
Flexible Task Management Support
for Knowledge-Intensive Processes

Nicolas Mundbrod, Manfred Reichert
Institute of Databases and Information Systems

Ulm University, Germany
Email: {nicolas.mundbrod, manfred.reichert}@uni-ulm.de

Abstract—Knowledge-intensive processes (KiPs) are driven
by knowledge workers utilizing their skills, experiences and
expertise. As KiPs are emergent and unpredictable by nature,
their operational support is challenging. For coordinating and
synchronizing their work, usually, knowledge workers rely on
simple task lists like to-do lists or checklists. Though these
instruments are intuitive and prevalent, their current implemen-
tations tend to be ineffective and error-prone. Tasks are neither
made explicit nor are they synchronized. In addition, no task
lifecycle support is provided and media disruptions aggravate task
management. As a consequence, the efforts knowledge workers
spent in task management are not exploited for optimizing
future KiPs. This work presents the proCollab approach, focusing
on its stateful and customizable components of processes, task
trees, and tasks. proCollab processes may constitute KiPs in the
shape of projects and cases, while generic task trees and tasks
support required digital task lists of any kind. To enable domain-
specific task support, the proCollab state management allows
to integrate domain-specific procedure models (e.g., Scrum) and
to enrich proCollab components with customized states. Finally,
this customizable task management support fosters knowledge
workers’ coordination, increases work awareness, reduces media
disruptions, and enables the reuse of valuable coordination efforts
and knowledge.

Keywords—task management, knowledge-intensive process, task
list, checklist, to-do list, knowledge worker

I. INTRODUCTION

Residing in sensitive key business areas like research,
engineering, or service management, knowledge-intensive pro-
cesses (KiPs) have become the centerpiece for creating value
in many companies [1], [2]. Driving KiPs, knowledge workers
make use of their distinguished skills, experiences and exper-
tise. Thus, the systematic support of knowledge workers in the
context of KiPs is a prerequisite for achieving business goals.
Note that such KiP support poses one of the biggest challenges
companies are facing today [3].

KiPs can be characterized as non-predictable, emergent,
goal-oriented, and knowledge-creating processes [1]. In gen-
eral, their elements (e.g., activities, resources, or artifacts)
cannot be foreseen a priori. As a consequence, KiPs have not
been fully supported by any contemporary information systems
at the operational level so far. Instead, most knowledge workers
still use simple, paper-based task lists (e.g., to-do lists, check-
lists) to cope with more sophisticated KiP tasks as well as to
coordinate the various KiP activities [4]. Though paper-based
task lists are intuitive and prevalent, so are they error-prone and
ineffective. Moreover, tasks miss an explicit representation as
coordination artifacts as well as they are not provided in a

personalized manner and often spread over different localities
[5]. As a consequence, knowledge workers lack a stateful,
synchronized and lifecycle-based task management support
for KiPs. The task states and their synchronization with the
work progress are crucial for knowledge workers to efficiently
perceive work awareness (who is doing what) and to effectively
plan ongoing activities of a KiP. The lack of a lifecycle-
based task support, in turn, thwarts the reuse of existing
artifacts (e.g., task lists) in similar KiPs. If knowledge workers
can utilize existing task lists representing best practices, and
modify or combine them on demand, redundant planning and
coordination efforts will be reduced significantly.

To enable a systematic and sustainable support of KiPs, we
introduced the proCollab1 approach in [6]. As tasks constitute
the key entities for knowledge workers when it comes to
coordination in KiPs, proCollab provides the foundation of
a process- and lifecycle-based task management. Especially,
it provides process and task list templates, which may be
instantiated by knowledge workers on demand. Thereby, the
templates enable knowledge workers to make use of best prac-
tices and knowledge gained in comparable KiPs. This paper
especially focuses on the flexible state management and cus-
tomization concepts provided by proCollab. In particular, these
concepts allow for the support of different types of KiPs, task
lists, and tasks including their domain-specific requirements
(e.g., states, properties, constraints). Further, these concepts
may increase work awareness and empower knowledge work-
ers to collaborate and to plan their work more effectively. The
support of an integrated, stateful task management lifecycle
is demonstrated by a proof-of-concept prototype. Moreover,
the approach is evaluated along a real-world scenario from
software engineering. Altogether, the proCollab approach will
improve coordination and synchronization among knowledge
workers, prevent media disruptions, and foster the reuse of
coordination knowledge.

The remainder of this paper is structured as follows:
Section II presents fundamentals and introduces an application
scenario. Section III discusses the proCollab key components.
Section IV then presents the generic state management concept
for supporting a variety of KiPs with proCollab. On this basis,
Section V deals with the proCollab specialization concept,
which refines proCollab components to provide templates and
instances of different types of KiPs (e.g., projects or cases) and
task lists (e.g., to-do lists or checklists). Sect. VI evaluates
the approach and Sect. VII discusses related work. Finally,
Sect. VIII summarizes the paper and gives an outlook.

1Process-aware Support for Collaborative Knowledge Workers

II. FUNDAMENTALS

While [2] provided a detailed discussion of different
KiP notions and definitions, this paper uses the notion of
knowledge-intensive processes as introduced in [7] to estab-
lish a common understanding of KiPs: “Knowledge-intensive
processes are processes whose conduct and execution are
heavily dependent on knowledge workers performing various
interconnected knowledge intensive decision making tasks.
KiPs are genuinely knowledge, information and data centric
and require substantial flexibility at design and run time.”

