Proc. 6th Int'l Conf. Enterprise Information Systems (ICEIS'04), Porto, Portugal, April 2004

DYNAMIC CHANGE OF SERVER ASSIGNMENTS IN

DISTRIBUTED WORKFLOW MANAGEMENT SYSTEMS

Keywords:

Abstract:

Thomas Bauer
DaimlerChrysler Research and Technology, RIC/ED
P.O. Box 2360, D-89013 Ulm, Germany
Email: thomas.tb.bauer@daimlerchrysler.com

Manfred Reichert
University of Ulm, Dept. Databases and Information Systems
James-Franck-Ring, D-89069 Ulm, Germany
Email: reichert@informatik.uni-ulm.de

Workflow Management System, Scalability, Distributed Workflow Management, Dynamic Server Assignment

Workflow management systems (WfMS) offer a promising approach for realizing process-oriented informa-
tion systems. Central WEMS, with a single server controlling all workflow (WF) instances, however, may
become overloaded very soon. In the literature, therefore, many approaches suggest using a multi-server
WIMS with distributed WF control. In such a distributed WfMS, the concrete WF server for the control of
a particular WF activity is usually defined by an associated server assignment. Following such a partitioning
approach, problems may occur if components (WF servers, subnets, or gateways) become overloaded or break
down. As we know from other fields of computer science, a favorable approach to handle such cases may be
to dynamically change hardware assignment. This corresponds to the dynamic change of server assignments
in WEMS. This paper analyses to what extend this approach is reasonable in such situations.

1 INTRODUCTION

WIMS allow computerized business processes to be
run in a distributed system environment (Leymann
and Roller, 2000). The bottom line for any effec-
tive WEMS is to enable easy development and main-
tainance of large process-oriented application sys-
tems. For this purpose, application-specific code of
single process steps is separated from the flow logic
of respective business processes. So instead of a large,
monolithic program package, we obtain a set of indi-
vidual activities which represent the application pro-
grams. Their orchestration (i.e., the process logic),
however, is specified in a separate control flow defini-
tion that sets out the order and conditions according to
which the individual activities are to be executed. At
runtime, the WfMS takes care that activities of a WF
instance are executed according to pre-defined control
flow. When a certain activity becomes executable, it
is inserted into worklists of authorized actors. Ex-
actly which user is authorized to work on this activity
is generally determined by the user role assigned to it.
Generally, it is possible that several actors are allowed
to perform a certain activity.

(Central) WEMS, in general, have the disadvantage
that their single WF server may become overloaded
due to the large number of WF instances it has to

control and due to its numerous tasks (e.g., refresh-
ing worklists, calculating the new state of a WF in-
stance after activity completion, starting activity pro-
grams, etc.). To avoid overload situations, different
approaches for distributed WF management were de-
veloped in the past (Bauer, 2001; Kochut et al., 2003;
Muth et al., 1998; Schuster et al., 1999). All of them
follow the idea to distribute the overall system load to
several servers. In doing so, normally, for each WF
activity they try to choose a well-suited WF server for
the control of this activity. For this purpose, for ex-
ample, the server of the subnet containing the greatest
number of potential actors of the respective activity
may be used. This strategy results in a small distance
between the WF server and the clients with respect to
network topology and, therefore, in a good commu-
nication behavior (short response times and low com-
munication costs) (Bauer, 2001; Bauer et al., 2003).

For approaches dealing with distributed WF man-
agement, usually, the WF server controlling a partic-
ular WF activity is already determined at buildtime
(Bauer, 2001; Muth et al., 1998; Das et al., 1997).
In certain situations (e.g., server overload or break-
down), however, it may be advantageous to deviate
from the pre-planned server assignment during run-
time. A method to deal with such cases, which is
well known from other fields of computer science, is

91

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

to assign tasks dynamically to the hardware compo-
nents. It has been applied, for example, for scheduling
processes in operating systems (Casavant and Kuhl,
1988; Goscinski, 1991), where the processor execut-
ing a particular operating system process is usually
selected when this process is started. As a second ex-
ample consider CORBA (OMG, 1995) where the ex-
ecution server for a method call is selected at runtime
as well. In both approaches, thereby, the current load
and failure situation may be taken into account.

