Available online at www.sciencedirect.com

SciVerse ScienceDirect Proced iCI

Computer Science

ELSEVIER Procedia Computer Science 00 (2016) 000—000

www.elsevier.com/locate/procedia

The 13th International Conference on Mobile Systems and Pervasive Computing
(MobiSPC 2016)

Advanced Algorithms for Location-Based
Smart Mobile Augmented Reality Applications
Riidiger Pryss®*, Philip Geiger®, Marc Schickler?, Johannes Schobel?, Manfred Reichert?

“Ulm University, Institute of Databases and Information Systems, James-Franck-Ring, Ulm, 89081, Germany

Abstract

During the last years, the computational capabilities of smart mobile devices have been continuously improved by hardware ven-
dors, raising new opportunities for mobile application engineers. Mobile augmented reality is one scenario demonstrating that
smart mobile applications are becoming increasingly mature. In the AREA (Augmented Reality Engine Application) project, we
developed a kernel that enables such location-based mobile augmented reality applications. On top of the kernel, mobile applica-
tion developers can easily realize their individual applications. The kernel, in turn, focuses on robustness and high performance.
In addition, it provides a flexible architecture that fosters the development of individual location-based mobile augmented reality
applications. In the first stage of the project, the LocationView concept was developed as the core for realizing the kernel algo-
rithms. This LocationView concept has proven its usefulness in the context of various applications, running on iOS, Android, or
Windows Phone. Due to the further evolution of computational capabilities on one hand and emerging demands of location-based
mobile applications on the other, we developed a new kernel concept. In particular, the new kernel allows for handling points of
interests (POI) clusters or enables the use of tracks. These changes required new concepts presented in this paper. To demonstrate
the applicability of our kernel, we apply it in the context of various mobile applications. As a result, mobile augmented reality
applications could be run on present mobile operating systems and be effectively realized by engineers utilizing our approach. We
regard such applications as a good example for using mobile computational capabilities efficiently in order to support mobile users
in everyday life more properly.

© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Conference Program Chairs.

Keywords: Mobile Augmented Reality; Location-based Algorithms; Mobile Application Engineering; Augmented Reality

1. Introduction

The proliferation of smart mobile devices on one hand and their computational capabilities on the other have
enabled new kinds of mobile applications. So-called millenials, people born after 1980, pose demanding requirements
with respect to the use of mobile technology in everyday life. Amongst others, they want to be assisted by mobile
technology in their leisure time. For example, when walking around in Rome with its numerous ancient spots, the

* Corresponding author. Tel.: +49-731-5024136 ; fax: +49-731-5024134.
E-mail address: ruediger.pryss @uni-ulm.de

1877-0509 © 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

2 R. Pryss et al. | Procedia Computer Science 00 (2016) 000-000

smart mobile device shall provide related information about these spots in an intuitive way. In such a scenario,
location-based mobile augmented reality is useful, e.g., if a user is located in front of the St. Peter’s Basilica, holding
his smart mobile device with its camera switched on towards the Basilica, the camera view shall provide additional
information (e.g., worship time).

Our developed AREA kernel supports these scenarios. More precisely, AREA detects predefined points of interest
(POIs) within the camera view of a smart mobile device, positions them correctly, and provides additional information
on the detected POIs. This additional information, in turn, is interactively provided to the user. For this purpose,
the user touches on the detected POIs and then obtains further information. Three technical issues were crucial
when developing AREA. First, POIs must be correctly displayed even if the device is hold obliquely. Depending
on the attitude of the device, the POIs then may have to be rotated with a certain angle and moved relatively to the
rotation. Second, the approach to display POIs correctly must be provided efficiently to the user. To be more precise,
even if multiple POIs are detected, the kernel shall display them without any delay. Third, the POI concept shall
be integrated with common mobile operating systems (i.e., i0OS, Android, and Windows Phone). To tackle these
challenges, the LocationView concept was developed. Additionally, an architecture was designed, which shall enable
the quick development of location-based mobile augmented applications on top of the kernel >3,

The AREA project was started four years ago. Already one year after the first kernel version had been finished,
it was integrated with various mobile applications. During these projects, three issues emerged that are not properly
covered by the AREA kernel so far. First, the changed characteristics of the used mobile operating systems need to be
addressed. Second, the continuously growing number of POIs must be handled more efficiently. Third, new features
were demanded. Table 1 summarizes the evolution of AREA from its first to its second version.

