A7 must be a Cyclic Element (TP9) since A6 and
A7 cannot be executed within the same iteration of the respective loop. In turn, time pattern TP9 requires
the target activity to be contained in an iteration succeeding the one to which the source activity belongs to.
Assume that the cyclic element only restricts the maximum time lag between directly succeeding iterations
(Design Choice K[a]), i.e., the respective maximum time lag must be obeyed solely if A7 is executed in an
iteration of Loop L2 directly after A6 without executing another instance of A6, A7 or A10 in between. To
formalize this semantics, it is not sufficient to introduce an iteration counter for activities. Regarding Fig. 8
it cannot always be detected whether another iteration of L1 has been executed between the two instances of
A6 and A7. Hence, the current iteration of the outer loop L1 must be considered as well.

2In the following, without loss of generality, we use integers starting at 0 for representing absolute time points c ∈ C.
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S3:

A1
e2

e0 A3

A6

A7

e4 e9

A10
e11

e13A12
e5 e8

loop L1

loop L2

TP9: Cyclic Element

Possible trace (without timestamps) and corresponding iterations:
Trace (Events)︸ ︷︷ ︸

iter(σS ,ϕ)

⇒ e0, eA1S , eA1E ,︸ ︷︷ ︸
〈(L0:1)〉

e2, eA3S , eA3E ,︸ ︷︷ ︸
〈(L0:1),(L1:1)〉

e4, e5, eA6S , eA6E , e8, e9,︸ ︷︷ ︸
〈(L0:1),(L1:1),(L2:1)〉

. . .

. . . , e4, e5, eA7S , eA7E , e8, e9,︸ ︷︷ ︸
〈(L0:1),(L1:1),(L2:2)〉

eA10S , eA10E , e11,︸ ︷︷ ︸
〈(L0:1),(L1:1)〉

e2, eA3S , eA3E ,︸ ︷︷ ︸
〈(L0:1),(L1:2)〉

. . .

. . . , e4, e5, eA6S , eA6E , e8, e9,︸ ︷︷ ︸
〈(L0:1),(L1:2),(L2:1)〉

eA10S , eA10E , e11,︸ ︷︷ ︸
〈(L0:1),(L1:2)〉

eA12S , eA12E , e13︸ ︷︷ ︸
〈(L0:1)〉

(eAiS : start event,
and eAiE : end
event of activity Ai)

Figure 8: Nested loops and iterations

Generally, one must always consider the iteration of the inner-most loop in respect to the iteration of
any surrounding loop. Regarding process schema S3 in Fig. 8, for example, an instance of activity A6 may
belong to the 3rd iteration of loop L2 within the 2nd iteration of loop L1.

For the sake of simplicity and to be able to uniquely identify the iteration of each activity, we presume
well-nested loops (see Fig. 8). If a process schema is not well-nested, in most practically relevant cases, we
can transform it into a behaviour-equivalent, well-nested representation [44, 45, 46]. Nevertheless, we are
aware that this might not be possible for all non-well-nested schemas [44]. Consequently, the notion of (loop)
iteration is defined as follows:

Definition 4 (Iteration). Let S ∈ PS be a process schema. Then: A loop L is a process fragment (i.e.,
L ⊆ ES) with a Loop-Start as entry node and a corresponding Loop-End as exit node. The set of possible
iterations of S is given by IS ⊆ 22ES×N. Accordingly, the iteration of a loop is defined as ordered set

I = 〈(L0 : nL0), . . . , (Lk : nLk
)〉 ∈ IS

I uniquely identifies each loop and its current iteration with respect to the iteration of any surrounding loop.
Thereby, L0 is the given process schema and Li (1 ≤ i ≤ k) the i-th loop structure. In turn, nLi

(1 ≤ i ≤ k)
designates the iteration count of loop Li with respect to its directly surrounding loop Li−1.

Function iter(σS , ϕ) returns the current iteration of the inner-most loop surrounding event ϕe. Formally:

iter : QS × ΦS 7→ IS with iter(σS , ϕ) = 〈(L0 : nL0), . . . , (Lk : nLk
)〉

and L1, . . . , Lk being the loop structures surrounding event ϕe. ♦

Example 6 (Iteration). Consider Fig. 8: Below process schema S3, a temporal execution trace is shown.
Moreover, for each event in the trace, the value of iter(σS , ϕ) is given; e.g., regarding the occurrence of event
eA7S during the 2nd iteration of loop L2 within the 1st iteration of loop L1, we obtain

iter (σS , (eA7S , ·)) = 〈(L0 : 1), (L1 : 1), (L2 : 2)〉
This is indicated in the second line of the execution trace depicted in Fig. 8.

Based on Def. 4, Table 3 summarizes useful notions that will facilitate the following formalization of
the time patterns. Function succ(I) determines the next iteration after iteration I. In turn, the adjacency
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Let σS = 〈ϕ1, . . . , ϕn〉 ∈ QS be a temporal execution trace on process schema S. Then:
Iteration I occurs in trace σS , denoted as σS ` I, iff ∃ϕ ∈ σS : iter(σS , ϕ) = I

For iteration I = 〈(L0 : nL0 ), . . . , (Lk : nLk )〉, its next iteration succ(I) is defined as

succ(I) ≡
〈
(L0 : nL0 ), . . . , (Lk−1 : nLk−1 ), (Lk : nLk + 1)

〉
Iteration Ia is adjacent to iteration Ib, denoted as Ia ‖ Ib, iff
• Ib represents the first iteration of an inner loop of Ia, i.e., for n ≥ 1:

Ia = 〈(L0 : nL0 ), . . . , (Lk : nLk )〉 ∧ Ib = 〈(L0 : nL0 ), . . . , (Lk : nLk ), (Lk+1 : 1), . . . , (Lk+n : 1)〉

• or Ia represents the last iteration of an inner loop of Ib, i.e., for n ≥ 1:

Ia =
〈
(L0 : nL0 ), . . . , (Lk−n : nLk−n ), . . . , (Lk : nLk )

〉
∧ Ib =

〈
(L0 : nL0 ), . . . , (Lk−n : nLk−n )

〉
∧

∀m∈[k−n,k] : nLm = max
{
x|σS `

〈
(L0 : nL0 ), . . . , (Lm−1 : nLm−1 ), (Lm : x)

〉}
Iteration Ib is a succeeding iteration of iteration Ia, denoted as Ia < Ib, iff

(succ(Ia) = Ib) ∨
(
∃I ′ ∈ IS :

(
succ(I ′) = Ib ∨ I ′ ‖ Ib

)
∧ Ia < I ′

)
Table 3: Useful notions

operator ‖ allows determining adjacent iterations–two iterations are adjacent if one of them is the first or last
iteration of a nested loop with respect to the other iteration. Finally, the <-operator determines whether the
second iteration is (transitively) succeeding the first one.

Since a particular event may occur multiple times within a trace (e.g., at the presence loops), we further
define function occur(σS , e). It returns all event occurrences of an event e within a trace:

Definition 5 (Trace Occurrences). Let S ∈ PS be a process schema and σS be a trace on S. Then:
occur(σS , e) corresponds to a function returning all occurrences ϕ = (e, ·) of event e ∈ ES within σS. Formally:

occur : QS × ES 7→ 2ΦS with occur(σS , e) = {ϕ|∃t ∈ C : ϕ = (e, t) ∈ σS}
♦

Def. 5 implies that occur(σS , e) = ∅ holds, if @t ∈ C : (e, t) ∈ σS , e.g., in case the respective path has been
skipped (cf. Example 4).

Similar to events, activities may occur multiple times within a trace. In turn, each instance of an activity
is marked by the occurrence of its start and end event (cf. Def. 3). For this purpose, we introduce function
occur(σS , a), which returns all instances of a particular activity a (i.e., occurrences of the start and end
events) within a trace:

Definition 6 (Activity Occurrence). Let S ∈ PS be a process schema and σS be a trace on S. Then:
occur(σS , a) returns all occurrences (ϕS , ϕE) of the start and end event eaS

, eaE
∈ ES of activity a ∈ AS

(i.e., {eaS
, eaE
} ⊆ a) within trace σS.Thereby, two occurrences of events eaS

and eaE
belong to the same

activity instance if they occur within the same iteration. Formally:

occur : QS ×AS 7→ 2ΦS×ΦS

with occur(σS , a) = {(ϕS , ϕE) ∈ ΦS × ΦS |
ϕS ∈ occur(σS , eaS

) ∧ ϕE ∈ occur(σS , eaE
) ∧ iter(σS , ϕS) = iter(σS , ϕE)}

Note that the start event eaS
of an activity instance always occurs before the corresponding end event eaE

,
i.e., ∀(ϕS , ϕE) ∈ occur(σS , a) : ϕtS < ϕtE ♦

For the sake of readability, we will omit subscript S in the formulas if the respective process schema
becomes evident from the given context.
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S4:

A1 A2e0 e7

A4

A5

e3 e6

time
lag

TP1: Time Lag between Activities
maximum value

parameter value

event

Figure 9: Run-time parameter value and concurrent change

4.2. Time Pattern Semantics
The semantics of the time patterns can now be defined by characterizing the temporal execution traces

σS that may be produced by instances of a process schema S. In particular, we specify which temporal
execution traces satisfy the temporal constraints expressed by any time pattern applied to S. Formally:

Definition 7 (Temporal Compliance). A temporal execution trace σS ∈ QS is temporally compliant
with the set of temporal constraints defined on process schema S ∈ PS if and only if σS is temporally
compliant with each of the temporal constraints corresponding to S. In this context, temporal compliance of a
trace with a particular temporal constraint on S is defined by the semantics of the respective time pattern. ♦

Based on Defs 1-7, we are able to describe the formal semantics of all time patterns. Thereby, we do
not consider at which point in time the parameter values of a pattern occurrence are set (i.e., at build-time,
process creation-time, or run-time; Design Choice A) as this does not affect formal pattern semantics.
However, we consider which parameter value shall be valid in the context of a particular pattern instance;
i.e., if the parameter value of a pattern occurrence may be modified during run-time (e.g., deadlines may be
changed), we specify which of the values shall be relevant for a particular instance of a pattern occurrence
when defining pattern semantics.

Example 7 (Run-time Parameter Values). Consider process schema S4 in Fig. 9: S4 contains a maxi-
mum time lag between activities A2 and A4. The value of the time lag is provided by data object time lag at
run-time. In turn, this data object is written twice during process execution by activities A1 and A5. Note
that A5 may be executed (or—more important—be completed) either before, during, or after executing A4.
Depending on the completion time of A5, the time lag may use a different version of the parameter value,
i.e., a different version of the value of data object time lag. Therefore, it is important to precisely state
which of these versions shall be valid for a particular instance of the time lag.

To structure our formalization effects, we bundle time patterns with similar or related foundations as
they have same or similar formalization.

The first set of time patterns with similar foundations comprises patterns TP1 (Time Lags between two
Activities), TP2 (Duration), TP3 (Time Lags between Arbitrary Events), and TP9 (Cyclic Elements). These
patterns restrict the relative time distance between pairs of events that may occur during the execution of a
process instance. The kind of relative time distance expressed constitutes a pattern-specific design choice
(Design Choice D); i.e., the time distance may be a minimum value, a maximum value, or an interval. The
kind of events to which a specific pattern can be applied may be restricted by the pattern itself; e.g., a time
lag between activities may only be applied to the start or end events of two activities. Furthermore, only
pairs of event occurrences, whose iterations are consistent with the pattern, may be considered; e.g., for an
activity Duration (TP2; Design Choice C[a]), the occurrences of the start and end event of the respective
activity must belong to the same iteration.