This commonly used approach may be applied to
distributed WfMS as well. One goal is to compensate
overloading of WfMS components (WF server, sub-
net, or gateway). For example, if a specific WF server
becomes overloaded, tasks it was originally intended
for may be assigned to another server with lower (cur-
rent) load. As another scenario, in which the dynamic
change of server assignments — in the following called
dynamic server changes for short — is reasonable, con-
sider the breakdown of a WfMS component. In such
a case, a different WF server may be chosen (dynam-
ically) for the control of the affected activities.

At first glance, support of dynamic server changes
seems to be advantageous. We, therefore, examine
whether they can be used to solve the overload and
failure problems in distributed WfMS. However, our
analysis will show that dynamic server changes are
not appropriate to solve these problems. The main
contribution of this paper is to explain the difficulties,
occurring in this context, in detail. In addition, we
describe ways to counteract overload and breakdown
of WEMS components in a more suitable manner.

The next section shortly introduces important fun-
damentals of distributed WF management. They are
necessary for the further understanding of this paper.
Section 3 examines in which states of a WF instance
the dynamic change of server assignments is possi-
ble and does also make sense. Section 4 addresses
the treatment of overload situations by dynamically
changing server assignments. Section 5 discusses the
breakdown of components. In Section 6, alternatives
to dynamic server changes are presented, which are
more suitable to solve the problems described above.
Related approaches are discussed in Section 7. The
paper closes with a summary of the results.

2 DISTRIBUTED WORKFLOW
MANAGEMENT

We consider both enterprise-wide and cross-
organizational, process-oriented applications in
operative use. For example, (Kamath et al., 1996;
Sheth and Kochut, 1997) deal with applications
leading to a WfMS with more than 10000 users and
a number of currently active WF instances achieving

92

the same magnitude. Owing to this large number
of users and co-active WF instances, the WfMS
is generally subjected to an extremely heavy load.
Single components of the system, therefore, may
become quickly overloaded.

To avoid overload situations, several approaches
suggest to not only control a WF instance by a sin-
gle WF server. Instead, its WF schema is partitioned
and the resulting partitions are executed by different
WF servers (Bauer and Dadam, 1997) (see Fig. 1).

—
normal control flow

—i—>
control flow
and migration

Activity States:
a ACTIVATED

(the activity was inserted
in the worklists)

» RUNNING

(the activity is currently
executed by a user)

v/ COMPLETED

(the execution of the
WF server 3 activity was finished)

involved

Figure 1: a) Migration of a WF instance (from server 1 to
server 3) and b) the resulting state of the WF instance.

This also applies to ADEPT g;stribution (Bauer,
2001; Bauer et al., 2003), the distributed variant of
the ADEPT' approach (Dadam et al., 2000; Reichert
and Dadam, 1998). When the end of a partition is
reached during runtime, control over the respective
WF instance is handed over to the next WF server.
To perform such a migration, a description of the WF
instance state (current execution state and values of
parameter data of activity programs) has to be trans-
ferred to the target server before it can take over con-
trol (Bauer et al., 2001).

As already mentioned, partitioning of WF schemes
at buildtime and distributed WF control during run-
time have been successfully utilized by other ap-
proaches as well (Casati et al., 1996; Muth et al.,
1998). Some of them also aim at minimizing the over-
all communication costs. The experiences we gained
with legacy WfMS have shown that there is a great
deal of communication between a WF server and its
clients, oftentimes necessitating the exchange of large
amounts of data. This, in turn, may overload the com-
munication system as well. In ADEPTy;stributions
for WF activities the controlling servers are automat-
ically calculated at buildtime. This is done in a way
that minimizes the overall communication (Bauer and
Dadam, 1997; Bauer and Dadam, 2000). In doing so,
typically, the WF server selected to control a specific
activity will reside in that subnet the greatest number
of potential actors belongs to.

! Application Development Based on Encapsulated Pre-
Modeled Process Templates.

DYNAMIC CHANGE OF SERVER ASSIGNMENTS IN DISTRIBUTED WORKFLOW MANAGEMENT SYSTEMS

3 APPROACHES FOR DYNAMIC
SERVER CHANGES

The way of how to perform dynamic server changes
significantly influences resulting costs and benefits.
In this section, we examine general approaches for
migrating a WF instance to a target server, which is
dynamically selected at runtime (dynamic migration).