Table 1. AREA Versions

AREA Version 1 (AREA) AREA Version 2 (AREAv2)
Android App v v
iOS App v v
Windows Phone App Vv under development
POI Algorithm (all mobile OS) LocationView Algorithm '3 RenderingPipeline Algorithm
Clustering Algorithm (all mobile OS) X AREACluster Algorithm
POI Coordinate System (all mobile OS) GPS GPS,ECEF,ENU, Virtual3D
Position Change Sensors (all mobile OS) SensorFusion(Compass, Accelerometer) SensorFusion(Compass,Gyroscope, Accelerometer)
Architecture (all mobile OS) Version 1 Version 2
Overall Sensor Management Android Own approach Own approach
Overall Sensor Management i0S Own approach Built — in functions OS
Overall Sensor Management Windows Phone Own approach under development

ENU=East-North-Up Coordinate System, ECEF=Earth-Centered Earth-Fixed Coordinate System, GPS=Global Positioning System

The changed characteristics of mobile operating systems as well as performance issues with many POIs are ad-
dressed by the development of a new kernel and architecture called AREA Version 2 (AREAv2) (cf. Table 1, AREAv2).
Moreover, AREAv2 provides three new features. The first one deals with so-called POI clusters. If a huge number
of POIs causes many overlaps on the camera view, it is difficult for users to precisely interact with single POIs inside
such cluster. In order to precisely select (i.e., do not touch the wrong POI as they are positioned to close to each other)
a single POlIs inside a cluster, a new feature was developed. The second feature we developed connects POIs through
lines in order to visualize tracks. For example, such a track may be used as the cycle path a user wants to perform in a
certain area. The third feature highlights areas (e.g., football fields). From a technical perspective, the added features
are demanding if they shall be supported in the same manner on different mobile operating systems.

This work presents fundamental concepts developed in the context of AREA Version 2 (AREAv2). Section 2
presents the architecture of AREAv2. In Section 3, the coordinate system used by AREAv2 is introduced, while
Sections 4 and 5 present the algorithms for POI and cluster handling. Section 6 illustrates the use of AREAv2 in
practical scenarios. Section 7 discusses related work and Section 8 concludes the paper.

2. Architecture

The architecture used for AREAV?2 is shown in Fig. 1. It enhances the one used in the first version of AREA >3
and comprises nine major components (cf. Fig. 1).

R. Pryss et al. / Procedia Computer Science 00 (2016) 000-000 3

o &)
Point of interest 0)))))) :
(1)

Coordinate | Altitude ddd
POI Clustering |

Track & Area E

Processing <3

Linear Algebra

P—— (i)
Gyroscope

Coordinates @

Conversions

) L, S

ata Multi-Sensor Data Fusion
Gyroscope Compass
(®) &))
Accelerometer “ Viewing Direction Device Attitude Location

Fig. 1. AREAvV2 Architecture

The Model component manages POIs, POI categories, POI clusters, POI tracks, and POI areas. Developers can
use this component to integrate application-specific POI categories and change the visualization of all provided POI
features. The Places API component, in turn, allows displaying POIs provided by Google or other remote APIs. Note
that this component was integrated for testing huge numbers of POIs or POI clusters more easily. As AREAv2 shall
also work without any online connection, the used POIs are locally stored on the smart mobile device. The local
database, however, can be synchronized with a remote database. Note that the components to store POIs locally and
synchronize them with a remote database are neither presented here nor depicted in Fig. 1. Using this approach,
developers are able to test AREAv2 and their individual implementations on top of AREAv2 with huge numbers of
POIs even in case the local database is empty. The Math component provides functions for the coordinate systems
used. Compared to AREA, AREAv2 uses a new sensor fusion approach that provides a more precise positioning
of POIs through the Sensor component. Therefore, four sensors are considered on all supported mobile operating
systems, i.e., gyroscope, compass, accelerometer, and GPS (cf. Fig. 1). The Location component provides algorithms
for handling the different coordinate systems. Their results, combined with the ones of the Sensor component, are
used by the Main component. The Main component realizes algorithms that enable the handling of all POI related
features. The View component, in turn, enables all required visualizations, i.e., POIs, POI labels, POI clusters, POI
tracks, POI areas, a POI radar, and a POI radius. The radar can be used to evaluate if POIs that are currently not
displayed can be obtained by changing the facing of the smart mobile device towards another direction. The radius,
in turn, can be used to specify the maximum distance a user shall have to the POIs to be displayed. By calculating the
distance between the device and the POIs based on coordinate calculations, AREAv2 can determine the POIs located
inside the chosen radius and hence the POIs to be displayed on the screen. Finally, the Settings component realizes
functions that enable users to adjust selected AREAv2 features (cf. Fig. 1).

