
A Mobile Service Engine Enabling
Complex Data Collection Applications

Johannes Schobel, Rüdiger Pryss, Wolfgang Wipp, Marc Schickler,
Manfred Reichert

Institute of Databases and Information Systems, Ulm University, Germany
{johannes.schobel, ruediger.pryss, wolfgang.wipp, marc.schickler,

manfred.reichert}@uni-ulm.de

Abstract. The widespread distribution of smart mobile devices offers
promising perspectives for the timely collection of huge amounts of data.
When realizing sophisticated mobile data collection applications, numer-
ous technical issues arise. For example, as many real-world projects re-
quire the support of different mobile operating systems, platform-specific
peculiarities must be properly handled. Existing approaches often rely on
specifically tailored mobile applications. As a drawback, changes to the
data collection procedure result in costly code adaptations. To remedy
this drawback, a model-driven approach is proposed, enabling end-users
(i.e., domain experts) to create mobile data collection applications them-
selves. This model relies on complex questionnaires called instruments.
An instrument not only contains all information about the data to be
collected, but additionally comprises information on how it shall be pro-
cessed on different mobile operating systems. For this purpose, we de-
veloped an advanced mobile (kernel) service being capable of processing
sophisticated instruments on various platforms. This paper discusses fun-
damental kernel requirements and introduces the developed architecture.
Altogether, the mobile service allows for the effective use of smart mobile
devices in data collection application scenarios (e.g., clinical trials).

Keywords: Mobile Process Engine, Mobile Data Collection, Smart Mo-
bile Device, Mobile Process, Mobile Healthcare.

1 Introduction

Smart mobile devices are increasingly used in everyday life. In line with this
trend, application domains for which huge amounts of data must be collected
(e.g., clinical trials) significantly benefit from using mobile applications. These
scenarios range from fitness trackers to applications monitoring vital parameters.
However, when realizing mobile data collection applications, profound knowledge
from real-world scenarios is essential.

In various large-scale mobile data collection applications we realized (cf. Ta-
ble 1), domain experts (e.g., medical doctors) were provided with specifically
tailored solutions. The questionnaires used in these scenarios (so-called instru-
ments) not only provide questions, but also comprise sophisticated features for

coordinating their processing (i.e., answering). For example, instruments require
a proper navigation between questions based on already given answers. Recent
approaches aim to realize such instruments as smart mobile applications to re-
duce the overall workload for domain experts by digitally transforming paper-
based ways of data collection. For example, compared to traditional paper-based
questionnaires, the data collected needs not to be digitized after completing an
instrument, and, hence, mitigating transcription errors significantly.

To cope with these drawbacks, we propose a generic framework [9] that allows
domain experts to create data collection instruments in a new way. According
to this end-user programming approach, an instrument can be designed using a
high-level modeling language (cf. Fig. 1, 1©). The latter is then automatically
transformed to an executable process model (cf. Fig. 1, 3©), based on a well-
defined mapping (cf. Fig. 1, 2©). Finally, this process model can be deployed to
mobile process engines running on smart mobile devices (cf. Fig. 1, 4©).

Providing a process engine running as a mobile service on smart mobile
devices, raises additional challenges. In particular, a modular architecture is in-
dispensable. The following three major requirements must be particularly con-
sidered when developing such a mobile process engine:

R1 Provide offline execution. The mobile process engine shall allow for an
offline execution of deployed process models as well as for storing the col-
lected data on the smart mobile device. For example, in the Burundi project
(cf. Table 1, #4), an international team of psychologists could not rely on
robust Internet connection in rural areas.

R2 Enable process flexibility. The mobile process engine must support do-
main experts in changing (i.e., adapting) instruments during run time. For
example, the order of questions often need to be flexibly changed in order to
foster understandability of an instrument or to make it more convenient.

R3 Provide customizable user interfaces. The mobile process engine shall
dynamically create the user interface of the respective instrument based
on the model. For example, all information related to the structure and
processing logic of the instrument as well as the meta-data of elements need
to be taken into account by the rendering mechanism.

