
Ulm University | 89069 Ulm | Germany Faculty of Engineering,
Computer Science and
Psychology
Institute of Databases and
Information Systems

Workflows on Android:
A Framework Supporting Business
Process Execution and Rule-Based
Analysis
Master Thesis at Ulm University

Submitter:
Wolfgang Wipp
wolfgang.wipp@uni-ulm.de

Reviewer:
Prof. Dr. Manfred Reichert
Dr. Rüdiger Pryss

Supervisor:
Johannes Schobel

2016

Version March 2, 2016

c© 2016 Wolfgang Wipp

This work is licensed under the Creative Commons. Attribution-NonCommercial-ShareAlike 3.0
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/
or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.
Satz: PDF-LATEX 2ε

Abstract

In companies, Business Process Management is often supported by Process-aware

information systems (PAIS). However, such systems are mostly restricted to stationary

desktop computers. To overcome this restriction, smart mobile devices may be used for

mobile business process execution. However, with traditional PAIS having a client-server

architecture, the computation is done on server side, whereas the client only visualizes

business process tasks and interacts with the user. Therefore, smart mobile devices

must rely on their mobile connection to provide PAIS features to its users.

A possible solution is the transfer of server side features to the smart mobile device itself,

enabling the latter to instantiate business process models and analyze business process

instances by itself, without the need of a direct connection to a workflow-server.

This thesis presents Workflows on Android (WOtAN), a modular and flexible framework

for business process management running on Android smart mobile devices. However,

the thesis focuses on flexible and robust business process execution as well as the

analysis of business process instances. For this, predefined evaluation rules are applied

on data that was collected during business process instance execution.

Different concepts and interesting implementation aspects are presented in this thesis.

Further, an application scenario is shown, where WOtAN is used to properly support a

mobile data collection application.

iii

Acknowledgement

First of all, I thank Johannes Schobel for his important mentoring through all this thesis.

Further, I’d like to thank my fellow students, especially Michael, Bernd, Steini, and

Markus for their support. Furthermore, I thank Kenny Loggins, who’s song Danger Zone

escorted me through the long nights of implementation and writing.

A special thanks goes to Andrea and Florian, who saved me a huge amount of time by

styling the graphical user interface for the use case project.

Finally, I thank my family for motivating me during the whole thesis, again ,and again,

and again...

v

Contents

1 Introduction 1

1.1 Purpose of this Thesis . 2

1.2 Structure of this Thesis . 3

2 Fundamentals 5

2.1 Object-Relational Mapper . 5

2.1.1 General Overview . 5

2.1.2 Model Generation Approaches . 6

2.2 Android . 8

2.2.1 Application Structure . 9

2.2.2 Application Communication . 9

2.3 ADEPT2 . 10

2.3.1 Process Model . 10

2.3.2 Process Execution Logic . 12

3 Related Work 15

3.1 jBPM . 15

3.2 MARPLE . 16

3.3 Questionnaire Process Execution Engine 17

3.4 Discussion . 17

4 Requirements 19

4.1 Functional Requirements . 19

4.2 Non-Functional Requirements . 20

4.3 Discussion . 21

5 Concepts and Architecture 23

5.1 General Overview . 23

5.2 WOtANExecution . 25

5.2.1 Concepts . 26

vii

Contents

5.2.2 Architecture . 29

5.3 WOtANAnalysis . 32

5.3.1 Concepts . 32

5.3.2 Architecture . 33

6 Implementation Aspects 35

6.1 Interface Design . 35

6.2 Executable Business Process Management 36

6.2.1 Structure . 36

6.2.2 Loading at Runtime . 37

6.2.3 Development Challenges . 38

6.3 Object-Relational Mapping . 39

6.3.1 Schema Generation . 40

6.3.2 Database Communication . 40

6.4 Rule Evaluation Process . 42

6.4.1 General Usage . 42

6.4.2 Rule Evaluation . 43

7 Application Scenario: Mobile Data Collection Application 47

7.1 Introduction . 47

7.2 System Architecture . 48

7.2.1 Questioneer . 49

7.2.2 QuestionRule . 49

7.2.3 Questionizer . 49

7.2.4 Questionnaire . 49

7.3 Using WOtAN in the Context of Mobile Data Collection Applications . . . 50

7.3.1 Overall Architecture . 50

7.3.2 Executing Questionnaires using WOtANExecution 50

7.3.3 Evaluating Questionnaires using WOtANAnalysis 52

7.3.4 Page Executable Business Process 52

viii

Contents

8 Conclusion 55

8.1 Vision . 56

A Sources 65

A.1 Dynamic EBP Loading . 65

A.2 Example Layout Inflater Factory . 66

A.3 greenDAO Schema Generation Code . 66

A.4 Database Access with GreenDAO . 67

ix

1
Introduction

To sustain on global market, companies must act in a flexible and agile way. For example,

they must react on market changes rapidly and continuously improve their products and

services. Currently, business process management offers promising perspectives to

achieve these goals. As a result, optimized business processes improve companies

in terms of costs, time to market, and product quality [1]. Despite the fact that BPM

does not require an IT system support, most companies use Process-aware information

systems (PAISs) [2] to support process management.

During the last years, PAISs have become very powerful systems, providing flexibility by

separating application code from the business process logic [3]. As a result, dynamic

changes of business processes became possible, without updating PAIS applications.

PAISs are most likely designed in a Rich-Client/Thin-Server architecture, where the

server provides all process management features, whereas the client is only responsible

for visualization and interaction [4]. Unfortunately, as for all IT systems, PAISs are

locally restricted to given IT-endpoints (desktop computer, laptops). Therefore, some

domains may have processes, that cannot be executed in a PAIS’s reach [5]. In clinical

ward rounds, for example, the doctor may first perform the real-world business process

task, then go back to an computer and perform the IT supported business process

task executed on a PAIS. This workaround is error-prone, as collected data may be

transcribed manually. Further, the duplicate enactment of business process tasks, as

well as media breaks, are inefficient. Within larger processes there may exist only few

business process tasks, that are not in reach of the supporting PAIS.

Since a business process’ state of execution is stored in the PAIS, the duplicate en-

actment of tasks stalls the process for the time between real world execution and IT

1

1 Introduction

supported execution. The system does not know, that the real world task is already been

performed and what outcome it has. This delay of execution may become a severe prob-

lem in time critical processes [6]. As a result, mobile IT support for business processes

(i.e., enable workers to perform IT supported business process tasks at any location and

at any time), is a highly desired feature [7, 8, 9].

With the fast dissemination of smart mobile devices (smart phones, tablet computers)

as well as their technological development over the last years, the power of common

office computers shrunk to the size of a pocket device. Therefore, smart mobile devices

may serve as possible hardware for mobile IT support for business processes. They are

handy enough to be carried anywhere, at any time, providing enough computation power

to work on sophisticated process tasks.

1.1 Purpose of this Thesis

Client and server of a PAIS must be connected all the time to function properly. This is

no problem with locally set up workstations but can become a problem with smart mobile

devices and their respective mobile connection. For example, a sales representative

may need to start the companies contract process at a customer’s location, with no

available mobile connection. However, if no connection to the PAIS’s server is available,

the smart mobile device may not be able to perform process control features. A missing

mobile connection may occur because of several reason, like standing in a dead spot,

network service provider issues, or PAIS server issues.

To overcome such difficulties, this thesis introduces Workflows on Android (WOtAN for

short), focusing on process execution (WOtANExecution) and process analysis using

rules (WOtANAnalysis). WOtAN thereby is a framework for dedicated business process

management on Android smart mobile devices, using current state-of-the-art PAIS

technology. Furthermore, WOtAN enables smart mobile devices to manage and execute

business processes without any external communication, hence eliminating the issue of

a lost mobile connection.

2

1.2 Structure of this Thesis

1.2 Structure of this Thesis

The structure of this thesis is as follows: Chapter 2 describes relevant fundamentals in the

context of this thesis. Subsequently, Chapter 3 introduces related work and elaborates

common features as well as differences in state-of-the-art products. Next, Chapter 4 lists

and discusses both functional and non-functional requirements for WOtANExecution and

WOtANAnalysis. Chapter 5 introduces the overall concepts and presents the architecture

of the developed lightweight mobile process engine. Afterwards, Chapter 6 provides

deeper insight into the implementation, specifically focusing on the Executable Business

Process, a software template for Android executed in business process tasks during

runtime. Following, Chapter 7 illustrates the use of WOtAN within a mobile data collection

application scenario. Finally, Chapter 8 summarizes the thesis and proposes future

work.

3

2
Fundamentals

This chapter introduces the fundamentals of this thesis. First, Section 2.1 describes

object-relational mapping. Subsequently, Section 2.2 shows Android basics needed

in this thesis. At last, Section 2.3 illustrates the, for the thesis relevant, concepts of

ADEPT2.

2.1 Object-Relational Mapper

Object-oriented programming languages (OOP-Languages) and relational databases are

based on different paradigms. Therefore, the communication between OOP-Languages

and relational databases is difficult [10]. As a result, object-relational mapper (ORM)

are developed to close the gap between object paradigm and relational paradigm.

This section introduces object relational mapping. Section 2.1.1 provides a general

overview regarding object-relational mapping, whereas Section 2.1.2 presents different

approaches for model generation.

2.1.1 General Overview

ORM simplifies and abstracts the communication between application and database.

Instead of manually creating objects and propagating them with database values, ORMs

automatically map application classes to database tables, encapsulating the value

to object mapping process, as illustrated in Figure 2.1. Hence, an application pro-

grammer does not need database language experience, but can rely on application

5

2 Fundamentals

language based database access i.e., using automatically generated functions to query

the database, insert or remove entries.

Relational Database

Figure 2.1: ORM Overview

Additionally, ORM reduces duplicate work by either generating the database schema

or the application data classes. As a result, the application programmer needs to

develop only one data model instead of two separate ones for database and application.

Accordingly, maintainability of such produced data models are drastically improved, as

changes affect both database and application.

However, despite the lose decoupling from the database, a programmer should have

basic knowledge of databases in general and good knowledge of specific database

system used.

2.1.2 Model Generation Approaches

This section describes the automatic generation of a data model and the respective

counterpart on either application or database side. There are several approaches for

data model generation:

1. Model First : Create application side classes first and generate database tables

based on them.

2. Database First : Create database tables first and generate application side classes

based on them.

6

2.1 Object-Relational Mapper

3. Hybrid Generator : Both database tables and application classes are generated

based on a meta model.

The following sections describe each approach and gives deeper insight.

1. Model First Approach

This approach generates database tables from previously written model classes. Map-

ping respective classes to database tables can be achieved with different techniques.