Definition 8 (Relative time distance between events). Let C be the total set of absolute time points
and D be the set of relative time distances. Let eX and eY represent the source and target events related to
the time distance, i.e., the events for which the time distance is specified. Temporal compliance of a given
trace σ with a relative time distance between events eX and eY is then defined as follows:
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All valid pairs of event occurrences ϕ = (eX , ·) and ψ = (eY , ·) must satisfy the relative time distance as
it is effective at the occurrence time of target event ψ. Thereby, a pair of event occurrences is valid if
their iterations are consistent with the respective pattern. This is expressed by pattern-specific function
valid : Q× Φ× Φ→ Boolean. In turn, function distance : Q× E × E × C →

[
D
]3 represents the parameter

value of the respective pattern occurrence between events eX and eY as it is effective at time t (cf. Example 7).
Finally, whether or not a pair of event occurrences ϕ and ψ satisfies the relative time distance depends on the
kind of temporal distance represented by the pattern (i.e., minimum distance (DC D[a]), maximum distance
(DC D[b]), or time interval (DC D[c]); cf. Design Choice D). In turn, this is defined by function

compareR : C × C ×
[
D
]
→ Boolean

with4

compareR(ϕt, ψt, d) ≡


ϕt + min(d) ≤ ψt if minimum distance (DC D[a])
ψt ≤ ϕt + max(d) if maximum distance (DC D[b])
ϕt + min(d) ≤ ψt ≤ ϕt + max(d) if time interval (DC D[c])

All patterns of the first pattern set (i.e., patterns TP1, TP2, TP3, and TP9) can now be formalized using
the following Formula (1) and applying different restrictions to eX , eY , and valid(σ, ϕ, ψ):

∀ϕ ∈ occur(σ, eX),∀ψ ∈ occur(σ, eY ) : valid(σ, ϕ, ψ)⇒ compareR(ϕt, ψt,distance(σ, eX , eY , ψt)) (1)
♦

According to Formula (1), for each valid pair of occurrences of the source and target events, the time
distance between them must be compared with the current parameter value of the respective pattern
(according to the kind of time distance represented by the pattern; cf. Design Choice D). Note that only the
parameter value (i.e., the version of the data value), which is valid at the time the target event occurred, is
considered (cf. Example 7). Based on this general definition, the semantics of time patterns TP1, TP2, TP3,
and TP9 can be defined as described in the following.

Time pattern TP1 (Time Lags between Activities) allows restricting the time span between the start-
ing/ending instants of two activities A and B [18]; i.e., it allows expressing a minimum or maximum time
distance between respective start/end events. Particularly, time lags may be used to specify minimum delays
and maximum waiting times between succeeding activities. Moreover, time lags may not only be defined
between directly succeeding activities, but between any two activities that may be conjointly executed in
the context of a particular process instance, i.e., the activities must not belong to exclusive branches. As
particular variants of this pattern, it may be specified whether a time lag represents a Start-Start relation
(i.e., referring to the start events of two different activities), a Start-End relation, an End-Start relation, or
an End-End relation (Design Choice E).

Note that the definition of the pattern semantics needs to be valid in connection with loops as well. As
illustrated by Fig. 10, considering time lags between two activities (TP1) of which one resides inside a loop
and the other one outside this loop (e.g., the time lag between A1 and A3 in Fig. 10) is a challenging task
due to the unclear semantics of such a scenario. This becomes even more complicated when considering
nested loops. As example consider the time lag between A1 and A6 in Fig. 10 for which—on the face of
it—various semantics exist. First, a time lag whose source activity is contained in one loop and whose target
activity is inside a nested loop (cf. Fig. 10) might only apply to the very first or very last iteration of the
nested loop. However, this effectively makes time lags of little or no use in the context of multiple nested
loops. When considering the time lag between A3 and A6 in Fig. 10, it would only apply to the first-ever
iteration of A6 when using the above semantics. Particularly, if the loop containing A3 is repeated the time
lag no longer applies as A6 has already been executed. Second, the time lag may be applied to all iterations

3We use notation
[
X
]
to indicate the set of intervals over domain X, i.e.,

[
X
]

= {[x1, x2]|x1, x2 ∈ X ∧ x1 ≤ x2}
4Note that min(d)/max(d) represents the minimum / maximum value of interval d, i.e., min(d) = min{x|x ∈ d}.
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Figure 10: Time lags and loops

S6:
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minimum 10 start-start time lag
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Figure 11: Illustration of Pattern Semantics 1

of the inner loop. This case, however, results in different semantics for minimum and maximum time lags.
Particularly, a minimum time lag would only apply to the first iteration of the target activity as it is trivially
fulfilled for all other iterations of the latter. In turn, a maximum time lag would effectively only apply to
the last iteration of the target activity as all other iterations automatically fulfill the time lag. Third, such
an “inbound” time lag might apply to the first iteration of the inner loop with respect to any iteration of
an outer loop. Fourth, the time lag may be augmented with meta information describing the iterations it
applies to. Note that the latter represents a generalization of the third option. However, we did not find any
evidence for this kind of time lag semantics in the data sources. Moreover, all occurrences of pattern Time
Lags between Activities found in the data sources indicating the necessity for one of the first two options,
can be easily expressed using the third option. Finally, note that the same holds for time lags whose source
activity lies inside a nested loop and whose target activity is outside that loop (cf. Fig. 10).

As a consequence, the definition of the TP1 pattern semantics restricts the application of a time lag
to adjacent iterations of respective loops, i.e., it restricts an “inbound” time lag to the first iteration and
an “outbound” time lag to the last iteration of a loop. According to our experience this constitutes the
most intuitive semantics. If necessary, this semantics can be extended to consider specific iterations of the
respective loops as well (i.e., option four). However, as we have not found any evidence for this kind of
semantics this would make the respective pattern semantics unnecessarily complex.

Pattern Semantics 1 (TP1: Time Lags between Activities). The semantics of time pattern TP1
can be defined based on Formula (1) by applying the following restrictions to eX , eY , and valid(σ, ϕ, ψ):
(a) Depending on the kind of relation a time lag represents (i.e., Start-Start, Start-End, End-Start, or

End-End; cf. Design Choice E), event eX either corresponds to the start or end event of the source
activity. Likewise, eY corresponds to the start or end event of the time lag’s target activity.

(b) The two activities—or more precisely their events—must either belong to the same or an adjacent
iteration, i.e., the first or last iteration of an inner loop. Consequently, it holds:

valid(σ, ϕ, ψ) ≡
(

iter(σ, ϕ) = iter(σ, ψ)
)
∨
(

iter(σ, ϕ) ‖ iter(σ, ψ)
)

For example, restriction (a) expresses that for an End-Start relation between two activities, eX corresponds
to the end event of the source and eY to the start event of the target activity; i.e., the constraint restricts
the time lag between the end event of the source and the start event of the target activity.

Example 8 (Pattern Semantics 1). We illustrate Pattern Semantics 1 for process schema S6 from Fig. 11.
S6 contains a minimum time lag of 10 between the end of A1 and the start of A6, and a maximum time lag
of 7 between the start of A3 and the start of A7. Based on S6, for example, traces σ1-σ3 can be produced.

σ1 = 〈(e0, 0), (eA1S , 1), (eA1E , 3), (e2, 4), (eA3S , 10), (eA3E , 12),
(e5, 13), (eA6S , 14), (eA6E , 15), (eA7S , 17), (eA7E , 19), (e8, 20)〉

σ2 = 〈(e0, 0), (eA1S , 2), (eA1E , 5), (e2, 6), (eA4S , 8), (eA4E , 10),
(e5, 11), (eA6S , 13), (eA6E , 19), (eA7S , 25), (eA7E , 27), (e8, 28)〉
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σ3 = 〈(e0, 0), (eA1S , 4), (eA1E , 7), (e2, 8), (eA3S , 10), (eA3E , 18),
(e5, 19), (eA6S , 20), (eA6E , 22), (eA7S , 23), (eA7E , 29), (e8, 30)〉

Trace σ1 is temporally compliant (cf. Def. 7) with the set of temporal constraints defined on S6 (cf.
Fig. 11). In particular, the time lag between A1 and A6 is satisfied as

compareR(3, 14,distance(σ, eA1S , eA6E , 14)) ≡
ϕteA1E

+ min(distance(σ, eA1S , eA6E , 14)) = 3 + 10 = 13 ≤ ϕteA6S
= 14

holds. Further, the time lag between A3 and A7 is satisfied:

ϕteA7S
= 17 ≤ ϕteA3S

+ max(distance(σ, eA3S , eA7S , 17)) = 10 + 7 = 17.

In turn, trace σ2 is not temporally compliant with the temporal constraints on S6. Though the time lag
between A3 and A7 is trivially fulfilled, as A3 is not executed, the one between A1 and A6 is not satisfied:

ϕteA1E
+ min(distance(σ, eA1S , eA6E , 15)) = 5 + 10 = 15 6≤ ϕteA6S

= 13.

Finally, trace σ3 is not temporally compliant with S6. In this case, the time lag between A1 and A6 is
satisfied. However, this does not apply to the time lag between A3 and A7, as it holds:

ϕteA7S
= 23 6≤ ϕteA3S

+ max(distance(σ, eA3S , eA7S , 23)) = 10 + 7 = 17.

We now consider the semantics of time pattern TP3 (Time Lags between Arbitrary Events), which restricts
the time lag between two arbitrary discrete events [18]. Note that certain events cannot be bound to the
start or end of an activity or process; e.g., there may be events triggered by external sources not controllable
by the PAIS (e.g., receiving a message from a partner process). In addition, there may be events not bound
to a specific activity, e.g., event “delivery of all parts” requires several processes to be completed. Finally,
there may be events triggered inside a long-running activity, e.g., when reaching a milestone during the
execution of a long-running activity or sub-process.

Pattern Semantics 2 (TP3: Time Lags between Arbitrary Events). The semantics of TP3 can
be expressed based on Formula (1) by applying the following restrictions to eX , eY , and valid(σ, ϕ, ψ):
(a) Both eX and eY constitute arbitrary events.
(b) Like for Pattern Semantics 1, respective events must either belong to the same or to an adjacent

iteration. Hence, it holds:

valid(σ, ϕ, ψ) ≡ (iter(σ, ϕ) = iter(σ, ψ)) ∨ (iter(σ, ϕ) ‖ iter(σ, ψ))

When considering Pattern Semantics 2, it can be observed that TP3 constitutes a generalization of
TP1 [18]. In particular, restriction (a), as specified in the context of Pattern Semantics 1, is dropped.

Time pattern TP9 (Cyclic Elements) restricts the time lag between activities A and B across loop
iterations.5 As discussed in [18], TP9 constitutes a variation of TP1. However, instead of enforcing the two
activity instances to be executed within the same or adjacent iterations of a loop, we require the instance of
the target activity to be contained in an iteration succeeding the one the source activity belongs to. Similar
to TP1, TP9 may describe a Start-Start, Start-End, End-Start, or End-End relation between the respective
activities (Design Choice E). Finally, an instance of TP9 may not only restrict the time lag between two
activity instances of directly succeeding loop iterations, but also between two subsequent activity instances
belonging to arbitrary loop iterations (Design Choice K ).