Generally, reaction on overload or failure situations
should happen very quickly. For concerned WF in-
stances, this requires to dynamically change the WF
server of currently executed activities. In order to gain
larger impact and to prevent unnecessary migrations,
it is always recommendable to change the assignment
of the whole current partition. A vital aspect, thereby,
is the point in time this happens. Generally, the fol-
lowing possibilities exist (cf. Fig. 2):

Approach 1: Dynamic Server Changes May Hap-
pen at Any Point in Time

Dynamic changes of server assignments are allowed
at any time during WF execution. As a consequence
the originally intended server has to notify all clients
involved in the processing of the current activity about
the change. Otherwise, responses would be directed
to the wrong (namely to the old) WF server. Apart
from this, normally, this approach requires an addi-
tional migration when a server assignment is changed.

Approach 2: Dynamic Server Changes are Prohib-
ited for Activities to be Started

Dynamic server changes are forbidden if the activ-
ity (of the concerned execution branch) has currently
state ACTIVATED (Reichert and Dadam, 1998). Dur-
ing this state, corresponding work items are offered
to all potential actors who may work on this activity.
In case of dynamic migrations at most one client has
to be informed about the server change, namely the
client of that user actually executing this activity.

Approach 3: Dynamic Server Changes are Only
Allowed After Completion of Activities

Dynamic migrations are only performed if a tran-
sition between two consecutive activities currently
takes place. At this time, no client is involved in
processing the corresponding execution branch of the
WF instance. (The completed activity is not contained
in worklists any more, it is currently not executed, and
there are no work items belonging to the subsequent
activity yet.) Clients, therefore, need not be informed
about the server change; there is even no need for
them to know that dynamic server changes are pos-
sible. Using this approach, solely an additional mi-
gration may have to be performed in order to realize
the dynamic server change.

Approach 4: Server Changes are Allowed Only in
Case of Pre-planned Migrations

Dynamic server changes are only possible if a pre-

planned migration currently takes place.”? In doing
so, only the target server of a (pending) migration has
to be changed. This approach does not require any
additional migration.

dynamic change of the server of the
/ COMPLETED | current partition x is possible with Approach

[« acTvaten » _RUNNING

“ @ yes yes yes yes
ool e] o s
[a] "ﬁ { ¢ | {d] ves yes no no

Figure 2: Possibilities for realizing dynamic server changes.

Let us shortly discuss the efficiency of these four
approaches: Realization of Approaches 1 and 2 is
very expensive since clients have to be involved in dy-
namic server changes. In addition, they require much
communication effort and are error-prone. Errors may
occur, for example, if a client, which could temporar-
ily not reach its server, tries to transmit the output data
of an activity program to this (already obsolete) WF
server. Approach 3 creates communication load as
well since additional migrations are required for dy-
namically changing a server. Only Approach 4 does
not require additional communication and does not
have any impact on clients. Using this approach, how-
ever, less WF instances may be subject of a dynamic
server change (because of their current state). Reason
is that only such WF instances may be considered,
for which a (pre-planned) migration currently takes
place. Nevertheless, there is still a large number of
WEF instances falling into this category. Note that in
enterprise-wide scenarios a WF server controls many
WF instances at each point in time. This is especially
valid for high-performance WfMS as considered in
this paper. It is no good idea, anyway, to migrate
too many WF instances at the same time since this
may lead to the underload of the formerly overloaded
server; i.e., to a “flattering” of the load.

To avoid unnecessary limitations, in the following,
all approaches are considered despite of the weak-
nesses discussed. It is examined, thereby, which ap-
proach is most suited for solving the given problems.

4 TREATMENT OF OVERLOAD
SITUATIONS

In the following, we examine to what extend Ap-
proaches 1-4 are suited to compensate the overload of
WIMS components. At first, we consider the overload

The creation of a new WF instance is treated similar to
a migration. Therefore, the first partition of a WF instance
may be subject of a dynamic server change as well.

93

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

of communication system components (subnets, gate-
ways). Then we inspect overloading of WF servers.
Finally, we discuss general issues related to dynamic
server changes in the context of overload situations.

4.1 Overloaded Components of the
Communication System

4.1.1 Overloaded Subnets

Let us assume the scenario depicted in Fig. 3, where
subnet = of the WIMS is currently overloaded. This
overload shall be compensated by assigning WF in-
stances, normally controlled by the WF server of sub-
net x, to another server.

subnet x
is over-

\
transfer WF
instances to the
server of a subnet
which is currently
not overloaded

subnet (LAN)

Figure 3: Dynamic change of server assignments in the case
of subnet overload.