First, annotations can be used to set database attributes i.e., table name for a class,

primary key, include member as field. Listing 2.1 shows an example using ORMLite [11].
1 @DatabaseTable (tableName =" accounts ")

2 public class Account {

3

4 @DatabaseField (i d = true)

5 private S t r i n g name ;

6 @DatabaseField

7 private S t r i n g password ;

8

9 public Account () {

10 / / ORMLite needs a no−arg cons t ruc to r

11 }

12 public Account (S t r i n g name, S t r i n g password) {

13 th is . name = name ;

14 th is . password = password ;

15 }

16 / / Get ter and Se t te r f o r a l l F ie lds o f t h i s c lass

17 . . .

18 }

Listing 2.1: ORMLite Class Example

The @DataBaseTable annotation declares this class to be mapped to a database table

with the name accounts, with the member variable name as its primary key.

Using another technique, classes can be directly mapped to database tables by extending

ORM specific abstract classes, as shown in Listing 2.2, using Sugar ORM [12].
1 public class Book extends SugarRecord {

2 S t r i n g name ;

3 S t r i n g ISBN ;

4 S t r i n g t i t l e ;

5 S t r i n g shortSummary ;

6 }

Listing 2.2: Sugar ORM Class Example

7

2 Fundamentals

The example shows a Book class that has a name, ISBN, title, and shortSummary

attribute. The super class SugarRecord takes care of database mapping, including all

member variables as respective columns within a table named as the class.

This approach is handy when an application data model already exists. Further, an

application developer does not need database language experience to create a database

schema.

2. Database First Approach

This approach takes a given database table schema and generates corresponding

application classes. As mentioned in [13], doctrine, an ORM system for PHP, provides

this feature. For this, doctrine generates an XML mapping file from which it generates

the respective PHP class sources, as described in [14].

3. Hybrid Generator Approach

The hybrid generator approach neither take a data model nor a database schema to

generate the other part, but uses a meta model to generate both. This meta model

describes database and table features ,like primary keys, relations between them,

and indexes. Furthermore, application features, like class hierarchies, or interface

implementations may be defined. GreenDAO [15], which will be explained in more detail

in Section 6.3, follows this approach.

2.2 Android

This section describes basic knowledge about the Android operating system, called

Android for short. Therefore, the Android application structure, as well as inter-application

communication is explained in more detail.

8

2.2 Android

2.2.1 Application Structure

Any Android application consists of the following parts:

• Sources: Java class files, later translated into DalvikVM byte code format.

• Resources: Resource files, like XML layout files, String values, or images.

• Assets: Files, that are not part of resources.

• Manifest: Contract file between the application and the operating system.

According to [16], resource files are stored in a predefined folder structure that allow

multiple values, dependent on device screen size and location. The Manifest is an

XML file responsible for presenting application information to Android. Such information

is e.g., the package name of the application, which serves as global identifier, and

implemented activities with their processable intents. Additionally, permissions for device

resources like the camera, storage and network service, are stored within the Manifest

[17].

After compiling, all parts are stored in an Android application package (apk). This is the

only usable format to install applications on Android smart mobile devices.

2.2.2 Application Communication

Communication between activities [18] and fragments [19] are performed using intents

[20]. Thereby, an intent is a messaging object used to request an action from another

application component [20], regardless of this component being part of the calling

application or another one. As described in Section 2.2.1, the Manifest act as the

contract between respective application and Android. Therefore, every activity used

inside an application must be registered in the applications Manifest file. Additionally,

to be able to be called from an external application, an intent filter [20] must be added.

Using this contract, Android is able to search for applications installed on the device,

that can serve a given intent. Figure 2.2 illustrates such an activity call. AppA’s activity

Activity1 starts an intent, that can be served by AppB’s activity Activity5. At 1©, AppA

9

2 Fundamentals

AppA AppB

 Android

Manifest Manifest

Activity1 Activity3Activity2 Activity4

Activity5
Intent

1

2

3

Figure 2.2: Calling Another Activity Using Intents

sends its intent to Android, which searches for matching, registered activities 2©. For

this, it uses the applications’ Manifest file. If a matching activity is found (in this case

Activity5) 3©, Android automatically starts AppB with its activity Activity5. Optionally,

Activity5 may return a result to its caller (Activity1) after execution. For sending this

result, or more general any data between activities, intents have a common key-value

storage inside, called bundle [21].

2.3 ADEPT2

The Application Development based on Encapsulated Pre-modeled Process Templates

(ADEPT2) project [4] started in 1995 aiming at delivering a next generation business

process management technology. This section introduces relevant topics for this master

thesis. Therefore, Section 2.3.1 describes the process model of ADEPT2, whereas

Section 2.3.2 illustrates ADEPT2’s concept of process execution.

2.3.1 Process Model

ADEPT2 process models are based on acyclic graphs [22, 23]. It consists of nodes,

control edges, data elements, and data edges [24]. One node is one step in the process

10

2.3 ADEPT2

model. Control edges are unidirectional edges connecting two nodes and thereby

determining the order of execution. Hence, if a control edge connects node A with B, it

means that A must be executed before B.

Nodes may have different node types [23]. Node type NT_STARTFLOW marks the start of

a process model, consequently NT_ENDFLOW marks the end of a process model. Note

that a process model can only have one start and one end node. Further, NT_NORMAL

is the node type used for declaring a node with one incoming and one outgoing control

edge, thus describing a sequence of execution. Furthermore, NT_AND_SPLIT splits

the control flow into multiple parallel control flow branches. In contrast, NT_XOR_SPLIT

also splits the control flow, but allows only one of these branches to be selected and

executed. At last, NT_LOOP_SPLIT declares a reverse jump to an earlier point of

execution, enabling parts of a process model to be performed multiple times. Additionally,

each SPLIT type has a corresponding JOIN type, spanning a control block. ADEPT2

only allows control blocks with one incoming and one outgoing control edge. Additionally,

control blocks may not overlap, but can be nested [25].

Data elements are process variables storing data during execution [25]. Data elements’

values are written and read by nodes. The access type is modeled with unidirectional

data edges. On one hand, a data edge from a node to a data element means write

access. On the other hand, a data edge from a data element to a node declares read

access. Figure 2.3 shows an example process with all elements.

Node
(NT_NORMAL)

Node
(NT_ENDFLOW)

Node
(NT_STARTFLOW)

Node
(NT_AND_SPLIT)

Node
(NT_AND_JOIN)

Node
(NT_XOR_SPLIT)

Node
(NT_XOR_JOIN

Node
(NT_LOOP_SPLIT)

Node
(NT_LOOP_JOIN

Control Edge Data Edge Data Element

Figure 2.3: Example Process with Additional Annotations

11

2 Fundamentals

To ensure structural correctness, ADEPT2 uses a principle called correctness by con-

struction [26] i.e., offering the process modeler only modeling options that keep the

process model syntactically correct.

2.3.2 Process Execution Logic

During the execution of the process model, nodes are transitioning through different

node states, as Figure 2.4 illustrates.

Figure 2.4: Node States Chart [25]

Initially, a node is in node state NOT_ACTIVATED. In this state, a node is not ready to

be performed. If all preconditions are met, a node switches into node state ACTIVATED.

Now, the node can be triggered to be performed, sending it in node state STARTED.

While executing this node, it can be SUSPENDED to interrupt its current execution. Af-

ter completion, a node changes into node state COMPLETED or, if an error occurred,

FAILED.

Additionally to nodes, control edges are also marked during process execution. Control

edges have 3 edge states [23]: NOT_SIGNALED, TRUE_SIGNALED, FALSE_SIGNALED.

A control edge is in edge state NOT_SIGNALED only when their source node is not in

node state COMPLETED, SKIPPED, or FAILED. Further, a source node with node state

12

2.3 ADEPT2

SKIPPED or FAILED gets the control edge into FALSE_SIGNALED. For marking control

edges with TRUE_SIGNALED marking rules dependent on the source node must be

declared. Also, activation rules for nodes must be defined.

Both marking and activation rules are defined in [23]. Therefore, after completing a

node of type NT_XOR_SPLIT, or NT_LOOP_SPLIT, only one of the outgoing control

edges is marked TRUE_SIGNALED, all other are set to FALSE_SIGNALED. In contrast,

completing nodes of any other type results in marking all outgoing control edges as

TRUE_SIGNALED. For nodes, there are two rules for activation: either, all incoming

control edges (at least all) or only one (at least one) must be marked TRUE_SIGNALED.

Table 2.1 shows the node types activation rule.

Node Type Activation Rule
NT_STARTFLOW -
NT_ENDFLOW at least all
NT_NORMAL at least all
NT_XOR_SPLIT at least all
NT_XOR_JOIN at least one
NT_AND_SPLIT at least all
NT_AND_JOIN at least all
NT_LOOP_SPLIT at least all
NT_LOOP_JOIN at least one

Table 2.1: Activation Rules

Note that the start node does not have any incoming control edge and therefore must be

activated manually at process execution start [23].

13

3
Related Work

Currently, several workflow engines are available that may be used on Android or are

specifically designed for smart mobile device support. Sections 3.1 and 3.2 cover

more general workflow engines, whereas Section 3.3 introduces the workflow engine

previously used for the application scenario, described in Section 7. Finally, Section 3.4

discusses the provided features of each engine.

3.1 jBPM

jBPM [27] is a Business Process Management Suite, written entirely in Java. It offers

a generic process execution infrastructure, allowing the integration of different process

model notations (BPEL, EPC,..) but having a basic core engine, ready to execute BPMN

2.0 [28] process models. Further, jBPM offers features for modeling, monitoring, and

managing process models and process instances. As this thesis deals with the issue of

process execution and analysis, this section covers the execution concepts of jBPM.

Figure 3.1: jBPM Overview [29]

15

3 Related Work

As illustrated in Figure 3.1, a user interacting with the engine first must create a stateful

knowledge session for process execution. It is used for engine communication and

needs a reference on a knowledge base. The latter holds all relevant process definitions

(i.e., process models). Whenever a process is started, a new process instance is created

based on the respective process definition.

For domain specific tasks, jBPM uses so called custom work items [30]. A custom

work item, however, is a BPMN <task> containing a WorkItem Java class to be used

by a WorkItemHandler. A WorkItemHandler executes (or aborts) a given work

item. The WorkItemHandler gets registered at the WorkItemManager of the stateful

knowledge session used for process execution.

3.2 MARPLE

MAnaging Robust mobile Processes in a compLEx world (MARPLE) [31] is a light-weight

process engine for smart mobile devices developed at Ulm University, enabling execution

of central stored process models across different smart mobile devices by a client-server

architecture. It consists of two main components [31], the MARPLE Mediation Center

and the MARPLE Mobile Engine(of Figure 3.2).