5Note that A and B may represent the same activity.
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Pattern Semantics 3 (TP9: Cyclic Elements). The semantics of time pattern TP9 can be expressed
based on Formula (1) by applying the following restrictions to eX , eY , and valid(σ, ϕ, ψ):
(a) For eX and eY the same restrictions as in the context of Pattern Semantics 1 apply.
(b) According to Design Choice K the activities (and their corresponding events) of a cyclic element must

belong to directly succeeding iterations (DC K[a]) or to arbitrary, but succeeding iterations (DC K[b]):

valid(σ, ϕ, ψ) ≡



( succ(iter(σ, ϕ)) = iter(σ, ψ))∨
(succ(iter(σ, ϕ)) ‖ iter(σ, ψ))

if the iterations shall directly succeed
each other (DC K[a])(

iter(σ, ϕ) < iter(σ, ψ)
)
∧(

@ω ∈ occur(σ, ϕe) ∪ occur(σ, ψe) :
iter(σ, ϕ) < iter(σ, ω) < iter(σ, ψ)

)
if two subsequent activity instance
belonging to arbitrary iterations
(DC K[b])

Restriction (b) can be interpreted as follows: Depending on Design Choice K, the target event must
either occur in the directly succeeding iteration of the source event or in one of its adjacent iterations (Design
Choice K[a]) or in an arbitrary iteration succeeding the iteration of the source event (Design Choice K[b]).
In the first case, the succeeding iteration of the source event (i.e., succ(iter(σ, ϕ))) is adjacent or equal to
the iteration of the target event. In the second case, the target event must belong to an iteration succeeding
the one of the first event, i.e., iter(σ, ϕ) < iter(σ, ψ). However, there must not be any occurrence of either
the source event ϕe or the target event ψe between these two iterations.

Time pattern TP2 (Durations) expresses that an activity, activity set, process, or set of process instances
must obey a specific duration restriction [18]. Durations result from both waiting (e.g., activity is suspended)
and processing times during activity execution. However, a duration does not cover the time span the activity
is offered in user worklists, but has not been started yet (i.e., the time span between the activation and start
of the activity; cf. Fig. 3). The semantics of TP2 is similar to Pattern Semantics 1-3 since it considers the
relative time distance between events.

Pattern Semantics 4 (TP2: Durations). For an activity or process (Design Choices C[a] and C[c]),
respectively, the semantics of TP2 is defined based on Formula (1). In particular, for an activity the value
of function distance is given by function duration : Q×A× C →

[
D
]
, which represent the actual parameter

value of the pattern occurrence (i.e., distance(σS , ϕS , ϕE , t) ≡ duration(σS , a, t); (ϕS , ϕE) ∈ occur(σS , a)).
In turn, for a process the value of function distance is provided by function duration : Q×PS × C →

[
D
]
.

Furthermore, the following restrictions apply to eX , eY and valid(σ, ϕ, ψ):
(a) Depending on whether the pattern is applied to an activity or process, eX (eY ) corresponds to the start

(end) event of the activity or process, respectively.
(b) Both events of a valid pair must belong to the same activity (process) instance and hence to the same

iteration (cf. Def. 6), i.e.,
valid(σ, ϕ, ψ) ≡ (iter(σ, ϕ) = iter(σ, ψ))

In turn, for an activity set A ⊂ A (Design Choice C[b]), Formula (1) needs to be extended to consider
event sets as well. Let EX represent the set of start events and EY the set of end events of all activities
from A. Furthermore, function duration : Q× 2A × C →

[
D
]
represents the parameter values of the pattern

occurrence applied to activity set A as it is effective at time t. Then:
• For a minimum duration (Design Choice D[a]), the following must hold: For each valid pair of occurrences
of events eX ∈ EX and eY ∈ EY , there exists at least one pair of event occurrences within the same
iteration that satisfies the respective minimum duration:

∀a ∈ A : ∀(µS , µE) ∈ occur(τ, a)⇒
[ ∃eX ∈ EX ,∃eY ∈ EY : ∃ϕ ∈ occur(σ, eX),∃ψ ∈ occur(σ, eY ) :

(iter(σ, µS) = iter(σ, ϕ) ∧ valid(σ, ϕ, ψ))⇒ ϕt + min(duration(σ,A, ψt)) ≤ ψt ]
(2)

17



Each iteration may have several valid event pairs. However, only one of them must obey the given
minimum duration. Note that the duration of the activity set corresponds to the maximum time distance
between any events of the set.
• A maximum duration (Design Choice D[b]) must be met by all valid pairs of event occurrences eX ∈ EX
and eY ∈ EY :

∀eX ∈ EX ,∀eY ∈ EY : ∀ϕ ∈ occur(σ, eX),∀ψ ∈ occur(σ, eY ) :
valid(σ, ϕ, ψ)⇒ ψt ≤ ϕt + max(duration(σ,A, ψt))

(3)

• For a time interval (Design Choice D[c]), Formulas (2) and (3) must both be satisfied.
For handling a set of process instances (i.e., cross-process constraints; Design Choice C[d]), the above

formulas must be extended to consider different process instances. In this case, EX (EY ) represents the
start (end) events of all process instances of the given set. We omit respective formulas here.

Regarding Pattern Semantics 1-4, it is noteworthy that none of the described formalizations requires that
all referred events are present in a temporal execution trace; e.g., a maximum time lag between two activities
is trivially fulfilled if the target activity has never been executed in the context of the process instance. This
is of particular relevance at the presence of alternative branches, where not all events of a process schema
may actually occur during the execution of a process instance (cf. Example 4). As example consider process
schema S5 (cf. Fig. 10). If A6 is never executed for a particular process instance (i.e., the lower path is
always selected) the time lag between A3 and A6 does not need to be obeyed (i.e., it is trivially fulfilled for
this process instance). If it is required that both activities connected by a time lag must always be conjointly
executed by any process instance, this must be ensured by other means (e.g., control flow).

As another set of time patterns with similar foundations we consider TP4 (Fixed Date Element) and TP7
(Validity Period). Both patterns refer to absolute points in time and may be applied to either an activity
or a process (Design Choice C ). Furthermore, they allow restricting the earliest start, latest start, earliest
completion, or latest completion date of the activity or process (Design Choice F).

Definition 9 (Absolute time point of an event). Let C be the total set of absolute time points. Compli-
ance of a given trace σ with an absolute time point for event e is defined as follows: All occurrences ϕ = (e, ·)
of the event must satisfy the absolute time point as it is effective at the time the event occurred. Thereby,
function date : Q× E × C → C represents the parameter value of the pattern occurrence being effective at
time t. Finally, whether or not an event occurrence ϕ satisfies an absolute time point depends on the kind of
date (i.e., earliest/latest start date, earliest/latest completion date) restricted by the respective constraint
(Design Choice F). This is expressed by function

compareA : C × C → Boolean

with

compareA(ϕt, t) ≡
{
t ≤ ϕt if the earliest start or completion date is restricted (DC F[a] or F[c])
ϕt ≤ t if the latest start or completion date is restricted (DC F[b] or F[d])

TP4 and TP7 can then be formalized using Formula (4) by applying different functions for date(σ, e, t).

∀ϕ ∈ occur(σ, e) : compareA(ϕt,date(σ, e, ϕt)) (4)

Depending on the kind of process element (i.e., activity or process; Design Choice C) and the kind of date
restricted by the constraint (i.e., earliest/latest start, earliest/latest completion; Design Choice F), event e
either corresponds to the start or end event of the activity (process). ♦

Time pattern TP4 (Fixed Date Element) allows expressing that a particular activity (process) instance
must be executed in relation to a particular date (e.g., a deadline) [18]; i.e., for a particular activity or
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Figure 12: Illustration of Pattern Semantics 5
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Figure 13: Illustration of Pattern Semantics 7

process, it can be specified whether it must to be started after, started before, completed after, or completed
that date (Design Choice F). Moreover, note that the parameter value of a fixed date element is specific to a
process instance, i.e., it is not known before creating the process instance.

Pattern Semantics 5 (TP4: Fixed Date Element). The semantics of time pattern TP4 can be ex-
pressed with Formula (4). Thereby, date(σ, e, ϕt) corresponds to a function returning the parameter value
of the pattern occurrence being effective for process instance σ at the time of event occurrence ϕ = (e, t).

Example 9 (Pattern Semantics 5). We illustrate Pattern Semantics 5 for process schema S7 (cf. Fig. 12).
S7 contains a Fixed Date Element constraining the latest completion date of activity A3. In turn, the param-
eter value of the Fixed Date Element (i.e., the value of function date) is determined by activity A1 and may
be modified by activity A4. For example, the following two traces may be produced based on S7.

σ4 =
〈

(e0, 0), (eA1S , 2), (eA1E , 4){date(σ,eA3E ,t≥4)←8}, (e2, 5), (eA3S , 6),

(eA4S , 7), (eA3E , 8), (eA4E , 10){date(σ,eA3E ,t≥10)←12}, (e5, 11), (e6, 12)
〉

σ5 =
〈

(e0, 0), (eA1S , 2), (eA1E , 4){date(σ,eA3E ,t≥4)←12}, (e2, 5)(eA4S , 6),

(eA4E , 7){date(σ,eA3E ,t≥7)←8}, (eA3S , 8), (eA3E , 9), (e5, 10), (e6, 12)
〉

In this context, (eA1E , 4){date(σ,eA3E ,t≥4)←8} indicates that after the occurrence of event eA1E the value of
date(σ, eA3E , ·) is changed to 8, i.e., ∀t ≥ 4 : date(σ, eA3E , t) = 8 (cf. trace σ4).

σ4 complies with the Fixed Date Element constraining A3 since the corresponding parameter value is set
to 8 by A1 and is not modified by A4 before completing A3. Hence, for the completion event of A3 it holds

ϕtA3E = 8 ≤ date(σ, eA3E , ϕ
t
A3E) = 8.

In turn, σ5 is not temporally compliant with the Fixed Date Element constraining A3. Initially, the
parameter value of this Fixed Date Element is set to 12 by A1. However, before completing A3, A4 is executed,
changing the parameter value of the Fixed Date Element to 8. Hence, for the completion of A3 it holds

ϕtA3E = 9 6≤ date(σ, eA3E , ϕ
t
A3E) = 8.

Time pattern TP7 (Validity Period) allows restricting the life time of an activity (process) to a particular
validity period [18]. This becomes relevant, for example, in the context of process schema evolution [47] to
restrict the remaining life time of an obsolete process schema as well as to schedule the rollout of the new
schema version. Since TP7 may prohibit the execution of an activity or process (schema), its parameter
value needs to be known prior to process instance execution and cannot be modified during run-time.

Pattern Semantics 6 (TP7: Validity Period). The semantics of TP7 can be expressed based on For-
mula (4). Thereby, the value of date(σ, e, t) is independent of both the current process instance σ and time
t, i.e., date(·, e, ·) ≡ const.
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Note that Pattern Semantics 5 and 6 are similar. As only difference, for Pattern Semantics 6 the value of
function date(·, e, ·) is independent of the particular process instance and the current point in time. In turn,
for Pattern Semantics 5 the actual return value of date(σ, e, t) may be different for each process instance and
time point. However, the effects of patterns TP4 and TP7 on process execution are different. For example,
TP7 must be verified prior to process instance creation, whereas TP4 can only be evaluated during run-time.
Consequently, the semantics of time patterns TP4 and TP7 (i.e., Pattern Semantics 5 and 6) are different.