Data Collection Applications Country CN Releases Instances

1 Tinnitus Research World-Wide ◦ 3 ≥ 20,000
2 Risk Factors during Pregnancy Germany ◦ 5 ≥ 1,000
3 Risk Factors after Pregnancy Germany ◦ 1 ≥ 100
4 PTSD in War Regions Burundi • 5 ≥ 2,200
5 PTSD in War Regions Uganda ◦ 1 ≥ 200
6 Adverse Childhood Experiences Germany • 3 ≥ 150
7 Learning Deficits among Medical Students Germany • 3 ≥ 200
8 Supporting Parents after Accidents of Children Switzerland ◦ 5 ≥ 2,500

Sum Σ 24 ≥ 26,350

CN = Complex Navigation; PTSD = Posttraumatic Stress Disorder

Table 1. Realized Mobile Data Collection Applications

3) Process Model2) Mapping

1) Instrument 4) Mobile Process Engine (Focus of this Paper)
Model Data Collection

Instrument Using End-User

Programming Approaches

Process Technology

(e.g., Process Model)

Mobile Data Collection Application

Sensors (External / Internal Hardware)

User Interface

Sensor Framework

Process Engine

Module 1

UI

Logic

Module 2

UI

Logic

Module n

UI

Logic

.

.

.

REST

Modeling

Database & ORM

Sensor Framework To

Integrate Hardware

Customized Executable

Components UI Generator with

Custom Control Elements
Execution

AnalysisMonitoring

Core

Lightweight Process

Engine for Execution

and Monitoring

Questionnaire

Model

Page

Question

Process

Model

Process

Activity

Process

Data Element

Questionnaire

Instance

Process

Instance

n

1

1

n

1

n

n

1

1

n

1

n

maps to

maps to

maps to

maps to

Alcohol

Consumption

Cigarette

Consumption

StartFlow Activity

XORjoin

DataElement

WriteAccess

ReadAccess

EndFlow

ET_ControlFlow_Default

ET_DataFlow

AlcoholCigarettes

(C
ig

a
re

tt
e

s
=

 y
e

s)

A
N

D
 (

A
lc

o
h

o
l

=
 y

e
s)

XORsplit

else

(Cigarettes = yes)

AND (Alcohol = no)

ET_ControlFlow

Cigarettes

& Alcohol

Page

Intro

Page

General
EndCigarettes

Navigation Operation Based

on Already Given Answers

Fig. 1. The QuestionSys Framework: 1) Modeling Data Collection Instruments, 2 &
3) Mapping to Process Model, 4) Executing on Smart Mobile Devices.

This paper presents a lightweight, modular mobile process engine, capable of
executing sophisticated data collection instruments that takes multiple require-
ments into account. Moreover, a component for dynamically extending instru-
ments is presented, which enables flexible adaptations of already deployed mobile
applications during run time. Compared to hard-coded mobile data collection
applications, therefore, changes of an instrument do not require its reimplemen-
tation and redeployment to multiple smart mobile devices. In addition, data from
multiple releases must not be merged manually in order to avoid inconsistencies.
Altogether, the approach enables flexibility regarding the design and execution
of data collection instruments on smart mobile devices [8].

The remainder of the paper is structured as follows: Section 2 discusses fun-
damentals. Section 3 presents the architecture of the realized mobile engine,
particularly its Execution component. Section 4 discusses related work and Sec-
tion 5 concludes the paper.

2 Background: The QuestionSys Framework

This section introduces fundamentals of the QuestionSys framework, focusing on
the mapping of a paper-based instrument to a mobile data collection application.
Furthermore, the lifecycle phases for mobile data collection are introduced.