Figure 3.2: General MAPRLE Architecture [31]

The MARPLE Mediation Center is responsible for the administration of process models

and smart mobile devices. This includes, for example, deploying the MARPLE mobile

16

3.3 Questionnaire Process Execution Engine

engine on the smart mobile devices as well as modeling, transferring, and executing

process models.

The MARPLE mobile engine takes care of process execution with pre-set Activity

Templates, pre-manufactured application components, executed at runtime as process

tasks [7]. Further, it tackles the issue of process derivation, as well as ad-hoc changes

during the execution og a specific process instance. Therefore, it uses ADEPT 2.3

concepts. Finally, MARPLE Mobile Engine is responsible for communication to the

MARPLE Mediation Center.

3.3 Questionnaire Process Execution Engine

In the context of a diploma thesis [32], a questionnaire process engine was implemented.

Used concepts are derived from ADEPT, resulting in a fully operational process execution

engine. However, implementations for process tasks are stored inside the engine at

build time, if a new process task implementation is needed or an already existing one

needs to be modified, this results in updating the engine itself as well as the application

using the engine. Further, communication between engine and application is based on

XML documents. Hence, serialization of the latter results in high computation effort for

communication.

3.4 Discussion

This chapter presented three different workflow engines for executing business processes.

First, jBPM is introduced. It is a very powerful light-weight engine which can be used on

devices capable of running Java. However, jBPM is not specifically designed for smart

mobile devices. In contrast, MARPLE, subsequently introduced, is specifically designed

for the execution of business processes on smart mobile devices. This engine is also

very powerful, but relies on a client-server architecture. Finally, the questionnaire process

execution engine is presented. However, it lacks plug & play features for process task

implementations. A change in process task implementations results in redeploying all

17

3 Related Work

respective applications. Table 3.1 shows key-features for the discussed mobile process

engines. The legend is as follow: ’(X)’ stands for partially available, ’X’ for fully available

and ’x’ for not available

Feature jBPM MARPLE Questionnaire Engine
Smart Mobile Device
Support

(X) X X

Flexible Process Execu-
tion

X X X

Executable Compo-
nents

X X X

Ad-hoc Changes x X x
Monitoring X X x
Analysis X x x

Table 3.1: Key-Features for Mobile Process Engines

18

4
Requirements

This chapter covers basic requirements for WOtAN, derived from the workflow engines

introduced in Chapter 3. First, Section 4.1 introduces functional requirements, followed

by Section 4.2 describing non functional requirements. Finally, Section 4.3 emphasises

and discusses key requirements in the context of this thesis.

4.1 Functional Requirements

This section covers functional requirements for WOtAN, i.e., requirements which specify

the systems behaviour:

F_1 - Import Process Model: WOtAN shall be able to import process models.

F_2 - Process Notation: WOtAN shall be able to import different process model nota-

tions.

F_3a - Execute Process: WOtAN shall be able to traverse through an imported process

and execute each traversed process task.

F_3b - Execute Process: WOtAN shall be able to work without any external connection.

F_4a - Use Executable Business Process: WOtAN shall be able to use executable

business processes for process task execution.

F_4b - Executable Business Process: An executable business process is a reusable

software template.

F_4c - Load EBPs: WOtAN shall be able to load externally stored executable business

processes at runtime.

19

4 Requirements

F_5 - Log Process Execution: WOtAN shall be able to log the execution of an executed

process model.

F_6a - Export Process Execution Data: WOtAN shall be able to export process

execution data.

F_6b - Process Execution Data: Process execution data consists of all relevant data

created at execution time.

F_7 - Delete Process Model: WOtAN shall be able to delete imported process models.

F_8 - Import Rule: WOtAN shall be able to import evaluation rules.

F_9 - Evaluate Rule: WOtAN shall be able to evaluate imported evaluation rules.

F_10a - Use Rule Functions: WOtAN shall be able to use rule functions.

F_10b - Load Rule Functions: WOtAN shall be able to load rule functions at evaluation

time on demand.

F_11a - Report Evaluation Report: WOtAN shall be able to return an evaluation report.

F_11b - Evaluation Report: An evaluation report consists of the result of evaluation,

the evaluated evaluation rule, and other meta data.

4.2 Non-Functional Requirements

This section covers non-functional requirements which define quality goals of the process

engine.

NF_1 - Programming Language: WOtAN shall be written in Java, to ensure full com-

patibility with Android.

NF_2 - Modularity: WOtAN’s architecture shall be modular for easy implementation

and maintainability.

NF_3 - Standalone Modules: WOtAN modules shall be usable without any other

module.

20

4.3 Discussion

NF_4 - Common Communication Language: WOtAN modules shall be loosely cou-

pled by a common communication interface.

NF_5 - High-Level API: The offered API shall be high-level enough to cover internal

structures, e.g., process model structure, engine structure.

NF_6 - Process Data Flow: Process data values shall be managed internally, not visible

to the application programmer.

NF_7 - Object-Oriented Communication: Communication is achieved using objects,

not serialized data structures.

NF_8 - Decoupled Process Task Implementation: Implementation of process tasks,

e.g., user forms or scripts, must be decoupled from the workflow engine itself.

NF_9 - Extensibility at Runtime: At runtime, import and export plug-ins, rule functions,

as well as executable business processes shall be added without main application

recompilation.

4.3 Discussion

As one can see in Section 4.1 there are requirements for storing and deleting of both

process models and rules, but none for editing them. This results from the general

approach for WOtAN, described in Chapter 5, by separating modeling and executing of

process models into different modules. F_2 defines the requirement for different process

model notations being executable using WOtAN. The main idea, hereby, is to transform

other notations into the one WOtAN uses internally.

One problem of the questionnaire engine, introduced in Section 3.3 is the unnecessary

serialization and de-serialization of XML documents for internal communication. There-

fore, NF_7 restricts communication to object-based manner. This is no contradiction to

the functional requirements for import and export, since these plug-ins are not meant

for direct communication, but for communication, where objects are not possible to use,

e.g., device to device communication or web services.

21

4 Requirements

The high-level API claimed by NF_5 and internally managed process data flow of NF_6

are meant to reduce complexity for applications programmers. This way, they can focus

on the application itself and not on the workflow engine.

22

5
Concepts and Architecture

This chapter describes the core architecture of Workflows on Android (WOtAN) devel-

oped in this thesis. First, a brief overview regarding the main architecture and core

concepts of WOtAN are introduced. Second, more details for the process model exe-

cution engine are discussed. Finally, more information with respect to the rule-based

analysis engine are given. Note that (F_x) or (NF_x) means, that respective requirement

is served at this point of the thesis.

5.1 General Overview

This Section gives an overview over WOtANs’ general architecture. It starts at the

top-level concept towards deeper ones.

1.Discovery

WOtANDiscovery

WOtANCore

Figure 5.1: WOtAN Modules Integrated in BPM Lifecycle

23

5 Concepts and Architecture

A process engine is a very complex technology [33]. To handle this complexity, WOtAN

consists of five modules connected by one common core, shown in Figure 5.1, called

WOtANCore. Each module represents one step in the process model lifecycle [34]. The

five modules are (NF_2):

1. WOtANDiscovery : Responsible for process discovery i.e., finding existing process

modeles in companies.

2. WOtANModeling: Responsible for modeling of new process modeles or introducing

ad-hoc manipulations of existing process modeles.

3. WOtANExecution: Responsible for process execution.

4. WOtANMonitoring: Responsible for live monitoring of process instances.

5. WOtANAnalysis: Responsible for analyzing executed process modeles.

This thesis focuses on WOtANExecution and WOtANAnalysis. All modules can be

used without any other module, but rely on the WOtANCore (NF_3), NF_4. However,

some modules may be useless alone. For example, WOtANMonitoring monitors running

process modeles. Therefore, WOtANExecution is needed to execute process modeles

that can be monitored.

The WOtANCore can be seen as the common language of all modules. The latter

consists of high level data- and control-layer interfaces, enabling object-based intercom-

munication between all modules (NF_5, NF_7).

The general architecture of each WOtAN module is 3-Tier, consisting of a data- and a

control-layer, shown in Figure 5.2. The view-layer is not needed in the engine itself, but

the WOtAN using application. Each layer has a single entry point, called manager, for

its respective upper layer, defined by a WOtANCore interface. WOtANCore provides

for each module a corresponding data and control manager, e.g., for WOtANExecution

this is the execution manager. Every action called on a layer should be done over its

manager interface.

A data manager is responsible for storing, deleting and fetching the respective data. Be-

cause the data manager itself as well as the objects exchanged are based on interfaces,

24

5.2 WOtANExecution

WOtAN

Application

 Control

Manager

 Data

Manager

Application Sources

View

Control

Data

Figure 5.2: WOtAN 3-Tier Architecture

the underlying data structure can be exchanged without any upper layer changes. The

same principle of using interfaces is used in the control-layer as well.

This architecture enables the almost unlimited mixing of all WOtAN modules in one

application. For example, WOtANExecution and WOtANAnalysis can be combined

to enable a smart mobile application to execute and later analyze business process

instances. Another useful combination could be to integrate WOtANModeling and

WOtANExecution, whereas WOtANExecution works as test client for newly modeled

process modeles.

5.2 WOtANExecution

As mentioned in Section 5.1, WOtANExecution enables applications to execute process

modeles in a flexible and robust way. The following section describes the architecture

of WOtANExecution. Subsection 5.2.1 introduces the concept of WOtANExecution.

Afterwards, Subsection 5.2.2 shows the WOtANExecution specific architecture.

25

5 Concepts and Architecture

5.2.1 Concepts

Process Model

A process model is a graph-based description of a business process. It consists of

different elements shown in Figure 5.3:

Start EndA

B

C D E

D1

Node

Control
Edge

Data
Edge

Data
Element

Figure 5.3: Process Model Example

• Node: A node is a step within the process model. It can have different node types,

describing the semantics (e.g., gateway, normal, start, end).

• Control Edge: A control edge is an unidirectional edge, describing the order of

execution between two nodes, e.g., D→E meaning D must be executed before E

can start.

• Data Element : A data element is a variable storing data for a respective instance

of the process model. It may be read or written by nodes.

• Data Edge: A data edge is an unidirectional edge, describing the behaviour

between a data element and a node e.g., A→D1 meaning A writes data in D1 or

D1→B meaning B reads data from D1.

A node’s type specifies its behaviour at run time as well as the permitted number of

incoming and outgoing control edges. Table 5.1 explains the possible node types.

26

5.2 WOtANExecution

Node Type Description
STARTFLOW Start point for the process model.
ENDFLOW End point for the process model.
NORMAL A normal process model task, doing

process model tasks.
XOR Splits the control flow into multiple

branches. Only one branch will be
activated and executed at run time.