To systematically examine how knowledge workers col-
laborate in the context of KiPs and how they accomplish their
tasks, we studied characteristic application scenarios (e.g., au-
tomotive engineering and healthcare) to derive key challenges
and requirements for the support of KiPs [5], [8]. Due to lack
of space, we cannot recap the full set of requirements. To still
draw attention to the challenges and requirements of a stateful,
lifecycle-based support for KiPs, we introduce an application
scenario from the automotive domain (cf. Fig. 1) [9]:

We have to perform
further tests!

Ok. Then we need to
involve Melinda and
Daniel!To-do lists

James

Janice

Daniel

Melinda

Steve Checklists

Task Sheets

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Q
uality Assurance

Goals

Pl
an

ni
ng

George

Testing
Application

What is Melinda
doing at the
moment?

Have we sticked to
the design guidelines?

ID
62 Component Design Janice, James
63 Quality Assurance
...

Task Responsible

Steve

Planning Milestone 712

ID
62 Component Design Janice, James
63 Quality Assurance
...

Task Responsible

Steve

Planning Milestone 712

ID
62 Component Design Janice, James
63 Quality Assurance
...

Task Responsible

Steve

Planning Milestone 712

Project Phase C Project Phase B Project Phase D
Milestones 400
Milestones 401

...

...

Milestones 865
Milestones 866

...

...

Milestones 710
Milestones 711

...

...

Quality
Gate B

Quality
Gate C

Fig. 1. Application Scenario

Example 1: While engineering electrical and electronic
(E/E) car components, the involved knowledge workers
aim to develop an E/E car component before a fixed
release date. Hundreds of professionals (e.g., engineers)
are involved in these projects for up to several years. To
ensure effective development, the knowledge workers fol-
low a methodology with sub-goals, e.g., quality gates or
milestones. Each development phase may comprise sub-
phases and concurrent development processes. Hence,
the knowledge workers need to frequently communicate
and synchronize with each other. To ensure compliance
with regulations (e.g., ISO 26262), to increase the quality
of engineering processes, and to track the engineering
progress, a central project checklist with hundreds of
check items is initially set up and continuously man-
aged by quality assurance officers. Usually, the currently
relevant check items are regularly discussed with the
project members to provide KiP guidance. Additionally,
pro-active task lists (e.g., to-do lists and task sheets) are
dynamically used by the knowledge workers to manage
personal tasks, as well as to coordinate tasks within small
specialized teams.

Example 1 constitutes a characteristic example of how
knowledge workers collaborate and apply a methodology to
achieve a common KiP goal. Methodologies are used to cope
with the emergent and unpredictable nature of KiPs [1]. How-
ever, methodologies are often specific for certain domains (e.g.,
the V model). In general, they can be abstracted by the generic
Plan-Do-Study-Act (PDSA) cycle [1], [8] (cf. Fig. 2): Collab-
orating knowledge workers iteratively stride through the stages
of planning work, performing work, studying work results, and
optimizing work plans. The planning and studying stages, in
particular, are utilized to establish efficient coordination as well
as to assure quality and effectiveness. Furthermore, in these
stages, knowledge workers rely on task lists of different types
as their key artifacts in use (cf. Fig. 2). Proactive task lists (e.g.,
to-do lists) are used by knowledge workers to dynamically
plan and coordinate the tasks emerging in a KiP, whereas
retrospective task lists (e.g., checklists) are used for quality
assurance. Moreover, both proactive and retrospective task lists
increase work awareness [10], i.e., the awareness of who has
been doing what in the context of a specific KiP.

System Design

Proactive Task Lists Retrospective Task Lists

Requirements
Engineering

Quality Assurance

System Integration

Mechanical, Electrical, and Information Engineering

Plan

Do

Study

Act

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Fig. 2. V Model: PDSA-based Methodology of Application Scenario

The interrelationship of KiPs and tasks, which are part
of task lists, is crucial. A task describes a piece of work
to be performed within a certain time. Through task lists,
knowledge workers iteratively refine (coarse-grained) tasks
by defining more detailed sub-tasks. Hence, a certain task
may be connected to an arbitrary set of subordinated tasks,
which are supposed to be successfully performed in order
to complete the actual task itself. In the context of a KiP,
tasks are continuously defined, updated, and, finally, performed
by knowledge workers. Regarding the performance of tasks,
three basic cases exists (cf. Fig. 3). First, a task may be
performed by one or more knowledge workers autonomously
(atomic task). Second, knowledge workers may collaboratively
accomplish a task in the scope of a subordinated KiP, which
may comprise other tasks (process task). Third, a task may
be performed by any kind of external, possibly standardized,
process (standardized process task). In this case, the task
commonly expresses that the external process needs to be
triggered by knowledge workers in future and that the result
is of interest for the KiP.

subordinated KiPs subordinated KiPs

...

...

Atomic TaskAtomic TaskAtomic Task

KiP TaskKiP TaskProcess Task

Ext. Process TaskExt. Process TaskStd. Process Task

Atomic TaskAtomic TaskAtomic Task

KiP TaskKiP TaskProcess Task

Ext. Process TaskExt. Process TaskStd. Process Task

1
1

1

1

0..n

0..n

0..n

0..n

0..n

0..n 0..n

1..n

0..n

0..n

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

KiP
Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

KiP
Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

KiP

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

KiP

Fig. 3. Interrelationship of KiPs and Tasks

Finally, we want to emphasize that the current state of a
KiP is strongly connected to the current states of its tasks. In
turn, the states of process tasks are directly connected to the
states of the triggered sub-processes. Hence, the synchronized
states of KiPs and tasks are of high importance for knowledge
workers as they provide the basis for effective planning, quality
assurance, and work awareness. As a consequence, a task
management support for KiPs must consider the representation
of the different states of processes and tasks as well as the
proper synchronization of theses states. Note that this is chal-
lenging as knowledge workers usually apply domain-specific
methodologies, necessitating the integration of domain-specific
procedure models (e.g., V model) and states of KiPs, task lists,
and tasks.