In the following we consider the semantics of time pattern TP5 (Schedule Restricted Elements) [18]. TP5
allows restricting the possible execution times of an activity (or process) through a schedule. In turn, a
schedule constitutes an abstract representation of a possibly infinite set of time slots described in terms of
a finite expression (e.g., Mo-Fr, 8:00-17:00). Since we do not want to restrict the representation of such a
schedule (e.g., [48, 49]), we require that it can be materialized as a set of intervals on the absolute time
points C (i.e., as a set of time slots).

Definition 10 (Schedule). A schedule s is a possibly infinite set of continuous intervals (i.e., time slots)
on the absolute time points C. Formally:

s ⊂
[
C
]

= {[tmin, tmax]|tmin, tmax ∈ C ∧ tmin ≤ tmax}
♦

Each time slot of a schedule specifies a time frame during which the respective event of the activity (process)
may occur. Particularly, a Schedule Restricted Element always restricts both the earliest and the latest start
or the earliest and the latest completion date of the activity (process) (Design Choice F).

Based on Def. 10, the semantics of time pattern TP5 (Schedule Restricted Element) can be defined:

Pattern Semantics 7 (TP5: Schedule Restricted Elements). Trace σ is temporally compliant with
a schedule s for event e of an activity if for all event occurrences ϕ = (e, ·) the respective time stamp ϕt is
contained within one of the time slots of the schedule. Thereby, function schedule : Q×E×C →

[
C
]
represents

the parameter value (i.e., the schedule) of the pattern occurrence being effective at time t. Formally:

∀ϕ ∈ occur(σ, e) : ∃[tmin, tmax] ∈ schedule(σ, e, ϕt) : tmin ≤ ϕt ≤ tmax (5)

Depending on the kind of process element (Design Choice C) and the kind of date restricted by the constraint
(Design Choice F), event e either corresponds to the start or end event of the activity (process).

Example 10 (Pattern Semantics 7). Fig. 13 illustrates Pattern Semantics 7 along process schema S8.
S8 represents a process with a schedule restricting the start of A1; the schedule is given by expression
s = {[5 + 10 ∗ i, 9 + 10 ∗ i]|i ≥ 0} = {[5, 9], [15, 19], [25, 29], . . .}. Examples of traces on S8 are σ6 and σ7:

σ6 = 〈(e0, 0), (eA1S , 2), (eA1E , 9), (e2, 10)〉
σ7 = 〈(e0, 0), (eA1S , 6), (eA1E , 11), (e2, 12)〉

σ6 is not temporally compliant with the respective schedule restriction on A1 as

@[tmin, tmax] ∈ s = {[5, 9], [15, 19], [25, 29], . . .} : tmin ≤ ϕtA1S = 2 ≤ tmax.

In turn, σ7 is temporally compliant with the schedule restriction since

∃[tmin, tmax] ∈ s = {[5, 9], [15, 19], [25, 29], . . .} : tmin ≤ ϕtA1S = 6 ≤ tmax.

In particular, [tmin, tmax] = [5, 9] ∈ s.
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Design Choice U
U) Execution time frame of the activity (process) and the given time frame may be compared

in different ways.
(a) Overlapping time frames
(b) Execution time frame contained in given time frame
(c) Start of execution within given time frame
(d) End of execution within given time frame

Figure 14: Design Choice U for time pattern TP6

Time-based Restrictions (TP6) allow restricting the number of executions of an activity, a set of activities,
a process, or a set of process instances (Design Choice G) within a given time frame [18], e.g., to express that
a particular activity must not be executed more than once per day. TP6 can be formalized by comparing
the number of executions of the respective activities (processes) within the given time frame on one hand
with a given minimum or maximum number of executions (Design Choice H ) on the other. However, when
considering the semantics of TP6, a subtle difference between the various pattern variants can be observed,
which has not been covered by the original design choices yet. To be able to completely define the semantics
of TP6, Design Choice U (cf. Fig. 14) allows specifying how the execution time frames of the respective
activities (processes) and the reference time frame shall be compared. Based on Design Choice U, the number
of executions of a particular activity within a given time frame can be defined.

Definition 11 (Executions per time frame). Let σS be a trace on process schema S ∈ PS. Then:
Function compareT ([tmin, tmax], [ϕtS , ϕtE ]) expresses whether the execution time frame [ϕtS , ϕtE ] of an activity
occurrence (ϕS , ϕE) and the given time frame [tmin, tmax] fulfil the restriction set out by Design Choice U.
Formally:

compareT :
[
C
]
×
[
C
]
→ Boolean

with compareT([tmin, tmax], [ϕtS , ϕtE ])

≡



(
[tmin, tmax] ∩ [ϕtS , ϕtE ] 6= ∅

)
the two time frames are overlapping (DC U[a])(

[ϕtS , ϕtE ] ⊆ [tmin, tmax]
)

execution time frame contained in [tmin, tmax] (DC U[b])(
ϕtS ∈ [tmin, tmax]

)
start of execution within [tmin, tmax] (DC U[c])(

ϕtE ∈ [tmin, tmax]
)

end of execution within [tmin, tmax] (DC U[d])
Furthermore, function executions returns the number of occurrences of an activity a ∈ AS within a given

time frame [tmin, tmax]. Formally:

executions : QS ×AS ×
[
C
]
7→ N0

with executions(σS , a, [tmin, tmax]) ≡ |{(ϕS , ϕE) ∈ occur(σS , a) | compareT ([tmin, tmax], [ϕtS , ϕtE ]) = true}|
♦

Example 11 (Executions per time frame). Consider process schema S9 (cf. Fig. 15). Trace σ8, which
is illustrated in the right part of Fig. 15, can be produced based S9.

σ8 =
〈
. . . , (eA3S , 3), . . . , (eA6S , 5), (eA6E , 9), . . . , (eA6S , 14), (eA6E , 18), . . . , (eA6S , 23),

(eA3E , 24), . . . , (eA3S , 27), (eA6E , 28), . . . , (eA6S , 31), (eA6E , 35), . . . , (eA6S , 38),
(eA6E , 42), . . . , (eA6S , 45), (eA3E , 47), . . . , (eA6E , 49), . . .

〉
Regarding the number of times A6 is executed during the first and second iteration of A3, we obtain the
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following values of function executions(σS , a, [tmin, tmax]):

executions(σ8, A6, [3, 24]) =


3 the two time frames are overlapping (DC U[a])
2 execution time frame contained in given time frame (DC U[b])
3 start of execution within given time frame (DC U[c])
2 end of execution within given time frame (DC U[d])

executions(σ8, A6, [27, 47]) =


4 the two time frames are overlapping (DC U[a])
2 execution time frame contained in given time frame (DC U[b])
3 start of execution within given time frame (DC U[c])
3 end of execution within given time frame (DC U[d])

Based on Def. 11, we can specify the semantics of time pattern TP6 (Time-based Restrictions):

Pattern Semantics 8 (TP6: Time-based Restrictions). For the sake of simplicity, we assume that
a Time-based Restriction (TP6) is applied to a set of activities A ⊆ A related to the same process instance
(Design Choice G[a]). In this case, temporal compliance of a given trace σ with a Time-based Restriction
on A is defined as follows:

• A temporal execution trace σ is temporally compliant with a maximum number n of concurrent executions
(Design Choices H[b], I[a]) of activities A ⊆ A, iff

∀a ∈ A : ∀(ϕS , ϕE) ∈ occur(σ, a) :
(∑
a′∈A

executions(σ, a′, [ϕtS , ϕtE ])
)
≤ n

For a minimum number of concurrent executions (Design Choice H[a]), the same formula applies when
replacing “≤ n” by “≥ n”.

• Consider a Time-based Restriction on the number of executions per time period (Design Choice I[b]).
Respective time periods may be represented as a schedule s (cf. Def. 10) without any gaps between the
elements of the schedule. Then: A temporal execution trace σ is temporally compliant with a maximum
number n of executions (Design Choice H[a]) of activities A ⊆ A per time period (i.e., per element of
schedule s), iff:

∀[tmin, tmax] ∈ s :
(∑
a∈A

executions(σ, a, [tmin, tmax])
)
≤ n

For a minimum number of executions per time period (Design Choice H[b]), the same formula applies
when replacing “≤ n” by “≥ n”.

For a set of activities belonging to different process instances (Design Choice G[b]) or a set of process
instances (Design Choice G[c]), respective sums must be calculated taking the respective set of temporal
execution traces into account. For the sake of brevity, respective formulas are omitted here.

The first part of Pattern Semantics 8 calculates the execution numbers of activities from set A within
execution time frame [ϕtS , ϕtE ] of any occurrence (ϕS , ϕE) related to an activity a ∈ A. For each activity
occurrence, this number is then compared with the given maximum number of concurrent executions. In
turn, the second part of Pattern Semantics 8 calculates the execution numbers of activities a ∈ A for each
time slot of schedule s. It then compares this number with the given maximum number of executions per
time period. The same applies in respect to a minimum number of executions.

Example 12 (Pattern Semantics 8). Reconsider process schema S9 from Fig. 15 and trace σ8 from
Example 11. Then, σ8 is not temporally compliant with the time-based restriction between A3 and A6. In
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Figure 15: Illustration of Pattern Semantics 8

particular, for the first iteration (ϕS , ϕE) of A3 it holds (cf. Example 11):∑
a∈A

executions(σ8, a, [ϕtS , ϕtE ]) = executions(σ8, A3, [3, 24]) DC U[a]= 3 ≤ 3.

However, for the second iteration we obtain:∑
a∈A

executions(σ8, a, [ϕtS , ϕtE ]) = executions(σ8, A3, [27, 47]) DC U[a]= 4 6≤ 3.

Time Pattern TP8 (Time-dependent Variability) allows varying the control flow depending on time
aspects [18]. This may either be the execution time of a node (i.e., activity or gateway) or a time lag
between two activities (e.g., if the first activity of a specific path is not started within a certain time
frame, an alternative path will be chosen) (Design Choice J ). Generally, TP8 restricts the set of events, a
temporally compliant temporal execution trace may contain; i.e., events belonging to a selected path must
occur within the trace, whereas events related to a deselected path must not occur within the respective
trace (cf. Example 4). In particular, the semantics of a time-dependent exclusive choice (Design Choice J[a])
is the same as for the known workflow pattern exclusive choice [9]. Thereby, the decision about which path
shall be taken is based on the execution time of the node representing the decision (e.g., XOR-split node).
Similar considerations apply to a time-dependent late binding. In turn, the semantics of a time-dependent
deferred choice (Design Choice J[b]) can be defined based on the deferred choice workflow pattern [9]. In
detail, the semantics is the same as for a time lag between two activities (i.e., Pattern Semantics 1) plus
the semantics of the deferred choice workflow pattern [9]. Since the semantics of TP8 can be defined based
on the one of the respective workflow patterns (i.e., exclusive choice, late binding and deferred choice) no
explicit semantics is provided for this pattern here.