4 R. Pryss et al. | Procedia Computer Science 00 (2016) 000-000

3. Coordinate System Algorithms

AREAV2 uses a coordinate system that differs from the one used in the first version. AREA solely worked on GPS
coordinates. More precisely, the GPS coordinates of the user were calculated through the GPS sensor of his smart
mobile device, while the GPS coordinates of the POIs were obtained from the local database. Based on a comparison
of user and POI coordinates as well as supporting calculations (e.g., if the device is hold obliquely), the POIs could
be correctly displayed in the camera view of a mobile user.

The core idea of AREAV2 is based on five aspects which require the use of a new coordinate system. First, a virtual
3D world is used to relate the user’s position to the one of the POIs. Second, the user is located at the origin of this
world. Third, instead of the physical camera, a virtual 3D camera is used that operates with the created virtual 3D
world. The virtual camera is therefore placed at the origin of this world. Fourth, the different sensor characterictics of
the supported mobile operating systems must be properly covered to enable the virtual 3D world. On iOS, sensor data
of the gyroscope and the accelerometer are used, whereas on Android sensor data of the gyroscope, the accelerometer
and the compass of the mobile device are used to position the virtual 3D camera correctly. Due to lack of space, the
different concepts to integrate sensor data in the same way on all mobile operating systems by AREAv2, cannot be
presented in detail. Fifth, the physical camera of the mobile device is adjusted to the virtual 3D camera based on the
assessment of sensor data.

In order to realize the presented core idea of AREAv2, a complex coordinate system, consisting of three different
sub-systems, is required. The first sub-system uses GPS, ECEF (Earth-Centered, Earth-Fixed), and ENU (East, North,
Up) coordinates.! The second sub-system, in turn, uses a virtual 3D space with the user located at the origin. Finally,
the third one uses a virtual 3D camera, with the camera being again located at the origin of the 3D world. Note that
the first sub-system (including GPS, ECEF, and ENU coordinates) is a major prerequisite (cf. Fig. 2) for transforming
sensor data of the smart mobile device to data that can be used for the virtual 3D world.

Fig. 2. ECEF and ENU Coordinate Systems

As illustrated in Fig. 2, the user is located at the ECEF origin (0,0,0). The POls, in turn, are located on the
surface of the earth, again using ECEF coordinates. To use this metapher for the virtual 3D world, two additional
transformations became necessary. As a smart mobile device can only sense GPS coordinates, first of all, the GPS
coordinates of the user and POIs need to be transformed into ECEF coordinates (cf. Algorithm 1). Second, as a user
cannot be physically located at the origin of the earth, ECEF coordinates are transformed into ENU coordinates (cf.
Algorithm 2). ENU coordinates, in turn, enable the required metapher for the virtual 3D world. More precisely, ENU
coordinates are transformed into coordinates for the virtual 3D world by a transformation of axes. Finally, in addition
to the two transformation algorithms (i.e., Algorithm 1 and 2), Algorithm 3 calculates the distance between a user and
the POI based on ENU coordinates.

I See https://en.wikipedia.org/wiki/ECEF and https://en.wikipedia.org/wiki/East_north_up

R. Pryss et al. / Procedia Computer Science 00 (2016) 000-000 5

Algorithm 1: Transforming GPS coordinates into ECEF coordinates for user and POI

Data: /ar: Latitude of user or POI
lon: Longitude of user or POI
. alr: Altitude of user or POI

1 in

beg /* Numeric constant WGS84.A constitutes the length, in kilometers, of the earth’s semi-major axis. */
2 N WGS8AA i x — (N +alf) % cos(rad(lat)) cos(rad(lon)):;

\/ 1.0-WGS 84_E2 «sin(radian(lar))?
3 y « (N + alt) * cos(rad(lat)) = sin(rad(lon));
/% Numeric value WGS84_E? constitutes the WGS-84 eccentricity squared value. */

4 2 (N = (1.0 - WGS84.E2) + alt) * sin(rad(lat)):;
5 end

Algorithm 2: Transforming ECEF coordinates into ENU coordinates for a POI

Data: /ar, ion: Longitude and latitude of the GPS position of the user
'p,zp: ECEC coordinates of the user
xr,yr,zr: ECEF coordinates of the POI
Result: ENU: East-North-Up (ENU) coordinates of POI