AND Splits the control flow into multiple
branches. All branches will be acti-
vated and executed.

LOOP Allows to jump back at an earlier
point of the control flow to execute
parts of the process model model
again.

Table 5.1: Node Types [23]

The node types XOR, AND and LOOP are divided into a JOIN and a SPLIT subtype. The

split and join node automatically generates a block, with the splitting node as entry point,

and the joining node as exit point [35].

Process Model Execution

process model execution means traversing the process model graph, performing all

nodes on the way, from start to end. To assure a proper and valid process model

execution (according to the modeled control flow), the nodes are assigned to different

node states. All node states and their possible transitions are shown in Figure 5.4. First,

a node is in state NOT_ACTIVATED.

When either the node’s preconditions are met, the node is set to state ACTIVATED.

During this node state, the engine can start a node changing its node state to STARTED

executing this step. Afterwards, the node gets terminated as either successful executed

(COMPLETED), or executed with errors (FAILED). Subsequently, all following nodes are

tested for activation.

27

5 Concepts and Architecture

When starting a new process model instance, the node with node type STARTFLOW is

set ACTIVATED, thus can be started from the engine. After reaching the node with node

type ENDFLOW, the execution is considered (successfully) finished.

The node states SELECTED and SKIPPED are not used for execution behaviour, but as

internal helper node states. Therefore, they are not explained at this point.

Figure 5.4: Node States Overview [25]

Executable Business Process

An executable business process (EBP) is a software template that can be stored in nodes.

Its function can vary from a graphical user interface (e.g., a user form) to a complex

automatic computation. An EBP uses its own parameters, which must be mapped at

run time to the corresponding data elements of the stored-in node. Its execution begins

when respective node is started.

28

5.2 WOtANExecution

5.2.2 Architecture

WOtANExecution has three managers to control process instances: an execution man-

ager, instance manager, and a runtime manager. The manager dependencies are

shown in Figure 5.5. The following sections describe each manager and its tasks.

WOtANExecution
Manager

Runtime
Manager

Instance
Manager

Instance
Manager

Instance
Manager

Runtime
Manager

Figure 5.5: WOtANExecution Manager Hierarchy Overview

Execution Manager

The execution manager is the top manager of the control layer. It is responsible for

the communication between the application and the engine i.e., all commands to the

engine are passed to the execution manager. This should be the only manager ever

used by an application developer. The main task of this manager is to distribute given

commands to the correct instance manager and return a possible result back to the

caller. Further, administration tasks like process import (F1), process deletion (F7), and

process execution data export (F6a) are distributed to respective components.

Instance Manager

An instance manager is responsible for exactly one currently running business process

instance. It is dynamically created by a execution manager when a new process model

instance is started and destroyed after the process model has finished. The instance

29

5 Concepts and Architecture

manager takes care of all related workflow control i.e.,changing node states and instance

states correctly (F_3a, F_3b). The instance manager has one runtime manager for

controlling the executable business process used in respective process model instance.

Runtime Manager

The runtime manager is responsible for bidirectional communication between the engine

and the EBP, shown in Figure 5.6 (F_4a). Therefore, it uses an communication channel.

The runtime manager sends EBP control message such as start, suspend, restart,

finish to the EBP. Additionally, the manager receives messages from the EBP, e.g.,

saving data, EBP’s GUI.

App

EBP AWOtANExecution

Runtime
Manager

C
o

m
m

u
n

ic
a

io
n

C

h
a

n
n

e
l

EBP B

Figure 5.6: Runtime Manager to EBP Communication

As one can see, an EBP can be stored within a smart mobile application or be stored

externally (F_4c, NF_8), as illustrated in Figure 5.7. This is possible because WOtANEx-

ecution uses weakly referenced EBPs. Internally stored EBPs are only visible to the

smart mobile application it inherits. In contrast, externally stored EBPs are visible and

can be used by all smart mobile applications on the device that use WOtANExecution.

The drawback of internally stored EBPs is that a change in the EBP results in updating

the whole smart mobile application the EBP is stored in. A change of externally stored

30

5.2 WOtANExecution

EBPs does not require the update of any smart mobile application (NF_9). However, on

one hand, loading externally stored EBPs uses more computation power than the use

of internal EBPs. On the other hand, by storing EBPs internally, a EBP may be stored

twice in two separate smart mobile applications, thus increasing storage consumption.

AppA

WOtANExecution EBP 1

EBP 2AppB

WOtANExecution

Figure 5.7: Coupling the Engine with Standalone EBPs

Manager Behaviour Example

An example behaviour of managers at runtime is shown in Figure 5.8. This example

illustrates the start of a node, that inherits an EBP. The application which uses WOtAN

propagates a start node command to the execution manager 1©. The execution

manager passes this command to the responsible instance manager 2©. The instance

manager, however, generates a new runtime manager and commands it to start the

nodes EBP 3©. Then, the runtime manager creates a new EBP object, and gets binded

to it 4©. Then, the runtime manager passes environment data to the EBP for complete

initialization 5©. Finally, the runtime manager starts the EBP with its execute command

6©. Now, that the EBP is running, the application can ask for the EBP’s graphical user

interface via execution managers getGUI command 7©, traversing the manager stack

downwards to the EBP. Note that all commands are always passed down the manager

stack to the responsible manager.

31

5 Concepts and Architecture

WOtANExecution

App
Execution
Manager

Runtime
Manager

Factory

Instance
Manager

EBP

startNode: 1 startNode: 2

startEBP: 3

createEBP: 4

Execute: 9

Create: 5

Bind: 6

setEnv: 8

getNodeGUI:10

1
2

3

4

57

6

Figure 5.8: Start Node Example

5.3 WOtANAnalysis

The WOtANAnalysis module enables applications to evaluate process modeles executed

using WOtANExecution based on predefined rules. The first section describes concepts

used, whereas the second section describes WOtANAnalysis’ architecture in more detail.

5.3.1 Concepts

Rule

The concept of rules are adopted from [36]. Thereby, a rule consists of comparisons

connected with Boolean AND or OR. A comparison consists of two operands and a

Boolean operator. Operands can be pre-set values, variables, or functions. A

function describes a specific behavior at evaluation time. Figure 5.9 illustrates a simple

rule.

32

5.3 WOtANAnalysis

Figure 5.9: Rule Example [36]

5.3.2 Architecture

WOtANAnalysis consists of a rule manager, a rule formatter, a rule importer, and a

rule evaluator component. The following sections describe their tasks and behaviour,

illustrated in Figure 5.10.

WOtANAnalysis

WOtANExecution

Process Execution
Data

Rule Manager

Rule(s)
Evaluation

Report
Rule

Importer

1 2 3 4

Rule
Functions

Rule
Formatter

Rule
Evaluator

Figure 5.10: Rule Evaluation Overview

Rule Manager

The rule manager is WOtANAnalysis’ control manager. Therefore, it is the entry point for

every application developer to use WOtANAnalysis. Its task is to orchestrate the rule

33

5 Concepts and Architecture

evaluation process by distributing all evaluation tasks in correct order to the responsible

components.

Rule Importer

The rule importer is the first step in the rule evaluation process. The importer imports a

given rule 1© (F_8). The source of a rule can be, for example, a file or web-service. Note,

that a rule importer must be specifically built for a given external rule format. Therefore,

the importer must first create an object structure of the imported rule format, then call

the respective rule formatter to transform the rule into the persistence format used 2©.

Rule Formatter

The rule formatter is, as the name suggests, a formatting component. It is called after

the import of a rule by rule importer, but before persistence of respective rule. Like the

rule importer, a rule formatter must be implemented for each external rule format that

shall be importable.

Rule Evaluator

The rule evaluator is responsible for evaluation 3© i.e., testing rules on given process

execution data (F_9), generated by WOtANExecution, and create an evaluation report

as answer 4© (F_11a). The evaluation report includes the result, the tested rule, and

other meta information like id and name of the process model instance that generated

the process execution data (F_11b).

As described in Section 5.3.1, a rule can have functions in it (F10a). The function’s

implementation is stored externally and will be dynamically loaded by the rule evaluator

at runtime if required (F_10b).

34

6
Implementation Aspects

This chapter describes some technical aspects as well as design choices regarding

WOtAN’s implementation. Section 6.1 explains the design philosophy behind the in-

terfaces. Subsequently, Section 6.2 shows EBP implementation aspects. Following,

Section 6.3 introduces the library used for object-relational mapping. Finally, Section 6.4

presents the rule evaluation implementation.

6.1 Interface Design

To ensure a modular and flexible architecture, all functions of any module are offered

through interfaces. Hence, a developer works on interfaces of the respective modules.

This allows to switch implementations without any changes in the application’s code.

Therefore, interfaces are an important aspect of WOtAN.

Taking the limited data types passable to an Android Bundle in account , all interfaces

shown to application developers uses primitive data types and Java’s UUID class as

parameters only. The following code shows method examples of the execution manager

interface:

1 public inter face ExecutionManager {

2 public void star tNode (UUID modelId , Long nodeId) ;

3 public ProcessModel getProcessModel (UUID modelId) ;

4 . . . }

Listing 6.1: Excerpt from Interface Methods

Instead of passing an object, only their identifiers are passed. As a result, a Bundle can

be filled with fast serializing types, reducing serialization computing for objects that are

35

6 Implementation Aspects

most likely cached in the data manager and , therefore, quickly reloaded. Additionally,

object loading can be skipped if no further information is required.

As one can see at method getProcessModel, return types can be objects. Alike

methods are called after changing to another Android Activity or inside a new An-

droid Fragment. Further, one can see the rather high level API approach at method

startNode(), which reduces the starting of a specified Node to just one method call.

6.2 Executable Business Process Management

This Section gives an overview over EBP specific aspects of implementation. First, Sec-

tion 6.2.1 describes the general structure for every EBP. Then, Section 6.2.2, introduces

dynamic EBP loading at runtime. Finally, Section 6.2.3 describes challenges which need

to be considered by EBP developers.

6.2.1 Structure

An EBP is developed as an Android application, weakly coupled to WOtAN by referencing

WOtANCore. However, this application does not have any Android Activity in its

Manifest. Despite the fact that the EBP is installed on the Android smart mobile device

as a normal application, it cannot be launched by the Android Launcher and is invisible in

the application overview. The reason for installing EBPs is to use its resource files (e.g.,

predefined String values, images, layouts). Furthermore, installation routines makes

storing EBPs easier, because there is no need to manage an EBP repository.

As in Figure 6.1, EBPs should extend from AbstractExecutableBusinessProcess,

which is an Android Fragment and implements ExecutableBusinessProcess in-

terface. This way, the EBP developer can focus on semantic implementation, instead of

thinking about infrastructural belongings.