Time Pattern TP10 (Periodicity) allows specifying periodically recurring sets of activities according
to an explicitly defined periodicity rule [18]. Thereby, “periodically” implies some regularity, but does
not necessarily mean equally distant. A periodicity rule describes the recurrence schema of the respective
activities as well as some sort of exit conditions (e.g., every Monday and Wednesday at 11:30 until end of
the year). It may be described using one or more schedules (cf. Example 16). Each of the activities of the
periodicity is annotated with one of these schedules. Thereby, each activity has to be executed exactly once
for each time slot of the respective schedule. Note that the schedules used to describe a periodicity rule
may be not independent of each other, i.e., a particular schedule may define exceptions for another schedule.
TP10 can be realized during run-time by using suitable combinations of time patterns TP1-6, TP8, and
TP9. As example consider the periodicity depicted in Fig. 16 and its possible implementation shown inside
the activity. Consequently, the semantics of pattern TP10 can be defined based on the one of the patterns
used for realizing the respective periodicity during run-time. Therefore, no explicit semantics is provided for
this pattern. However, note that even for simple periodicity rules, such a realization might lead to complex
process schemas. Furthermore, periodicity rules are not always known at build-time, in the latter case it is
not possible to pre-specify a corresponding process fragment. Therefore, Periodicity as additional layer of
abstraction becomes necessary to describe respective processes in an understandable way, although semantics
of TP10 may be specified based on the other time patterns.
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TP10: Periodicity
Drug A at ~ 8am, 1pm and 6pm
Drug B every ~2h

A

B

Schedule Restricted Element
s = { 8-9 am, 1-2 pm, 6-7 pm }

cyclic element; end-start
interval [1:45h, 2:15h]

Time-based Restriction
3 times per day

cyclic element; end-start
min 4h

Figure 16: Illustration of Periodicity and possible realization
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Figure 17: A process comprising different time patterns

4.3. Conclusion
Based on Pattern Semantics 1-8 we are able to check whether a given temporal execution trace is

temporally compliant with all temporal constraints defined on the corresponding process schema. In this
context, there is no particular restriction regarding the time patterns a process schema may contain, i.e., a
single process schema may contain several occurrences of selected or all pattern variants. However, it must
be ensured that for each possible path that may be selected during process execution, at least one execution
trace being temporally compliant with all temporal constraints exists, i.e., the temporal constraints of all
paths must be satisfiable. Otherwise, the temporal perspective of the process schema is inconsistent since it
contains conflicting temporal constraints, i.e., the process schema contains a path that cannot be executed
without violating at least one of the temporal constraints. Formally:

Definition 12 (Temporal Consistency). A process schema S ∈ PS is consistent with the set of temporal
constraints defined on S, if for each possible execution path (i.e., each possible set of nodes which may be
executed during a single process instance) there exists at least one temporal execution trace σS ∈ QS being
temporally compliant (cf. Def. 7) with the set of temporal constraints defined on S. ♦

Example 13 (Temporal Consistency). Consider process schema S10 as depicted in Fig. 17. Assume
that for XOR-split e3 the lower path is chosen. In this case, a possible execution trace is

σ{e3→lower} = 〈(e0, 0), (eA1S , 1), (eA1E , 4), (e2, 5), (e3, 6), (eA8S , 9), (eA8E , 15), (eA9S , 18),
(eA5S , 20), (eA9E , 25), (eA10S , 28), (eA5E , 35), (e6, 36), (eA7S , 37), (eA10E , 40),
(eA7E , 45), (e11, 46), (eA12S , 48), (eA12E , 58), (e13, 59)〉

This particular execution trace complies with all temporal constraints defined on S10. For example, the
maximum process Duration is satisfied as ϕte13

− ϕte0
= 59 ≤ 60 holds. Moreover, all duration constraints

are satisfied. Finally, the two Time Lags between A1 and A10 as well as between A9 and A12, which are
applicable for this trace, are satisfied as ϕteA1E

+ 25 ≥ ϕteA10S
and ϕteA9S

+ 35 ≥ ϕteA12S
holds.
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If the upper path is chosen for XOR-split e3, no execution trace exists, which is temporally compliant with
all temporal constraints on S10. In particular, the path determining the shortest time to complete the process
(i.e., the critical path) is given by e0, A1, e2, e3, A4, e6, A7, e11, A12, e13; this sums up to a minimum process
duration of 72. In turn, this violates the maximum process Duration of 60.

Furthermore, the Time Lags between A1 and A4, A1 and A10, and A4 and A10, as well as the Duration
constraints defined for A4 and A10 cannot be satisfied at the same time: The earliest possible time at which
A4 may be completed after the completion of A1 corresponds to ϕteA1E

+ 20 + 30. In turn, the latest possible
time at which A10 may be completed after the completion of A1 corresponds to ϕteA1E

+ 25 + 10. Accordingly,
for the completion time of A4 and A10 it holds ϕteA10E

− ϕteA1E
≥ (ϕteA1E

+ 25 + 10)− (ϕteA1E
+ 20 + 30) =

35− 50 = −15 /∈ [−10, 10]. Consequently, these constraints can never be satisfied at the same time, i.e., S10
is temporally inconsistent, as there exists an execution path for which no valid trace can be found.

Example 13 indicates the complexity of verifying the temporal consistency of a process schema in respect
to its temporal constraints [19, 20]. Additional complexity is created by the fact that not all time patterns
can be verified at build-time [18]. For example, the Fixed Date Element of an activity cannot be verified at
build-time since not all parameter values are known before run-time [18]; i.e., the particular date is set during
run-time. Moreover, some time patterns may have an infinite domain (e.g., Schedule Restricted Elements).

Overall, the presented formal time pattern semantics serve as a solid and sound framework for verifying
the temporal consistency of a process schema with temporal constraints at build-time. Moreover, it may
serve as basis for verifying and monitoring the temporal consistency of process instances during run-time.

5. Implementation

We are using the formal semantics of the time patterns as formal foundation for implementing selected
time pattern variants in the ATAPIS Toolset6 [43]. The ATAPIS Toolset is based on the AristaFlow BPM
Suite—a process management system that exploits advanced process support features [1, 50]. We have chosen
this technology since we also consider flexible run-time support of time-aware process instances (e.g., coping
with dynamic changes as well [51, 52]). The ATAPIS Toolset allows specifying process schemas enriched
with temporal constraints (cf. Sect. 5.1), which may then be checked for temporal consistency based on the
defined pattern semantics (cf. Sect. 5.2). Moreover, it can be used to simulate the execution of a process
instance, including the possibility to check it for constraint violations during run-time (cf. Sect. 5.3).

We have implemented support for the time patterns most commonly required in practice: Time Lags
between two activities (TP1), Durations (TP2) of activities and processes (Design Choices C[a, c]), Fixed
Date Elements (TP4), Schedule Restricted Elements (TP5), Validity Periods (TP7), Time-Dependent
Variability (TP8) based on the execution time (Design Choice J[a]), and Cyclic Elements (TP9). Currently,
we are investigating how periodicity rules may be specified to allow for more complex Periodicities (TP10).

5.1. Specifying Process Schemas with Temporal Constraints
Fig. 18 depicts the process editor of the ATAPIS Toolset displaying the process schema from Fig. 4.

The ATAPIS process editor is based on the AristaFlow Process Template Editor, which we enhanced with
capabilities and language elements required to capture and implement the selected time patterns [43]. Note
that ATAPIS focuses on well-structured process schemas. This is no limitation of the time patterns or their
semantics, but constitutes a restriction of AristaFlow’s process modeling language [53].

In order to enable Time Lags between two Activities (TP1) and Cyclic Elements (TP9) we extended
AristaFlow’s process modeling language [53] with time edges (visualized through a dashed line as shown in
Fig. 18). Considering Fig. 18, the dashed line between activities prepare patient and perform treatment
with label S[1d, 1d]S describes a time lag with a minimum and maximum time distance of 1 day between the
start (S) of the two activities.

6The ATAPIS Toolset, some examples and a screencast showing the toolset are available for download at dbis.info/atapis.
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Figure 18: The ATAPIS Process Editor

In turn, time patterns restricting a particular activity (or the process itself) (i.e., Duration, Fixed Date
Element, Schedule Restricted Element, and Validity Period) may be configured by using the properties editor.
In Fig. 18 activity prepare treatment is currently selected and its properties are depicted in the lower part.
In the upper section of the editor, the Duration (TP2) of the activity can be specified. In its lower part, two
Fixed Date Elements (TP4) are specified for the activity. The one restricting the earliest start date of the
activity retrieves its value from data element date. In turn, the one restricting the latest start date is set
relatively to (i.e., 30 minutes after) the first one.

Similarly, a Schedule Restricted Element (TP5) may be specified for any activity. TP5 is implemented based
on a language for representing collections of temporal intervals [54]; e.g., expression [1-5]/days:during:weeks
represents a schedule comprising the first 5 days of each week (i.e., Monday–Friday).

To support Time-Dependent Variability (TP8) we provide a dedicated XOR decision rule for deciding
which branch shall be taken based on the time the respective XOR-split is executed.

5.2. Checking Temporal Consistency at Build-Time
To ensure a robust and error-free execution of a process schema exhibiting temporal constraints, at

build-time, the temporal consistency of the process schema (cf. Def. 12) should be checked. However, note
that not all variants of the time patterns can be verified at build-time as discussed in Sect. 4.3.

To check whether a particular process schema is temporally consistent according to the pattern semantics
(i.e., whether all its temporal constraints are satisfiable), ATAPIS maps it to a Conditional Simple Temporal
Network (CSTN)—a problem known from artificial intelligence [55, 56, 51]. CSTN is an extension of Simple
Temporal Networks [57] explicitly considering different execution paths. ATAPIS uses CSTN since it allows
us to exploit and reuse provably sound checking algorithms for a well founded model representing temporal
constraints. Moreover, CSTN allows capturing the complex interdependencies between constraints that
cannot be properly captured in process schemas. Finally, CSTNs are similar to the execution traces used for
defining patterns semantics and thus support the implementation of the provided formal pattern semantics.

Definition 13 (Conditional Simple Temporal Network). A Conditional Simple Temporal Network
(CSTN) is a 6-tuple 〈T , C, L,OT ,O, P 〉, where:
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Figure 19: CSTN corresponding to the process schema from Fig. 17

• T is a set of real-valued variables, called time-points;
• P is a finite set of propositional letters (or propositions);
• L : T → P ∗ is a function assigning a label to each time-point in T ; a label is any (possibly empty)
conjunction of (positive or negative) letters from P .7
• C is a set of labeled simple temporal constraints (constraint in the following); each constraint cXY ∈ C
has the form cXY = 〈[x, y]XY , β〉, where X,Y ∈ T , −∞ ≤ x ≤ y ≤ ∞, and β ∈ P ∗ is a label.
• OT ⊆ T is a set of observation time-points;
• O : P → OT is a bijection that associates an observation time-point to each propositional letter from P .

Time-points represent instantaneous events that may be associated with the start/end events of activities. A
constraint cXY = 〈[x, y]XY , β〉 expresses that the time span between time-points X and Y must be at least x
and at most y, i.e., x ≤ Y −X ≤ y. When reaching an observation time-point, a decision regarding possible
execution paths is made. Formally speaking, when executing observation time-point P , the truth-value of
the associated proposition (i.e., O−1(P )) is determined. The label attached to each time-point (constraint)
indicates possible executions of the CSTN, i.e., a particular time-point (constraint) will be only considered if
its label is satisfiable in the respective instance. Fig. 19 depicts a CSTN represented as a graph whose nodes
correspond to time-points and whose arcs correspond to constraints.