Xp.y

1 begin

2 laiCos «— cos(rad(lar)); latSin — sin(rad(lat)); lonCos « cos(rad(lon)); lonSin « sin(rad(lon));
3 vector « (Xp = Xr.Yp = Yr.p = 2r);

4 e « (=lonSin) = vector[0] + lonCos vector(1];

5 n « (=latSin) * lonCos * vector[x] + (—latS in) * lonS in = vector[1] + latCos * vector(2];

6 u « latCos + lonCos * vector[0] + latCos * lonS in * vector[1] + latS in * vector[2];

7 ENU « (e,n,u);

s end

Algorithm 3: Calculating distance between user and POI

Data: user: User's GPS coordinates
. poi: POl GPS coordinates
in

1 be
2 user.ECEF « fromGpsToEcef(user.GPS); /* Transform GPS position of the user to ECEF. */
3 Ppoi.ECEF « fromGpsToEcef(poi.GPS); /* Transform GPS position of the POI to ECEF. */
4 poi.ENU « fromEcefToEnu(poi.ENU, user.GPS, user.ECEF); /* Transform ECEF coordination of the POI to ENU. */
/% poi.N? constitutes the n componment of poi.ENU, whereas poi.E2 the e component. */
5 poi.distance — +/poi.N2 + poi.E2; /* Calculate distance between user and POI. */
/* Horizontal course is the angle between vector NE (e.g., POI is located at (27,9)) and the north vector (1,0). */
6 poi.hCourse — vec2angle(poi.EN, [1,0]); /x Calculate the horizontal course of the POI. */
/* Vertical course is the attitude difference of GPS attitudes of the user and the POI. */
7 poi.vCourse «— getHeightAngle(poi.GPS, user.GPS); /* Calculate the vertical course of the POI. */

s end

4. POI Algorithm

Although AREAV2 uses a virtual 3D world for displaying POIs, the direction in which a user holds his smart
mobile device must be properly evaluated. For example, if the smart mobile device is hold obliquely, the POI shall
be correctly positioned within the virtual 3D world. The correct positioning of POIs is ensured by Algorithm 4.
Since Algorithm 4 depends on the algorithms that establish the coordinate system on one hand and is the base for the
clustering algorithm on the other, Fig. 3 illustrates its dependencies.

Algorithm 1 Algorithm 2

Input Input

J Transform GPS Coordinates [~™] Transform ECEF Coordinates
J to ECEF Coordinates to ENU Coordinates

Algorithm 3
Calculate Distance between 9
User’s Position and POIs ’M“"M @

Algorithm 4 7N Algorithm 5

GPS Coordinates
(Lat, Long, Alt)

Static Calculation
Part

Input

Input
—

Dynamic Calculation Part

|

| Input
Calculate Size of POIs, !]
Draw POls on Screen V); ™ 9 \

Handle Clusters

Fig. 3. Algorithm Dependencies

6 R. Pryss et al. | Procedia Computer Science 00 (2016) 000-000

To be more precise, Algorithm 4 uses the following inputs: First, the list of POIs poiList (i.e., the ENU coordi-
nates), locally stored on the smart mobile device, is used. Each time a user changes the position of his smart mobile
device, all POI ENU coordinates are recalculated. Second, a rotation matrix rotationMatrix RM is used that manages
relevant sensor data. On i0S, for example, this means the data of the gyroscope and accelerometer are used, whereas
on Android the data of the gyroscope and accelerometer plus additional compass data are used. To be more precise,
to obtain the device’s attitude relative to true north as a rotation matrix, we simply use the CMMotionManager API
provided by Apple iOS. On Android, however, we were not able to obtain any reliable data by the Android standard
API. Hence, we decided to develop our own sensor fusion algorithm to obtain a similar rotation matrix like on iOS.
Due to lack of space, the Android algorithm cannot be presented. Third, the rotationMatrix RM is used to adjust
the virtual camera managed with the matrix cameraView C M. This matrix, in turn, is used to decide which POIs are
actually shown on the camera view.