III. PROCOLLAB KEY COMPONENTS

To enable the systematic support of KiPs, we developed
the proCollab approach (cf. Fig. 4) [6], which provides a
lifecycle-based task management support for KiPs. Specifi-
cally, proCollab takes into account that knowledge workers
repetitively perform the stages of planning work, performing
work, studying work results, and optimizing plans (cf. Sect. II).
In these stages, knowledge workers use task-based artifacts to
achieve common goals. Examples of such artifacts include to-
do lists and checklists. Consequentially, proCollab relies on the
key entities processes, task trees, and tasks to realize a frame-
work for representing KiPs and the task-based artifacts used by
knowledge workers for properly coordinating their work. To
enable a lifecycle-based task management for KiPs, proCollab
processes and task trees are refined to process templates
and process instances as well as task tree templates (with
task templates) and task tree instances (with task instances),
respectively. To support the domain-specific requirements of
knowledge workers, proCollab components expose states based
on a flexible state management (cf. Sect. IV) as well as
they can be specialized (cf. Sect. V) to make these generic
components as specific as required.

Task Tree Templates
with Task Templates

0-n

0-1

0-1

0-n

0-n

1-n 1-n

1-n

0-n 0-n

0-n

1-n

0-n

0-n 0-n

0-n

Subordinated
Process Templates

Subordinated
Process Instances

Process
Templates

B

Sub-Task Tree
Templates with
Task Templates

2

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task TreeTask Tree

Root

1 B

Root

A B

A1 A2 B1 B2

Task TreeTask Tree
Root

A B

A1 A2 Root

B1 B2

Task Tree Instances
with Task Instances

Process
Instances

Sub-Task Tree
Instances with
Task Instances

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task TreeTask Tree

Root

B1 B2

Root

A B

A1 A2 B1 B2

Task TreeTask Tree
Root

A B

A1 A2 Root

B1 B2

Instantiation

Optimization

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Fig. 4. Overview of proCollab Components

In practice, knowledge workers collaborate in the scope
of projects, cases, or temporary endeavors [1]. To generalize
from these terms, the notion of process is used. Thereby,
every process may be arbitrarily nested (e.g., sub-projects)
and expose a goal, the knowledge workers want to achieve.
Furthermore, proCollab processes are refined into the lifecycle
components process templates and process instances. Finally,
every process may be linked to various task trees whose tasks

enable knowledge workers to better plan and check their work.
Task trees enable KiP support through process-related task lists
and provide a solid meta model for representing the latter.
A task tree includes tasks and subordinated task trees (cf.
Fig. 5). Every task features a work description, a current state
(cf. Sect. IV), and a set of constraints (e.g., required inputs,
due dates). Knowledge workers, using task lists (based on task
trees) may iteratively refine coarse-grained tasks by adding
more fine-grained sub-tasks.

A task tree exposes a root node with ordered child nodes
(cf. Fig. 5). The child nodes, in turn, themselves may have
ordered child nodes, and so forth. Except the root node, every
task tree node either corresponds to a specific task or an
embedded task tree (nesting). The recommended order, in
which tasks of a task tree shall be processed, is specified
by hierarchical edges and ordering edges. Hierarchical edges
constitute the hierarchical relationship of task tree nodes,
whereas ordering edges define the order of task tree nodes
on the same tree level. Consequently, the pre-order traversal
of a task tree provides the recommended task sequence. When
deriving to-do lists or checklists from task trees, knowledge
workers may perform various low-level operations on a task
tree on demand, e.g., adding, updating or removing tasks and
subordinated task trees respectively. Further, they may perform
high-level operations based on these low-level ones, such as
moving, splitting, and merging tasks within or across task
tree instances. The proCollab framework encompasses a well-
defined set of operations for manipulating task trees, i.e., task
tree templates and instances. Fig. 5 illustrates the application
of four basic operations to a task tree.

1) removeTaskTreeNode(C1, C, 0)
2) removeTaskTreeNode(C2, C, 0)

3) updateTaskTreeNode(B, name=B*)
4) insertTaskTreeNode(Task Tree #2, C, 0)

Low-level Operations applied to Task Tree #1:

Task Tree Node Ordering EdgeHierarchical Edge

Ta
sk

 T
re

e
#2

Task Tree #1
Root

A

X

B C

A1 A2 C1 C2Root

B1 B2

Ta
sk

 T
re

e
#2

Task Tree #1
Root

A B* C

A1 A2 Root

B1 B2

Ta
sk

 T
re

e
#2

Root

B1 B2

Fig. 5. Exemplary Task Tree Manipulated by Basic Operations

proCollab process templates and task tree templates shall
enable knowledge workers to accelerate the planning of their
tasks based on best practices or domain-specific standards.
As a proCollab process, every process template may have an
arbitrary number of subordinated process templates and feature
various properties, constraints, and linked resources. Most im-
portantly, every process template may be associated with task
tree templates. A task tree template, in turn, consists of task
templates and, optionally, subordinated task tree templates.
Furthermore, every task tree template contains a description of
its purpose and pre-defined properties for corresponding task
tree instances. A task template, in turn, denotes a task that
occurs in one or several task tree templates. It may comprise
constraints (e.g., duration), assignments (based on roles), and
linked resources (e.g., documents) as well. If a subordinated
task tree template or a task template is linked to several,

parental task tree templates, any update of these components
indirectly updates linked task tree templates as well. In general,
a task tree template and its task templates reflect best practices
for planning (to-do list) or quality assurance (checklist) in
accordance to the PDSA cycle. For example, a standardized
checklist ensuring functional safety (e.g., ISO26262) may be
specified as a task tree template. Overall, process templates
may ease the initial setup regarding KiP planning as knowledge
workers can directly start to use (instantiated) process and task
tree templates.