The solution to a CSTN is defined as follows [56]:

Definition 14 (Scenario and Solution). Given a CSTN S = 〈T , C, L,OT ,O, P 〉, a scenario over set P
is a function sP : P → {true, false} that assigns a truth-value to each proposition in P .

A solution for CSTN S under scenario sP corresponds to a complete set of assignments to all time-points
X ∈ T with sP (L(X)) = true, which satisfies all constraints 〈[x, y]XY , β〉 ∈ C for which sP (β) = true holds.

Based on this, consistency of a CSTN is defined as follows:

Definition 15 (Consistency of a CSTN). A CSTN S is called weakly consistent iff for each scenario
sP at least one solution exists [55], i.e., a CSTN is weakly consistent iff all of its constraints are satisfiable.

Basically, CSTN time-points are equivalent to events, whereas a time-point bound to a specific value
is equal to an event occurrence (cf. Def. 1). Moreover, CSTN constraints are specified as inequalities of
the form Y −X ≤ t, where X and Y are time-points and t is a relative time distance. This is similar to
the definition of a relative time distance between events (cf. Def. 8). Thus, it is possible to map a process
schema with temporal constraints to a CSTN that preserves the semantics of the respective time patterns.

When mapping a process schema to a corresponding CSTN, first of all, the control flow of the process
schema is mapped to the CSTN as illustrated in Fig. 20 [52, 51]. Note that each control flow element
implicitly represents a temporal constraint, e.g., a control edge linking two activities is equivalent to a
minimum time lag of 0 between the end of the source and the start of the target activity (cf. Fig. 20).

7In the following we use small Greek letters α, β, . . . to denote arbitrary labels. The empty label is denoted by �.
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In a CSTN, each activity ai is represented as a pair of time-points AiS and AiE , which correspond to the
start and end event of the respective activity (cf. Fig. 20). Further, a constraint 〈[0,∞]AiSAiE

,�〉 is added
between AiS and AiE representing the execution of the respective activity, i.e., the constraint represents the
fact that the end event of the activity always occurs after its start event. Similar to an activity, a gateway
(i.e., AND-split, AND-join, XOR-split, and XOR-join) is represented by two time-points. This reflects the
fact that—in reality—everything takes time. Note that this mapping difference, compared to Def. 3, does
not influence the semantics of the time patterns. Furthermore, for an XOR-split, the end time-point (i.e.,
NiE) is represented by an observation time-point PiE with propositional letter pi (cf. Fig. 20). As soon
as the XOR-split is executed, it is decided which branch shall be taken. In the CSTN, this is reflected by
observation time-point PiE or, more precisely, the value of the associated propositional letter pi = O−1(PiE),
i.e., pi = true reflects the decision for the true-branch and pi = false the decision for the false-branch.
Afterwards, the labels of all constraints and time-points corresponding to activities, gateways and control
edges in the two XOR-branches are augmented by either p or ¬p depending on the branch they belong to.
For example, the label of a CSTN constraint 〈[0,∞]NiENjS

, β〉 belonging to the true-branch is set to γ = βp
and the one of the false-branch to γ = β¬p (cf. Fig. 20).

As example of this mapping re-consider Fig. 19. It depicts the CSTN of the process schema from Fig. 17.
For the sake of readability, all edges without annotation are assumed to have bounds 〈[0,∞],�〉.

Loop structures cannot be directly mapped to CSTN. Note that at build-time the actual number of
iterations, and thus the number of occurrences of corresponding events, is unknown. Moreover, each possible
event occurrence is unique regarding its time of occurrence. Thus, no generalization of a loop is possible
regarding its temporal properties. Assuming that for each loop the maximum number of iterations is known,
however, any process schema with well-nested loops can be transformed into a loop-free one [52] by replacing
each loop structure by a block containing the respective number of clones of the original loop body. These
clones are then enclosed in nested XOR blocks as depicted in the upper part of Fig. 21. When mapping a
process schema with loops to a CSTN, we take advantage of this property. Particularly, we first transform
each loop into a corresponding XOR structure consisting of two iterations of the respective loop as illustrated
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Figure 22: Time Patterns and their mapping to CSTN

in Fig. 21. The second iteration is then followed by a virtual node with a possibly infinite maximum duration
representing the case that three or more iterations of the loop are performed. The mapping of this structure
is then added to the CSTN (cf. Fig. 21). After completing the second iteration at run-time, if necessary, the
virtual node is replaced by another clone of the loop body followed by a new virtual node representing the
next iteration. This is repeated for each iteration.

Temporal constraints (i.e., occurrences of the time patterns) are mapped to the CSTN as depicted in
Fig. 22. Regarding an activity Duration (TP2, Design Choice C[a]), if the parameter value of the pattern
occurrence is known at build-time (Design Choice A[a]), the constraint 〈[0,∞]AiSAiE

, β〉 between the start
time-point AiS and the end time-point AiE of the activity, which is created when transforming the process
schema, is replaced by a CSTN constraint representing the actual restriction on the activity duration (i.e.,
the pattern occurrence). For a minimum duration (Design Choice D[a]), the minimum value of the CSTN
constraint (i.e., 0) is replaced by the actual minimum duration. Likewise, for a maximum duration (Design
Choice D[b]), the maximum value of the CSTN constraint is replaced by the actual one. For an interval value
(Design Choice D[c]), both values are replaced accordingly. Finally, if the parameter values of the activity
duration are set at process creation-time or during run-time (Design Choice A[b, c]), i.e., not all parameter
values are known at build-time, the CSTN constraint resulting from the mapping of the activity is not
modified, but will be updated as soon as the respective parameter value becomes available. In turn, as soon
as all parameter values are known (i.e., either at process creation-time or at some point during run-time), the
CSTN constraint is updated according to the actual parameter value. To verify that this mapping indeed
reflects the semantics of TP2 (cf. Pattern Semantics 4) reconsider function compareR(ϕt, ψt, d) (cf. Def. 8),
which constitutes the fundamental part of Pattern Semantics 4. For example, consider Design Choice D[c]:
According to Pattern Semantics 4 and Def. 8, for event occurrences ϕ and ψ of the start and end event
of the activity, it must hold: ϕt + min(d) ≤ ψt ≤ ϕt + max(d), i.e., min(d) ≤ ψt − ϕt ≤ max(d). In turn,
according to Def. 13, this is exactly the restriction expressed by the corresponding constraint between the
two time-points in the CSTN (cf. Fig. 22 and Def. 13). Moreover, as can be easily verified, any restriction
regarding valid pairs of events—made by Pattern Semantics 4—is already covered by the applied loop
transformation. When mapping a process Duration (TP2, Design Choice C[c]) to the CSTN, a new constraint
reflecting the respective pattern occurrence needs to be added between the time-point representing the start
event N0S of the first and the one representing the end event NkE of the last node of the process schema.
Besides this, the same considerations as for an activity duration apply. Again, it can be easily verified that
this mapping corresponds to Pattern Semantics 4.

A Time Lag between two Activities (TP1; Pattern Semantics 1) can be mapped to a CSTN constraint
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between the time-points corresponding to the start/end events of the two activities. In particular, depending
on the kind of time lag (i.e., start-start, start-end, end-start, end-end; Design Choice D), a CSTN constraint
is added between the start/end time-point of the source and the start/end time-point of the target activity
(cf. Fig. 22). The value of the constraint is then set according to the actual value of the pattern occurrence.
If the time lag is a minimum one, only the minimum value of the constraint is set, i.e., the maximum value of
the CSTN constraint is set to ∞, indicating that no particular restriction is given. In turn, for a maximum
time lag, the minimum value of the respective constraint is set to −∞. When mapping a time lag to the
CSTN, particular attention has to be paid to the behaviour of time lags in connection with loops (cf. Pattern
Semantics 1); e.g., for a time lag entering a loop the respective CSTN constraint must be added only for the
first clone of the respective target activity. Again, Pattern Semantics 1 is based on Def. 8 and hence this
mapping reflects the semantics of TP1. Any restrictions regarding valid pairs of events—made by Pattern
Semantics 1—is covered by the proper mapping of the time lags entering or exiting a loop. Note that Time
Lags between Arbitrary Events (TP3; Pattern Semantics 2) could be implemented similarly to TP1. However,
AristaFlow (and hence ATAPIS) currently does not provide support for arbitrary events.

For implementing time patterns referring to an absolute point in time (i.e., Fixed Date Element and
Validity Period) one can observe that an absolute point in time may be also represented as the relative time
distance between the start of the respective calendar (i.e., time point zero) and the particular point in time.
Thus, we add a special time-point Z to the CSTN representing time point zero. A Validity Period (TP7) can
then be mapped to a CSTN constraint between Z and the respective time-point of the activity as illustrated
in Fig. 22. By comparing Defs. 9 and 13, it is easy to verify that this mapping provides the same semantics
as TP7.

By definition, the parameter value of a Fixed Date Element (TP4) is specific to a process instance and
hence is not known before creating this instance. To indicate the presence of a Fixed Date Element, at
build-time, an unrestricted CSTN constraint with value 〈[0,∞], β〉 is added between time-point Z and the
respective time-point of the activity (process) (cf. Fig. 22). At process creation-time or during run-time, this
constraint is then updated according to the actual parameter values of the Fixed Date Element. Note that
this mapping is similar to the one of a Validity Period. Considering the similarity of Pattern Semantics 6,
thus, it is easy to verify that this mapping provides the same semantics as Pattern Semantics 5.

A Schedule Restricted Element (TP5) cannot be verified at build-time with reasonable effort. To prepare
the CSTN for execution, however, at build-time the Schedule Restricted Element is mapped to an unrestricted
CSTN constraint (i.e., 〈[0,∞], β〉) between time-point Z and the respective time-point of the activity (or
process; Design Choice D). Finally, a Time-Dependent Variability referring to the execution time of an
activity (TP8; Design Choice J[a]) is equivalent to an XOR-split whose decision rule is based on the execution
time of the activity. Accordingly, the mapping corresponds to the one of an XOR-split.

Given the described mapping of a process schema with temporal constraints, a scenario of a CSTN is
similar to an execution trace of the process schema (cf. Def. 2). Further, each solution of a CSTN corresponds
to a temporally compliant trace of the process schema (cf. Def. 7). Based on the described mapping, therefore,
the temporal consistency of a process schema at build-time can be defined as follows.

Definition 16 (Build-Time Temporal Consistency). A process schema with temporal constraints is
denoted as build-time temporally consistent iff the corresponding CSTN is weakly consistent.

Checking temporal consistency of a process schema can be based on existing CSTN algorithms [55],
which are known to be sound and complete. Note that these algorithms can derive all interdependencies
between different time-points of the CSTN; i.e., they are able to derive all interdependencies between nodes
in the process schema. The result is called a minimal network. We take advantage of this minimal network
when executing the process schema. Fig. 23 depicts the ATAPIS process editor displaying the CSTN for the
process schema from Fig. 18 (left) and the corresponding minimal network (right).

5.3. Checking Temporal Consistency at Run-Time
Temporal consistency of a process schema must be checked during run-time as well. Moreover, the CSTN

of the process schema needs to be updated according to the actual execution times of already completed
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Figure 23: The ATAPIS Process Editor – CSTN and minimal network

activities, to the current execution path, and to the actual parameter values of the temporal constraints [52].
Finally, time patterns that cannot be checked at build-time (e.g., Schedule Restricted Elements) can now be
verified based on the actual execution time frame of the process instance.