Algorithm 4 then works as follows?: A view called areaview is created and shown to the user. Next, each POI in
poilList is created as a separate view. These POI views are placed on the areaview and are initally marked as invisible.
They will be only shown to the user if Algorithm 4 indicates that they shall be visible (cf. Lines 9-15). Note that the
entire view structure is precalculated and will not be changed afterwards by Algorithm 4. It makes POIs visible or
invisible based on the changes by the position of the user. The position, in turn, is determined through the rotation
matrix rotationMatrix RM (cf. Lines 2-8). Changes in rotationMatrix RM are evaluated up to 60 times per second.
Hence, the precalculation of the view structure with respect to performance is indispensable.

Algorithm 4: Rendering pipeline with redraw up to 60 times per second

Data: poiList, rotationMatrix RM, cameraView CM

1 begin

2 P~ CM-RM; /* Multiply camera matrix with rotation matrix to retrieve rotated camera projection matrix. #*/
3 foreach poi € poiList do

4 V « [poi.ENU.E, poi. ENU.N, poi. ENU.U, 1] ; /* Create homogeneous vector out of the POI’s ENU coordinate. */
5 Veiv-P; /* Multiplication of vector with projection matrix to project the position of the POI onto the camera view frustum. */
6 X (% +1.0)%0.5; /* Normalize vector components to 0...1 */
7 v(—(% +1.0)%0.5; /* Normalize vector components to 0...1 */
8 ze ¥z

9 if ¢z <-1then

10 trans formAndMovePOI(poi, x,y); /* POI is located in front of the camera. */
11 poi.visible = true; /* Position POI on the screen of the user and make it visible. */
12 end

13 else

14 poi.visible = false

15 end

16 end

17 end

5. Cluster Algorithm

Algorithm 5 sketches the main calculation how POI clusters are handled. Algorithm 5 again uses the poiList. In
addition, the two parameters thHor and thVer are used (cf. Algorithm 5) to evaluate all POIs in poiList. Note that
they are manually specified by the mobile user and are used as follows: POIs that are inside an area spanned by thHor
on the horizontal course and thVer on the vertical course (i.e., in the ENU coordinate system), will be regarded as
POIs in the same cluster (cf. Algorithm 3). Finally, Fig. 4 illustrates how cluster handling (i.e., the screens marked
with activated) is presented to the user. Note that the realized features for track and area handling are not presented
due to space limitations.

6. AREAvV2 in Practice

Table 2 illustrates examples of mobile applications that were developed on top of AREAv2. As can be seen, it is
used for various scenarios in everyday life (cf. Table 2). Considering the huge number of realized mobile applications,

2 Note that parts of the algorithm concept can be related to perspective transformation and clipping in the context of rendering pipeline in 3D
computer graphics.

R. Pryss et al. / Procedia Computer Science 00 (2016) 000-000 7

Algorithm 5: Handling Clusters

Data: poiList: List of surrounding pois of the user; thHor: Horizontal threshold; thVer: Vertical threshold
Resylt: clusteredPoisList: List of clusters and single POls
1 begin
2

clusteredPoisList « [];

3 while poiList not empty do

4 refPoi « poiList[0]; poisToCluster « [1; poisToCluster.append(ref Poi);
5 foreach poi ¢ poiList do

6 if refPoi # poi then

7 Ah <0

8 if refPoi.hCourse < poi.hCourse then

9 | Ah — refPoi.hCourse - poi.hCourse;
10 else
1 | Ak poihCourse — ref Poi.hCourse;
12 end

13 if an < -180 then

14 | Ak (AR +360) mod 360;

15 else

16 | Ah AR

17 end

18 Av |refPoi.vCourse — poivCoursel;
19 if An < thHor AND Av < thver then
20 | poisToCluster.append(poi);
21 end
22 end
23 end
24 if poisToCluster not empty then
25 clusterPoi — Cluster(ref Poi);
26 foreach poi ¢ poisToCluster dO

27 if poi # refPoi then

28 | clusterPoi.addT oCluster(poi); poilist.remove(poi);
29 end

30 end

31 clusteredPoiList.append(clusterPoi);

32 else

3 | clusteredPoiList.append(ref Poi; poiList.remove(ref Poi);
34 end

35 end

36 end

Fig. 4. Cluster Algorithm in Practice

AREAV?2 has revealed a high practicability. The numbers of POIs integrated with the mobile applications vary among
the different scenarios, but in all scenarios AREAv2 revealed same user experience.