Unfortunately, dynamic server changes will not
contribute to reduce the load of subnet x if the ma-
jority of actors who may work on respective activities
belongs to subnet x as well. The communication be-
tween the WF clients of these users and the WF server
will continue crossing subnet x, since the clients will
still be located in this subnet. The overloaded subnet,
therefore, will not be significantly unburdened.

However, such an actor distribution is the normal
case, since the majority of potential actors is located
in the subnet of the WF server controlling the current
partition. Note that this server has just been chosen
because of this actor distribution. This makes sense
since such a server assignment contributes to reduce
the overall communication costs (cf. Section 2). The
usage of dynamic migrations, however, has a negative
effect on this goal.

If one of the Approaches 1-3, as described in Sec-
tion 3, is used to realize dynamic server changes, the
total situation becomes even worse due to the addi-
tionally required migration. Such a migration always
burdens the subnet to which the source server be-
longs. The usage of Approaches 1 or 2 makes the
load situation even more worse. For these cases, a
dynamic server change further necessitates additional
communications with clients.

94

4.1.2 Overloaded Gateways

The overload of a gateway (e.g., a long distance com-
munication link) may be handled in a similar way:
WF instances may be dynamically migrated to a WF
server that belongs to a subnet not connected with
this gateway. Using this method, however, similar
problems as described in the previous section occur.
Therefore, this approach is not recommendable. It is
even less advantageous when compared to treatment
of overloaded subnets since the subnet of the origi-
nally intended WF server may be connected to several
gateways. All of them are unburdened by the dynamic
migration. The load reduction of the overloaded gate-
way, therefore, only happens proportionately.

4.2 Overloaded Workflow Servers

The following possibilities exist to reduce the load of
an overloaded WF server: WF instances may be “mi-
grated away” from it or instances, it was originally
intended for, are not transferred to this server.

In this scenario, dynamic server changes more
likely lead to the intended goal because the WF server
has to control fewer WF instances in fact. Using Ap-
proaches 1-3 of Section 3, however, an overloaded
WF server may be further burdened due to the mi-
grations now required. Since the effort necessary to
handle such migrations is larger than for regular activ-
ity executions (because of the larger data volume, cf.
(Bauer et al., 2001)), the suggested method may even
be disadvantageous. With Approaches 1 and 2, in ad-
dition, the WF server has to handle interactions with
clients when performing dynamic migrations. This
results in additional effort. Furthermore, the general
disadvantages of dynamic server changes with respect
to compensation of overload situations have negative
effects on the quality of the presented approach (see
the discussion in the following section).

4.3 Dynamic Server Changes:
General Issues

We have sketched methods for dynamic server
changes in order to handle overload situations of both
the communication system and the WF servers. In
the following, we discuss general difficulties arising
in this context.

Just as all methods for load balancing, the pre-
sented approaches require exchange of load informa-
tion (in any kind). First of all, thereby, it is not
relevant which technique is actually used for this
purpose. Numerous variants are known from dis-
tributed scheduling of operating systems processes
(Goscinski, 1991). It is possible, for example, to ex-
change load information periodically between the WF

DYNAMIC CHANGE OF SERVER ASSIGNMENTS IN DISTRIBUTED WORKFLOW MANAGEMENT SYSTEMS

servers. Another possibility is to request the current
load from potential target servers when a dynamic
migration has to be performed. All these methods
have in common that the usage of dynamic server
changes itself burdens the components of the WfMS
and, therefore, increases the risk of an overload.

This disadvantage, however, can be weakened by
using “piggybacking” (Tanenbaum, 1996): The (rela-
tive small) load information to be exchanged is trans-
mitted together with other communications, which
are necessary anyway. If it can be supposed that such
communications (e.g., migrations) occur between all
pairs of WF servers in a sufficient frequency, no ad-
ditional messages become necessary for the exchange
of load information. Only the data volume to be trans-
mitted will be (marginally) increased.

A more crucial disadvantage of load-dependent,
dynamic server changes results from the long
“pauses”, which often occur during WF execution.
On the one hand, they may be caused by the priorities
the users possibly set; on the other hand, long-running
processes may comprise active steps (e.g. medications
in a chemotherapy process) resting for days or weeks,
before they are allowed to be executed. For this rea-
son, a WF instance, which was dynamically migrated
to unburden a component, may rest for a long time. In
such a case, in the short term, we do not achieve any
load reduction at all. Instead the load reduction for
the component happens much later. But then, it may
even be underloaded.