36

6.2 Executable Business Process Management

AbstractExecutableBusinessProcess

+ ContextedLayoutInflater

+ EngineContext
+ EBPContext

Fragment

<<extends>>

MyEBP

-mitgliedsName

-mitgliedsName

<<extends>>

ExecutableBusinessProcess

<<interface>>

Figure 6.1: EBP Overview

6.2.2 Loading at Runtime

Because all EBPs are stored outside the main application’s sources, they need to be

loaded at runtime. To do so, Android offers a DexClassLoader to load jar or apk

(android application) files. The code in Listing 6.2 describes, how an EBP can be

dynamically loaded at runtime:

1 / / Create DexClassLoader

2 DexClassLoader d l = new DexClassLoader (dexPath , optOutPath ,

3 null , th is . getClass () . getClassLoader ()) ;

4

5 / / Load EBP from given c lass path and cast to i n t e r f a c e

6 ExecutableBusinessProcess newEBP =

7 (ExecutableBusinessProcess) d l . loadClass (c lassPath)

8 . newInstance () ;

Listing 6.2: Loading EBPs dynamically at Runtime

Line 2 instantiate a new DexClassLoader for the respective jar or apk file, that inherits

the sources of the requested EBP with following parameters [37]:

• dexPath: One or multiple file paths to jar or apk files with demanded classes.

• optimizedDirectory: File path to a folder, where the DexClassLoader can

store optimized dex files (optOutPath).

• libraryPath: List of native library directories (null in the example)

• parent: The parent ClassLoader (this.getClass().getClassLoader())

37

6 Implementation Aspects

After creation, a DexClassLoader is used like any other Java class loader. Line 7 and

8 show the loading of a class and instantiation of an object.

For an EBP to be usable, several requirements have to be satisfied:

1. The android application package name of the EBP must be equal to the package

path of the EBP’s main class.

2. The node using the EBP must specify the correct implementation class

path.

3. The EBP application must be installed on the Android smart mobile device.

4. The EBP main class must either extend AbstractExecutableBusinessProcess

or implement ExecutableBusinessProcess.

A small example: Let com.example.TestEBP be the full qualified name for the EBP

main class. Hence, the node in the process model must have stored com.example.TestEBP

in its implementationClass attribute. However, the EBP application’s package name

is only com.example.

A fully commented version of EBP loading source code in A.1 exemplarily shows the

whole process of loading an EBP and illustrates the need for given conventions.

6.2.3 Development Challenges

Since EBPs are normal Android applications, they have their own Context. Therefore,

an EBP developer has to deal with two contexts: the EBP context and the engine

context. The EBP context must be used to access resources of the EBP, like layouts,

strings, or images. Trying to use the engine context for accessing EBP resources may

end in retrieving the wrong resource or an exception. Therefore, it is essential to use

a LayoutInflater with the respective EBP context, so references on resources in

XML layout files are correctly resolved. In contrast, the engine context must be used

for runtime information (e.g., Locale, and Theme). Further, the engine context is

used to add Fragments to the current running Activity.

38

6.3 Object-Relational Mapping

The AbstractExecutableBusinessProcess class provides static access to both

Android Context as well as a LyoutInflater with the correct Context. How-

ever, if custom XML tags are used in layout files (e.g., from android support libraries),

a LayoutInflaterFactory must be implemented and added to the predefined

LayoutInflater. Otherwise, the LayoutInflater cannot load the classes mapped

to these tags. An example factory is shown in Source A.2. Figure 6.2 illustrates

the problem. The GUI classes of an EBP for its custom made XML tags in layout

files are loaded with the respective DexClassloader. However, the LayoutInflater

was loaded by another Classloader. As a result, the LayoutInflater cannot load

the required classes, because its Classloader can not access them. In contrast, a

LayoutInflaterFactory loaded by the respective DexClassloader has access

to the required classes.

Bootstrap
Classloader

Classloader Classloader Classloader

Dex
Classloader

LayoutInflater

EBP specific GUI
Classes

parent of

loads

Factory

access
no access

Figure 6.2: Problem of Classloaders

6.3 Object-Relational Mapping

GreenDAO is an open source object relational mapper project, initialized by greenrobot

[15]. It uses Android’s built-in SQLite database, mapping its tables to common Java

objects.

39

6 Implementation Aspects

Figure 6.3: GreenDAO Overview [15]

6.3.1 Schema Generation

GreenDao lets the developer program their database tables, i.e., the application devel-

oper has to write a Java program, that describes the database tables of A.3 [38]. The

meta model used for generation is based on database table structure of Figure 6.4.

Figure 6.4: GreenDAO Meta Model [38]

The generator automatically creates POJO and DAO classes, as well as a database

table manager class. Further, the greenDAO Core Lib must be imported into the Android

application. All actors are shown in Figure 6.5.

6.3.2 Database Communication

The database can be accessed in 3 different ways [40]:

1. Direct DAO access: Calling a load() method from a responsible DAO object.

2. QueryBuilder queries: Create a query using the provided QueryBuilder.

3. Raw queries: Write a highly customized SQLite query as java.lang.String.

40

6.3 Object-Relational Mapping

Figure 6.5: GreenDAO Generation Actors [39]

Source A.4 shows all 3 access types. Note that a DAO is only available through the

generated DaoSession class.

41

6 Implementation Aspects

6.4 Rule Evaluation Process

The rule evaluation process is performed by Apache Commons JEXL. The latter stands

for Java Expression Language, and is a scripting language, inspired by Apache Velocity

and the Expression Language defined in the Java Server Pages Standard Tag Library

version 1.1 (JSTL) and Java Server Pages version 2.0 (JSP) [41]. This Section describes

the use of the JEXL library and describes how it is embedded into the process of

evaluating rules during runtime. Section 6.4.1 illustrates the general use of JEXL,

whereas Section 6.4.2 applies JEXL specifically to the Rule Evaluation Process.

6.4.1 General Usage

Generally, JEXL has three actors for scripting actions, shown in Figure 6.6 [42]:

• JexlEngine: The main protagonist, processing the passed Script or Expression.

• JexlContext : A context for the JexlEngine, most likely a key-value store.

• Expression/Script : The script to be processed by JexlEngine. Essentially, a Script

consists of multiple Expressions. Expressions are written in a JEXL specific Syntax,

described in [43].

JexlEngine

Expression

JexlContext

Resultoptional

Figure 6.6: JEXL Actors

JexlEngine

Mapped Expression

'(34 == 45 && false ==
false) || hello world .length() < 5'

JexlContext

Key Value
integerA 34
booleanA false
stringB hello world

Expression

'(integerA == 45 && booleanA ==
false) || stringB.length() < 5'

evaluate()
Result

false

Expression

'(integerA == 45 && booleanA ==
false) || stringB.length() < 5'

Figure 6.7: JEXL Processing Example

42

6.4 Rule Evaluation Process

The JexlContext and an Expression are passed to the JexlEngine, which then

processes the Expression, returning a possible result for the given input. The fol-

lowing example shows the whole process of JEXL processing in Figure 6.7. Let the

Expression be:

1 (in tegerA == 45 \&\& booleanA == fa lse) | | s t r i ngB . leng th () < 5

Further, following key-value pairs are stored within the JexlContext:

1 (in tegerA , 34)

2 (booleanA , fa lse)

3 (s t r i ngB , ’ h e l l o wor ld ’)

First, JEXL recognizes variables in the given Expression and substitutes them with the

respective value in given JexlContext. In the given example, substituting integerA

with 34, booleanA with false and stringB with ’hello world’. Afterwards, it

processes the given Expression which, in this case, is a Boolean expression. There-

fore, JexlEngine evaluates it automatically and returns false as the result. Note that

JexlEngine calls the length() method of java.lang.String. However, calling class

methods is not restricted to strings. As a matter of fact, JEXL can call any available

method from any class, as long as a object reference is stored in the JexlContext,

granted that key and Expression variable match [42].

6.4.2 Rule Evaluation

This Section applies the introduced library from Section 6.4.1 to the Rule Evaluation

Process. Therefore, the overall process of rule evaluation is described. Subsequently,

the usage of rule functions is outlined.

Evaluation Process

For the rule evaluation process, illustrated in Figure 6.8, several data is required:

• Execution Logs: Log of the executed process instance, describing the order of

execution, along with other data (e.g., timestamps).

43

6 Implementation Aspects

• Data Values: All values for data elements ever written for a given process instance.

• Data Elements: The data elements involved in this process instance.

• Rule Condition: The rule condition (e.g., expression) to be tested.

• Rule Functions: Functions, that may be used when testing the condition.

A rule condition is a JEXL string as described in Section 6.4.1. However, two require-

ments must be met: First, variables must be named after their data element. Second, if

a function is used, the variable name before the function name must be the full qualified

name of the class implementing this function.

Because of the multiple occurrences of data values for one data element, only the latest

values are stored in the JexlContext.

JexlContext

Execution Logs Data Values

Data Elements

JexlEngine

Rule

Repository

Rule
Function

Rule
Function

Rule
Function

Load and
Instantiate

Parameter

Parameter

Evaluation
Result

evaluate()

Figure 6.8: Rule Evaluation Process Overview

When evaluating a rule, the rule condition and JexlContext are given to the JexlEngine.

The result of of the evaluation is a Boolean. This Boolean, combined with the evaluated

rule and other process instance information is wrapped in an EvaluationReport,

which is returned to the caller.

44

6.4 Rule Evaluation Process

Rule Functions

WOtANAnalysis uses rule functions for analysis. These functions are implemented in

Java, translating every function in a Java method. WOtAN provides an abstract class for

rule function development, named AbstractRuleOperation. It provides a common

constructor for all classes that may receive the execution logs, data values, and data

elements passed. This data is needed for dynamically loading these type of classes at

runtime with a DexClassLoader, as described in 6.2.2.

However, these classes are stored within an external repository, as one can see in

Figure 6.8 and are not installed as standalone Android applications. Therefore, to find

the correct class at runtime, the name of the jar file must be the same as the full qualified

name of the implementing class. To find the relevant function classes for each rule,

every rule has a dependency attribute, declaring a list of full qualified class names. The

loaded classes are instantiated as an object, and set in the JexlContext. Note that the

full qualified class name is used as key. The functions are now visible to JEXL and ready

to use.

45

7
Application Scenario: Mobile Data

Collection Application

This chapter introduces an application scenario for WOtAN. Therefore, Section 7.1

introduces the QuestionSys project. Following, Section 7.2 briefly discusses the system’s

overall architecture. At last, Section 7.3 describes WOtAN as process engine within this

system.