7. Related Work

Previous research related to the development of a location-based augmented reality application in non-mobile
environments is described in“.3, in turn, uses smart mobile devices to develop an augmented reality system. Another
application using augmented reality is described in®. Its purpose is to share media data and other information in a
real-world environment and to allow users to interact with this data through augmented reality. However, none of

8 R. Pryss et al. | Procedia Computer Science 00 (2016) 000-000

Table 2. AREA in Practice

Mobile applications using AREAv2 Categories iOS Android #POIs Clustering
Abfallinfo HOK i v] 190]
Altenahr C v v 964 v
Goldpartner F v v 205 v
Hinterzarten C v v 297 v
Liveguide Muswiese E v v 97 v
Renningen C Vv vV 1048 vV

C=City Guide, E=Event Guide, F=Finance Guide, I=Infrastructure Guide, see http:/www.liveguide.de for all mobile applications

these approaches share insights into the development of location-based augmented reality on smart mobile devices
as in AREAv2. Only little work can be found dealing with the engineering of mobile augmented reality systems
in general. As an exception,’ validates existing augmented reality browsers. Moreover,® discusses various types of
location-based augmented reality scenarios with respect to issues that have to be particularly considered for a specific
scenario. However, the engineering issues of mobile applications is not considered.® proposes an authoring tool for
mobile augmented reality applications based on marker detection. However,® discusses no engineering aspects. In'”
an approach is presented to support pedestrians with location-based mobile augmented reality. Altogether, neither
software vendors nor research approaches provide insights into the way a location-based mobile augmented reality
kernel can be developed.

8. Summary and Outlook

This paper gives insights into the development of the framework of an augmented reality kernel for smart mobile
devices. It presents that mobile augmented reality is a complex endeavour that must be continuously improved.
As a particular project experience, the concepts had to be evolved in order to keep pace with frequently changing
requirements of mobile operating systems. In this context, also new functions like POI cluster handling are presented.
However, the development of mobile applications is demanding with respect to the pecularities of the different mobile
operating systems. Therefore, AREAv2 uses a modular architecture that supports mobile applications engineers.
This paper further showed that business applications can be implemented using AREAv2. In future, we conduct
performance tests that evaluate relevant indicators of AREAv2 systematically. Altogether, mobile augmented reality
is one example that shows that mobile applications become more and more mature. On the other, suitable concepts
are required towards the trend of mobile killer applications.

References

1. Schickler, M., Pryss, R., Schobel, J., Reichert, M.. An engine enabling location-based mobile augmented reality applications. In: /0th
Int’l Conf on Web Information Systems and Technologies (Revised Selected Papers); no. 226 in LNBIP. Springer; 2015, p. 363-378.

2. Geiger, P., Schickler, M., Pryss, R., Schobel, J., Reichert, M.. Location-based mobile augmented reality applications: Challenges,
examples, lessons learned. In: 10th Int’l Conf on Web Information Systems and Technologies. 2014, p. 383-394.

3. Geiger, P, Pryss, R., Schickler, M., Reichert, M.. Engineering an advanced location-based augmented reality engine for smart mobile
devices. Technical Report UIB-2013-09; University of Ulm; 2013.

4. Kooper, R., Maclntyre, B.. Browsing the real-world wide web: Maintaining awareness of virtual information in an ar information space.
Int’l Journal of Human-Computer Interaction 2003;16(3):425-446.

5. Kéhiri, M., Murphy, D.. Mara: Sensor based augmented reality system for mobile imaging device. In: 5th IEEE and ACM Int’l Symp on
Mixed and Augmented Reality; vol. 13. 2006, .

6. Lee, R., Kitayama, D., Kwon, Y., Sumiya, K.. Interoperable augmented web browsing for exploring virtual media in real space. In: Proc
of the 2nd Int’l Workshop on Location and the Web. ACM; 2009, p. 7.

7. Grubert, J., Langlotz, T., Grasset, R.. Augmented reality browser survey. Technical Report; Graz University of Technology; 2011.

8. Kim, W, Kerle, N., Gerke, M.. Mobile augmented reality in support of building damage and safety assessment. Natural Hazards and Earth
System Sciences 2016;16(1):287.

9. Yang, Y., Shim, J., Chae, S., Han, T.. Mobile augmented reality authoring tool. In: 10th IEEE Int’l Conf on Semantic Computing. IEEE;
2016, p. 358-361.

10. Chung, J., Pagnini, F., Langer, E.. Mindful navigation for pedestrians: Improving engagement with augmented reality. Technology in

Society 2016;45:29-33.