When creating a process instance, the minimal network derived at build-time is cloned. The network is then
updated according to the starting time of the process instance. Subsequently, all temporal constraints whose
parameter values become known at process creation-time (Design Choice A[b]) are considered. Regarding
a Fixed Date Element, for example, the CSTN constraint created at build-time is updated to the actual
parameter values of the pattern occurrence. Moreover, Schedule Restricted Elements are considered by
restricting the corresponding CSTN constraint such that its bounds are within the first and last possible
time slot of the respective schedule. During execution of the process schema, this constraint is updated each
time the execution time frame of the respective activity changes.

After updating the minimal network, a consistency check is performed to update the interdependencies
between different time-points according to the updated constraints. This ensures that the process schema is
still temporally consistent and determines the time frame for starting the first activity. In turn, this start
time frame is used by the execution engine to schedule and monitor the start of this activity.

Note that ATAPIS employs a preemptive strategy for executing and monitoring activities. In particular,
it monitors the start and execution of all activities to detect and, if possible, prevent constraint violations. In
this context, the interdependencies between the different nodes, as derived by the CSTN checking algorithm,
are used to discover future violations of a temporal constraint not directly related to the current activity
(e.g., future deadlines that can no longer be met).

When starting the execution of an activity, all temporal constraints related to its start are re-checked
to detect possible violations. Subsequently, the minimal network is updated to reflect the actual starting
time of that activity. In turn, after completing an activity, its real duration becomes known. Moreover, the
parameter values of certain constraints (e.g., Fixed Date Elements) might have been set by the just completed
activity. In this case, the minimal network is updated accordingly. Then, the consistency checking algorithm
is executed to update the interdependencies between nodes as well as the start time frames of the remaining
activities if required. Note that this approach ensures that a process instance can only violate one of its
temporal constraints if (a) an activity is not started within its time frame, (b) an activity takes longer than
permitted by the minimal network, or (c) one of the parameter values set during run-time is not consistent
with the process instance. Note that none of these reasons can be controlled by the PAIS. Therefore, as soon
as a violation is foreseeable, a time-specific exception handling (i.e., escalation) is triggered.

When executing an XOR-split (i.e., normal XOR-split or Time-dependent Variability), a decision regarding
the possible execution paths is made, i.e., the truth-value of the literal associated with the corresponding
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Figure 24: ATAPIS Client

observation nodes becomes known. Therefore, the execution scenario is updated and all nodes/edges whose
label can no longer be satisfied (i.e., it evaluates to false) are removed from the minimal network of the
process instance, i.e., skipped XOR branches are removed from the minimal network.

Fig. 24 depicts the ATAPIS client. In its upper left part, the worklist of the currently logged-on user is
shown. Below it, the start and completion time frame of activity instruct procedure, which is currently
selected in the worklist, can be found. The left part shows activity make appointment, which is currently
being executed by the user. The process instance this activity belongs to is shown in the lower part of Fig. 24.
Finally, the system detected that activity prepare patient exceeded its latest start date as indicated by the
error message. In particular, it was detected that the Time Lag between activities prepare patient and
perform treatment and the Fixed Date on activity perform treatment can no longer be both satisfied.

5.4. Evaluation
To test the implementation and to evaluate the formal semantics of the time patterns, we used ATAPIS

to model and simulate selected scenarios originating from our data sources. We selected processes that
comprise multiple temporal constraints, that might interact with each other. Moreover, we paid attention
that all implemented pattern variants are covered by the selected processes. We then used the resulting
process schemas to manually simulate the execution of multiple process instances using different time settings.
We simulated both temporally compliant and temporally non-compliant process instances. Then, we used
the resulting execution log of each process instance in connection with its process schema and temporal
constraints, to test the implementation as well as to evaluate the formal semantics of the time patterns.

First, we checked each process instance (i.e., its execution log) against the process description from the
data source. Without knowing the outcome of the implementation, we used the informal description of the
process to decide whether or not a particular process instance is temporally compliant. When comparing
our assessment with the outcome of the implementation, we were able to confirm that the implementation
provides the same classification we obtained. Hence, it matches the semantics of the time patterns. Moreover,
it became apparent that in most cases the implementation not only allows detecting violations, but is also
able to predict future violations of temporal constraints based on the formal pattern semantics; i.e., the
implementation is able to detect whether a process instance can no longer be temporally consistent, even
before any temporal constraint is actually violated.
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Second, we checked the execution log of each process instance against the formal semantics of the involved
time patterns. Again, we could observe the same constraint violations in the execution log, the implementation
had already detected.

Altogether, the implementation correctly reflects the formal semantics of the time patterns. Moreover, it
indicates that the formal semantics correctly captures the actual semantics of the respective time patterns.

6. Discussion

This section examines features and discusses benefits of defining a formal semantics in general and the
presented pattern semantics in particular. In addition, limitations of the latter are discussed and future
research directions are presented.

Generally, defining a formal semantics of time patterns provides significant advantages. First, it gives the
opportunity to uncover aspects that might have been neglected otherwise as outlined in Examples 14 and 15.

Example 14 (Loops and Time Lags between Activities). The semantics of the time patterns need to
be valid in connection with loops as well. Especially, this applies to TP1 (Time Lags between Activities), i.e.,
the semantics of a time lag between two activities of which one resides inside a loop and the other one outside
that loop is—at first glance—unclear. Actually, four different semantics are conceivable (cf. Sect. 4.2). When
defining the semantics for pattern TP1 our aim was to not introduce any ambiguity. Therefore, we chose
that semantics, which—in all possible cases—results in the same interpretation for every option of Design
Choice E (i.e., minimum, maximum and interval time lag). This semantics covers all cases from our data
sources. Moreover, according to our experience, it is the one most obvious to process experts (cf. Sect. 4.2).

Example 15 (Time-based Restrictions and Comparison of Intervals). When specifying the formal
semantics of the Time-based Restrictions pattern (TP6), we had to define how many instances of an activity
exist within a given time frame. In this context, it was required to compare two different time intervals.
However, there exist different ways to accomplish this task (e.g., subset, intersection), which have not been
considered by the original design choices of this time pattern. To correctly define the semantics of TP6 we
added Design Choice U (cf. Fig. 14).

If such issues are not made explicit and resolved through the definition of a precise, formal semantics,
interpretations by PAIS engineers or process designers might be different leading to misunderstandings,
ambiguities, or erroneous process implementations (Requirement R1). However, we do not claim to provide
the proper semantics for all cases. For example, certain time patterns might have to be interpreted stricter
in specific scenarios, whereas they can be considered less restrictive in others. Therefore, decisions had
to be made regarding the definition of the formal semantics, which might not suit all possible scenarios
(cf. Example 14). On one hand, this might be considered as a limitation of the current pattern semantics
definitions. On the other, it is neither possible to completely avoid such decisions nor is it always desirable. In
any case, we have exposed the decisions made and hence have made them traceable. Moreover, the presented
pattern semantics covers all pattern occurrences we discovered in the extensive data sources. Hence, we may
conclude that the decisions made are reasonable.

The defined formal semantics enables us to precisely answer open questions related to the interactions
between the time and control flow perspectives as well as the interpretation of certain combinations of process
elements (cf. Requirements R2 and R3). For example, if the parameter value of a time pattern may be
modified during run-time, it may be unclear which of these values shall be considered for a particular pattern
instance (especially in connection with concurrency and loops). By utilizing the defined pattern semantics,
respective issues can be precisely addressed.

Based on the defined pattern semantics it becomes possible to compare and evaluate process modeling
languages and PAISs according to formally defined criteria. This is further supported by the fact that the
provided formal semantics is independent of any process modeling language or paradigm (Requirement
R5). Hence, it becomes possible to compare different PAIS and languages regarding their support of the
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temporal perspective (e.g., to identify the most suitable one in a given application context). Additionally,
the formal semantics provide a foundation for reasoning about modeling language specifications and deriving
consequences from them. In turn, the latter is an important aid in validating and evaluating proposed
implementations. A formal semantics further provides a view of modeling languages that abstracts from
unimportant details of syntax and presentation. In particular, this makes it possible to compare languages as
well as to identify language elements additionally required.

The provision of a precise and formal semantics further allows implementing techniques for checking
conformance of process instances in respect to a process schema and its temporal constraints. Based on this,
one can decide whether the log of a process instance conforms with a given process schema [22]. This is
fostered by the use of temporal execution traces as basis for formalizing pattern semantics. Hence, it becomes
possible to implement conformance checking algorithms based on the defined formal semantics of the time
patterns.

Similarly, precise, formal semantics of the time patterns are a key requirement for formally verifying of
the temporal perspective of processes at build-time as well as for verifying and monitoring it during run-time.
In particular, the formal semantics allow solving open issues when developing with verification procedures for
processes comprising temporal constraints (cf. Example 14 and Sect. 5). Especially, this applies to more
complex time patterns as well as to the link between time patterns and loops. So far, respective issues
have been “avoided” by excluding both complex time patterns and loops from respective considerations.
However, without considering these constructs no complete specification of the temporal perspective would be
possible (Requirement R2). In turn, without a formal basis no universally valid verification of the temporal
perspective can be accomplished due to ambiguities and unclear semantics.

A limitation of the presented formal semantics and an avenue for future work is the fact that the formal
semantics neither consider build- nor run-time support of the temporal perspective. At build-time the
consistency of a process schema must be verified to ensure that corresponding process instances can be
executed without violating any temporal constraint. In turn, when executing process instances with temporal
constraints, challenging run-time issues emerge like “How can temporal constraints be enforced?” or “What
happens if a temporal constraint has been violated or is in danger of being violated?”. Moreover, one must
differentiate between temporal constraints to be met in any case (e.g., delivery deadlines) and constraints
representing a recommendation that may be ignored (e.g., duration constraints). Furthermore, in certain
cases, activity Durations may need to be restricted to ensure that a process instance can be completed
without violating a constraint, whereas in other cases it must be ensured that the entire range of the activity
Duration is available for executing the activity [52]. Although such issues are out of the scope of this paper,
the presented formal pattern semantics serve as a good basis for exploring them. To the best of our knowledge,
this paper provides the first attempt to precisely and formally define the semantics of all the time patterns.
Finally, we provide an implementation of selected time patterns tackling some of the open questions.

Regarding the run-time support of the temporal perspective, as a next step a comprehensive execution
semantics for process instances with temporal constraints needs to be defined. Such an execution semantics
not only needs to consider the different styles of temporal constraints (i.e., optional vs. mandatory), but also
define at which points during run-time a particular constraint should be (re-)evaluated and the impact this
re-evaluation might have on process execution. Further, we need to specify what happens if a particular
constraint is violated (e.g., escalation, exception handling). These issues are still part of ongoing research and
are thus out of scope of this paper. Note that the provided implementation constitutes a first step towards
such a comprehensive execution semantics.

7. Threats to Validity

This section discusses threats regarding the validity of our work and how we dealt with them. The
main threats include inaccuracy in specifying pattern semantics, the identification procedure of the pattern
semantics, their incomplete implementation and completeness of the patterns and their semantics.