7.1 Introduction

Started in September 2013 QuestionSys [44] aims at providing a generic approach

to support the lifecycle of mobile data collection applications, as shown in Figure 7.1.

P1 is the first step in the lifecycle where a questionnaire is created. Subsequently, P2

is responsible for the deployment of created questionnaires. Afterwards, P3 supports

the flexible data collection of deployed questionnaires. The next step, P4, focuses on

evaluation and analysis of collected data. In the last step, P5, the archiving of enacted

and evaluated questionnaires is done.

QuestionSys thereby relies on a process-driven approach [45], using a process meta

model as questionnaire. The latter, is executed on a flexible process engine running on

a smart mobile device.

47

7 Application Scenario: Mobile Data Collection Application

Figure 7.1: Mobile Data Collection Application Lifecycle [44]

7.2 System Architecture

QuestionSys is a system consisting of four main components [36]: Questioneer, Ques-

tionRule, Questionizer, and Questionnaire. Following sections briefly describe their

tasks. A completed architecture overview is shown in Figure 7.2.

Questioneer / QuestionRule

Questioneer / QuestionRule

Questioneer / QuestionRule

Managing Components

Questionizer

Central Repository Mobile Clients

Retrieve
 Questionnaire

Data

Store Questionnaires
 and Rules

Load Questionnaires
 and Rules

Figure 7.2: QuestionSys Overall System Architecture

48

7.2 System Architecture

7.2.1 Questioneer

This is the questionnaire configuration component, enabling domain experts to flexibly

create and design electronic questionnaires. It allows for creating modular parts of a

questionnaire, e.g., questions, pages, and combining them to a complete questionnaire

using techniques from end-user programming. Further, the configurator allows to handle

multilingualism as well as to deal with multiple versions of questionnaires. Modeled

questionnaires are transferred to the Questionizer server-component.

7.2.2 QuestionRule

QuestionRule [36] is a rule configurator, enabling domain experts to create rules for the

subsequent analysis of a given questionnaire. QuestionRule allows graphical modeling

of rules, by using a tree-based drag & drop approach. Created rules are also transferred

to the Questionizer server-component.

7.2.3 Questionizer

Questionizer is the management back-end component, responsible for centralized stor-

age and distribution of both questionnaires and their rules. Further, results of completed

questionnaires are returned to this component for a rule-based analysis.

7.2.4 Questionnaire

The Questionnaire component is a client that runs on smart mobile devices or web

browsers. It is able to load and execute questionnaires. However, due to the fact that

questionnaires are mapped to process models, each client uses a lightweight process

engine to perform given questionnaires on smart mobile devices. When performing

questionnaires in a web browser, a server side process engine may be used.

49

7 Application Scenario: Mobile Data Collection Application

7.3 Using WOtAN in the Context of Mobile Data Collection

Applications

As described in Section 7.2.4, the Questionnaire component is a client for enacting

questionnaires on smart mobile devices. Recall that the QuestionSys framework uses

process technology to model a questionnaire. Therefore, WOtANExecution is used

as the flexible, lightweight process engine for Questionnaire on Android smart mobile

devices. Further, WOtAN does not only provide the functionality to enact questionnaires

with the WOtANExecution module, but also allows to evaluate collected data. This is

achieved using the WOtANAnalysis module.

This section describes the execution of questionnaires as well as its analysis. First,

Section 7.3.1 illustrates the overall project architecture of Questionnaire for the Android

platform. Then, Section 7.3.2 describes the execution component of Questionnaire.

Subsequently, Section 7.3.3 demonstrates the rule-based analysis component. At

last, Section 7.3.4 illustrates the Executable Business Processes used to automatically

generate and render the user interface to interact with the questionnaire.

7.3.1 Overall Architecture

Since both WOtANExecution and WOtANAnalysis are used within Questionnaire, it is

clear that both modules plus the WOtANCore are required. Therefore, a combined

database for WOtANExecution and WOtANAnalysis would be best practice. However,

to prove the standalone capabilities of WOtAN modules, separated databases for each

module are created. Additionally, both modules are completely separated stacks which

are combined at application layer, as illustrated in Figure 7.3.

7.3.2 Executing Questionnaires using WOtANExecution

Since a questionnaire is nothing else but a process model [8], WOtANExecution simply

stores a given questionnaire as process model. In order to enact the latter, it uses the

concepts and implementation aspects described in Section 5.2 and Section 6. However,

50

7.3 Using WOtAN in the Context of Mobile Data Collection Applications

Questionnaire

Application Sources

WOtANAnalysis

WOtANAnalysisDB

SQLite DB

WOtANExecution

WOtANExecutionDB

SQLite DB

W
O

tA
N

C
o

re

Figure 7.3: Overall Questionnaire Architecture

QuestionSys specific aspects need to be considered. First, every XOR branch in the

process model has an empty node i.e., containing no executable business process. This

workaround results from the ADEPT process model structure, which does not allow

multiple empty branches. However, for easier XOR branch conditions, such structure is

a desired feature, mitigate the use of combined, over the top complex Boolean terms.

Further, a data element is a process variable mapped to one specific question. Despite

its type, a java.lang.String type, it is a JSON string with a complex underlying data

structure, not further explained in this thesis.

Questionizer WOtAN powered Mobile Data Collection Application

Questionnaire

Evaluation Report/
Process Execution Data

Figure 7.4: Questionnaire Overview

Generally, as illustrated in Figure 7.4, questionnaires are transferred to the smart mobile

device. These questionnaires are executed using the developed lightweight process

51

7 Application Scenario: Mobile Data Collection Application

engine, generating process execution data. This data can be evaluated using WOtAN-

Analysis and sent back to the server.

7.3.3 Evaluating Questionnaires using WOtANAnalysis

Evaluating the collected data of executed questionnaires is achieved using WOtANAnal-

ysis, which relies on techniques described in Sections 5.3 and 6.4. Therefore, rules

defined by QuestionRule are stored in WOtANAnalysis’ database. Applying rules on

process execution data results in an Evaluation Report. This report may be displayed

within the smart mobile application or transferred to the server. Rule functions, as

described in [36] are stored in a local repository and loaded at runtime if needed.

7.3.4 Page Executable Business Process

The Page Executable Business Process(PageEBP) is the main component of page

execution. It is responsible for visualization and input verification. Basically, all classes

from the previous Questionnaire project are encapsulated into the WOtANExecution EBP

structure. Further, the new LayoutInflater and Android Context are propagated

through all classes to ensure resource and layout use. Further, as a practical part of

their bachelor thesis’, [46] and [47] styled the page component and Questionnaire GUI

in Androids material design, as shown in Figure 7.5. The result is a reusable modular

EBP that automatically creates the pages within a questionnaire which is controlled by

WOtANExecution. On application level, this EBP is simply used as a Fragment, which

can be added to any layout.

52

7.3 Using WOtAN in the Context of Mobile Data Collection Applications

PageEBP
Fragment

Questionnaire
Application

Figure 7.5: Questionnaire PageEBP Fragment

53

8
Conclusion

This thesis introduces aspects of business process execution and analysis using eval-

uation rules as modules of Workflows on Android (WOtAN). The latter is a modular

framework that aims to supports the BPM lifecycle (of Figure 8.1) on Android devices

without the need for external communication.

1.Discovery

WOtANDiscovery

WOtANCore

Figure 8.1: The BPM Lifecycle with Respective WOtAN Modules

First, WOtANExecution, the module responsible for business process execution, was

presented. This thesis emphasizes the flexibility to dynamically extend the functionality of

the engine. The latter, thereby, uses software templates, so called executable business

processes, which are flexibly loaded at runtime on demand.

Next, WOtANAnalysis, the module responsible for business process analysis, was

discussed. The latter uses the process execution data provided by WOtANExecution

as well as previously defined evaluation rules to automatically create evaluation reports.

55

8 Conclusion

Like in the other module, evaluation rule functions are fetched and loaded automatically

at runtime from a rule repository.

The dynamic extension aspect in WOtANExecution and WOtANAnalysis allows to change

or add implementations for both executable business processes and evaluation rule

functions, without recompiling and redeploying the application. Further, a high-level API

is provided to application developers, ensuring an easy-to-use framework.

8.1 Vision

As mentioned throughout this thesis, WOtAN introduced business process execution and

analysis to a framework supporting the whole BPM lifecycle. Hence, the missing steps

of the BPM lifecycle must be designed and implemented. This results in three additional

modules for WOtAN: WOtANModeling, WOtANDiscovery, and WOtANMonitoring:

WOtANDiscovery shall help to identify business processes in companies. Therefore,

it shall support different strategies, such as user stories [48], or process mining [49].

However, the practicability of computing intensive process mining algorithms on smart

mobile devices must be evaluated first.

WOtANModeling is responsible for business process modeling. Usability aspects have

already been shown in [50]. However, the concept lacks aspects of working offline, as it

directly communicates with a server.

WOtANMonitoring shall provide overviews regarding all currently running business

process instances. Therefore, WOtANMonitoring shall inherit WOtANExecution’s ability

to log process executions.

In addition to the above described work, further refinements of WOtANExecution and

WOtANAnalysis are needed:

WOtANExecution currently lacks the feature of dynamic data value types. It is currently

restricted on hard coded value types like Integer or Date. Furthermore, WOtANAnal-

ysis is currently restricted to rule-based analysis only. A more generic core infrastructure

with extension points for other analysis methods should be designed. Another analysis

56

8.1 Vision

method, for example, is the use of key performance indicators (KPIs) to analyze process

execution performance [51].

At last, the problem of limited battery and memory usage [31], as well as computation

performance, should be tackled for the already realized modules. This is necessary

for WOtAN to evolve into a real world utilizable approach, instead of staying a proof-of-

concept.

57

Bibliography

[1] Smith, Howard and Fingar, Peter: Business Process Management: The Third Wave.