At run time, knowledge workers may collaborate in the
context of proCollab process instances. A process instance
represents a running project, case, or collaboration. Addition-
ally, it may contain several subordinated process instances
to focus on specialized sub-goals of the KiP. Further, it has
a start date, a desired duration or end date, assigned goals,
and linked resources (e.g., documents). Importantly, every
process instance may comprise multiple task tree instances
with corresponding task instances. A task tree instance, in turn,
corresponds to the generic representation of a common task
list (e.g., a to-do list) in use. For example, an automotive E/E
engineering project with to-do lists for planning and checklists
for quality assurance can be supported by a corresponding
proCollab process instance with two or more associated task
tree instances with types to-do list and checklist (cf. Sect. V-A).
In general, knowledge workers may create a process instance
based on an existing process template or starting without any
template. If a process template gets instantiated, all linked task
tree templates also become automatically instantiated, and the
generated task tree instances are linked to the process instance
accordingly. Furthermore, when executing a proCollab process
instance, knowledge workers may dynamically instantiate task
tree templates or add new, initially empty task tree instances on
demand. Furthermore, they may add, update, and remove task
instances as well as embedded task tree instances on demand.
Additionally, they may perform high-level operations based on
these operations, e.g., to move, split, or merge task instances.
Finally, knowledge workers may dynamically assign tasks to
themselves or other knowledge workers participating in the
process instance. Based on this flexibility, planning efforts can
be significantly eased, best practices be promoted, and process
knowledge be efficiently adopted by knowledge workers.

IV. PROCOLLAB STATE MANAGEMENT

To support a wide range of KiPs with their methodologies
(cf. Sect. II), proCollab incorporates a generic state manage-
ment concept for its stateful key components, i.e., process
templates, process instances, task tree templates, task tree
instances, task templates, and task instances. In particular,
this concept enables us to integrate common domain-specific
methodologies as well as to manage different types of pro-
Collab components in a controlled manner. For example, the
V model, which was used in the automotive engineering
project presented in Sect. II, refines the key phases of this
PDSA cycle to match the specific requirements in engineering.
Furthermore, and this aggravates proper state management
significantly, some of the tasks defined in Example 1 require
different specialized states (e.g., “completed with approval”)
in comparison to tasks used in other domains, e.g., software
engineering. To reflect such domain-specific variations, the
proCollab state management employs reference state models,

state models, and state model instances (cf. Fig. 6). While
a reference state model is declaring the states and state
transitions the entities of a particular type share, a state model
may refine a reference state model to meet domain-specific
requirements. Finally, every stateful proCollab component ref-
erences exactly one state model instance relying on a pre-
selected state model.

Stateful proCollab
Component

State Model Instance

Task Tree
Template

Process
Instance

Process
Template

Task
Template

Reference State Model

Task Tree
Instance

Task
Instance

State 1 State 2

State 3

State 1 State 2

State 3

State Model
State 2 State 2.1

State 2.2

State 2.1

State 2.2

State 2.1

State 2.2

State 2 State 2.1

State 2.2

11

1

0..n

1

0..n

1

0..n

0..n

0..n

0..n

0..n

Currently Active States: <State 2.1, State 2>

Fig. 6. proCollab State Management Entities

A. Reference State Models

A reference state model consists of a state transition graph,
a scope, and a set of refinable states. Thereby, a state transition
graph corresponds to a finite-state machine, i.e., it consists of
states and state transitions. Further, it exposes a starting state
and one or more final states. In general, every state is defined
by a label and a state type. In turn, a transition is defined as
an edge leading from a source to a target state. A transition
between two states constitutes the pre-specified way to leave
the source state to enter the target state. Fig. 7 illustrates the
reference state models of the key proCollab components.

Deposited Available

Archived

INITIALIZED ENABLED

ARCHIVED

SUSPENDED

COMPLETED

CANCELED

Open In Progress Completed

INITIALIZED

Dropped

RUNNING

Shelved

a) Reference State Model of Process Templates, Task Tree Templates and Task Templates

b) Reference State Model of Process Instances

c) Reference State Model of Task Tree Instances and Task Instances

Refinable StateRefinable StateStarting StateStarting State Ordinary StateOrdinary State Final StateFinal State