If one of the Approaches 1-3 is used, the situation is
even worse: The migration necessary for the dynamic
server change is performed immediately. This results
in additional effort at a point in time the overload still
exists. With Approaches 1 and 2, the same applies for
the interaction with the clients as well.

4.4 Assessment

Dynamic server changes do not seem to be suitable
to deal with overloaded communication system com-
ponents. Regarding WF servers, a load reduction is
theoretically possible, but occurs with a considerable
delay. If such a method is used, however, it is crucial
that Approach 4 (cf. Section 3) is applied in order to
avoid additional load for the WF server.

S TREATMENT OF FAILURE
SITUATIONS

To deal with the breakdown of system components the
following method is conceivable:(Partitions of) WF
instances affected by the failure are dynamically as-
signed to another WF server. As we will see, in this
context it does not matter whether the breakdown of

a WF server or a communication system component
has to be compensated. In the following, therefore,
we do not distinguish between these two cases.

5.1 Using Dynamic Server Changes
to Compensate Breakdowns

Assume that the breakdown of a WfMS component
shall be compensated by dynamically changing server
assignments. In this case, the concerned WF instances
cannot be “migrated away” from their current server;
i.e., Approaches 1-3 have to be ruled out. Such a
migration would just require the operativeness of the
failed component. This is obvious for WF servers as
well as for subnets since these components would al-
ways be directly involved in the corresponding migra-
tion.

The breakdown of a gateway is only relevant if this
leads to the fragmentation of the communication net-
work. Otherwise, it would be still possible for the
WEF server to reach all of its clients. In case of a net-
work fragmentation, however, a dynamic migration to
the other fragment of the network would be required.
This is the only possibility for the WF server to reach
the clients located there. Such a migration, however,
is impossible due to the breakdown of the communi-
cation link.

For compensating component failures, therefore,
only Approach 4 can be used. With such an approach,
however, it is not possible to improve the situation for
users who have to wait for the processing of their ac-
tions (due to the component failure). Neither they can
start activities offered to them in their worklists nor
they can complete activities they are currently work-
ing on. Reason is that the corresponding WF server
is currently not accessible. These serious problems
are visible to the end user and cannot be solved by
dynamic server changes.

In failure situations, usage of Approach 4 has the
consequence that another target server may be chosen
for a pending migration of a WF instance. This, how-
ever, is not very helpful since in this state no users
are waiting for an action belonging to this WF in-
stance. (Note that the WF instance currently migrates
from one server to another; i.e., the previous activity
was completed and the succeeding activity has not yet
been activated.) The serious problems, described in
the previous paragraph, do not occur in this situation
anyway. In addition, it can be assumed that a failed
component will be repaired early. The delay (that is
not visible to the users), therefore, does not result in
a problem that, in turn, would justify the additional
effort as described.

95

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

5.2 Assessment

As described above, dynamic server changes are not
well suited to compensate the breakdown of WfMS
components. There are methods, however, which are
much more suitable for this purpose; e.g. the use of
backup servers (Kamath et al., 1996). Corresponding
approaches as well as methods for the treatment of
overload problems are discussed in Section 6.

Since the shortcomings of dynamic server changes
are obvious, we omit a formal presentation of the
sketched methods at this point. The same applies to
the comparison of possible realization variants (e.g.,
techniques for the selection of the target server of a
dynamic migration; i.e., the question, which server
assignment is concretely chosen). It does also not
make much sense to deal with methods for the (ef-
ficient) recognition of component failures. (The same
applies to methods for the efficient realization of the
load information exchange and criteria at which load
and how long one wants to react on overload situa-
tions.) Finally, it is superfluous to evaluate the quality
of the corresponding methods by a model calculation
or simulation, because their flaws are obvious.

6 ALTERNATIVE SOLUTIONS

Dynamic server changes have turned out to be unsuit-
able to solve the overload and failure problems com-
ing up with enterprise-wide applications. In the fol-
lowing, we sketch some more promising approaches.
Most of them have been addressed and implemented
within the ADEPT project (Reichert et al., 2003).

In the ADEPT WfMS, the prevention of commu-
nication system overloads has been a crucial aspect
from the very beginning. We developed advanced
methods, which allow reducing the data volume com-
municated in a WfMS. These methods may be used
in combination with each other as well.