(2003)

[2] Manfred Reichert and Barbara Weber: Enabling Flexibility in Process-Aware

Information Systems: Challenges, Methods, Technologies. Springer, Berlin-

Heidelberg (2012)

[3] Jens Kolb and Manfred Reichert: Data Flow Abstractions and Adaptations through

Updatable Process Views. In: 28th Symposium on Applied Computing (SAC’13),

10th Enterprise Engineering Track (EE’13), ACM Press (2013) 1447–1453

[4] Peter Dadam and Manfred Reichert: The ADEPT Project: A Decade of Research

and Development for Robust and Flexible Process Support. Technical Report

UIB-2009-01, University of Ulm, Ulm (2009)

[5] Rüdiger Pryss: Robuste und kontextbezogene Ausführung mobiler Aktivitäten in

Prozessumgebungen. PhD thesis, University of Ulm (2015)

[6] Andreas Lanz and Barbara Weber and Manfred Reichert: Time patterns for

process-aware information systems. Requirements Engineering 19 (2014) 113–141

[7] Rüdiger Pryss and Julian Tiedeken and Manfred Reichert: Managing Processes

on Mobile Devices: The MARPLE Approach. In: CAiSE’10 Demos. (2010)

[8] Johannes Schobel and Marc Schickler and Rüdiger Pryss and Manfred Reichert:

Process-Driven Data Collection with Smart Mobile Devices. In: 10th International

Conference on Web Information Systems and Technologies (Revised Selected

Papers). Number 226 in LNBIP. Springer (2015) 347–362

[9] Valiente, Pablo and van Heijden, H: A method to identify opportunities for mobile

business processes. Stockholm School of Economics, SSE/EFI Working Paper

Series in Business Administration 10 (2002)

[10] Ambler, Scott W: Mapping objects to relational databases: What you need to know

and why. Ronin International (2000)

59

Bibliography

[11] Gray Watson: ORMLite - Getting Started. (http://ormlite.com/javadoc/

ormlite-core/doc-files/ormlite_1.html#Starting-Class)

Accessed: 2016-02-05.

[12] Satya Narayan: Sugar ORM - Design Your Entities. (http://satyan.github.

io/sugar/creation.html) Accessed: 2016-02-05.

[13] Doctrine Team: doctrine - Getting Started: Database First. (http:

//docs.doctrine-project.org/projects/doctrine-orm/en/latest/

tutorials/getting-started-database.html) Accessed: 2016-02-05.

[14] SensioLabs: The Cookbook Doctrine - How to Generate Entities from

an Existing Database. (http://symfony.com/doc/current/cookbook/

doctrine/reverse_engineering.html) Accessed: 2016-02-05.

[15] greenrobot: greenDAO. (http://greenrobot.org/greendao) Accessed:

2016-02-05.

[16] Google: Android Developers, Providing Resources. (http://developer.

android.com/guide/topics/resources/providing-resources.html)

Accessed: 2016-02-05.

[17] Google: Android Developers, App Manifest. (http://developer.android.

com/guide/topics/manifest/manifest-intro.html) Accessed: 2016-

02-05.

[18] Google: Android Developers, Activities. (http://developer.android.com/

guide/components/activities.html) Accessed: 2016-02-05.

[19] Google: Android Developers, Fragments. (http://developer.android.com/

guide/components/fragments.html) Accessed: 2016-02-05.

[20] Google: Android Developers, Intents and Intent Filters. (http://developer.

android.com/guide/components/intents-filters.html) Accessed:

2016-02-05.

[21] Google: Android API, Bundle. (http://developer.android.com/

reference/android/os/Bundle.html) Accessed: 2016-02-05.

60

http://ormlite.com/javadoc/ormlite-core/doc-files/ormlite_1.html#Starting-Class
http://ormlite.com/javadoc/ormlite-core/doc-files/ormlite_1.html#Starting-Class
http://satyan.github.io/sugar/creation.html
http://satyan.github.io/sugar/creation.html
http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/tutorials/getting-started-database.html
http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/tutorials/getting-started-database.html
http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/tutorials/getting-started-database.html
http://symfony.com/doc/current/cookbook/doctrine/reverse_engineering.html
http://symfony.com/doc/current/cookbook/doctrine/reverse_engineering.html
http://greenrobot.org/greendao
http://developer.android.com/guide/topics/resources/providing-resources.html
http://developer.android.com/guide/topics/resources/providing-resources.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/components/activities.html
http://developer.android.com/guide/components/activities.html
http://developer.android.com/guide/components/fragments.html
http://developer.android.com/guide/components/fragments.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/reference/android/os/Bundle.html
http://developer.android.com/reference/android/os/Bundle.html

Bibliography

[22] Reichert, Manfred and Dadam, Peter: ADEPTflex-Supporting dynamic changes

of workflows without losing control. Journal of Intelligent Information Systems 10

(1998) 93–129

[23] Manfred Reichert: Dynamische Ablaufänderungen in

Workflow-Management-Systemen. PhD thesis, University of Ulm (2000)

[24] Ulrich Kreher: Konzepte, Architektur und Implementierung adaptiver

Prozessmanagementsysteme. PhD thesis, University of Ulm (2014)

[25] Manfred Reichert and Peter Dadam: Enabling Adaptive Process-aware Information

Systems with ADEPT2. In Cardoso, J., van der Aalst, W., eds.: Handbook of

Research on Business Process Modeling. Information Science Reference, Hershey,

New York (2009) 173–203

[26] Peter Dadam and Manfred Reichert and Stefanie Rinderle-Ma and Kevin Goeser

and Ulrich Kreher and Martin Jurisch: Von ADEPT zur AristaFlow BPM Suite - Eine

Vision wird Realität: "Correctness by Construction" und flexible, robuste Ausführung

von Unternehmensprozessen. Technical Report UIB-2009-02, University of Ulm,

Ulm (2009)

[27] Red Hat: jBPM. (http://www.jbpm.org/) Accessed: 2016-02-05.

[28] Object Management Group: BMPN 2.0 Specification. (http://www.omg.org/

spec/BPMN/2.0/) Accessed: 2016-02-05.

[29] Red Hat: jBPM, User Guide-Core Engine API. (http://docs.jboss.org/

jbpm/v6.3/userguide/ch05.html) Accessed: 2016-02-05.

[30] Red Hat: jBPM, User Guide-Domain Specific Processes. (http://docs.jboss.

org/jbpm/v6.3/userguide/ch21.html) Accessed: 2016-02-05.

[31] Rüdiger Pryss and Julian Tiedeken and Ulrich Kreher and Manfred Reichert:

Towards Flexible Process Support on Mobile Devices. In: Proc. CAiSE’10 Forum -

Information Systems Evolution. Number 72 in LNBIP, Springer (2010) 150–165

61

http://www.jbpm.org/
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
http://docs.jboss.org/jbpm/v6.3/userguide/ch05.html
http://docs.jboss.org/jbpm/v6.3/userguide/ch05.html
http://docs.jboss.org/jbpm/v6.3/userguide/ch21.html
http://docs.jboss.org/jbpm/v6.3/userguide/ch21.html

Bibliography

[32] Reisser, A.: Technische Konzeption und Realisierung einer dynamisch generierten

Anwendung für prozess-orientierte Fragebögen am Beispiel der mobilen Android

Plattform. Diploma’s thesis, University of Ulm (2014)

[33] Manfred Reichert and Peter Dadam and Stefanie Rinderle-Ma and Martin Jurisch

and Ulrich Kreher and Kevin Goeser: Architecural Principles and Components of

Adaptive Process Management Technology. In Heinzl, A., Dadam, P., Lockemann,

P., Kirn, S., eds.: PRIMIUM - Process Innovation for Enterprise Software. Number

P-151 in Lecture Notes in Informatics (LNI). Koellen-Verlag (2009) 81–97

[34] Jeston, John and Nelis, Johan: Business process management. Routledge (2014)

[35] Peter Dadam and Manfred Reichert and Stefanie Rinderle-Ma and Kevin Goeser

and Ulrich Kreher and Martin Jurisch: Von ADEPT zur AristaFlow BPM Suite - Eine

Vision wird Realität: "Correctness by Construction" und flexible, robuste Ausführung

von Unternehmensprozessen. EMISA Forum 29 (2009) 9–28

[36] Bernd Mertesz: Concept and Implementation of a Rule Component Enabling

Automatic Analysis of Process-Aware Questionnaires. Master’s thesis, University of

Ulm (2014)

[37] Google: Android API - DexClassLoader. (http://developer.

android.com/reference/dalvik/system/DexClassLoader.html)

Accessed: 2016-02-05.

[38] greenrobot: greenDAO - Modelling Entities. (http://greenrobot.org/

greendao/documentation/modelling-entities) Accessed: 2016-02-05.

[39] greenrobot: greenDAO - Introduction. (http://greenrobot.org/greendao/

documentation/introduction) Accessed: 2016-02-05.

[40] greenrobot: greenDAO - Query Data Base. (http://greenrobot.org/

greendao/documentation/queries) Accessed: 2016-02-05.

[41] The Apache Software Foundation: Apache Commons JEXL. (http://commons.

apache.org/proper/commons-jexl) Accessed: 2016-02-05.

62

http://developer.android.com/reference/dalvik/system/DexClassLoader.html
http://developer.android.com/reference/dalvik/system/DexClassLoader.html
http://greenrobot.org/greendao/documentation/modelling-entities
http://greenrobot.org/greendao/documentation/modelling-entities
http://greenrobot.org/greendao/documentation/introduction
http://greenrobot.org/greendao/documentation/introduction
http://greenrobot.org/greendao/documentation/queries
http://greenrobot.org/greendao/documentation/queries
http://commons.apache.org/proper/commons-jexl
http://commons.apache.org/proper/commons-jexl

Bibliography

[42] The Apache Software Foundation: Apache Commons JEXL -

Evaluating Expressions. (http://commons.apache.org/proper/

commons-jexl/reference/examples.html#Evaluating_Expressions)

Accessed: 2016-02-05.

[43] The Apache Software Foundation: Apache Commons JEXL - JEXL Syntax.

(http://commons.apache.org/proper/commons-jexl/reference/

syntax.html) Accessed: 2016-02-05.

[44] Institute of Databases and Information Systems, University of Ulm: QuestionSys -

A Generic and Flexible Questionnaire System Enabling Process-Driven Mobile

Data Collection. (http://www.uni-ulm.de/in/iui-dbis/forschung/

projekte/questionsys.html) Accessed: 2016-02-05.