According to the QuestionSys approach, the structure of an instrument is
directly mapped to an executable process model, which then can be enacted by
a lightweight process engine running on smart mobile devices. Using this model-
driven approach, a separation of the processing logic of an instrument from actual
application code [7] of the data collection application becomes possible. Thereby,
a process model acts as the schema for executing instrument instances. This
model, in turn, consists of process steps (i.e., activities) and edges expressing
the control and data flow between them. Additionally, gateways (e.g., AND and
XOR-splits) provide functionality for describing complex control flow structures.

To properly support domain experts in creating a mobile data collection
instrument, all phases of its lifecycle [9] shall be addressed. We introduce the
lifecycle that consists of 5 different phases. The Design & Modeling phase en-
ables domain experts to create sophisticated mobile data collection applications
with complex logic themselves (i.e., end-user programming). The Deployment
phase deploys the instrument on smart mobile devices. During the Enactment &
Execution phase, multiple instances of the respective data collection instrument
may be created and executed in a robust manner on the smart mobile devices.
The Monitoring & Analysis phase provides functions enabling a real-time anal-
ysis of the data collected on the smart mobile device. Finally, the Archiving &
Versioning phase enables release management for mobile data collection instru-
ments.

The work presented in this paper focuses on the Enactment & Execution
phase. In this context, a mobile service providing a lightweight process engine
for executing data collection instruments has been developed.

3 QuestionSys Mobile Service

This section presents the architecture of the mobile process engine and provides
in-depth information with respect to the Execution component.

The lightweight mobile process engine developed applies a service-driven ap-
proach. The engine comprises five components (cf. Fig. 2, left part): The most
important one constitutes the core of the engine itself, which provides the data
model, representing the process model, as well as operations to robustly inter-
act with process instances (e.g., start or stop activities). Although, the process
model relies on the ADEPT2 framework [6], other process meta-models (e.g.,
WS-BPEL) may be used as well. For this purpose, the core provides functions
to import process models and map one model to another. The other components
provide functions to support the different phases [10] of enacting process mod-
els locally on a smart mobile device. Note that these components only interact
with the core itself and may be used as standalone functions as well (i.e., not

Execution
Interface

Execution Manager

Instance Manager

Runtime Manager

Model Visualization Manager

User Manager

Worklists

Libraries

Analysis

Interface

Libraries

Analysis Manager

KPI Manager

Rule Manager

Evaluator

Each Module Provides Own

Libraries and Database

Modeling

Monitoring

Core
InterfaceInterface

Interface

Interface

Interface Interface

Data Model

User Authentication / Authorization

Import / Export

Transformer

States, ENUMs, DataTypes

Libraries

Libraries

Monitoring Manager

Instance Manager

Runtime Manager

KPI Manager

Model Visualization Manager

Modeling Manager

Process Model Creator

Executable Component Creator

Model Visualization Manager

HighLevel Operations

AdHoc Changes

Verification
Common Data Model; Basic

Functions; Core Implementation

Interfaces for Communication

(Between Application and Core)

No Dependencies Between Modules;

Communication via Core

Execution

Manager

InstanceManager
InstanceManager

Instance Manager

RuntimeManager
RuntimeManager

R
e

q
u

e
st

R
e

sp
o

n
se

Runtime Manager

cf. Section 3.1

Fig. 2. Components of the Mobile Process Engine

all components are required). For example, the Monitoring component relies on
data from the Execution component in order to visualize the current state of
the process instance or to provide information about upcoming process activi-
ties (e.g., insufficient data). This loose coupling of the components (e.g., no other
dependencies between components exist) allows for a very customizable, but still
lightweight mobile process engine.

As shown in Fig. 2, several components may provide similar functions. Con-
sider, for example, the ModelVisualizationManager provided by the Modeling,
Execution and Monitoring component. In general, these components require dif-
ferent functions of the respective managers (e.g., various notations) and, there-
fore, must be implemented several times. For example, the Modeling component
needs to provide all elements of the process meta-model (e.g., process activities,
data elements, control and data flow), whereas the Execution component may
only provide information regarding the current and upcoming activities to be ex-
ecuted. The interface shared for this manager, however, is defined by the core of
the mobile process engine. In addition, each component contains its own persis-
tence layer. For example, the Execution component stores information about the
current state of the enacted process instance (including user information, times-
tamps, data produced and consumed), whereas the Analysis component stores
evaluation rules as well as the respective results for each process instance. These
separated databases, in turn, foster the modular design of the process engine.
Data between components, however, is shared through the core. Furthermore,
each component may provide additional libraries to enhance functionality. For
example, the Analysis component uses the Java Expression Language (JEXL)
for evaluating data elements of process instances dynamically.