We developed a sophisticated method to calcu-
late optimal server assignments already at buildtime
(Bauer and Dadam, 1997). They result in minimized
total communication costs at runtime. For this pur-
pose, we developed algorithms which estimate the
communication costs occurring during WF execu-
tion. This information is used for calculating optimal
server assignments. Our algorithms are based on a re-
alistic cost model and make use of both process and
organization model data (Bauer, 2001).

Variable server assignments can be used to reduce
transmitted data volumes (Bauer and Dadam, 1999)
if concrete actors of an activity depend on preceding
steps (e.g., if an activity shall be performed by the
same user as a preceding one). In such cases, more
flexible server assignments can be used such that the

96

server to be actually chosen may depend on preceding
activities; i.e., the server for controlling activities of a
certain WF partition needs not always be determined
at buildtime. A detailed description of this approach
can be found in (Bauer and Dadam, 2000).

In (Bauer et al., 2001) we present methods which
can be used to significantly reduce the data volumes
transmitted during migrations. In particular, they pre-
vent redundant transfer of WF instance data to the
same server. Such redundant transmissions may occur
in connection with repeated migrations to the same
server (e.g., due to loop backs).

In some cases, even these measures may be insuf-
ficient to prevent communication system overloading.
Then smaller subnets must be created, of which each
has to serve a smaller number of users.

The problem of overloaded servers has been con-
sidered in the ADEPT project as well. In (Bauer
et al., 2003), for example, we present an advanced
method which can be used to prevent overloading of
WEF servers. It enables the usage of an arbitrary num-
ber of WF servers in the same subnet. In addition, the
load can be distributed to these servers in an arbitrary
and definable ratio. Since our method does not re-
quire any additional communication for WF instance
execution, there is no risk for the communication sys-
tem to become overloaded.

If very high availability is required, usage of re-
dundant hardware will be the best way to compensate
server or communication system failures. (Kamath
et al., 1996) presents methods for backup servers.
The information necessary for WF instance control is
continuously transmitted from the processing to the
backup server. In case of server breakdown, there-
fore, the backup server is able to take over control.

Finally, failures of single components of the com-
munication system can be compensated by using re-
dundant communication hardware. This may be im-
plemented, for example, by double communication
rings FDDI (Tanenbaum, 1996).

7 RELATED WORK

Methods which make use of load information have
been applied to the scheduling of operating system
processes for a long time and with great success
(Casavant and Kuhl, 1988; Goscinski, 1991). Based
on current load situation, they determine the pro-
cessor to which a certain process shall be assigned.
This processor, however, is normally determined
when starting an operating system process (non-pre-
emptive scheduling (Casavant and Kuhl, 1988)). Con-
sequently, no running processes have to be trans-
ferred.(This would correspond to a migration.)

In this context, it is important to mention that op-

DYNAMIC CHANGE OF SERVER ASSIGNMENTS IN DISTRIBUTED WORKFLOW MANAGEMENT SYSTEMS

erating system processes do not correspond to WF in-
stances of WIMS. A WF instance consists of activity
instances, which have to be assigned to one or mul-
tiple WF servers. In the same way, an application
consists of operation system processes, which are as-
signed to the processors. Consequently, the operating
system processes correspond to the activity instances.
When assigning activity instances to WF servers, use-
ful information about the activities is available (e.g.,
about actor assignments and distribution of users to
subnets). This, however, is normally not the case for
operating system processes. When scheduling WF in-
stances, therefore, it is possible to select a much more
favorable WF server, with respect to the communi-
cation behavior, as this would be possible by pure
load balancing. The usage of such information cor-
responds to the application of static scheduling meth-
ods (Casavant and Kuhl, 1988) in operating systems,
instead of the usually applied dynamic methods.

In the following, approaches for distributed WF
management are discussed in the context of dynamic
server changes (see also (Bauer, 2001; Bauer and
Dadam, 1999)). Comparable to ADEPT, most of them
determine server assignments for activity instances
based on process and organization model data. Ex-
amples are MENTOR (Muth et al., 1998) and WIDE
(Casati et al., 1996). Both allocate the WF server for
an activity close to its potential actors. The same ap-
plies to MOBILE (Heinl and Schuster, 1996). As op-
posed to the previous approaches, however, in MO-
BILE a WF instance is always controlled by the same
server during its whole lifetime. Consequently, no mi-
grations become necessary. Following this approach,
however, a sub-process may be controlled by another
WF server (Schuster et al., 1999). It is selected at
runtime considering various criteria like access rights
or weights. METEOR: (Das et al., 1997; Kochut
et al., 2003), CodAlf and BPAFrame (both (Schill and
Mittasch, 1996)) always chose the WF server near
to the application that belongs to the current activity.
Finally, there are completely distributed approaches
(e.g., Exotica/FMQM (Alonso et al., 1995) and IN-
CAS (Barbard et al., 1996)). For them, usually the
machine of the current actor carries out the server
function. — All these approaches have in common that
the scheduling of activity instances is performed inde-
pendently of the current load and failure situation.