[45] Johannes Schobel and Marc Schickler and Rüdiger Pryss and Fabian Maier and

Manfred Reichert: Towards Process-Driven Mobile Data Collection Applications:

Requirements, Challenges, Lessons Learned. In: 10th Int’l Conference on

Web Information Systems and Technologies (WEBIST 2014), Special Session

on Business Apps. (2014) 371–382

[46] Andrea Reidel: Entwicklung eines Designkonzepts für unterschiedliche

Anwendungsszenarien eines generischen Fragebogensystems. Bachelor’s thesis,

University of Ulm (2015)

[47] Florian Hofherr: Adaptierung und Neugestaltung einer Android Anwendung unter

Berücksichtigung der Material Design Richtlinien. Bachelor’s thesis, University of

Ulm (2016)

[48] Pettersen, Thomas Bech and Carlsen, Steinar and Coll, Gunnar John

and Sem, Helle Frisak: Bottom-up Process Discovery using Knowledge

Engineering Techniques. Empowering Knowledge Workers: New Ways to Leverage

Case Management (2013) 43

[49] Van Der Aalst, Wil: Process mining: discovery, conformance and enhancement of

business processes. Springer Science & Business Media (2011)

63

http://commons.apache.org/proper/commons-jexl/reference/examples.html#Evaluating_Expressions
http://commons.apache.org/proper/commons-jexl/reference/examples.html#Evaluating_Expressions
http://commons.apache.org/proper/commons-jexl/reference/syntax.html
http://commons.apache.org/proper/commons-jexl/reference/syntax.html
http://www.uni-ulm.de/in/iui-dbis/forschung/projekte/questionsys.html
http://www.uni-ulm.de/in/iui-dbis/forschung/projekte/questionsys.html

Bibliography

[50] Matthias Dapper: Implementation of a Multi-Touch, Gesture-based Process

Modeling Component for Apple iPad. (2012)

[51] Weber, Al and Thomas, Ivara Ron: Key performance indicators. Measuring and

Managing the Maintenance Function, Ivara (2005)

64

A
Sources

This chapter shows some important source codes.

A.1 Dynamic EBP Loading

1 /∗ This method loads and e x t e r n a l l y s tored EBP v ia

2 ∗ DexClassLoaders . Therefore i t uses Android ’ s PackageManager

3 ∗ to f i n d the i n s t a l l e d EBP app over i t s package name .

4 ∗ /

5 public ExecutableBusinessProcess getEBP (Node holdsEbp) {

6 ExecutableBusinessProcess newEBP = nul l ;

7

8 / / EBP f u l l q u a l i f i e d name (" com. example . TestEBP ")

9 S t r i n g classPath = holdsEBP . get Implement ingClasspath () ;

10

11 / / EBP app package name (" com. example ")

12 S t r i n g packagePath = classPath . subs t r i ng (0 , c lassPath . l as t IndexOf (" . ")) ;

13

14 / / Android PackageManager c lass to f i n d EBP app

15 PackageManager pm = contex t . getPackageManager () ;

16

17 / / Get i n f o f o r app wi th given package name (" com. example ")

18 A p p l i c a t i o n I n f o appInfo = pm. g e t A p p l i c a t i o n I n f o (packagePath , PackageManager .GET_META_DATA) ;

19

20 / / Store path to apk f i l e i n S t r i n g

21 S t r i n g dexPath = appInfo . sourceDi r ;

22

23 / / Create f o l d e r f o r opt imized dex f i l e s

24 S t r i n g optOutPath = . . . ;

25

26 / / Create DexClassLoader f o r needed EBP

27 DexClassLoader d l = new DexClassLoader (dexPath ,

28 optOutPath , null , th is . getClass () . getClassLoader ()) ;

29

30 / / Load and i n s t a n t i a t e EBP c lass

31 newEBP = (ExecutableBusinessProcess) d l . loadClass (c lassPath) . newInstance () ;

32

33 return newEBP;

34 }

Listing A.1: Dynamic EBP Loading

65

A Sources

A.2 Example Layout Inflater Factory

1 public class CustomLayouterFactory implements

2 L a y o u t I n f l a t e r . Factory {

3

4 private f i n a l S t r i n g TAG_CARDVIEW =

5 " andro id . suppor t . v7 . widget . CardView " ;

6

7 private f i n a l S t r i n g TAG_DOCVIEW =

8 "com. bluejamesbond . t e x t . DocumentView " ;

9

10 private f i n a l S t r i n g TAG_TEXTINPUT =

11 " andro id . suppor t . design . widget . Text InputLayout " ;

12

13 @Override

14 public View onCreateView (S t r i n g name,

15 Context context , A t t r i b u t e S e t a t t r s) {

16 View v = nul l ;

17 i f (name . equals (TAG_CARDVIEW)) {

18 v = new CardView (context , a t t r s) ;

19 } else i f (name . equals (TAG_DOCVIEW)) {

20 v = new DocumentView (context , a t t r s) ;

21 } else i f (name . equals (TAG_TEXTINPUT)) {

22 v = new Text InputLayout (context , a t t r s) ;

23 }

24 return v ;

25 }

Listing A.2: Example Layout Inflater Factory

A.3 greenDAO Schema Generation Code

1 /∗ This main method generates a DB schema

2 ∗ wi th one tab le i n i t , named "Node " .

3 ∗ This i s a s i m p l i f i e d vers ion , where some l i n e s

4 ∗ are seman t i ca l l y rubb ish .

5 ∗ /

6

7 public s t a t i c void main (S t r i n g [] args) {

8 / / Create DB schema

9 Schema schema = new Schema(1 , package_name_for_gen_classes) ;

10

11 / / Add new db tab le

12 E n t i t y nodes = schema . addEnt i t y ("Node") ;

13 / / Add a t t r i b u t e s to tab l e

14 / / F i r s t : pk a t t r i b u t e w i th auto increment

15 Proper ty p1 = nodes . addLongProperty (" i n t e r n a l i d ")

16 . primaryKey () . auto increment () . ge tProper ty () ;

17

18 /∗ Process model i d i s Java UUID but must be s p l i t i n t o longs

19 ∗ f o r db storage . (No UUID storage type)

20 ∗ /

21 Proper ty p2 = nodes . addLongProperty (" processmodel idhigh ") ;

22 Proper ty p3 = nodes . addLongProperty (" processmodel idhigh ") ;

66

A.4 Database Access with GreenDAO

23

24 / / Some other a t t r i b u t e s . . .

25 nodes . addSt r ingProper ty ("name") ;

26 nodes . addLongProperty (" t o p o l o g i c a l i d ") ;

27 nodes . addBooleanProperty (" a boolean ") ;

28

29 /∗ Create q ’ unique combined pk ’ by using a unique index .

30 ∗ This work around i s needed f o r greenDAOs missing a b i l l i t y

31 ∗ to create combined pks .

32 ∗ /

33 Index i = new Index () ;

34 i . addProperty (p1) ;

35 i . addProperty (p2) ;

36 i . addProperty (p3) ;

37 i . makeUnique () ;

38 nodes . addIndex (i) ;

39

40 / / Generate

41 new DaoGenerator () . genera teA l l (schema , storage_path) ;

42 }

Listing A.3: greenDAO Schema Generation Code

A.4 Database Access with GreenDAO

1 DevOpenHelper he lper = new DaoMaster . DevOpenHelper (context ,

2 " engine−db " , nul l) ;

3 db = he lper . getWri tableDatabase () ;

4 daoMaster = new DaoMaster (db) ;

5 daoSession = daoMaster . newSession () ;

6 / / Get DAO ob jec t

7 HelloDao testDao = daoSession . getHelloDao () ;

8

9 / / D i r e c t DAO access

10 / / Load f o r pk

11 Hel lo s ing leResu l t = testDao . load (24 l) ;

12 / / Load a l l values

13 L i s t <Hel lo > mu l t iResu l t = testDao . l o a d A l l () ;

14

15 / / QueryBui lder search f o r ob jec ts w i th a t t r i b u t e name == h i

16 L i s t <Hel lo > b u i l d e r R e s u l t =

17 testDao . queryBu i lder () . where (Proper ty . name . eq (" h i ")) . l i s t () ;

18

19 / / Raw query

20 Query query = testDao . queryRawCreate (

21 " , GROUP G WHERE G.NAME=? AND T .GROUP_ID=G. _ID " , " admin ") ;

Listing A.4: Database Access with GreenDAO

67

List of Figures

2.1 ORM Overview . 6

2.2 Calling Another Activity Using Intents . 10

2.3 Example Process with Additional Annotations 11

2.4 Node States Chart [25] . 12

3.1 jBPM Overview [29] . 15

3.2 General MAPRLE Architecture [31] . 16

5.1 WOtAN Modules Integrated in BPM Lifecycle 23

5.2 WOtAN 3-Tier Architecture . 25

5.3 Process Model Example . 26

5.4 Node States Overview [25] . 28

5.5 WOtANExecution Manager Hierarchy Overview 29

5.6 Runtime Manager to EBP Communication 30

5.7 Coupling the Engine with Standalone EBPs 31

5.8 Start Node Example . 32

5.9 Rule Example [36] . 33

5.10 Rule Evaluation Overview . 33

6.1 EBP Overview . 37

6.2 Problem of Classloaders . 39

6.3 GreenDAO Overview [15] . 40

6.4 GreenDAO Meta Model [38] . 40

6.5 GreenDAO Generation Actors [39] . 41

6.6 JEXL Actors . 42

6.7 JEXL Processing Example . 42

6.8 Rule Evaluation Process Overview . 44

7.1 Mobile Data Collection Application Lifecycle [44] 48

7.2 QuestionSys Overall System Architecture 48

69

List of Figures

7.3 Overall Questionnaire Architecture . 51

7.4 Questionnaire Overview . 51

7.5 Questionnaire PageEBP Fragment . 53

8.1 The BPM Lifecycle with Respective WOtAN Modules 55

70

List of Tables

2.1 Activation Rules . 13

3.1 Key-Features for Mobile Process Engines 18

5.1 Node Types [23] . 27

71

Name: Wolfgang Wipp Matriculation Number: 698982

Declaration

I hereby declare that the thesis submitted is my own unaided work. All direct or indirect

sources used are acknowledged as references.

Ulm, the .

Wolfgang Wipp

	Introduction
	Purpose of this Thesis
	Structure of this Thesis

	Fundamentals
	Object-Relational Mapper
	General Overview
	Model Generation Approaches

	Android
	Application Structure
	Application Communication

	ADEPT2
	Process Model
	Process Execution Logic

	Related Work
	jBPM
	MARPLE
	Questionnaire Process Execution Engine
	Discussion

	Requirements
	Functional Requirements
	Non-Functional Requirements
	Discussion

	Concepts and Architecture
	General Overview
	WOtANExecution
	Concepts
	Architecture

	WOtANAnalysis
	Concepts
	Architecture

	Implementation Aspects
	Interface Design
	Executable Business Process Management
	Structure
	Loading at Runtime
	Development Challenges

	Object-Relational Mapping
	Schema Generation
	Database Communication

	Rule Evaluation Process
	General Usage
	Rule Evaluation

	Application Scenario: Mobile Data Collection Application
	Introduction
	System Architecture
	Questioneer
	QuestionRule
	Questionizer
	Questionnaire

	Using WOtAN in the Context of Mobile Data Collection Applications
	Overall Architecture
	Executing Questionnaires using WOtANExecution
	Evaluating Questionnaires using WOtANAnalysis
	Page Executable Business Process

	Conclusion
	Vision

	Sources
	Dynamic EBP Loading
	Example Layout Inflater Factory
	greenDAO Schema Generation Code
	Database Access with GreenDAO