COMPLETED

CANCELED

Initialized Running Completed

INITIALIZED

ARCHIVED

ArchivedCanceled

RUNNING

Fig. 7. proCollab Reference State Models

The state types, in turn, are required as the proCollab
framework shall provide functionality with respect to the
current states of proCollab components. For example,
knowledge workers may only instantiate enabled process
templates, or they may solely retrieve completed task
instances. For this purpose, state types allow distinguishing
different states based on their semantics and independent from

their labeling. To provide such a customized support,
we defined the following state types (cf. Sect. V):
INITIALIZED, ENABLED, RUNNING,
COMPLETED, CANCELED, SUSPENDED,
ERROR, and ARCHIV ED. While the semantics of most
state types can be intuitively perceived (cf. Fig. 7), it is
important to explain that INITIALIZED expresses that the
proCollab component has been created and is always used for
all starting states. Furthermore, state type ENABLED signs
enabled proCollab templates, i.e., the latter are available for
instantiation. The scope of a reference state model determines
for which proCollab component the model may be used. For
example, if the scope is ’Process Instance’ (cf. Fig. 7b), the
reference state model constitutes the basis for all state models
of process instances. Consequently, a specific reference state
model comprises the states shared by all stateful proCollab
components of a certain type (e.g., all process instances). To
allow for the domain-specific customization of proCollab,
a reference state model exposes states that may be further
refined through derived state models.

B. State Models

A state model is linked to a reference state model and may
optionally expose a parental state model (cf. Fig. 6). Thereby,
a state model inherits the scope of the corresponding reference
state model. Hence, it may be solely used for entities matching
the given scope (e.g., process instances). In addition, a state
model may refine those states of the reference state model that
are marked as refinable. For this purpose, one has to design a
state transition graph and then assign it to any refinable states.
Fig. 8 shows an example of a state model that refines the
reference state model of a process instance presented in Fig. 7.
In particular, Fig. 8 illustrates how the individual states of the
V model may be incorporated to provide a corresponding state
model for process instances in proCollab.

Running Requirements Eng. System Design

EngineeringSystem Integration

Quality Assurance

RUNNING RUNNING

refining

Fig. 8. Individual State Model for proCollab Process Instances

To further increase flexibility, a state transition graph
refining a given state may contain refinable states itself. A state
model, which is linked to a parental state model, may therefore
have state transition graphs refining the refinable states of the
parental state model. For example, the state model depicted
in Fig. 8 may be refined by child state models to further
customize the three refinable states. However, proCollab state
models must not override any refinement already provided by
a parental state model.

C. State Model Instances

State model instances make proCollab components stateful.
Every state model instance references a state model and it
exposes a sequence of currently active states as well as a
constraint named strict. When creating a stateful proCollab
component, one must select a corresponding state model.
Based on the latter, a state model instance is created and

linked to the stateful proCollab component. Consequently,
every proCollab component features a state model instance
referencing a state model, that, in turn, relies on a reference
state model (cf. Fig. 9). To ease the selection of a state model,
each proCollab template component may reference a state
model supposed to be used for the derived instances. For
example, a process template may reference a specific state
model with scope “Process Instance”. If knowledge workers
instantiate this process template, the linked state model will
be used to create a corresponding state model instance for the
new process instance. Note that the selection of a specialization
type may limit the number of state models that may be linked
to a specific template (cf. Sect. V-A).

Reference State Model RSM#1

A B C

State Model SM#5

C
C1 C2

B
B1 B2

State Model SM#8

B1
B1.1 B1.2

Process Instance PI#18

State Model Instance SMI#91

Currently Active States:
<B1.1, B1, B>

Active Transitions:
B1.1 -> B1.2

B1 -> B2
B -> C

Strict Mode:
off

...

1

1

Fig. 9. Exemplary State Model Instance with Corresponding State Model

To manage the currently active states of a state model in-
stance of a stateful proCollab component, it is important to re-
cap that states may be refined by a state model (cf. Sect. IV-B).
Hence, a state model instance exposes a sequence of active
states (cf. Fig. 9)—from the most specific to the most abstract
one, i.e., the one belonging to the reference state model. As
every state transition graph has exactly one starting state,
the state model instance is initialized with the starting state
of the state transition graph of the reference state model.
Alternatively, if the starting state is refined, a sequence of
starting states, which belong to state transition graphs refining
the corresponding states, will be used.

If the strict constraint is not set, knowledge workers may
use any outgoing transitions of the currently active states to
switch to another active state. For example, the state model
instance depicted in Fig. 9 allows knowledge workers to select
states B1.2, B2, or C. However, to support KiPs in which
knowledge workers shall strictly follow the sequence of pre-
defined states of a state model (including all refined states), the
strict constraint may be set to active. In the latter case, for a
state model instance, the outgoing transitions of refined states
will be only usable if the refining state transition graph exposes
a final state. If a final state has not been reached yet, knowledge
workers must first use one or several transitions via the refining
state transition graph to reach a final state. Consider Fig. 9:
knowledge workers will only be able to change the state model
instance to state B1.2 if strict constraint is active. In the latter
case, knowledge workers will be only able to switch to state
B2 if final state B1.2 of the refining state transition graph
is set first. Thereby, the interaction of knowledge workers
with proCollab components can be controlled to meet domain-
specific requirements of the given application scenarios at hand
(e.g., following the phases of a pre-specific methodology).
Note that proCollab automatically enables the starting state

of a refined state as soon as this state becomes active. For
example, if knowledge workers change the state model instance
from state B to state C, state C1 will be automatically added
to the sequence of currently active states; the latter will contain
accordingly: 〈C1, C〉). The reason is that C is refined in the
state model SM1 by a state transition graph containing C1
and C2, and C1 is marked as starting state.