The Exotica/Cluster approach (Alonso et al., 1994)
shows that it is possible to realize scheduling in
WIEMS independently of its process and organization
models. Using this approach, the WF server (clus-
ter) of a WF instance is selected randomly at creation
time. The WF instance remains in this cluster dur-
ing its whole lifetime; i.e., no migrations are required.
This approach, however, does also not use any load
information for the selection of the WF server.(But it
can be easily modified this way.) In addition, (Bauer,

2001) shows that the non-usage of model data results
in an unfavorable communication behavior.
CORBA-based approaches for distributed WF
management have been presented in the literature as
well: WASA, (Weske, 1999) considers activities to
be CORBA objects which signalize state changes to
each other. Since these objects may be allocated
to arbitrary computers, distributed WF management
can be realized this way. The distribution model
of MOKASSIN (Joeris and Herzog, 1999) is similar
to the previous approach: The activity instances are
CORBA objects. They use events to communicate
with each other and they can be placed on arbitrary
computers. With these approaches, in principle, the
CORBA middleware enables the realization of arbi-
trary distribution. It would be possible, thereby, to
realize the distribution in a way that considers load
and failure information. With such a method, how-
ever, the difficulties already discussed would occur.

8 SUMMARY

We have analyzed to what extend dynamic changes of
server assignments are useful in order to react to over-
load situations and component failures in a distributed
WIMS. Our analyses have shown that such dynamic
migrations are not suitable to deal with overload sit-
uations. In most cases, they enable almost no load
reduction for subnets and gateways. The required ad-
ditional effort may even have the consequence that the
total situation becomes worse. Only for WF servers,
it is possible to reduce the load, but this reduction is
very limited. For the compensation of WfMS com-
ponent failures dynamic server changes are unsuited
as well. The impacts of such breakdowns, which are
really critical for the end user, cannot be reduced by a
dynamic migration. Reason is that the breakdown of
the WIMS component prevents the execution of the
dynamic migrations. To sum it up, the usage of dy-
namic server changes is not recommendable.

We have sketched alternative methods, which we
realized in the ADEPT project. However, it was not
the goal to discuss them in detail (this happened in
other publications). Instead, we only want to show
that there are alternatives to the usage of dynamic
server changes. With these methods, it becomes pos-
sible to compensate the overload of both the commu-
nication system and the WF servers. In addition, they
can handle failures of these WfMS components.

REFERENCES

Alonso, G., Kamath, M., Agrawal, D., El Abbadi, A.,
Giinthor, R., and Mohan, C. (1994). Failure Han-

97

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

dling in Large Scale WfMS. Technical report, IBM
Almaden Research Center.

Alonso, G., Mohan, C., Giinthor, R., Agrawal, D., El Ab-
badi, A., and Kamath, M. (1995). Exotica/FMQM:
A Persistent Message-Based Architecture for Dis-
tributed Workflow Management. In Proc. IFIP Work-
ing Conf. on Inf. Syst. for Decentralized Organisa-
tions, Trondheim.

Barbara, D., Mehrotra, S., and Rusinkiewicz, M. (1996).
INCAs: Managing Dynamic Workflows in Distributed
Environments. Journal of Database Management,
7(1).

Bauer, T. (2001). Efficient Realization of Enterprise-wide
WfMS. PhD thesis, University of Ulm. (Tenea-Verlag,
in German).

Bauer, T. and Dadam, P. (1997). A Distributed Execution
Environment for Large-Scale WfMS with Subnets and
Server Migration. In Proc. 2nd IFCIS Conf. on Coop.
Inf. Syst., Kiawah Island.

Bauer, T. and Dadam, P. (1999). Distribution Models for
WIMS - Classification and Simulation. Informatik
Forschung und Entwicklung, 14(4).

Bauer, T. and Dadam, P. (2000). Efficient Distributed Work-
flow Management Based on Variable Server Assign-
ments. In Proc. 12th Conf. on Advanced Inf. Syst. En-
gineering, Stockholm.