Smart Mobile Application

User Interface

Controller

Model

Libraries

Mobile Process Engine

Node

...

Activity

Node

Activity

Runtime Manager

Instance Manager

Execution Manager

EC User InterfaceResources

LayoutsColors Languages

Executable

Component 2 (EC)

User Interface

Controller

Model

In
te

rf
a

ce

1

2

3

4

5

Executable

Component 1 (EC)

User Interface

Controller

Model

In
te

rf
a

ce

Resources / Libraries

Fig. 3. Enacting Executable Components (ECs) During Run Time

3.1 QuestionSys Mobile Execution Component

Recall that the mobile process engine runs as a service and may be embedded in
another application based on its interfaces. The interaction between the mobile
data collection application and the mobile process engine is shown in Fig. 3.

First, the user, interacting with the smart mobile application, starts a new
instance of an instrument. The mobile data collection application, in turn, di-
rectly interacts with the lightweight process engine, which provides access to the
ExecutionManager 1©. The latter offers functions allowing to control a particu-
lar process instance (i.e., move to the next page). Second, the InstanceManager

validates whether the current node may be executed (e.g., the user has appro-
priate access rights) and all data elements needed are provided 2©. The node is
activated and handed over by a third step to the respective RuntimeManager,
which is able to call the linked executable component (EC). The latter covers
several aspects. The core functionality is to extract the main class file of the im-
plementation of the EC as well as to create a list of all required input and output
variables for the called component 3©. Fourth, the RuntimeManager calls the EC

by invoking its main method 4© and passing both input and output lists. As an
EC can be seen as Micro Service [3], it may provide sophisticated logic as well as
an user interface for interaction. Note that the EC may contain its own resource
files as well as libraries. In a fifth step, the EC user interfaces are passed back
to the ExecutionManager and the respective data collection application. This
allows the latter to embed it as UI fragment inside the main user interface 5©.
Note that interactions with the UI of the EC (e.g., clicking a button) are handled
by the EC itself and not by the surrounding mobile data collection application.

If the respective EC, which is executed as a mobile service, satisfies specific
conditions (i.e., all mandatory fields are filled in), it produces the canBeFinished
event. The latter indicates that the coordinating RuntimeManager may terminate
the EC. Furthermore, all output variables of the EC are transferred back to the
InstanceManager, which stores them in respective data elements of the process
instance. Log files collected during the execution of a specific instrument instance
may be accessed by other components using the ExecutionManager.

In order to validate the presented architecture, a mobile application sup-
porting researchers in collecting their data was realized. Altogether, the process-
driven modeling supports researchers to easily create mobile data collection in-
struments. Furthermore, process technology enables the flexible execution locally
on smart mobile devices in order to cope with domain-specific requirements.

4 Related Work

Executing business processes on mobile devices has been addressed by several
approaches. Some of them provide proprietary execution languages specifically
designed for respective scenarios, whereas others provide middlewares or frame-
works enabling the development of process-aware mobile applications.

[1] presents extensions for WS-BPEL when integrating mobile devices into
business processes. The authors discuss that in given scenarios the number of
available mobile devices to coordinate is unknown. Partner links, bound to mul-
tiple endpoints, are introduced to cope with this issue.

In [5], an iPad application supporting medical staff during ward rounds is
presented. Besides reviewing patient’s health record or current diagnose, the staff
is able to add further information during rounds. In order to execute a process, a
lightweight process engine was implemented. Although the concept of automati-
cally invoking processes based on user data is promising, the functionality of the
respective engine is limited, as gateways are not supported, but only sequences
of activities. Besides this limitation, only simple tasks may be executed.