V. PROCOLLAB SPECIALIZATION AND CUSTOMIZATION

Overall, the proCollab state management provides a sophis-
ticated and flexible foundation to enable customizable support
of a wide range of KiPs. Nonetheless, the full potential of
the presented state management concept is exploited as soon
as the generic proCollab components are specialized and cus-
tomized. In the automotive domain, e.g., knowledge workers
(i.e., engineers) collaborate in the scope of projects, rely on a
engineering methodology (e.g., V model), and use task sheets
and checklists with specialized states for coordinating their
work. By contrast, in a hospital, physicians take care of patients
in the context of cases, follow the diagnostic/therapeutic
lifecycle, and employ patient safety checklists [11], [5].

A. Specialization Types

To allow for the type- and domain-specific specialization
and customization, proCollab employs specialization types
enhancing the generic data structures of processes, task trees,
and tasks (cf. Fig. 10). Accordingly, the most common types
are process types, task tree types, and task types. Further,
we pre-defined six specialization types: The process types
project and case are usable to specialize process templates
and instances. Furthermore, the task tree types to-do-list and
checklist may refine task tree templates and instances, whereas
the task types to-do item and check item may be used for
specializing task templates and instances.

Stateful proCollab Component

Task Tree Template

Process InstanceProcess Template

Task Template

Task Tree Instance

Task Instance

Specialization Type

Process Type Task Type

Task Tree Type

0..n

1

Domain Specialization Type
0..n 0..1

State ModelState Model Instance
1

1

10..n
1..n

0..n

1

0..n

1

1..n

0..n

0..n

1

0..n

Fig. 10. proCollab Specialization Entities

Every specialization type may refer to a set of state models
that can be used for templates and instances (depending
on the scope of the reference state model). For example,
the project process type may refer to multiple state models
with scope “Process Instance” realizing common procedure
models (e.g., the V model). If a knowledge worker wants
to create a process instance based on the project process
type, she may select one of the provided state models and,
subsequently, retrieve a project relying on the chosen state
model. As a result, the process of selecting an appropriate
state model is eased significantly and knowledge workers
are enabled to more effectively create customized process
instances. To integrate specialization types with the phases of

the PDSA cycle, every specialization type exposes a temporal
perspective. The latter denotes whether proCollab components,
which rely on a specific specialization type, may be used
for planning (prospective temporal perspective), for quality
assurance (retrospective temporal perspective), or for both
aspects (hybrid temporal perspective). For example, the to-
do-list task tree type and the to-do item task type both expose
the prospective temporal perspective, whereas the checklist and
check item types expose the retrospective one. To ensure that
certain specialization types are coherently used together (e.g,
based on their common temporal perspective), the types may
be interlinked (cf. Fig. 10). For example, the to-do-list task
tree type is interlinked with the to-do item task type. Hence,
task trees of type to-do-list may only contain tasks of type
to-do item (and none of type check item).

Depending on the chosen specialization type, a proCollab
component may feature additional properties and constraints
(e.g., editing order). If a task tree instance is linked to the to-
do list task tree type, e.g., it will be interpreted as a “to-do
list instance” with corresponding properties and an appropriate
representation. Moreover, it will be treated as a prospective
task list to be used by knowledge workers for planning work
(cf. Fig. 11). By contrast, if the same task tree instance is
linked to the checklist task tree type, it will be interpreted
as retrospective checklist used for quality assurance. Finally,
to enable further refinement of specialization types, proCollab
employs domain specialization types (cf. Fig. 10). In general, a
domain specialization type relies on an existing specialization
type and may feature additional properties and constraints.
Most notable, a domain specialization type may refer to a set
of state models, which further narrows the set of state models
belonging to the specialization type. For example, a domain
specialization type Automotive Project may limit the set of
possible state models for process instances to one reflecting
the V model solely.

B. Task and Process Synchronization

Tasks can be distinguished regarding the way they are
performed (cf. Sect. II)—there are atomic tasks and composite
ones. The latter either require subordinated tasks of any kind,
the performance of one or more KiPs in order to accomplish
the task, or the performance of one or more standardized
processes for completion. As a consequence, proCollab in-
troduces task execution types to enable the tight coupling of
tasks and subordinated processes based on the presented state
management concept. If a task instance requires the creation
and completion of one or even several KiPs, it is linked
to a corresponding process task execution type. The latter
allows synchronizing the task instance with one or more linked
process instances. For this purpose, the process task execution
type may refer to a process template, which is supposed to
be instantiated by knowledge workers to actually perform the
respective task. If no process template is deposited, a process
instance may be dynamically created and linked to the process
task execution type. To increase work awareness, the progress
of the linked process instance(s) is then synchronized with the
current state of the task instance. Therefore, the reference state
models of tasks and processes are utilized as they allow for
a state mapping. In particular, if only one process instance is
linked to the task instance via a process task execution type,
the state of their reference state models can be directly mapped

To-Do List Task Tree Type

Temporal Perspec�ve:
prospective

Edi�ng Order:
non-restrictive

State Model:
To-do List State Model

Task Type:
To-do Item Type

...

Checklist Task Tree Type

Temporal Perspec�ve:
retrospective

Edi�ng Order:
restrictive

State Model:
Checklist State Model

Task Type:
Check Item Type

...