Bauer, T., Reichert, M., and Dadam, P. (2001). Effi-
cient Transmission of Process Instance Data in Dis-
tributed WEMS. Informatik Forschung und Entwick-
lung, 16(2). (in German).

Bauer, T., Reichert, M., and Dadam, P. (2003). Intra-Subnet
Load Balancing in Distributed WIMS. Int. J Cooper-
ative Information Systems, 12(3).

Casati, F., Grefen, P., Pernici, B., Pozzi, G., and Sanchez,
G. (1996). WIDE: Workflow Model and Architecture.
CTIT Technical Report 96-19, University of Twente.

Casavant, T. and Kuhl, J. (1988). A Taxonomy of Schedul-
ing in General-Purpose Distributed Computing Sys-
tems. [EEE Transactions on Software Engineering,
14(2):141-154.

Dadam, P., Reichert, M., and Kuhn, K. (2000). Clini-
cal Workflows - The Killer Application for Process-

oriented Information Systems? In Proc. 4th Int. Conf.
on Business Inf. Syst., Posen.

Das, S., Kochut, K., Miller, J., Sheth, A., and Worah, D.
(1997). ORBWork: A Reliable Distributed CORBA-
based Workflow Enactment System for METEOR,.
Technical Report, Department of Computer Science,
University of Georgia.

Goscinski, A. (1991). Distributed Operating Systems: The
Logical Design. Addison-Wesley.

Heinl, P. and Schuster, H. (1996). Towards a Highly
Scaleable Architecture for WIMS. In Proc. 7th Int.
Workshop on Database and Expert Systems Applica-
tions, Zurich.

Joeris, G. and Herzog, O. (1999). Towards Flexible and
High-Level Modeling and Enacting of Processes. In

98

Proc. 11th Int. Conf. on Advanced Information Sys-
tems Engineering, Heidelberg.

Kamath, M., Alonso, G., Giinthor, R., and Mohan, C.
(1996). Providing High Availability in Very Large
WIMS. In Proc. 5th Int. Conf. on Extending Database
Technology, Avignon.

Kochut, K., Arnold, J., Sheth, A., Miller, J., Kraemer,
E., Arpinar, B., and Cardoso, J. (2003). Intel-
ligGEN: A Distributed Workflow System for Discov-
ering Protein-Protein Interactions. Distributed and
Parallel Databases, 13:43-72.

Leymann, F. and Roller, D. (2000). Production Workflow -
Concepts and Techniques. Prentice Hall.

Muth, P., Wodtke, D., Weilenfels, J., Kotz-Dittrich, A.,
and Weikum, G. (1998). From Centralized Work-
flow Specification to Distributed Workflow Execution.
JIIS, 10(2).

OMG (1995). The Common Object Request Broker: Archi-
tecture and Specification. Technical Report Revision
2.0, Object Management Group.

Reichert, M. and Dadam, P. (1998). ADEPT {;c, — Support-
ing Dynamic Changes of Workflows Without Losing
Control. JIIS, 10(2).

Reichert, M., Rinderle, S., and Dadam, P. (2003). ADEPT
Workflow Management System: Flexible Support For
Enterprise-wide Business Processes. In Proc. Int’l
Conf. Business Process Management (BPM’03), Eind-
hoven.

Schill, A. and Mittasch, C. (1996). WfMS on Top of OSF
DCE and OMG CORBA. Distributed Systems Engi-
neering, 3(4).

Schuster, H., Neeb, J., and Schamburger, R. (1999). A Con-
figuration Management Approach for Large WIMS.
In Proc. Int. Conf. on Work Activities Coordination
and Collaboration, San Francisco.

Sheth, A. and Kochut, K. (1997). Workflow Applications to
Research Agenda: Scalable and Dynamic Work Coor-
dination and Collaboration Systems. In Proc. NATO
Advanced Study Institute on WfMS and Interoperabil-
ity, Istanbul.

Tanenbaum, A. (1996). Computer Networks. Prentice-Hall.

Weske, M. (1999). Workflow Management Through Dis-
tributed and Persistent CORBA Workflow Objects. In
Proc. 11th Int. Conf. on Advanced Information Sys-
tems Engineering, Heidelberg.

	Text1: Proc. 6th Int'l Conf. Enterprise Information Systems (ICEIS'04), Porto, Portugal, April 2004