[4] and [2] introduced a workflow engine being capable of running on PDAs.
Both approaches use WS-BPEL to specify the business processes. Furthermore,
they rely on Web Service standards (e.g., WSDL and SOAP) to specify activities
to be called. Both use HTML for displaying user interfaces. In order to execute
specific activities, one uses an own WS-BPEL extension, whereas the other ships
with an Apache server to execute scripts. Both approaches provide core activities,
like a browser, user forms, calendars and messaging services.

5 Summary and Outlook

Based on the insights we gained in several data collection scenarios, this paper
advocates the need for sophisticated mobile services running on smart mobile de-
vices. In order to mitigate the efforts between IT and domain experts, a sophisti-
cated framework allowing domain experts to model data collection instruments
themselves was proposed. In this context, a mobile service became necessary

to process instruments directly on smart mobile devices. For this purpose, we
present a flexible and modular architecture of a lightweight process engine. It
allows extending the functionality of already installed mobile data collection ap-
plications during run time based on the concept of ECs. These components allow
providing domain-specific logic as well as dynamically generated user interfaces
for respective activities executed by the process engine.

To further validate the presented approach, a study for evaluating the user
interface and user experience while working with the realized mobile data col-
lection application is currently conducted. In particular, differences compared to
paper-based questionnaires with respect to complex navigation features are eval-
uated. Moreover, the Modeling, Analysis and Monitoring components need to
be implemented, leveraging the overall functionality of the proposed lightweight
mobile process engine. In addition, ECs using sensors need to be realized allowing
to collect additional data during enactment.

Altogether, the presented approach will significantly change the way instru-
ments may be used in practice (e.g., clinical trials). Moreover, due to its flexi-
bility, the proposed architecture may be suitable for other life domains relying
on collecting and processing data in mobile scenarios as well.

References

1. Hackmann, G., Gill, C., Roman, G.C.: Extending BPEL for interoperable pervasive
computing. In: Pervasive Services, IEEE Int’l Conf on. pp. 204–213. IEEE (2007)

2. Hackmann, G., Haitjema, M., Gill, C., Roman, G.C.: Sliver: A BPEL workflow
process execution engine for mobile devices. In: Service-Oriented Computing
(ICSOC 2006), pp. 503–508. Springer (2006)

3. Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly
Media, Inc. (2015)

4. Pajunen, L., Chande, S.: Developing workflow engine for mobile devices. In:
Enterprise Distributed Object Computing Conference, 2007. EDOC 2007. 11th
IEEE International. pp. 279–279. IEEE (2007)

5. Pryss, R., Mundbrod, N., Langer, D., Reichert, M.: Supporting medical ward
rounds through mobile task and process management. Information Systems and
e-Business Management 13(1) (February 2015)

6. Reichert, M., Dadam, P.: Enabling Adaptive Process-aware Information Systems
with ADEPT2. In: Cardoso, J., van der Aalst, W. (eds.) Handbook of Research on
Business Process Modeling. Information Science Reference (March 2009)

7. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information
Systems: Challenges, Methods, Technologies. Springer, Berlin-Heidelberg (2012)

8. Schobel, J., Pryss, R., Schickler, M., Reichert, M.: Towards Flexible Mobile Data
Collection in Healthcare. In: 29th IEEE Int’l Symp on Computer-Based Medical
Systems. IEEE Computer Society Press (June 2016)

9. Schobel, J., Pryss, R., Schickler, M., Ruf-Leuschner, M., Elbert, T., Reichert,
M.: End-User Programming of Mobile Services: Empowering Domain Experts to
Implement Mobile Data Collection Applications. In: IEEE 5th Int’l Conf on Mobile
Services. IEEE Computer Society Press (June 2016)

10. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer Science & Business Media (2012)

	A Mobile Service Engine Enabling Complex Data Collection Applications