To-do List
To-do item A

To-do item A1
To-do item A2

To-do item B
To-do item B1
To-do item B2

To-do item C
To-do item C1
To-do item C2

==

Task Tree #1

Ta
sk

 T
re

e
#2

Root

A B C

A1 A2 C1 C2Root

B1 B2

Checklist
Check item A

Check item A1
Check item A2

Check item B
Check item B1
Check item B2

Check item C
Check item C1
Check item C2

+ +

Fig. 11. To-do List and Checklists Specializations of a Generic Task Tree

to each other based on the common state types. Fig. 12 shows
an example based on Example 1. Task instance “Validate Use
Case” requires the creation of a subordinated process instance
as various activities have to be performed to accomplish the
task. Moreover, the current state of the task instance shall
reflect the progress in the subordinated process to increase
work awareness and to ease planning based on tasks. If the
the process execution type of a task instance links several
process instances, synchronization rules are utilized to keep
the state model instance of the task instance in sync with
the progress of the linked process instances. For example, the
task instance exposes state Open if all linked process instances
are currently in state Initialized. A task instance will expose
state In Progress if one of the linked process instances is in
state Running and none of them is in states Canceled and
Archived. Notably, such synchronization rules are also used
to synchronize the state of a task instance with the states
of subordinated task instances. Further, synchronization rules
can be utilized if the state of a process instance shall be
synchronized with the ones of task instances, which are part
of the task tree instances belonging to this process instance.
Finally, note that such synchronization rules may be only
generally applicable due to the fact that proCollab components
rely on state models and, in particular, reference state models.

Validate Use Case #21
(Task Instance)

State Model Instance SMI#14

Process Task Execution Type
PTET#91 Validate Use Case

(Process Template)

Validate Use Case #18
(Process Instance)

State Model Instance SMI#65

1

1..n

synchronized

1

1..n

1
Currently Active States:

<In Progress>
Currently Active States:

<In Progress>

1..n

Fig. 12. Task Instance with Process Task Execution Type

VI. EVALUATION

The proCollab approach with its integrated task manage-
ment lifecycle shall allow for the support of a variety of
KiPs. As most KiPs take place in sensitive business areas,
thorough preparations are required. Especially, the elaboration
of concepts and the provision of a mature implementation
addressing further issues (e.g., role management) are needed
to conduct valuable empirical studies validating the entire
approach. To prepare such studies and to demonstrate the
technical feasibility, a sophisticated proof-of-concept prototype
was developed covering the concepts presented in this work
as well. The prototype was realized with Java EE 7 and relies
on a multi-layer architecture (cf. Fig. 13).

Mobile ApplicationsWeb Application

REST API

Task Tree Services
(Instances)

P
re

se
n

ta
ti

o
n

Database Management Systems

Java Persistence API

Process Services
(Instances)

Process Template
Repository

Task Tree Template
Repository

C
om

m
u

n
ic

at
io

n
P

er
si

st
en

ce

User and Role
Management

Data Management

A
p

pl
ic

at
io

n

Java Content Repository

Fig. 13. Architecture of the proCollab Prototype

To validate the flexible and stateful task management sup-
port for KiPs, we integrated the agile SCRUM methodology2

in proCollab. This integration augurs interesting results as
it contrasts the traditional V model methodology discussed
in Sect. II. Furthermore, Scrum is widely used in software
development projects and, hence, its support can be considered
as a crucial evolution step for proCollab. Fig. 14 illustrates
common phases of a Scrum development project [12] including
the tasks to be accomplished as sub-processes in each phase.

Initiate
Plan and
Estimate

Implement
Review and
Retrospect

Release

- Create Project Vision
- Identify Scrum Master
 & Stakeholder(s)
- Form Scrum Team
- Develop Epic(s)
- Create Prioritized
 Product Backlog
- Conduct Release
- Planning

- Create User Stories
- Approve, Estimate,
 & Commit User Stories
- Create Tasks
- Estimate Tasks
- Create Sprint Backlog

- Create Deliverables
- Conduct Daily Standup
- Groom Prioritized
 Product Backlog

- Convene Scrum of
 Scrums
- Demonstrate &
 Validate Sprint
- Retrospect Sprint

- Ship Deliverables
- Retrospect Project

Fig. 14. Scrum Phases

To integrate these phases and processes, we first designed a
dedicated Scrum Software Development state model for process
instances based on the common phases applied in a Scrum
project (cf. Fig. 15a). The phases are represented by states of
a state transition graph refining the running state of the process
instance reference state model. Demonstrating the integration
of domain-specific states, a dedicated state model was created,
among others, for the (knowledge-intensive) process of Retro-
spect Sprint (cf. Fig. 15b). Finally, to empower knowledge
workers to directly create and use process templates and
instances of the domain-specific type “software project”, we
created the software development project domain specialization
type referencing the created Scrum-related state models. Based
on these preparations, we created a Scrum process template
using the software development project domain specialization

2http://www.scrum.org/

type and referencing the Scrum Software Development state
model to be used by derived process instances. Furthermore,
the Scrum process template contains the Scrum processes
represented as task templates with the proper process task
execution type. Regarding the latter, dedicated state models
are deposited to let knowledge workers directly create and
use process instances of the appropriate specialization type
and with the desired state models. As discussed in Sect. V-B,
the state models of the subordinated process instances are
then synchronized with the state model instances of the task
instances—enabling better planning, quality assurance, and
awareness for knowledge workers. In addition, the integration
of the key Scrum phases and processes showed the capability
of proCollab to support a variety of KiPs.