First, formal semantics always carry the risk of being inaccurate. This threat is twofold: On one hand,
there exists the risk that the formal semantics exclude valid cases. In turn, this bears the risk of invalidating
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the patterns themselves due to a too restrictive semantics. On the other hand, the formal semantics may
allow for invalid cases, rendering the formal semantics useless. To alleviate this threat, we analyzed a large set
of data sources with more than 400 processes. When identifying and formalizing the pattern semantics, we
followed a thorough design science approach [23] to ensure validity and reliability of the results. In particular,
after formalizing the pattern semantics, we re-evaluated each of the initially identified pattern occurrences to
ensure its coverage by the formal pattern semantics. Likewise we have ensured that the semantics indeed
disallow for all invalid cases of the respective pattern occurrence. Hence, we are confident that the formal
pattern semantics are accurate. Nevertheless, it constitutes just one possible way of describing the semantics
of the time patterns, i.e., there may be others being correct as well. Considering our experience in the field
of PAISs and temporal constraint handling, however, we strongly believe that the described semantics not
only make sense but are correct as well. This has been underpinned by the presented implementation of the
time patterns based on their formal semantics.

Second, both the identification and formalization of the pattern semantics were carried out by the main
author. This might comprise subjective decisions since several of the evaluated pattern occurrences did not
provide a clear description of the respective temporal constraint. Moreover, the data sources might already
contain subjective decisions made by their creators. To mitigate this risk, we applied a rigorous extraction
and re-evaluation procedure. In addition, the co-authors continuously cross-checked the results of the first
author. Any disagreements were resolved by a consensus-building process [58] including discussions and
in-depth analyses of the respective pattern occurrences. To alleviate the risk of working with biased data
sources, the latter were obtained from different sources.

Third, not all variants of the time patterns were implemented. This threatens validity in so far as
the semantics of the time pattern variants have not been completely verified through an implementation.
Moreover, it raises the question whether the non-implemented pattern variants and their semantics can
indeed be implemented. The answer to this question is twofold. First, we are aware that it might not be
possible to implement all variants of the time patterns in a general-purpose PAIS. For example, time patterns
referring to a set of process instances, such as Durations of a set of process instances (TP2 Design Choice
C[d]) or Time-based Restrictions for a set of activities from different process instances (TP6 Design Choice
G[b, c]), are hard to implement in a general way. Particularly, it is not clear how to identify and relate
respective process instances. Nevertheless, the data sources have confirmed that respective pattern variants
as well as their formal semantics are both useful and required in practice. In particular, these time patterns
are still valuable when using patterns for requirements elicitation or implementing respective processes in
terms of a traditional software system. Note that for a specific application scenario it will still be possible
to manually implement relevant pattern variants based on the proposed pattern semantics. Furthermore,
the knowledge about the patterns and their semantics helps decision makers in deciding whether to use a
general-purpose PAIS or to develop a specifically tailored software system. Finally, the threat of not having
tested all pattern variants through an implementation is mitigated by the rigorous re-evaluation process
performed after pattern identification and formalization. Thus, even without an implementation of all pattern
variants, we are confident that the pattern semantics are valid.

Fourth, the completeness of the time patterns constitutes another issue. The latter is out of the scope of
this paper as we do not aim to identify further time patterns. Apart from this, completeness constitutes an
inherent problem of any work that aims to identify evidenced patterns from real world cases. Nevertheless,
this might threaten the validity of our work. Due to the large set of data sources we analyzed as well as the
thorough systematic literature review performed when eliciting the time patterns [18], we are confident that
the identified time pattern set is representative. Moreover, this threat is further mitigated by the fact that
the semantics of the various time patterns are defined independently of each other. Finally, as time pattern
semantics are based on a generic formalism, it will pose no problem to add the semantics of additional time
pattern; i.e., extensibility of the pattern set and pattern semantics, respectively, is ensured.

8. Related Work

In [17], we informally introduced 10 time patterns. In turn, in [18] we provided more detailed descriptions
and validated the time patterns through a systematic literature review and an evaluation of selected approaches
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from academia and industry regarding their support of the time patterns. Since their introduction, the time
patterns were picked up by other groups in different context. For example, Barba et al. [59] use them in the
context of providing scheduling support for declarative workflows. In turn, Döhring and Zimmermann [60, 61]
apply the time patterns in combination with workflow adaptation patterns. In [62], time stream Petri
net (TSPN) representations for selected time patterns are proposed in order to demonstrate that TSPN
is a suitable formalism for supporting the life cycle of processes with temporal constraints. Lenhard et
al. [63, 64] develop a framework for evaluating the degree of support a (process modeling) language provides for
different kinds of patterns (including the time patterns). The authors apply this framework to assess service
orchestration languages (e.g., BPEL, SunBPEL, and WF4). They conclude that “a better formalization
of several pattern catalogs in terms of execution traces would be beneficial” [64]. In the past, no formal
semantics for the time patterns were provided, even though such a rigorous basis is crucial when implementing
and comparing time-aware PAISs. This paper closes this gap.

The general idea of using patterns to compare PAISs has been proposed by the workflow patterns
project [9]. Based on patterns covering different perspectives, the expressiveness of process meta models and
process modeling tools can be assessed. Additional patterns were introduced, including data flow patterns [10],
resource patterns [11], exception handling patterns [14], activity patterns [13], user interface transformation
patterns [65], and process change patterns [12, 16]. Several of them come with formal semantics, e.g., based
on languages such as pi-calculus [39] or execution traces [16].

Considerable work on temporal process constraints [19, 5, 20, 7, 66] exists. Most approaches focus
on modeling and verification issues. Bettini et al. [19] use Simple Temporal Networks (STN), a special
variant of temporal constraint networks [57], as the basic formalism for representing and reasoning about
temporal process constraints. According to the approach suggested by [19], each activity is represented
by two nodes in an STN, representing the starting and ending time point of the activity. In turn, STN
edges represent temporal constraints and precedence relations between the corresponding nodes. Combi
et al. [5, 20] use STN as formalism for verifying the consistency of the temporal perspective of a process
schema. The transformation process is similar to the one of Bettini et al. In addition, well-nested loops are
considered. Thereby, each loop is associated either with a minimum and maximum number of iterations or a
maximum duration for completing all loop iterations. A loop can then be transformed into a consecutive set
of XOR-splits for deciding whether the next iteration shall be executed or remaining iterations be skipped
(cf. Sect. 5). Eder et al. [7] use Timed Workflow Graphs, which constitute an extension of the Critical Path
Method (CPM) [67]—a well known project planning method—to represent temporal properties of activities
and their control flow relations. Essentially, a timed workflow graph is similar to a process schema. Each
activity in the process has a fixed duration and is augmented by two values representing its earliest and
latest completion time. Zhuge et al. [66] define temporal constraints in terms of restrictions of the start and
completion times of activities. Note that this is similar to the way the semantics presented in this paper are
defined. Moreover, different time zones are considered when defining temporal constraints, although this is
not really required. On one hand, temporal constraints are usually specified with respect to a reference time
zone; on the other, temporal constraints can be converted from one time zone to another [66].

To evaluate how well the presented formal pattern semantics match the ones inherent to these approaches,
we informally compared them. The approaches were selected since they provide the broadest support of
the time patterns and provide at least some kind of semi-formal description of the temporal constraints
supported. Note that only a semi-formal comparison of the formal pattern semantics with these approaches
is possible as for none of the latter either a rigorous formal description or a reference implementation is
available. For the sake of brevity, we do not discuss our findings in detail in this paper. Interested readers
are referred to a technical report discussing this comparison [68]. Main results are summarized in Table 4.

Other approaches dealing with the temporal perspective of PAISs focus on specific time support features
like escalation management [69] and scheduling support [59, 70]. In turn, [71] investigates the mutual
dependencies among different temporal constraints and derives inference rules for their verification and
monitoring. Additionally, time support features like process monitoring [72], process mining [73], and the
effects of process changes on temporal constraints [74] have been studied. A systematic elaboration of the
requirements for time support as well as a respective formal semantics has been missing so far.

Our implementation uses CSTN [55]–a special kind of Temporal Constraint Satisfaction Problem [57]–to
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Pattern Bettini et al.ab Combi et al.b Eder et al.ab Zhuge et al.ab

TP1 (+) (+) (+)/(∗) (+)/◦

TP2 C[a] (+) (+) (∗)/◦ (+)
C[c] (∗) (∗) ◦ –

TP3 (∗) (∗) ◦ ◦

TP4 C[a] (∗) (+)/◦ (∗)/◦ (+)
C[c] ◦ ◦ ◦ ◦

TP5 C[a] ? ? (+)/(∗) ◦
C[c] ◦ ◦ ◦ ◦

TP6 ◦ ◦ ◦ ◦

TP7 C[a] (∗) (∗)/◦ (∗)/◦ (∗)
C[c] ◦ ◦ ◦ ◦

TP8 ◦ ◦ ◦ ◦
TP9 ◦ ◦ ◦ ◦
TP10 ◦ ? ◦ ◦

a Does not consider
loops.
b Does not consider
dynamic changes
of the parameter
value of a pattern
occurrence during
run-time.

(+) Equivalent to a restricted variant of the pattern semantics. ? Discussed but no implementation is provided.
(∗) Not discussed/No implementation provided, but may be

implemented with a semantics equivalent to a restricted
variant of the presented pattern semantics.

– Different semantics (cf. [68] for details).
◦ Not considered.

Table 4: Assessment of Different Approaches

verify the satisfiability of the temporal constraints of a process schema (i.e., its temporal consistency)
according to the time patterns semantics. However, other techniques for verifying real-time systems could be
used as well. In particular, there exists a variety of temporal constraint satisfaction problems like CSTNU [56]
and CTPP [75]. In turn, [76, 77] use timed automata [42] in combination with model checking techniques like
Metric Temporal Logic (MTL) [78] to verify the satisfiability of a process schema with temporal constraints.
In this context, [79] shows how CSTNs can be translated into Timed Game Automata and then verified using
model checking tools like UPPAAL-Tiga [80]. In [81] a framework for the formal verification of real-time UML
statecharts based on hierarchical timed automata and model checking is presented. Finally, [62] presents time
stream Petri net (TSPN) representations for selected time pattern variants. In theory, all these techniques
may be used for verifying the satisfiability of a process schema with temporal constraints. However, existing
approaches only partially cover the time patterns and their variants. For implementing the time patterns, we
have chosen CSTNs as they are similar to the temporal execution traces used for defining the formal pattern
semantics, and at the same time have a lower computational complexity compared to other techniques.

9. Summary and Outlook

We have specified the formal semantics of the time patterns we originally introduced in [17, 18]. Their
initial introduction complemented existing workflow patterns. In particular, time patterns allow for a more
meaningful evaluation of PAISs if the handling of temporal constraints becomes crucial. In combination with
workflow patterns, time patterns enable PAIS engineers to choose the PAIS-enabling technology meeting
their requirements best. The formal semantics presented in this paper provide the basis for implementing the
patterns in PAISs as well as for comparing PAISs with respect to their support of the temporal perspective.
For each pattern, its formal semantics was specified in a language-independent manner based on traces.

Our future work will consider time patterns for aspects other than control flow as well. Further, we
will conduct a comprehensive study on time support features like the verification of temporal constraints,
escalation management, and scheduling support. In this context, we are currently developing a comprehensive
execution semantics for process instances with temporal constraints.
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