In Progress Intiate Plan and Estimate

ImplementReview and Retrospect

Release

RUNNING RUNNING

In Progress Staging Data Gathering

Generating InsightsDecision Taking

Finalizing

RUNNING RUNNING

b) Retrospect Sprint State Model

refining

refining

 Scrum Software Development
 State Model

a)

Fig. 15. Scrum-related State Models

VII. RELATED WORK

KiP support has its roots in Computer Supported Coop-
erative Work and groupware [10]. Work more closely related
to proCollab, however, can be found in the areas of Business
Process Management (BPM) and Adaptive Case Management
(ACM) [13]. Originating from BPM research, ACM targets
at the systematic support of KiPs based on the concepts
of case management and cases. In this context, the Case
Management Model and Notation (CMMN) was developed
as modeling notation to create, deploy and interchange case-
based specifications for supporting KiPs [14]. As CMMN does
not provide a dedicated representation of task trees and relies
on various specialized case-related elements, proCollab does
not implement CMMN. However, its components process and
task can be easily mapped to CMMN elements case and task.
Comparable to proCollab, Cognoscenti [15] allows modeling
and using projects with goal lists and corresponding goals.
In this context, goals are comparable to tasks. Cognoscenti
lacks, for example, an integrated support of templates and the
flexible state management concept of proCollab. To support
software development processes, the issue management system
Atlassian Jira3 relies on adaptable schemes for projects and
issues based on state models as well. More precisely, Jira
allows for the definition of workflow schemes for projects as
well as schemes for different types of issues (e.g., bugs, tasks).
However, the Jira schemes do not rely on common reference
models. Moreover, they are not refinable. Finally, Jira does not
support state-specific functionality; instead, it focuses on the
representation of these states and provides filter functions to
distinguish between entities with different states.

3https://www.atlassian.com/software/jira

VIII. SUMMARY AND OUTLOOK

This paper presents flexible and stateful task management
for KiPs based on the proCollab approach. We focused on the
proCollab state management concept, which provides state-
specific functionality to knowledge workers and enables them
to work with domain-specific procedure models and states. To
establish such a flexible support, we considered that knowledge
workers iteratively stride through the stages of planning work,
performing work, studying work results, and optimizing plans
in KiPs. To further enhance KiP support, we presented the
proCollab specialization entities as well as the integration and
synchronization of proCollab processes and tasks. These con-
cepts may empower knowledge workers to plan and conduct
their work more effectively. Finally, we presented an evaluation
based on a proof-of-concept prototype and its application to a
use case from software engineering. In future research, we will
evaluate proCollab more thoroughly. In particular, we aim to
investigate how knowledge workers define and use the domain-
specific state models provided by proCollab.

REFERENCES

[1] N. Mundbrod, J. Kolb, and M. Reichert, “Towards a System Support
of Collaborative Knowledge Work,” in BPM 2012 Workshops, 2013.

[2] C. Di Ciccio, A. Marrella, and A. Russo, “Knowledge-Intensive
Processes: Characteristics, Requirements and Analysis of Contemporary
Approaches,” J on Data Semantics, vol. 4, no. 1, pp. 29–57, 2014.

[3] P. F. Drucker, “Knowledge-Worker Productivity: The Biggest
Challenge,” IEEE Eng Management Review, vol. 34, no. 2, p. 29, 2006.

[4] V. Bellotti, B. Dalal, N. Good, P. Flynn, D. G. Bobrow, and
N. Ducheneaut, “What a To-Do: Studies of Task Management Towards
the Design of a Personal Task List Manager,” in Proc. CHI ’04, 2004,
pp. 735–742.

[5] R. Pryss, N. Mundbrod, D. Langer, and M. Reichert, “Supporting
medical ward rounds through mobile task and process management,”
Inf Sys and e-Business Management, vol. 13, no. 1, pp. 107–146, 2015.

[6] N. Mundbrod, F. Beuter, and M. Reichert, “Supporting Knowledge-
Intensive Processes through Integrated Task Lifecycle Support,” in Proc.
EDOC 2015, 2015, pp. 19–28.

[7] R. Vaculin, R. Hull, T. Heath, C. Cochran, A. Nigam, and P. Sukaviriya,
“Declarative business artifact centric modeling of decision and
knowledge intensive business processes,” in Proc. EDOC’11, 2011, pp.
151–160.

[8] N. Mundbrod and M. Reichert, “Process-Aware Task Management
Support for Knowledge-Intensive Business Processes: Findings,
Challenges, Requirements,” in Proc. EDOCW’14, 2014, pp. 116–125.

[9] J. Tiedeken, M. Reichert, and J. Herbst, “On the Integration
of Electrical/Electronic Product Data in the Automotive Domain,”
Datenbank Spektrum, vol. 13, no. 3, pp. 189–199, 2013.

[10] C. Gutwin and S. Greenberg, “A Descriptive Framework of Workspace
Awareness for Real-Time Groupware,” CSCW, vol. 11, no. 3, pp. 411–
446, 2002.

[11] R. Lenz and M. Reichert, “It support for healthcare processes –
premises, challenges, perspectives,” Data & Knowledge Engineering,
vol. 61, no. 1, pp. 39–58, 2007.

[12] SCRUMstudy, “Scrum phases and processes,” 2017.
[Online]. Available: http://www.scrumstudy.com/WhyScrum/
Scrum-Phases-And-Processes

[13] M. Hauder, S. Pigat, and F. Matthes, “Research Challenges in Adaptive
Case Management: A Literature Review,” in Proc. EDOCW’14, 2014,
pp. 98–107.

[14] OMG, “Case Management Modeling and Notation (CMMN) 1.1,”
2016. [Online]. Available: http://www.omg.org/spec/CMMN/1.1/

[15] K. D. Swenson, “Demo: Cognoscenti Open Source Software for
Experimentation on Adaptive Case Management Approaches,” in Proc.
EDOCW’14, 2014, pp. 402–405.

